WO2023194672A1 - Dispositif de conversion d'energie solaire en energie electrique - Google Patents

Dispositif de conversion d'energie solaire en energie electrique Download PDF

Info

Publication number
WO2023194672A1
WO2023194672A1 PCT/FR2023/050425 FR2023050425W WO2023194672A1 WO 2023194672 A1 WO2023194672 A1 WO 2023194672A1 FR 2023050425 W FR2023050425 W FR 2023050425W WO 2023194672 A1 WO2023194672 A1 WO 2023194672A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic
photovoltaic solar
elements
solar collector
covered
Prior art date
Application number
PCT/FR2023/050425
Other languages
English (en)
Inventor
Jean-luc MATHONNET
Original Assignee
Mathonnet Jean Luc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mathonnet Jean Luc filed Critical Mathonnet Jean Luc
Publication of WO2023194672A1 publication Critical patent/WO2023194672A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0684Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells double emitter cells, e.g. bifacial solar cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means

Definitions

  • the present invention relates to the conversion of solar energy into electrical energy by using photovoltaic solar collectors.
  • a photovoltaic solar collector can be compared to a current generator in the presence of solar radiation. It serves as a basic module for photovoltaic installations and in particular photovoltaic solar power plants.
  • a photovoltaic solar collector is usually of a rigid and thin rectangular parallelepiped shape (a few centimeters thick), whose length and width are of the order of a meter, for a surface area of the order of a square meter, and a mass of around 20 kg.
  • One side of a photovoltaic solar collector is covered with photovoltaic cells electrically connected together.
  • photovoltaic cells electrically connected together.
  • photovoltaic solar collector Various elements (electrical connections, fixings, possible frame and glass protection to ensure waterproofing) are also part of a photovoltaic solar collector.
  • photovoltaic solar collectors in the form of flexible and resistant membranes, as well as concentrated photovoltaic solar collectors, which are more complex but better exploit the capabilities of a photovoltaic cell.
  • the energy conversion efficiency of a photovoltaic solar collector is lower than that provided by all the photovoltaic cells that constitute it, due to internal electrical losses and uncovered surfaces. It is currently around 20%.
  • the energy actually captured by a photovoltaic solar collector depends on its surface and its technology, sunshine (variable depending on latitude, time of day, weather, masking experienced, etc.) and temperature of the sensor (production is better in the mountains because it is colder there).
  • a photovoltaic solar collector In addition to its power and surface area, a photovoltaic solar collector has three important characteristics:
  • a photovoltaic solar collector generates no waste in operation and its operating costs are virtually negligible. Waterproof, it can be used as a roof covering, provided that the flow of water at the edges is well controlled with suitable assembly.
  • An object of the present invention is to solve at least one of the problems of the technological background described above.
  • the present invention relates to a device for converting solar energy into electrical energy comprising several photovoltaic solar sensors,
  • each photovoltaic solar collector is formed from an assembly of at least three elements of rectangular parallelepiped shape assembled together to form a column whose height is greater than the greatest width of the elements, each element comprising two faces, the faces of the elements of photovoltaic solar collectors facing each other inside columns being called internal faces of photovoltaic solar collectors,
  • each photovoltaic solar collector is covered with photovoltaic cells and each internal face which is not covered with photovoltaic cells is reflective
  • said photovoltaic solar collectors being assembled according to a cellular structure allowing each photovoltaic solar collector to share at least one of its elements with other photovoltaic solar collectors.
  • the alveolar structure can be considered as an assembly of bifacial elements, that is to say elements whose two faces are either reflective (that is to say not covered with photovoltaic cells but made or covered of a material which reflects solar radiation), are covered with photovoltaic cells or elements of which one side is reflective and one side is covered with photovoltaic cells.
  • the assembly of photovoltaic cells to form a column makes it possible to multiply the bounces of solar radiation between the reflecting surfaces or the photovoltaic cells covering the internal faces of the column, the solar radiation entering through one end of the column and propagating in the descending phase in the column.
  • the number of bounces depends, among other things, on the angle of incidence of the solar rays inside the column.
  • the capture of solar energy carried by this solar radiation is then increased compared to a current photovoltaic solar collector having a surface area of photovoltaic cells equivalent to solar radiation.
  • the energy efficiency of the photovoltaic solar collector according to the present invention is then increased compared to a current photovoltaic solar collector without increasing the projected surface area of this photovoltaic solar collector.
  • each internal face of each photovoltaic solar collector is covered with photovoltaic cells.
  • the face attached to an internal face of at least one element of at least one photovoltaic solar collector is covered with photovoltaic cells.
  • one of the two ends of the column of at least one photovoltaic solar collector is obscured.
  • said end of the column of at least one photovoltaic solar collector is obscured by a reflective element.
  • said end of the column of at least one photovoltaic solar collector is obscured by at least one photovoltaic cell.
  • each photovoltaic solar collector is formed of three elements and has an equilateral triangular section.
  • each photovoltaic solar collector is formed of three elements and has an isosceles rectangular triangular section.
  • the device further comprises a system allowing adaptation of the orientation of the columns of the photovoltaic solar collectors to the relative positioning of the sun relative to the device and an increase in the solar radiation collection surface.
  • the device further comprises a reflective support on which the assembly of photovoltaic solar collectors is placed.
  • a surface of the support is greater than the surface of the assembly of photovoltaic solar collectors projected on the ground.
  • a face on the back of the support which is not in contact with the photovoltaic solar collectors is covered with photovoltaic cells.
  • the device further comprises a transparent cover placed on the support and covering the assembly of the photovoltaic solar collectors.
  • the support and the cover are made of glass.
  • the space between the cover and the support is placed under vacuum.
