EP3991292A1 - Module de production d'électricité - Google Patents

Module de production d'électricité

Info

Publication number
EP3991292A1
EP3991292A1 EP19813077.5A EP19813077A EP3991292A1 EP 3991292 A1 EP3991292 A1 EP 3991292A1 EP 19813077 A EP19813077 A EP 19813077A EP 3991292 A1 EP3991292 A1 EP 3991292A1
Authority
EP
European Patent Office
Prior art keywords
photovoltaic panels
module according
flexible photovoltaic
corrugated
wind turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19813077.5A
Other languages
German (de)
English (en)
Inventor
André Sassi
Jocelyne Sassi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Acpv
Original Assignee
Acpv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acpv filed Critical Acpv
Publication of EP3991292A1 publication Critical patent/EP3991292A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • H02S10/12Hybrid wind-PV energy systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/20Systems characterised by their energy storage means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/40Mobile PV generator systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/10Supporting structures directly fixed to the ground
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/10Frame structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/20Collapsible or foldable PV modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules

Definitions

  • the present invention relates to a power generation module that combines at least two different energy sources, namely wind and sun.
  • the electricity production module of the invention comprises both photovoltaic sensors and one or more wind turbines.
  • photovoltaic panels and wind turbines are not installed in urban areas. In addition, they are implemented either on an individual scale (house) or on an industrial scale (solar farms or wind farms): the intermediate scale has been neglected and does not exist or hardly exists.
  • the present invention fits precisely into an implementation on an intermediate scale, more particularly suited to an urban environment or to a farm.
  • the present invention combines corrugated photovoltaic panels and wind turbines, but with a particularly advantageous relative arrangement, namely that the wind turbine (or wind turbines) is arranged near and above the photovoltaic panels. In other words, the wind turbines overhang the photovoltaic panels from above.
  • This particular relative arrangement provides several advantages. Firstly, the wind turbines keep birds away, which will therefore not drop their droppings on the photovoltaic panels. The birds will not nest on or in the electricity production module either, since they are hunted by the wind turbines. This is especially valid in the city, where large colonies of pigeons live.
  • wind turbines will permanently clean the photovoltaic panels by the air flow they create: this prevents dust and leaves (or any other light particles) from accumulating on the photovoltaic panels.
  • the wind turbines flush the water out of the PV panels, which helps keep them clean.
  • the tips of the blades of wind turbines can pass less than a meter from the photovoltaic panels, or less than 50 cm, advantageously less than 20 cm or even less than 10 cm.
  • the electricity production module of the invention comprises at least one wind turbine having blades forming blade tips and at least one photovoltaic panel comprising a rigid corrugated structure covered with flexible photovoltaic panels, the wind turbine being arranged at- above the flexible photovoltaic panels with the blade tips passing close to the flexible photovoltaic panels to hunt birds and clean the flexible photovoltaic panels.
  • the photovoltaic panel forms low concave zones and high convex zones, the wind turbines being arranged at the level of the low concave zones.
  • the photovoltaic panel follows the trajectory of the blade tips of the wind turbines at a certain angle, for example of the order of 30 to 90 °.
  • the photovoltaic panel consists of an assembly of corrugated base elements comprising a rigid corrugated structure covered with flexible photovoltaic panels.
  • the corrugated base elements are identical and stackable.
  • each corrugated base element results from the junction of cylinder segments or parallel lines. It is thus possible to construct a desired extent of photovoltaic panels by simply assembling identical basic elements, in the manner of a roof covering formed of interlocking tiles.
  • the dimensions of these basic elements can be of the order of 1 to 2 meters per side, i.e. an area of the order from 1 to 4 m 2 .
  • the aim is that the basic elements can be handled and installed by one person. Their weight should not exceed 5 to 15 kg.
  • the wind turbine can be mounted on a mast comprising a cross member which supports the corrugated base elements.
  • each electricity production module will generally include several masts, as many wind turbines and one or two photovoltaic panels arranged on the crosspieces of the masts.
  • the masts constitute the basic support elements on which the wind turbines are mounted and the photovoltaic panels composed of corrugated basic elements.
  • the corrugated base elements are integral with crossbars at the low connection points and meet in the form of an arch at the upper connection points.
  • sprinklers are provided on the mast to clean the photovoltaic panels. Wind turbines will help dry the photovoltaic panels after each sprinkling.
  • the module can also include an electrical storage unit for storing at least part of the electricity coming from the flexible photovoltaic panels and from said at least one wind turbine.
  • the module can be connected to the electrical network, and in this case, said at least one wind turbine, in the absence of wind, is supplied with current by the electrical storage unit or the electrical network, so that 'it rotates continuously. This ensures that the scarecrow and cleaning functions are permanent.
  • the module can also include at least one electric charging terminal for charging rechargeable electric vehicles, the electric charging terminal being advantageously mounted on the mast, below the photovoltaic panels.
  • the module can include at least one anchoring base on which the mast is removably mounted.
  • the rigid structure and the mast are made of lightweight and / or recyclable composite materials.
  • a farmer can rent or buy one or more module (s) of production of electricity and install them as it pleases on plots that it does not cultivate. He will be able to move them easily because of their small size and lightness.
  • Wind turbines and basic elements can be removed from the masts for easier handling, or on the contrary, masts with their wind turbines and rigid structures can be handled in one piece, without the need for lifting gear.
  • the spirit of the invention lies in the fact that the wind turbine (or wind turbines) acts as a scarecrow (mainly for pigeons in town and starlings in the countryside), dust collector and dryer, in order to protect photovoltaic panels and keep them clean.
  • the use of flexible photovoltaic panels or films mounted on rigid corrugated structures makes it possible to create profiled sections, which are optimized with respect to the sun and / or wind turbines.
  • the use of one (or more) central support mast to support the wind turbine, sprinklers and a charging station is a particularly advantageous feature.
  • Figure 1 is a perspective view of a power generation module in the form of an electric vehicle charging station
  • FIG. 1 is a schematic front view in section of the electric vehicle charging station of Figure 1
  • Figure 3 is a schematic front and sectional view of a mobile electricity production module, especially for use on farms, and
  • Figure 4 is a schematic perspective view of a corrugated base element of the invention
  • FIG. 5 is a plan view showing the implementation of the corrugated base elements of FIG. 4 in an electricity production module according to the invention
  • FIG. 6 is a schematic plan of an electricity production module according to an alternative embodiment.
  • the electric vehicle charging station comprises five wind turbines E and two photovoltaic panels P.
  • This charging station can be installed both in town and in the countryside, in particular to deal with the problem of landlocked areas and evenly distribute electric cars.
  • the E wind turbines are installed at the top of M masts which are anchored in the ground. These M masts also serve as support for the two photovoltaic panels P.
  • the M masts also serve as supports for charging terminals C which are installed close to the ground or at human height.
  • the user of an electric vehicle V can thus charge the battery of his vehicle at one of the charging terminals C.
  • the electricity production module When the electricity production module is installed along a sidewalk, it can also be used for loading of scooters, bikes, scooters and hoverboards.
  • the wind turbines E each comprise three blades E1, which are intended to be driven in rotation by the wind.
  • the wind turbines E are mobile in rotation on their respective mast M, so as to adapt to the direction of the wind.
  • E wind turbines are medium in size, and are advantageously extremely quiet.
  • the length of the blades E1 advantageously does not exceed 0.5 meters.
  • the wind turbines E are arranged above the sides P at a distance of 1 to 2 meters.
  • the end E1 1 of the blades E1 can pass less than 20 centimeters from the sides P.
  • the blades E1 of the wind turbines E create air flows which will sweep the upper surface of the photovoltaic panels P. These flows of air go so rid the P sides of any object (leaves or dust) that may settle there. The air flows also chase away rainwater or washing water which could stagnate on the photovoltaic panels P.
  • the wind turbines E act as a scarecrow for the birds which thus stay away from the photovoltaic panels. P.
  • the E wind turbines thus fulfill a triple function of protection, sweeping and drying for the photovoltaic panels P, simply by being placed near and above the panels.
  • the electric charging station here comprises two photovoltaic sections P.
  • the sections P are profiled, in particular corrugated.
  • Each panel P includes a support structure S which is rigid and corrugated.
  • This support structure S can for example be made from extremely light composite materials.
  • the undulation of the support structure S is not random, but results from the junction of cylinder segments or parallel lines.
  • Photovoltaic sensors are arranged on the support structure S following its profiled shape.
  • the photovoltaic sensors are in the form of a semi-flexible or flexible and thin photovoltaic film or panel, which will closely match the profiled shape of the support structure S.
  • the photovoltaic film can be of the organic type based on polymer, such as that marketed by the company ARMOR under the brand ASCA ® .
  • the semi-flexible photovoltaic panel can be that marketed by the company SunPower ® .
  • the film or photovoltaic panel F covers the upper face of the support structures S, but can also cover the lower face, as well as the side edges.
  • this film or photovoltaic panel F is particularly sensitive to luminosity, and this also reaches the underside of the support structure S. It is thus possible to design photovoltaic panels P comprising a support structure S entirely coated with film or photovoltaic panel F. It is also possible to choose the color of the photovoltaic film according to the location: for example green in the countryside, another color of choice for cities and a sand color for arid or desert surfaces.
  • the electric charging station of Figure 1 is seen from another angle and partially in section.
  • the photovoltaic panels P are supported by horizontal ties T fixed to the poles M.
  • the panels P can be fixed by any technical means suitable to the horizontal ties T.
  • the photovoltaic panels P are corrugated so as to form low concave zones Z1 and high convex zones Z2, alternately and consecutively.
  • the panels P are mounted on the horizontal cross members T at the level of the low concave zones Z1, so that the tips of the blades E1 of the wind turbines E follow the low concave zones with a substantially constant gap.
  • the low concave areas follow the trajectory of the tips of the blades E1 at a certain angle, for example of the order of 30 to 90 °. This allows the tips of the blades E1 to be brought closer to the photovoltaic panels P, in order to further improve their protective and cleaning function.
  • the electric charging station of Figures 1 and 2 obviously includes all the equipment necessary to be able to inject the electricity produced into the domestic network.
  • This equipment can in particular comprise one or more inverter (s).
  • the station may also include an electrical storage unit B, which may be in the form of an accumulator or battery, thus making it possible to store part of the electricity produced, in particular to supply the charging terminals and the motors making it possible to rotate the wind turbines E.
  • the electrical storage unit B can also control sprinklers or cleaning nozzles W, for example installed on the masts M near their upper end, as can be seen in figure 2.
  • the photovoltaic sections P can be cleaned automatically using these sprinklers W, and then dried by the wind turbines E.
  • the charging stations C can also be supplied with electricity from the sector, in particular when the production of electricity from wind turbines and photovoltaic panels is insufficient.
  • the wind turbines of the invention are not only used to generate electricity: they are also used to hunt birds and to clean the photovoltaic panels. It is therefore advantageous that they run continuously, or at least the vast majority of the time. For this, it is a good idea to supply them with electricity, from the electrical storage unit B or from the network, when there is not enough wind. Since the storage unit B is charged by the wind turbines E (and the P sections), we can say that the wind turbines are self-powered.
  • FIG. 3 there is seen another power generation module of the invention in the form of a mini solar and wind power plant, which can easily be moved. It can easily be installed on farms, but also in gardens, private parks, etc.
  • the major difference with the first embodiment lies in the fact that the masts M ', which support the wind turbines E and the photovoltaic panels P, are not sealed in the ground, but removably engaged in anchoring bases A which rest on the ground.
  • This mini solar and wind power plant has the advantage of being easily movable, given that the masts M 'are removably engaged in the anchoring bases A, which are also mobile.
  • a user such as a farmer, can move the mini-power station as he wishes on fallow land.
  • the photovoltaic sections P can be removed from their horizontal cross members T, or not.
  • the wind turbines E can be removed from their masts M ', or not.
  • the user can thus dismantle the electrical production module, move the anchoring pads A and reassemble the module.
  • the module can remain in the mounted state and be moved in one piece. The lightness of the module does not justify the use of lifting means.
  • each photovoltaic panel P can have a length of 20 m and a width of the order of 1 to 2 meters. Because the rigid structure S is corrugated, the useful length of the sections P is of the order of 25 meters. Thus, each energy production module has a useful photovoltaic surface area of the order of 50 to 100 m 2 . As for the weight of each pan, it can be of the order of 50 kg.
  • the photovoltaic panels P can each be designed in a single piece, with a single-piece support structure S which is covered with film or photovoltaic panel F.
  • each photovoltaic panel P can result from the assembly of corrugated base elements Pi of reduced dimensions, for example 1 meter by 2 meters, as shown in FIG. 4. All the corrugated base elements Pi are preferably identical, and moreover stackable. Their undulation also results from the junction of cylinder segments or parallel lines.
  • Each corrugated base element Pi comprises a rigid corrugated structure S which is coated with a film or photovoltaic panel F, in the same way as the photovoltaic panels P.
  • each basic element Pi defines two opposite straight edges which are provided with male and female rabbets S1 and S2 formed by the rigid corrugated structure S.
  • the basic elements Pi fit into each other. the others at low connection points and at high connection points. It may be noted that the low connection points are positioned at the level of the cross members T, on which the base elements Pi can be fixed, for example by screwing.
  • the high connection points are not supported, but they form self-supporting arches. It is possible to use the basic Pi elements instead of tiles to constitute a roof covering.
  • M, M ’poles can be made up of interlocking segments of reduced length, for example from 1 to 2 meters.
  • the electricity production module of the invention can also be provided with reflective plates R which are arranged below the photovoltaic panels P to reflect the light on the underside of the panels, which are then covered with films or photovoltaic panels F.
  • These reflective plates R can be supported by secondary cross members T1 mounted on the mats M.
  • These plates R can be made of glass, metal, or any other material capable of reflecting light. It is thus possible to optimize the efficiency of the photovoltaic panels P.
  • wind barriers may be installed to reduce the module's wind resistance.
  • the invention we have a medium-sized power generation module, which can be installed in an urban environment as well as on agricultural land.
  • the synergistic association of wind turbines and corrugated photovoltaic panels allows maximum protection and easy maintenance of the photovoltaic panels.
  • the light weight of the various elements and their small size and the particularly simple assembly and assembly mode allow the installation of the power generation module by one person, who does not need professional skills.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Wind Motors (AREA)