  • This embodiment is advantageous because it avoids excessive temperatures of the photovoltaic cells covering the faces of the elements of the photovoltaic solar collectors. The lifespan of these photovoltaic cells is thus increased.
  • FIG. 1 schematically represents a photovoltaic solar collector according to a particular and non-limiting embodiment of the present invention
  • FIG. 2 schematically represents a photovoltaic solar collector according to a particular and non-limiting embodiment of the present invention
  • FIG. 3 illustrates a surface for capturing solar radiation according to a particular and non-limiting embodiment of the present invention
  • FIG. 4 illustrates a surface for capturing solar radiation according to another particular and non-limiting embodiment of the present invention
  • FIG. 5 schematically represents the operation of the photovoltaic solar collector 2 of Figure 2 comprising a column formed of three elements of identical dimensions according to a particular and non-limiting example of the present invention
  • FIG. 6 illustrates an example of a photovoltaic solar collector comprising three elements whose three internal faces are covered with photovoltaic cells
  • FIG. 7 illustrates an example of a photovoltaic solar collector comprising three elements, two of the three internal faces of which are covered with photovoltaic cells;
  • FIG. 8 illustrates an example of a photovoltaic solar collector comprising three elements of which only one of the three internal faces is covered with photovoltaic cells;
  • FIG. 9 schematically represents a top view of a cellular structure according to a particular and non-limiting embodiment of the present invention.
  • FIG. 10 schematically represents a top view of an example of orientation of faces of elements of a cellular structure according to a particular and non-limiting embodiment of the present invention
  • FIG. 1 1 schematically represents a top view of an example of orientation of faces of elements of a cellular structure according to a particular and non-limiting embodiment of the present invention
  • FIG. 12 schematically represents a top view of an example of orientation of faces of elements of a cellular structure according to a particular and non-limiting embodiment of the present invention
  • FIG. 13 schematically represents a top view of a cellular structure according to a particular and non-limiting embodiment of the present invention
  • FIG. 14 schematically represents a perspective view of a device for converting solar energy into electrical energy conversion according to a particular and non-limiting embodiment of the present invention.
  • FIG. 15 schematically illustrates an example of an increase in the collection surface when the assembly of photovoltaic solar collectors is oriented by a system according to a particular and non-limiting embodiment of the present invention.
  • a device for converting solar energy into electrical energy comprising several photovoltaic solar collectors will now be described in what follows with reference jointly to Figures 1 to 15. The same elements are identified with the same reference signs throughout the description which follows.
  • FIG. 1 schematically represents a photovoltaic solar collector according to a particular and non-limiting embodiment of the present invention.
  • the photovoltaic solar collector 1 is formed of four elements 10i, 102, I O3 and 104 of rectangular parallelepiped shape assembled together at their lengths L to form a column whose height L is greater than the greatest width c elements.
  • the column has a square section.
  • the area of each face of each element is equal to L.
  • S c 2 .
  • FIG. 2 schematically represents a photovoltaic solar collector according to a particular and non-limiting embodiment of the present invention.
  • the photovoltaic solar collector is formed of three elements 10i, I O2 and I O3 of rectangular parallelepiped shape assembled together at their lengths L to form a column whose height L is greater than the greatest width c of the elements.
  • the column has an equilateral triangular section (for example perpendicular to the column) if the three elements have identical dimensions and an isosceles rectangular triangular section when two of the three elements have identical dimensions. identical dimensions, the third element having a width c greater than that of the other two elements.
  • the faces of the elements which face each other inside the column are called internal faces.
  • Figures 1 and 2 schematically show illustrative examples of photovoltaic solar collector according to the present invention and in no way limit the scope of the present invention.
  • a column can be formed by any number of elements of rectangular parallelepiped shape (at least 3) so as to form a space inside the column so that the solar rays can enter the column through the column. one of its ends and bounce on the internal faces of the elements.
  • the dimensions of the elements are also not limiting and columns of greater or lesser height and/or having more or less large sections can be considered without departing from the scope of the present invention.
  • the different characteristics of the photovoltaic solar collector will be illustrated for a photovoltaic solar collector made up of three elements. But these different characteristics are not limited to this type of photovoltaic solar collector and can extend to collectors made up of more than three elements.
  • FIG. 3 illustrates a surface for capturing solar radiation according to a particular and non-limiting embodiment of the present invention.
  • an equilateral triangle, of side c is the base of the photovoltaic solar collector (triangular prism).
  • the triangle height is therefore equal to c. V3/2.
  • the incident solar radiation beams are collected by an element of the photovoltaic solar collector on a triangular solar radiation collection surface 21 of side c and height h.
  • the height h is defined according to an angle of incidence a of the solar radiation beams and is equal to c. V3 tana/2.
  • This triangular surface for capturing solar radiation 21 is therefore limited by the angle a and the side of the triangle c.
  • Part of the incident optical power allows conversion into electrical energy (around 20%). The rest is mainly absorbed as heat or reflected.
  • the solar radiation collection surface of the column is equal to three times the surface of one face of an element.
  • this internal surface is greater than the surface projected onto the ground of the photovoltaic solar collector.
  • FIG. 4 illustrates a surface for capturing solar radiation according to another particular and non-limiting embodiment of the present invention.
  • the solar radiation collection surface in Figure 4 is greater than the collection surface in Figure 3 because the angle of incidence is greater.
  • FIG. 5 schematically represents the operation of the photovoltaic solar collector 2 of Figure 2 comprising a column formed of three elements of identical dimensions according to a particular and non-limiting example of the present invention.
  • a solar ray enters the column through one of these ends and strikes an element 10i. This solar ray bounces off this element and hits another element 102, then bounces back to hit element 10s, then bounces back to hit element 1 O1, etc.
  • the assembly of elements to form a column makes it possible to multiply the rebounds of solar radiation and/or to concentrate this solar radiation on the internal faces covered with photovoltaic cells of these elements which makes it possible to increase the capture of solar energy carried by this solar radiation and therefore increase energy efficiency without increasing the projected surface area of this photovoltaic solar collector.
  • At least one internal face of the photovoltaic solar collector is covered with photovoltaic cells and each internal face of the photovoltaic solar collector which is not covered with photovoltaic cells is reflective.
  • a photovoltaic solar collector can thus comprise, according to the present invention, internal faces which are all covered with photovoltaic cells or internal faces covered with photovoltaic cells (one at least) and other reflective internal faces.
  • FIG. 6 illustrates an example of a photovoltaic solar collector comprising three elements whose internal faces are covered with photovoltaic cells.
  • FIG. 7 illustrates an example of a photovoltaic solar collector comprising three elements, two of the three internal faces of which are covered with photovoltaic cells. The third internal face is reflective.
  • FIG. 8 illustrates an example of a photovoltaic solar collector comprising three elements of which only one of the three internal faces is covered with photovoltaic cells. The other two internal faces are reflective.
  • the use of reflective internal faces of the photovoltaic solar collector makes it possible to concentrate solar radiation on the internal face(s) of the photovoltaic solar collector which are covered with photovoltaic cells. This makes it possible to reduce the number of photovoltaic cells of the photovoltaic solar collector while maintaining electrical powers similar to those obtained by a photovoltaic solar collector comprising only internal faces covered with photovoltaic cells.
  • each internal face of the photovoltaic solar collector is covered with photovoltaic cells.
  • the face attached to an internal face of at least one element of the photovoltaic solar collector is covered with photovoltaic cells.
  • Each element of each photovoltaic solar collector has two faces.
  • Each element located on the periphery of the cellular structure comprises an internal face which faces faces of other photovoltaic solar collector elements and a face attached to this internal face. This attached face does not face any other internal face.
  • This embodiment makes it possible to increase the solar radiation collection surface, thus increasing the energy efficiency of the photovoltaic solar collector without increasing the projected surface area of this collector on the ground.
  • one of the two ends of the column is obscured by an element, referenced 11 in Figure 5, whose section is equal to that of the column.
  • one of the two ends of the column, referenced 11 in Figure 5, is obscured by a reflective element.
  • This particular embodiment is particularly advantageous because any solar ray arriving at the bottom of the column is reflected to bounce back again in the ascending phase on the elements of the column.
  • This embodiment makes it possible to increase the capture of solar energy carried by this solar radiation and therefore to increase the energy efficiency of the photovoltaic solar collector without increasing the projected surface area of this collector.
  • the end 11 of the column is obscured by at least one photovoltaic cell.
  • This particular embodiment makes it possible to increase the capture of solar energy carried by this solar radiation and therefore to increase the energy efficiency of the photovoltaic solar collector without increasing the projected surface area of this collector. Furthermore, as said at least one photovoltaic cell is also reflective, it(s) provide(s) a strong increase in the energy efficiency of the sensor because the solar rays which strike it(them) are reflected allowing thus new rebounds in the ascending phase on the photovoltaic cells covering at least one internal face of the column.
  • the photovoltaic solar collector further comprises a system allowing adaptation of the orientation of the column to the relative positioning of the sun in relation to the photovoltaic solar collector and an increase in the radiation collection surface. solar.
  • This embodiment is particularly advantageous because it makes it possible to orient the photovoltaic solar collector relative to the sun so as to optimize the collection surface during the first rebound of solar radiation on the photovoltaic cells covering at least one internal face of at least an element of the photovoltaic solar collector.
  • the present invention relates to a device for converting solar energy into electrical energy comprising several photovoltaic solar sensors.
  • Each photovoltaic solar collector is formed from an assembly of at least three elements of rectangular parallelepiped shape assembled together to form a column whose height is greater than the greatest width of the elements, each element comprising two faces.
  • the faces of the photovoltaic solar collector elements facing each other inside columns are called internal faces of the photovoltaic solar collectors.
  • At least one internal face of each photovoltaic solar collector is covered with photovoltaic cells and each internal face of a photovoltaic solar collector which is not covered with photovoltaic cells is reflective.
  • Said photovoltaic solar collectors are assembled according to a cellular structure allowing each photovoltaic solar collector to share at least one of its elements with other photovoltaic solar collectors of the device for converting solar energy into electrical energy.
  • the section of the cellular structure that is to say the surface projected onto the ground of all of its photovoltaic solar collectors, is not limited to a particular shape. However, photovoltaic solar collectors must have the same section. The section of the sensors must also allow each photovoltaic solar collector of the cellular structure to share one or two of its elements with other photovoltaic solar collectors of the device for converting solar energy into electrical energy.
  • photovoltaic solar collectors can have a square section as shown in Figure 1.
  • the section of the photovoltaic solar collectors is an equilateral triangle.
  • This embodiment makes it possible to obtain solar radiation collection surfaces greater than that corresponding to photovoltaic solar collectors comprising photovoltaic solar collectors of equilateral triangular section.
  • the section of the photovoltaic solar collectors is an isosceles right triangle.
  • This embodiment makes it possible to obtain solar radiation collection surfaces greater than that corresponding to photovoltaic solar collectors comprising photovoltaic solar collectors of triangular isosceles rectangle section.
  • each internal face of each photovoltaic solar collector is covered with photovoltaic cells.
  • the face attached to an internal face of at least one element of at least one photovoltaic solar collector is covered with photovoltaic cells.