Abstract

Module de production d'électricité, caractérisé en ce qu'il comprend au moins une éolienne (E) ayant des pales (E1 ) formant des bouts de pale (E11 ) et une au moins un pan photovoltaïque (P) comprenant une structure rigide ondulée (S) recouverte de panneaux photovoltaïques souples (F), l'éolienne (E) étant disposée au-dessus des panneaux photovoltaïques souples (F) avec les bouts de pale (E11 ) passant à proximité des panneaux photovoltaïques souples (F) pour chasser les oiseaux et nettoyer les panneaux photovoltaïques souples (F).

Description

Module de production d’électricité
La présente invention concerne un module de production d’électricité qui associe au moins deux sources d’énergie différentes, à savoir le vent et le soleil. Ainsi, le module de production d’électricité de l’invention comprend à la fois des capteurs photovoltaïques et une ou plusieurs éolienne(s).
D’une part, il existe déjà des panneaux photovoltaïques plans et rigides qui peuvent être installés sur des toits ou des structures prévues à cet effet, comme dans les fermes solaires.
D’autre part, il existe aussi des éoliennes, comme par exemple les éoliennes de grande taille montées sur des grands mâts et installées en rase campagne.
En général, les panneaux photovoltaïques et les éoliennes ne sont pas installés en milieu urbain. De plus, ils sont mis en oeuvre soit à une échelle individuelle (maison), soit à une échelle industrielle (fermes solaires ou parcs d’éoliennes) : l’échelle intermédiaire a été négligée et n’existe pas ou presque pas.
La présente invention s’inscrit précisément dans une mise en oeuvre à échelle intermédiaire, plus particulièrement adaptée au milieu urbain ou à une exploitation agricole.
Pour ce faire, la présente invention associe des panneaux photovoltaïques ondulés et des éoliennes, mais avec une disposition relative particulièrement avantageuse, à savoir que l’éolienne (ou les éoliennes) est disposée à proximité et au-dessus des panneaux photovoltaïques. En d’autres termes, les éoliennes surplombent de dessus les panneaux photovoltaïques. Cette disposition relative particulière apporte plusieurs avantages. Premièrement, les éoliennes éloignent les oiseaux, qui ne vont donc pas larguer leurs déjections sur les panneaux photovoltaïques. Les oiseaux ne vont pas non plus nicher sur ou dans le module de production d’électricité, puisque chassés par les éoliennes. Ceci est tout particulièrement valable en ville, où vivent de grandes colonies de pigeons. Deuxièmement, les éoliennes vont nettoyer en permanence les panneaux photovoltaïques de par le flux d’air qu’elles créent : cela empêche la poussière et les feuilles (ou toutes autres particules légères) de s’accumuler sur les panneaux photovoltaïques. Troisièmement, lorsque les panneaux photovoltaïques sont nettoyés avec de l’eau ou lorsqu’il pleut dessus, les éoliennes chassent l’eau des panneaux photovoltaïques, ce qui contribue à leur propreté. Les bouts des pales des éoliennes peuvent passer à moins d’un mètre des panneaux photovoltaïques, ou moins de 50 cm, avantageusement à moins de 20 cm ou même à moins de 10 cm.
Ainsi, le module de production d’électricité de l’invention comprend au moins une éolienne ayant des pales formant des bouts de pale et au moins un pan photovoltaïque comprenant une structure rigide ondulée recouverte de panneaux photovoltaïques souples, l’éolienne étant disposée au-dessus des panneaux photovoltaïques souples avec les bouts de pale passant à proximité des panneaux photovoltaïques souples pour chasser les oiseaux et nettoyer les panneaux photovoltaïques souples.
Selon une caractéristique particulièrement avantageuse, le pan photovoltaïque forme des zones concaves basses et des zones convexes hautes, les éoliennes étant disposées au niveau des zones concaves basses. Ainsi, le pan photovoltaïque suit la trajectoire des bouts de pale des éoliennes sur un certain angle, par exemple de l’ordre de 30 à 90°.
Selon un mode de réalisation pratique, le pan photovoltaïque est constitué d’un assemblage d’éléments de base ondulés comprenant une structure rigide ondulée recouverte de panneaux photovoltaïques souples. Avantageusement, les éléments de base ondulés sont identiques et empilables. De préférence, chaque élément de base ondulé résulte de la jonction de segments de cylindre ou de droites parallèles. On peut ainsi construire une étendue souhaitée de panneaux photovoltaïques par simple assemblage d’éléments de base identiques, à la manière d’une couverture de toit formée de tuiles emboîtées. Les dimensions de ces éléments de base peuvent être de l’ordre de 1 à 2 mètres de côté, soit une superficie de l’ordre de 1 à 4 m2. Le but est que les éléments de base puissent être manipulés et installés par une seule personne. Leur poids ne doit pas dépasser 5 à 15 kg.
Selon un autre aspect de l’invention, l'éolienne peut être montée sur un mât comprenant une traverse qui supporte les éléments de base ondulés. En pratique, chaque module de production d’électricité comprendra en général plusieurs mâts, autant d’éoliennes et un ou deux pans photovoltaïques disposés sur les traverses des mâts. Ainsi, les mâts constituent les éléments de support de base sur lesquels sont montés les éoliennes et les pans photovoltaïques composés d’éléments de base ondulés. Avantageusement, les éléments de base ondulés sont solidaires de traverses au niveau de points de raccordement bas et se rejoignent en forme voûte au niveau de points de raccordement haut. Avantageusement, des asperseurs sont prévus sur le mât pour nettoyer les panneaux photovoltaïques. Les éoliennes contribueront au séchage des panneaux photovoltaïques après chaque aspersion.