  • the assembly of photovoltaic solar collectors of equilateral triangular section or isosceles right triangle in honeycomb structure can be created by repeated addition of one or two new elements of equilateral triangular section or isosceles right triangle.
  • the sum of the surfaces S of the elements of the cellular structure is equal to a surface GS which extends when new elements are added to the cellular structure.
  • the ratio of the honeycomb structure comprising three elements is three faces (3F) per surface S. By adding two new elements (and forming a new column), this ratio is close to 1.5F per surface S, thus achieving a gain of almost half the number of elements necessarily associated with any new column added to the honeycomb structure.
  • FIG. 9 schematically represents a top view of a cellular structure according to a particular and non-limiting embodiment of the present invention.
  • the cellular structure comprises 6 photovoltaic solar collectors of equilateral triangular section according to the present invention assembled according to a cellular structure.
  • each face of the elements 100 separating two photovoltaic solar collectors is either covered with photovoltaic or reflective cells while the external faces of the elements 101 which only belong to a single photovoltaic solar collector can be covered with photovoltaic or reflective cells.
  • An external face of an element is the face of this element which is opposed to the internal face of this element.
  • the cellular structure in Figure 9 is said to be of rank 1, that is to say that each of the photovoltaic solar collectors has a vertex equal to the center of the cellular structure.
  • Six directions of the internal faces of the photovoltaic solar collectors are defined from the honeycomb structure in Figure 9: two right oblique directions, two left oblique directions and two horizontal directions.
  • the two right oblique directions correspond to the element faces that follow the right oblique direction.
  • the distinction between the two straight oblique directions comes from the fact that the faces of the elements which are oriented in this right oblique direction are covered or not with photovoltaic cells.
  • the faces 10, 11, 12 and 13 are oriented in a first straight oblique direction. If at least one of these faces is covered by photovoltaic cells then a direct current electrical circuit is associated with the cells covering this or these faces for the conversion of solar energy into energy electric.
  • the faces 20, 21, 22 and 23 are oriented in a second straight oblique direction. If at least one of these faces is covered by photovoltaic cells then a direct current electrical circuit is associated with the cells covering this or these faces for the conversion of solar energy into electrical energy.
  • the faces 30, 31, 32 and 33 are oriented in a first left oblique direction. If at least one of these faces is covered by photovoltaic cells then a direct current electrical circuit is associated with the cells covering this or these faces for the conversion of solar energy into electrical energy.
  • the faces 40, 41, 42 and 43 are oriented in a second left oblique direction. If at least one of these faces is covered by photovoltaic cells then a direct current electrical circuit is associated with the cells covering this or these faces for the conversion of solar energy into electrical energy.
  • the faces 50, 51, 52 and 53 are oriented in a first horizontal direction. If at least one of these faces is covered by photovoltaic cells then a direct current electrical circuit is associated with the cells covering this or these faces for the conversion of solar energy into electrical energy.
  • the faces 60, 61, 62 and 63 are oriented in a second horizontal direction. If at least one of these faces is covered by photovoltaic cells then a direct current electrical circuit is associated with the cells covering this or these faces for the conversion of solar energy into electrical energy.
  • the number of directions of the internal faces of the photovoltaic solar collectors which are covered with photovoltaic cells defines a number of direct current electrical circuits used for the conversion of solar energy into electrical energy.
  • Each direct current electrical circuit connects the photovoltaic cells covering the internal faces oriented in the same direction.
  • FIG. 13 schematically represents a top view of a cellular structure according to a particular and non-limiting embodiment of the present invention.
  • the honeycomb structure comprises 24 photovoltaic solar collectors of equilateral triangular section assembled in a honeycomb structure.
  • the cellular structure of Figure 13 is said to be of rank 2, that is to say that it includes the 6 photovoltaic solar collectors of the cellular structure of rank 1 of Figure 9 to which are added 18 new photovoltaic solar collectors, each of these new photovoltaic sensors having either one of their elements or one of their vertices in common with one of the 6 photovoltaic solar collectors of the row 1 cellular structure.
  • higher rank cellular structures can be constructed by successive enlargement of previous cellular structures.
  • the table above gives examples of veolar structures of different ranks in which NC indicates the numbers of the photovoltaic solar collectors of the photovoltaic structure, NEA indicates the number of elements added per rank, SE is the number of elements of the honeycomb structure, NCA is the number of solar collectors photovoltaic cells added by rank and SC is the number of photovoltaic solar collectors in the cellular structure.
  • honeycomb structure enlarges, the more we obtain a gain in economy of added elements for an added surface S: from 3 faces to 1.5 faces for S alone.
  • the projected surface area of the row 6 cellular structure is equal to approximately 3,367 cm2 (216x — 6 2 for a cell of 6 cm side) while it would be equal to 32,832 cms2 (342x96 for a cell of 6 cm 8 cm) for a current photovoltaic solar collector with an equivalent collection surface.
  • one of the two ends of the column of at least one photovoltaic solar collector is obscured.
  • said end of the column of at least one photovoltaic solar collector is obscured by a reflective element.
  • said end of the column of at least one photovoltaic solar collector is obscured by at least one photovoltaic cell.
  • each photovoltaic solar collector is formed of three elements and has an equilateral triangular section. According to a particular and non-limiting embodiment, each photovoltaic solar collector is formed of three elements and has an isosceles rectangular triangular section.
  • the device for converting solar energy into electrical energy further comprises a system 71 allowing adaptation of the orientation of the columns of photovoltaic solar collectors to the relative positioning of the sun compared to the device and an increase in the solar radiation collection surface.
  • This embodiment is particularly advantageous because it makes it possible to orient the device for converting solar energy into electrical energy relative to the sun so as to optimize the surface for capturing solar radiation by the photovoltaic cells covering the internal face of at at least one element of at least one photovoltaic solar collector.
  • This embodiment is advantageous because it makes it possible to orient the cellular structure of photovoltaic solar collectors so as to optimize the collection surfaces of the internal faces of the photovoltaic solar collectors.
  • Figure 15 schematically illustrates an example of an increase in the collection surface when the assembly of photovoltaic solar collectors is oriented by a system 71 and this for an angle of incidence of solar radiation identical to that of Figure 2.
  • the device for converting solar energy into electrical energy further comprises a reflective support 74 on which the assembly 72 of the photovoltaic solar sensors is placed.
  • the surface of the support 74 is greater than the surface of the assembly 72 of the photovoltaic solar collectors projected onto the ground.
  • This mode is advantageous because the external faces of the photovoltaic solar collectors which are covered with photovoltaic cells are then subjected to double radiation: the solar radiation but also the solar radiation reflects on the support (Albedo effect). The efficiency of the photovoltaic cells is thus increased, increasing the collection capacity of the photovoltaic solar collectors and the device for converting solar energy into electrical energy.
  • a face on the back of the support 74 which is not in contact with the photovoltaic solar collectors is covered with photovoltaic cells.
  • the device for converting solar energy into electrical energy further comprises a transparent cover 70 placed on the support 74 and covering the assembly 72 of the photovoltaic solar sensors.
  • This embodiment is advantageous because the cover 70 makes it possible to protect the assembly of the photovoltaic solar collectors against shocks and bad weather, for example, while allowing solar radiation to pass through.
  • the shape of the surface projected onto the ground of the cover is of the same shape as the surface projected onto the ground of the assembly 72 of photovoltaic solar collectors.
  • the projected surface on the ground of the cover may be different from the projected surface on the ground of the assembly 72 of photovoltaic solar collectors.
  • the support 74 and the cover 72 are made of glass.
  • This embodiment is advantageous because it allows the support and the cover which have similar expansions to be bonded together.
  • the space between the cover 70 and the support 74 is placed under vacuum.
  • the inventor produced a prototype of the device for converting solar energy into electrical energy comprising three photovoltaic solar collectors.
  • Each photovoltaic solar collector is formed from an assembly of three photovoltaic cells of rectangular parallelepiped shape assembled together to form a column whose height is greater than the greatest width of the photovoltaic cells.
  • Each internal face of each photovoltaic solar collector each column of the device for converting solar energy into electrical energy is covered with a photovoltaic cell.
  • One of the two ends of each column is obscured by a reflective element (and not by a photovoltaic cell).
  • the three columns are not mounted in a honeycomb structure and the external faces of the photovoltaic solar collectors are not covered with photovoltaic cells.
  • each photovoltaic solar collector is of the order of 46.7
  • this prototype device With the same type of photovoltaic cells under the same natural luminosity (sun without clouds) at almost the same time t with a load of 50 ohms and for an optimal inclination for each structure, this prototype device with just internal capture of solar rays of the columns provides a voltage of 9V for 1.8V for a flat photovoltaic cell having a total equivalent surface area of approximately 48 cm2. Or an increase in the energy efficiency of the prototype.
  • the device for converting solar energy into electrical energy is a new technology for capturing (renewable) and carbon-free solar energy.
  • this device allows an energy yield approximately 4 times higher than that of a current photovoltaic solar collector with an equivalent collection surface. Furthermore, for an equal collection surface, a device for converting solar energy into electrical energy according to the present invention requires approximately 10 times less ground surface than a current photovoltaic solar collector.
  • the device according to the present invention allows a considerable saving in material and transport logistics before and after manufacturing compared to a current photovoltaic solar collector.
  • the same bifacial photovoltaic cell or the same set of photovoltaic cells can be used to construct the columns, resulting in a reduced manufacturing cost when these photovoltaic cells are mass manufactured.
  • the miniaturization of the device according to the present invention using columns of triangular section makes it possible to obtain a collection surface greater than that obtained by miniaturization of a device using columns of square section.
  • the miniaturization of a device means the division of a surface of a given shape into several surfaces of the same shape.
  • the cellular structure comprises 3 types of bifacial triangular elements: a first type of bifacial triangular element of which a first face and a second face are covered with photovoltaic cells ; a second type of triangular element of which a first face is covered with photovoltaic cells and a second face is reflective (that is to say not covered with photovoltaic cells); and a third type of elements whose two faces are reflective (not covered with photovoltaic cells).
  • the present invention is not limited to the exemplary embodiments described above but extends to any photovoltaic solar collector and/or any monitoring device. conversion of solar energy into electrical energy which would include secondary components/elements without thereby departing from the scope of the present invention. The same would apply to a device for converting solar energy into electrical energy which would only have part of its photovoltaic cells assembled in a cellular structure.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

La présente invention concerne sur un dispositif de conversion d'énergie solaire en énergie électrique comprenant plusieurs capteurs solaires photovoltaïques, - chaque capteur solaire photovoltaïque est formé d'un assemblage d'au moins trois éléments de forme parallélépipédique rectangle assemblés entre eux pour former une colonne dont la hauteur est supérieure à la plus grande largeur des éléments, chaque élément comprenant deux faces, les faces des éléments des capteurs solaires photovoltaïques se faisant face à l'intérieur de colonnes étant appelées faces internes des capteurs solaires photovoltaïques, - au moins une face interne de chaque capteur solaire photovoltaïque est recouverte de cellules photovoltaïques et chaque face interne qui n'est pas recouverte de cellules photovoltaïques est réfléchissante, - lesdits capteurs solaires photovoltaïques étant assemblés selon une structure alvéolaire permettant à chaque capteur solaire photovoltaïque de partager au moins un de ses éléments avec d'autres capteurs solaires photovoltaïques.