Le module peut aussi comprendre une unité de stockage électrique pour stocker au moins une partie de l'électricité issue des panneaux photovoltaïques souples et de ladite au moins une éolienne.
Avantageusement, le module peut être relié au réseau électrique, et dans ce cas, ladite au moins une éolienne, en l’absence de vent, est alimentée en courant par l’unité de stockage électrique ou le réseau électrique, de manière à ce qu’elle tourne en permanence. On assure ainsi que les fonctions d’épouvantail et de nettoyage sont permanentes.
Dans une version urbaine, le module peut aussi comprendre au moins une borne de chargement électrique pour charger des véhicules électriques rechargeables, la borne de chargement électrique étant avantageusement montée sur le mât, en-dessous des panneaux photovoltaïques.
Dans une version mobile plus adaptée à une exploitation agricole, le module peut comprendre au moins un socle d’ancrage sur lequel le mât est monté de manière amovible. Avantageusement, la structure rigide et le mât sont réalisés en matériaux composites légers et/ou recyclables. Ainsi, un exploitant agricole peut louer ou acheter un ou plusieurs module(s) de production d’électricité et les installer à sa guise sur les parcelles qu’il ne cultive pas. Il pourra les déplacer aisément du fait de leur taille réduite et de leur légèreté. Les éoliennes et les éléments de base peuvent être retirés des mâts pour faciliter la manipulation, ou au contraire, les mâts avec leurs éoliennes et les structures rigides peuvent être manipulés d’un seul tenant, sans avoir besoin d’engins de levage.
L’esprit de l’invention réside dans le fait que l’éolienne (ou les éoliennes) fasse office d’épouvantail (principalement pour les pigeons en ville et les étourneaux à la campagne), de dépoussiéreur et de sécheur, afin de protéger les panneaux photovoltaïques et les maintenir propres. L’utilisation de panneaux ou films photovoltaïques souples montés sur des structures rigides ondulées permet de créer des pans profilés, qui sont optimisés par rapport au soleil et/ou aux éoliennes. L’utilisation d’un (ou de plusieurs) mât de support central pour supporter l’éolienne, des asperseurs et une borne de recharge est une caractéristique particulièrement avantageuse.
L’invention sera maintenant plus amplement décrite en référence aux dessins joints, donnant à titre d’exemples non limitatifs, deux modes de réalisation de l’invention.
Sur les figures :
La figure 1 est une vue en perspective d’un module de production d’électricité sous la forme d’une station de chargement de véhicule électrique,
La figure 2 est une vue schématique de face et en coupe de la station de chargement de véhicule électrique de la figure 1 ,
La figure 3 est une vue schématique de face et en coupe d’un module de production d’électricité mobile, notamment à l’usage des exploitations agricoles, et
La figure 4 est une vue schématique en perspective d’un élément de base ondulé de l’invention,
La figure 5 est une vue en plan montrant la mise en oeuvre des éléments de base ondulés de la figure 4 dans un module de production d’électricité selon l’invention, La figure 6 est une en plan schématique d’un module de production électrique selon une variante de réalisation.
On se référera tout d’abord à la figure 1 pour décrire en détail un module de production d’électricité selon l’invention qui se présente sous la forme d’une station de chargement électrique pour véhicule électrique. Par conséquent, ce module de production d’électricité est plutôt à usage urbain (grandes agglomérations, grandes villes, villes moyennes, petites villes, villages).
Sur la figure 1 , on peut voir que la station de chargement de véhicule électrique comprend cinq éoliennes E et deux pans photovoltaïques P. Cette station de chargement peut s’installer aussi bien en ville qu’à la campagne, notamment pour traiter le problème de l’enclavement des territoires et répartir uniformément les voitures électriques. Les éoliennes E sont installées au sommet de mâts M qui sont ancrés dans le sol. Ces mâts M servent également de support aux deux pans photovoltaïques P. Les mâts M servent aussi de supports à des bornes de chargement C qui sont installées à proximité du sol ou à hauteur d’homme. L’utilisateur d’un véhicule électrique V peut ainsi charger la batterie de son véhicule au niveau d’une des bornes de chargement C. Lorsque le module de production d’électricité est installé le long d’un trottoir, il peut également servir au chargement de trottinettes, vélos, scooters et hoverboards.
Les éoliennes E comprennent chacune trois pales E1 , qui sont destinées à être entraînées en rotation par le vent. Les éoliennes E sont mobiles en rotation sur leur mât respectif M, de manière à s’adapter à la direction du vent. Les éoliennes E sont d’une dimension moyenne, et sont avantageusement extrêmement silencieuses. La longueur des pales E1 ne dépasse avantageusement pas 0,5 mètres.