Description

Dispositif de conversion d’énergie solaire en énergie électrique
Domaine technique
La présente invention concerne la conversion d’énergie solaire en énergie électrique par utilisation de capteurs solaires photovoltaïques.
Arrière-plan technologique
Un capteur solaire photovoltaïque est assimilable à un générateur de courant en présence de rayonnement solaire. Il sert de module de base pour les installations photovoltaïques et notamment les centrales solaires photovoltaïques.
Un capteur solaire photovoltaïque est habituellement de forme parallélépipédique rectangle rigide et mince (quelques centimètres d’épaisseur), dont la longueur et la largeur sont de l’ordre du mètre, pour une surface de l’ordre du mètre carré, et une masse de l’ordre de 20 kg. L’une des faces d’un capteur solaire photovoltaïque est recouverte de cellules photovoltaïques reliées entre elles électriquement. On parle de capteur solaire photovoltaïque mono-face ou uni-facial. En activité, cette face planaire est exposée au rayonnement solaire pour capter l’énergie solaire et pour que chaque cellule photovoltaïque transforme l’énergie solaire captée en énergie électrique.
Divers éléments (branchements électriques, fixations, éventuel cadre et protection en verre pour assurer une étanchéité) font aussi partie d’un capteur solaire photovoltaïque. Il existe également des capteurs solaires photovoltaïques sous forme de membranes souples et résistantes, ainsi que des capteurs solaires photovoltaïques à concentration, plus complexes mais exploitant mieux les capacités d’une cellule photovoltaïque.
L'efficacité énergétique de conversion d'un capteur solaire photovoltaïque est plus faible que celle fournie par toutes les cellules photovoltaïques qui le constituent, du fait des pertes électriques internes et des surfaces non couvertes. Elle est actuellement de l'ordre de 20 %. L’énergie réellement captée par un capteur solaire photovoltaïque dépend de sa surface et de sa technologie, de l’ensoleillement (variable selon la latitude, l’heure de la journée, la météo, le masquage subi, etc.) et de la température du capteur (la production est meilleure en montagne car il y fait plus froid).
Outre sa puissance et sa surface, un capteur solaire photovoltaïque a trois caractéristiques importantes :
- l’écart à la puissance nominale, de l’ordre de -0/+5 % ;
- la variation de puissance avec la température ;
- la stabilité dans le temps des performances (généralement au moins 80 % de la puissance de départ pendant 20 à 25 ans).
Le prix pour de tels capteurs solaires photovoltaïques était en 2008 d’environ 3- 4 €/W et il baisse régulièrement. En 2021 , le prix de gros est inférieur à 0,35 €/W.
Un capteur solaire photovoltaïque ne génère aucun déchet en fonctionnement et ses coûts d’exploitation sont quasi nuis. Étanche, il peut servir de couverture à un toit, sous réserve de bien maîtriser l’écoulement d’eau aux bords avec un montage adapté.
L'efficacité énergétique d’un capteur solaire photovoltaïque est de l’ordre de 20%. Pour augmenter cette efficacité, il est tentant de remplacer les matériaux constituant les cellules photovoltaïques des capteurs actuels par des matériaux plus performants. Toutefois, cette solution n’est pas envisageable à grande échelle car le coût de tels matériaux augmenterait significativement le coût des cellules et donc très fortement celui des capteurs solaires photovoltaïques sans pour cela que l’efficacité énergétique de tels capteurs solaires photovoltaïques le soit de manière significative.
Le problème à résoudre est d’améliorer l’efficacité des capteurs solaires photovoltaïques actuels. Résumé de la présente invention
Un objet de la présente invention est de résoudre au moins l’un des problèmes de l’arrière-plan technologique décrit précédemment.
Selon un premier aspect, la présente invention concerne un dispositif de conversion d’énergie solaire en énergie électrique comprenant plusieurs capteurs solaires photovoltaïques,
- chaque capteur solaire photovoltaïque est formé d’un assemblage d’au moins trois éléments de forme parallélépipédique rectangle assemblés entre eux pour former une colonne dont la hauteur est supérieure à la plus grande largeur des éléments, chaque élément comprenant deux faces, les faces des éléments des capteurs solaires photovoltaïques se faisant face à l’intérieur de colonnes étant appelées faces internes des capteurs solaires photovoltaïques,
- au moins une face interne de chaque capteur solaire photovoltaïque est recouverte de cellules photovoltaïques et chaque face interne qui n’est pas recouverte de cellules photovoltaïques est réfléchissante,
- lesdits capteurs solaires photovoltaïques étant assemblés selon une structure alvéolaire permettant à chaque capteur solaire photovoltaïque de partager au moins un de ses éléments avec d’autres capteurs solaires photovoltaïques.
Autrement dit, la structure alvéolaire peut être considérée comme un assemblage d’éléments bifaciaux c’est-à-dire d’éléments dont les deux faces sont soient réfléchissantes (c’est-à-dire non recouvertes de cellules photovoltaïques mais faites ou recouvertes d’un matériau qui réfléchit le rayonnement solaire), soient recouvertes de cellules photovoltaïques ou d’éléments dont une face est réfléchissante et une face est recouverte de cellules photovoltaïques.