On peut remarquer sur la figure 1 que les éoliennes E sont disposées au-dessus des pans P à une distance de 1 à 2 mètres. Le bout E1 1 des pales E1 peut passer à moins de 20 centimètres des pans P. Ainsi, en tournant, les pales E1 des éoliennes E créent des flux d’air qui vont balayer la surface supérieure des pans photovoltaïques P. Ces flux d’air vont ainsi débarrasser les pans P de tout objet (feuilles ou poussières) qui s’y déposerait. Les flux d’air chassent également l’eau de pluie ou de lavage qui pourrait stagner sur les pans photovoltaïques P. D’autre part, les éoliennes E font office d’épouvantail pour les oiseaux qui restent ainsi à l’écart des pans photovoltaïques P. Les éoliennes E remplissent ainsi une triple fonction de protection, de balayage et de séchage pour les pans photovoltaïques P, en étant simplement disposées à proximité et au-dessus des pans.
On peut voir sur la figure 1 que la station de chargement électrique comprend ici deux pans photovoltaïques P. Les pans P sont profilés, notamment ondulés. Chaque pan P comprend une structure de support S qui est rigide et ondulée. Cette structure de support S peut par exemple être réalisée à partir de matériaux composites extrêmement légers.
On peut noter que l’ondulation de la structure de support S n’est pas aléatoire, mais résulte de la jonction de segments de cylindre ou de droites parallèles.
Des capteurs photovoltaïques sont disposés sur la structure de support S en suivant sa forme profilée. Avantageusement, les capteurs photovoltaïques se présentent sous la forme d’un film ou panneau photovoltaïque semi-flexible ou souple et mince, qui va épouser intimement la forme profilée de la structure de support S. Le film photovoltaïque peut être de type organique à base de polymère, comme celui commercialisé par la société ARMOR sous la marque ASCA®. Le panneau photovoltaïque semi- flexible peut être celui commercialisé par la société SunPower®. Le film ou panneau photovoltaïque F recouvre la face supérieure des structures de support S, mais peut également recouvrir la face inférieure, ainsi que les chants latéraux. En effet, ce film ou panneau photovoltaïque F est particulièrement sensible à la luminosité, et celle-ci atteint également la face inférieure de la structure de support S. On peut ainsi concevoir des pans photovoltaïques P comprenant une structure de support S entièrement enrobée par du film ou panneau photovoltaïque F. Il est également possible de choisir le coloris du film photovoltaïque en fonction du lieu d’implantation : par exemple vert dans les campagnes, une autre couleur de choix pour les villes et une couleur sable pour les surfaces arides ou désertiques.
Sur la figure 2, on voit la station de chargement électrique de la figure 1 sous un autre angle et partiellement en coupe. On peut voir que les panneaux photovoltaïques P sont supportés par des traverses horizontales T fixées aux mâts M. Les panneaux P peuvent être fixés par n’importe quel moyen technique approprié aux traverses horizontales T. On peut également noter que les panneaux photovoltaïques P sont ondulés de manière à former des zones concaves basses Z1 et des zones convexes hautes Z2, de manière alternée et consécutive. Les panneaux P sont montés sur les traverses horizontales T au niveau des zones concaves basses Z1 , de telle sorte que les bouts des pales E1 des éoliennes E suivent les zones concaves basses avec un écart sensiblement constant. On peut également dire que les zones concaves basses suivent la trajectoire des bouts des pales E1 sur un certain angle, par exemple de l’ordre de 30 à 90°. Cela permet de rapprocher au maximum les bouts des pales E1 des panneaux photovoltaïques P, dans le but d’améliorer encore davantage leur fonction de protection et de nettoyage.
La station de chargement électrique des figures 1 et 2 comprend bien évidemment tous les équipements nécessaires pour pouvoir injecter l’électricité produite dans le réseau domestique. Ces équipements peuvent notamment comprendre un ou plusieurs onduleur(s). La station peut également comprendre une unité de stockage électrique B, qui peut se présenter sous la forme d’un accumulateur ou batterie, permettant ainsi de stocker une partie de l’électricité produite, notamment pour alimenter les bornes de chargement et les moteurs permettant de faire pivoter les éoliennes E. L’unité de stockage électrique B peut également commander des asperseurs ou buses de nettoyage W, par exemple installés sur les mâts M à proximité de leur extrémité supérieure, comme on peut le voir sur la figure 2. Ainsi, les pans photovoltaïques P peuvent être nettoyés automatiquement à l’aide de ces asperseurs W, et ensuite séchés par les éoliennes E. On dispose ainsi d’une station de chargement électrique tout à fait autonome, aussi bien en électricité qu’en moyen de nettoyage pour les pans photovoltaïques P. Bien entendu, les bornes de chargement C peuvent également être alimentées avec l’électricité du secteur, notamment lorsque la production d’électricité issue des éoliennes et des pans photovoltaïques est insuffisante.
Les éoliennes de l’invention ne servent pas qu’à produire de l’électricité : elles servent aussi à chasser les oiseaux et à nettoyer les pans photovoltaïques. Il est donc avantageux qu’elles tournent en permanence, ou au moins la très grande majorité du temps. Pour cela, il est judicieux de les alimenter en électricité, à partir de l’unité de stockage électrique B ou du réseau, lorsqu’il n’y a pas suffisamment de vent. Etant donné que l’unité de stockage B est chargée par les éoliennes E (et les pans P), on peut dire que les éoliennes sont auto-alimentées.
En se référant à la figure 3, on voit un autre module de production électrique de l’invention sous la forme d’une mini-centrale solaire et éolienne, qui peut aisément être déplacée. Elle peut aisément être installée dans des exploitations agricoles, mais également dans des jardins, des parcs privés, etc.
La différence majeure avec le premier mode de réalisation réside dans le fait que les mâts M’, qui supportent les éoliennes E et les pans photovoltaïques P, ne sont pas scellés dans le sol, mais engagés de manière amovible dans des socles d’ancrage A qui reposent au sol. Les mâts M’ sont ici dépourvus de bornes de chargement C et les pans photovoltaïques P peuvent être disposés un peu plus proche du sol. Cette mini-centrale solaire et éolienne présente l’avantage d’être facilement déplaçable, étant donné que les mâts M’ sont engagés de manière amovible dans les socles d’ancrage A, qui sont également mobiles. Ainsi, un utilisateur, tel qu’un exploitant agricole, peut déplacer à sa guise la mini-centrale électrique sur des terrains en jachère. Les pans photovoltaïques P peuvent être démontés de leurs traverses horizontales T, ou non. Les éoliennes E peuvent être démontées de leurs mâts M’, ou non. L’utilisateur peut ainsi démonter le module de production électrique, déplacer les plots d’ancrage A et remonter le module. En variante, le module peut rester à l’état monté et être déplacé d’un seul tenant. La légèreté du module ne justifie pas l’utilisation de moyens de levage.
A titre indicatif, chaque pan photovoltaïque P peut présenter une longueur de 20 m et une largeur de l’ordre de 1 à 2 mètres. Du fait que la structure rigide S est ondulée, la longueur utile des pans P est de l’ordre de 25 mètres. Ainsi, chaque module de production d’énergie présente une surface utile photovoltaïque de l’ordre de 50 à 100 m2. Quant au poids de chaque pan, il peut être de l’ordre de 50 kg.
Le pans photovoltaïques P peuvent chacun être conçus de manière monobloc, avec une structure de support S monobloc qui est recouverte de film ou panneau photovoltaïque F. En variante, chaque pan photovoltaïque P peut résulter de l’assemblage d’éléments de base ondulés Pi de dimensions réduites, par exemple de 1 mètre sur 2 mètres, comme représenté sur la figure 4. Tous les d’éléments de base ondulés Pi sont de préférence identiques, et de surcroit empilables. Leur ondulation résulte également de la jonction de segments de cylindre ou de droites parallèles. Chaque élément de base ondulé Pi comprend une structure rigide ondulée S qui est revêtue de film ou panneau photovoltaïque F, de la même manière que les pans photovoltaïques P.
L’assemblage des éléments de base Pi peut se faire par simple emboîtement pour constituer un pan photovoltaïque P de dimensions souhaitées. Pour cela, chaque élément de base Pi défini deux chants droits opposés qui font pourvus de feuillures mâle et femelle S1 et S2 formées par la structure rigide ondulée S. Comme représenté sur la figure 5, les éléments de base Pi s’emboitent les uns dans les autres au niveau de points bas de raccordement et au niveau de points hauts de raccordement. On peut noter que les points bas de raccordement sont positionnés au niveau des traverses T, sur lesquelles les éléments de base Pi peuvent être fixés, par exemple par vissage. Les points hauts de raccordement ne sont pas soutenus, mais ils forment des voûtes autoporteuses. Il est envisageable d’utiliser les éléments de base Pi à la place de tuiles pour constituer une couverture de toit.
Toujours dans cet esprit de légèreté et de modularité, les mats M, M’ peuvent être constitués de segments emboîtables de longueur réduite, par exemple de 1 à 2 mètres.
Sur la figure 6, on peut voir que le module de production d’électricité de l’invention peut être également pourvu de plaques réfléchissantes R qui sont disposées en-dessous des pans photovoltaïques P pour réfléchir la lumière sur la face inférieure des pans, qui sont alors recouverts de films ou panneaux photovoltaïques F. Ces plaques réfléchissantes R peuvent être supportées par des traverses secondaires T1 montées sur les mats M. Ces plaques R peuvent être réalisées en verre, en métal, ou tout autre matériau capable de réfléchir la lumière. On peut ainsi optimiser le rendement des pans photovoltaïques P.
En fonction du lieu d’implantation du module de production d’électricité, des barrières coupe-vent pourront être installées pour diminuer la prise au vent du module.
Grâce à l’invention, on dispose d’un module de production électrique de taille moyenne, qui peut aussi bien être installé dans un milieu urbain que sur des surfaces agricoles. L’association synergique d’éoliennes et de pans photovoltaïques ondulés, permet une protection maximale et une maintenance aisée des pans photovoltaïques. De plus, le faible poids des divers éléments et leur taille réduite et le mode particulièrement simple d’assemblage et de montage autorisent l’installation du module de production électrique par une seule personne, qui n’a pas besoin de compétences professionnelles.