L’assemblage de cellules photovoltaïques pour former une colonne permet de multiplier les rebonds du rayonnement solaire entre les surfaces réfléchissantes ou les cellules photovoltaïques recouvrant les faces internes de la colonne, le rayonnement solaire entrant par une extrémité de la colonne et se propageant en phase descendante dans la colonne. Le nombre de rebonds dépend, entre autres, de l’angle d’incidence des rayons solaires à l’intérieur de la colonne. Le captage d’énergie solaire portée par ce rayonnement solaire est alors augmenté par rapport à un capteur solaire photovoltaïque actuel présentant une surface de cellules photovoltaïques équivalente au rayonnement solaire. L’efficacité énergétique du capteur solaire photovoltaïque selon la présente invention est alors augmentée comparée à un capteur solaire photovoltaïque actuel sans pour autant augmenter la surface projetée au sol de ce capteur solaire photovoltaïque.
Selon un mode de réalisation particulier et non limitatif, chaque face interne de chaque capteur solaire photovoltaïque est recouverte de cellules photovoltaïques.
Selon un mode de réalisation particulier et non limitatif, la face adossée à une face interne d’au moins un élément d’au moins un capteur solaire photovoltaïque est recouverte de cellules photovoltaïques.
Selon un mode de réalisation particulier et non limitatif, l’une des deux extrémités de la colonne d’au moins un capteur solaire photovoltaïque est occultée.
Selon un mode de réalisation particulier et non limitatif, ladite extrémité de la colonne d’au moins un capteur solaire photovoltaïque est occultée par un élément réfléchissant.
Selon un mode de réalisation particulier et non limitatif, ladite extrémité de la colonne d’au moins un capteur solaire photovoltaïque est occultée par au moins une cellule photovoltaïque.
Selon un mode de réalisation particulier et non limitatif, chaque capteur solaire photovoltaïque est formé de trois éléments et présente une section triangulaire équilatérale.
Selon un mode de réalisation particulier et non limitatif, chaque capteur solaire photovoltaïque est formé de trois éléments et présente une section triangulaire rectangle isocèle.
Selon un mode de réalisation particulier et non limitatif, le dispositif comprend en outre un système permettant une adaptation de l’orientation des colonnes des capteurs solaires photovoltaïques au positionnement relatif du soleil par rapport au dispositif et une augmentation de la surface de captage de rayonnement solaire. Selon un mode de réalisation particulier et non limitatif, le dispositif comprend en outre un support réfléchissant sur lequel se pose l’assemblage des capteurs solaires photovoltaïques.
Selon un mode de réalisation particulier et non limitatif, une surface du support est supérieure à la surface de l’assemblage des capteurs solaires photovoltaïques projetée au sol.
Selon un mode de réalisation particulier et non limitatif, une face au dos du support qui n’est pas en contact avec les capteurs solaires photovoltaïques est recouverte de cellules photovoltaïques.
Selon un mode de réalisation particulier et non limitatif, le dispositif comprend en outre un couvercle transparent posé sur le support et recouvrant l’assemblage des capteurs solaires photovoltaïques.
Selon un mode de réalisation particulier et non limitatif, le support et le couvercle sont en verre.
Selon un mode de réalisation particulier et non limitatif, l’espace entre le couvercle et le support est mis sous vide.
Ce mode de réalisation est avantageux car il évite des températures excessives des cellules photovoltaïques recouvrant les faces des éléments des capteurs solaires photovoltaïques. La durée de vie de ces cellules photovoltaïques est ainsi accrue.
Brève description des figures
D’autres caractéristiques et avantages de la présente invention ressortiront de la description des exemples de réalisation particuliers et non limitatifs de la présente invention ci-après, en référence aux figures 1 à 15 annexées, sur lesquelles :
[Fig. 1 ] représente schématiquement un capteur solaire photovoltaïque selon un exemple de réalisation particulier et non limitatif de la présente invention;
[Fig. 2] représente schématiquement un capteur solaire photovoltaïque selon un exemple de réalisation particulier et non limitatif de la présente invention; [Fig. 3] illustre une surface de captage de rayonnement solaire selon un exemple de réalisation particulier et non limitatif de la présente invention;
[Fig. 4] illustre une surface de captage de rayonnement solaire selon un autre exemple de réalisation particulier et non limitatif de la présente invention;
[Fig. 5] représente schématiquement le fonctionnement du capteur solaire photovoltaïque 2 de la figure 2 comprenant une colonne formée de trois éléments de dimensions identiques selon un exemple particulier et non limitatif de la présente invention ;
[Fig. 6] illustre un exemple de capteur solaire photovoltaïque comprenant trois éléments dont les trois faces internes sont recouvertes de cellules photovoltaïques ;
[Fig. 7] illustre un exemple de capteur solaire photovoltaïque comprenant trois éléments dont deux des trois faces internes sont recouvertes de cellules photovoltaïques ;
[Fig. 8] illustre un exemple de capteur solaire photovoltaïque comprenant trois éléments dont une seule des trois faces internes est recouverte de cellules photovoltaïques ;
[Fig. 9] représente schématiquement une vue de dessus d’une structure alvéolaire selon un exemple de réalisation particulier et non limitatif de la présente invention ;
[Fig. 10] représente schématiquement vue de dessus un exemple d’orientation de faces d’éléments d’une structure alvéolaire selon un exemple de réalisation particulier et non limitatif de la présente invention ;
[Fig. 1 1] représente schématiquement vue de dessus un exemple d’orientation de faces d’éléments d’une structure alvéolaire selon un exemple de réalisation particulier et non limitatif de la présente invention ;
[Fig. 12] représente schématiquement vue de dessus un exemple d’orientation de faces d’éléments d’une structure alvéolaire selon un exemple de réalisation particulier et non limitatif de la présente invention ;
[Fig. 13] représente schématiquement une vue de dessus d’une structure alvéolaire selon un exemple de réalisation particulier et non limitatif de la présente invention ; [Fig. 14] représente schématiquement une vue en perspective d’un dispositif de conversion d’énergie solaire en énergie électrique conversion selon un exemple de réalisation particulier et non limitatif de la présente invention.