Claims

Revendications
1. Module de production d’électricité, caractérisé en ce qu’il comprend au moins une éolienne (E) ayant des pales (E1 ) formant des bouts de pale (E1 1 ) et au moins un pan photovoltaïque (P) comprenant une structure rigide ondulée (S) recouverte de panneaux photovoltaïques souples (F), l’éolienne (E) étant disposée au-dessus des panneaux photovoltaïques souples (F) avec les bouts de pale (E1 1 ) passant à proximité des panneaux photovoltaïques souples (F) pour chasser les oiseaux et nettoyer les panneaux photovoltaïques souples (F).
2. Module selon la revendication 1 , dans lequel le bout de pale (E1 1 ) passe à moins de 50 cm, avantageusement moins de 20 cm, voire même moins de 10 cm, des panneaux photovoltaïques souples (F).
3. Module selon la revendication 1 ou 2, dans lequel le pan photovoltaïque (P) forme des zones concaves basses (Z1 ) et des zones convexes hautes (Z2), les éoliennes (E) étant disposées au niveau des zones concaves basses (Z1 ).
4. Module selon la revendication 1 , 2 ou 3, dans lequel est le pan photovoltaïque (P) est constitué d’un assemblage d’éléments de base ondulés (Pi) comprenant une structure rigide ondulée (S) recouverte de panneaux photovoltaïques souples (F).
5. Module selon la revendication 4, dans lequel les éléments de base ondulés (Pi) sont identiques et empilables.
6. Module selon la revendication 4 ou 5, dans lequel chaque élément de base ondulé (Pi) résulte de la jonction de segments de cylindre ou de droites parallèles.
7. Module selon l'une quelconque des revendications précédentes, dans lequel l'éolienne (E) est montée sur un mât (M ; M’) comprenant une traverse qui supporte les éléments de base ondulés (Pi).
8. Module selon la revendication 7, dans lequel les éléments de base ondulés (Pi) sont solidaires de traverses (T) au niveau de points de raccordement bas et se rejoignent en forme voûte au niveau de points de raccordement haut.
9. Module selon la revendication 7, dans lequel des asperseurs (W) sont prévus sur le mât (M ; M’) pour nettoyer les panneaux photovoltaïques souples (F).
10. Module selon l'une quelconque des revendications précédentes, comprenant une unité de stockage électrique (B) pour stocker au moins une partie de l’électricité issue des panneaux photovoltaïques souples (F) et de ladite au moins une éolienne (E).
1 1. Module selon la revendication 10, relié au réseau électrique, dans lequel ladite au moins une éolienne (E), en l’absence de vent, est alimentée en courant par l’unité de stockage électrique (B) ou le réseau électrique, de manière à ce qu’elle tourne en permanence.
12. Module selon l'une quelconque des revendications précédentes, comprenant au moins une borne de chargement électrique (C) pour charger des véhicules électriques rechargeables (V), la borne de chargement électrique (C) étant installée en-dessous des panneaux photovoltaïques.
13. Module selon les revendications 7 et 12, dans lequel la borne de chargement électrique (C) est montée sur le mât (M).
14. Module selon l'une quelconque des revendications précédentes, comprenant au moins un socle d’ancrage (A) sur lequel le mât (M') est monté de manière amovible.
15. Module selon l'une quelconque des revendications précédentes, dans lequel la structure rigide (S) et le mât (M : M’) sont réalisés en matériaux composites légers et recyclables.
EP19813077.5A 2019-06-25 2019-10-21 Module de production d'électricité Pending EP3991292A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1906875A FR3098064B1 (fr) 2019-06-25 2019-06-25 Module de production d’électricité
PCT/FR2019/052492 WO2020260775A1 (fr) 2019-06-25 2019-10-21 Module de production d'electricite.

Publications (1)

Publication Number Publication Date
EP3991292A1 true EP3991292A1 (fr) 2022-05-04

Family

ID=67514997

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19813077.5A Pending EP3991292A1 (fr) 2019-06-25 2019-10-21 Module de production d'électricité

Country Status (7)

Country Link
US (1) US20220321052A1 (fr)
EP (1) EP3991292A1 (fr)
JP (1) JP7499794B2 (fr)
CN (1) CN114128133A (fr)
FR (1) FR3098064B1 (fr)
IL (1) IL289308A (fr)
WO (1) WO2020260775A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3113780A1 (fr) * 2020-09-03 2022-03-04 Acpv Module de production d’électricité
US20230202326A1 (en) * 2021-12-29 2023-06-29 Lyft, Inc. Vehicle docking structure with a solar panel

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065211A (ja) 2001-08-23 2003-03-05 Tanakku:Kk 自然エネルギ利用の発電設備
JP2003102104A (ja) 2001-09-26 2003-04-04 San'eisha Mfg Co Ltd 電気自動車の可搬型充電システムユニット
JP2005036779A (ja) * 2003-07-14 2005-02-10 Kazuya Atsumi 電柱
US7737571B2 (en) * 2006-12-22 2010-06-15 Genedics Clean Energy, Llc System and method for creating a networked infrastructure distribution platform of fixed hybrid solar wind energy generating devices
FR2922628B1 (fr) * 2007-10-17 2013-07-12 Novea En Lampadaire
JP2009257015A (ja) 2008-04-18 2009-11-05 Daiken:Kk 駐車場システム
NZ589370A (en) * 2008-05-28 2012-07-27 Stephen David Boyd Polygonal wind deflecting structure for wind turbines either mounted on the ground or attached to support post
CN101672253A (zh) * 2009-10-16 2010-03-17 张建民 一种风力发电机系统
US8552581B2 (en) 2010-03-12 2013-10-08 Lynn A. Miller Portable solar and wind-powered energy generating system
KR101110042B1 (ko) * 2010-03-17 2012-02-29 테크원 주식회사 분해 조립식 태양광 및 풍력 발전장치
WO2011157859A1 (fr) * 2010-06-14 2011-12-22 Romero Lampon Jose Luis Station de recharge pour véhicules électriques
KR101071295B1 (ko) * 2011-03-21 2011-10-07 (주)유양디앤유 스마트 led 조명의 구동을 위한 신재생 에너지 융복합 전력 분배 시스템 및 방법, 스마트 led 조명의 구동을 위한 신재생 에너지 융복합 전력 분배 장치 및 그 장치의 구동 방법
US8710350B2 (en) * 2011-04-21 2014-04-29 Paul Shufflebotham Combination photovoltaic and wind power generation installation
US20140265598A1 (en) * 2013-03-15 2014-09-18 Powerhouse Electrical Contractors Inc. Photovoltaic and wind energy production system
CN103856151B (zh) 2013-12-02 2016-06-22 郑东武 长廊式道路风光能复合电站
CA2975109C (fr) * 2014-04-28 2020-01-07 Dawn Lavigne-Ottman Systeme et methode de collecte d'energie solaire et d'energie eolienne
WO2015198348A1 (fr) * 2014-06-26 2015-12-30 Kumar Prakash Tarun Arbre solaire
WO2016012092A1 (fr) * 2014-07-21 2016-01-28 Millenergie S.R.L. Unipersonale Système intégré de gestion d'énergie éolienne et photovoltaïque placé dans une structure sur poteau
US9859839B2 (en) * 2014-08-29 2018-01-02 Marcio Pugina Combined solar and wind power generation
US10233903B2 (en) * 2015-10-16 2019-03-19 Primo Wind, Inc. Mobile renewable energy structures providing wireless networking and associated systems and methods
CN205390611U (zh) * 2016-03-03 2016-07-27 马然 一种可再生能源伞
CN105863963A (zh) 2016-05-16 2016-08-17 中国大唐集团科学技术研究院有限公司 多能互补式发电机组
US11362616B2 (en) * 2017-03-06 2022-06-14 Vijay Duggal Multi-functional solar powered barrier walls and their financing methods
CN206655768U (zh) * 2017-03-29 2017-11-21 武汉理工大学 风能‑太阳能两用发电装置
KR102028443B1 (ko) * 2017-07-24 2019-10-04 신용오 고효율 풍력발전을 이용한 전기차 충전스테이션
CN207603285U (zh) * 2017-11-15 2018-07-10 浙江华电器材检测研究所有限公司 一种输电铁塔监测装置的供能系统
CN207990839U (zh) * 2017-12-22 2018-10-19 西安工程大学 一种风光联合驱动的公交站台蒸发冷却空调系统
US10518657B2 (en) * 2018-01-24 2019-12-31 Envision Solar International, Inc. Light standard with electric vehicle (EV) charger
CN108390633A (zh) 2018-05-30 2018-08-10 芜湖博创新能源科技有限公司 一种新能源汽车用的太阳能光伏板调节装置
CN208918362U (zh) 2018-08-09 2019-05-31 汪盛明 一种太阳能车棚
CN109495056A (zh) * 2018-10-17 2019-03-19 合肥凌山新能源科技有限公司 一种基于太阳能与风能的角度可调节一体式发电装置
CN109586652A (zh) * 2018-12-28 2019-04-05 南京楚卿电子科技有限公司 一种基于微电网的发电外机安装结构

Also Published As

Publication number Publication date
FR3098064A1 (fr) 2021-01-01
FR3098064B1 (fr) 2021-10-15
JP2022537835A (ja) 2022-08-30
JP7499794B2 (ja) 2024-06-14
IL289308A (en) 2022-02-01
US20220321052A1 (en) 2022-10-06
CN114128133A (zh) 2022-03-01
WO2020260775A1 (fr) 2020-12-30

Similar Documents

Publication Publication Date Title
CA2763120C (fr) Abri de parking equipe de panneaux solaires photovoltaiques
EP1933389A2 (fr) Installation de production d'energie solaire et de couverture, application à la couverture de zones de stationnement de véhicules
WO2002084044A1 (fr) Toile photogeneratrice et support pour une telle toile
EP3991292A1 (fr) Module de production d'électricité
US10868492B2 (en) Solar panel mounting apparatus and system
FR2949243A1 (fr) Dispositif de type ombriere de parking photovoltaique
FR3112801A3 (fr) Ombrière photovoltaïque
WO2022049349A1 (fr) Module de production d'électricité
WO2015190901A1 (fr) Dispositif mobile pour produire de l'energie photovoltaïque
WO2015063042A1 (fr) Unités et structures photovoltaïques
FR2973079A1 (fr) Centrale hybride solaire/eolienne
FR2948181A3 (fr) Support orientable ameliore pour panneaux solaires
WO2021260549A1 (fr) Installation photovoltaïque et procédé
WO2024083468A1 (fr) Toitures et facades vegetalisees photovoltaïques
US12088243B2 (en) Stackable and slidable solar panel arrays
CH712535A2 (fr) Dispositif solaire photovoltaïque.
FR3097244A1 (fr) Bâtiment photovoltaïque
WO2023152226A1 (fr) Dispositif de protection tel qu' un parasol et ensemble de tels dispositifs connectes
CH712536A2 (fr) Dispositif solaire photovoltaïque.
WO2023194672A1 (fr) Dispositif de conversion d'energie solaire en energie electrique
WO2024156830A1 (fr) Système mixte de génération d'énergie électrique
FR3063339A1 (fr) Ensemble de production d'energie solaire avec montage integre et gestion de l'eau et procede pour fournir celui-ci
WO2024105451A2 (fr) Amélioration de la production d'énergie de solutions pv
WO2013171385A1 (fr) Dispositif de concentration solaire uniformément répartie
FR2981730A1 (fr) Installation d'eclairage

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231005