[Fig. 15] illustre schématiquement un exemple d’augmentation de la surface de captage lorsque l’assemblage de capteurs solaires photovoltaïques est orienté par un système selon un exemple de réalisation particulier et non limitatif de la présente invention.
Description des exemples de réalisation
Un dispositif de conversion d’énergie solaire en énergie électrique comprenant plusieurs capteurs solaires photovoltaïques vont maintenant être décrits dans ce qui va suivre en référence conjointement aux figures 1 à 15. Des mêmes éléments sont identifiés avec des mêmes signes de référence tout au long de la description qui va suivre.
[Fig. 1 ] représente schématiquement un capteur solaire photovoltaïque selon un exemple de réalisation particulier et non limitatif de la présente invention.
Selon cet exemple, le capteur solaire photovoltaïque 1 est formé de quatre éléments 10i , 1Û2, I O3 et 104 de forme parallélépipédique rectangle assemblés entre eux au niveau de leur longueurs L pour former une colonne dont la hauteur L est supérieure à la plus grande largeur c des éléments . La colonne a une section carré. La surface de chaque face de chaque élément est égale à L. c = x. c2 avec L=x.c. La surface projetée au sol du capteur solaire photovoltaïque est égale à S = c2.
[Fig. 2] représente schématiquement un capteur solaire photovoltaïque selon un exemple de réalisation particulier et non limitatif de la présente invention.
Selon cet exemple, le capteur solaire photovoltaïque est formé de trois éléments 10i, I O2 et I O3 de forme parallélépipédique rectangle assemblés entre eux au niveau de leur longueurs L pour former une colonne dont la hauteur L est supérieure à la plus grande largeur c des éléments. La colonne a une section (par exemple perpendiculaire à la colonne) triangulaire équilatérale si les trois éléments ont des dimensions identiques et une section triangulaire rectangle isocèle lorsque deux des trois éléments ont des dimensions identiques, le troisième élément ayant une largeur c supérieure à celle des deux autres éléments. La surface de chaque face de chaque élément est égale à L. c = x. c2 avec L=x.c et x une valeur scalaire supérieure à 1 . La surface projetée au sol du capteur solaire photovoltaïque est égale à S = — c2 dans le cas d’une section triangulaire équilatérale.
Les faces des éléments qui se font face à l’intérieur de la colonne sont dites faces internes.
Les Figures 1 et 2 montrent schématiquement des exemples illustratifs de capteur solaire photovoltaïque selon la présente invention et ne limitent en rien la portée de la présente invention. En effet, une colonne peut être formée par un nombre quelconque d’éléments de forme parallélépipédique rectangle (au moins 3) de manière à former un espace à l’intérieur de la colonne pour que les rayons solaires puissent entrer dans la colonne par l’une de ses extrémités et rebondir sur les faces internes des éléments. Les dimensions des éléments ne sont pas non plus limitatives et des colonnes plus ou moins hautes et/ou ayant des sections plus ou moins importantes peuvent être envisagées sans pour cela sortir de la portée de la présente invention.
Par la suite, les différentes caractéristiques du capteur solaire photovoltaïque seront illustrées pour un capteur solaire photovoltaïque formé de trois éléments. Mais ces différentes caractéristiques ne se limitent pas à ce type de capteur solaire photovoltaïque et peuvent s’étendre à des capteurs formés de plus de trois éléments.
[Fig. 3] illustre une surface de captage de rayonnement solaire selon un exemple de réalisation particulier et non limitatif de la présente invention.
Selon cet exemple, un triangle équilatéral, de côté c, est la base du capteur solaire photovoltaïque (prisme triangulaire). La hauteur de triangle est donc égale à c. V3/2. Les faisceaux du rayonnement solaire incidents sont collectés par un élément du capteur solaire photovoltaïque sur une surface triangulaire de captage de rayonnement solaire 21 de côté c et de hauteur h. La hauteur h est définie suivant un angle d’incidence a des faisceaux du rayonnement solaire et est égale a c. V3 tana/2. Cette surface triangulaire de captage de rayonnement solaire 21 est donc limitée par l’angle a et le côté du triangle c. Une partie de la puissance optique incidente permet la conversion en énergie électrique (environ 20%). Le reste est principalement absorbé sous forme de chaleur ou réfléchi.
Lorsque les faces internes du capteur solaire photovoltaïque sont toutes recouvertes de cellules photovoltaïques, la surface de captage de rayonnement solaire de la colonne est égale à trois fois la surface d’une face d’un élément. Ainsi, comme x>1 , cette surface interne est supérieure à la surface projetée au sol du capteur solaire photovoltaïque.
[Fig. 4] illustre une surface de captage de rayonnement solaire selon un autre exemple de réalisation particulier et non limitatif de la présente invention.
La surface de captage de rayonnement solaire de la figure 4 est supérieure à la surface de captage de la figure 3 car l’angle d’incidence est plus important.
[Fig. 5] représente schématiquement le fonctionnement du capteur solaire photovoltaïque 2 de la figure 2 comprenant une colonne formée de trois éléments de dimensions identiques selon un exemple particulier et non limitatif de la présente invention.
Selon cette illustration, un rayon solaire pénètre dans la colonne par l’une de ces extrémités et vient frapper un élément 10i . Ce rayon solaire rebondit sur cet élément et frappe un autre élément 102, puis rebondit pour frapper l’élément 10s, puis rebondit pour frapper l’élément 1 O1, etc.
L’assemblage d’éléments pour former une colonne permet de multiplier les rebonds du rayonnement solaire et/ou de concentrer ce rayonnement solaire sur les faces internes recouvertes de cellules photovoltaïques de ces éléments ce qui permet d’augmenter le captage d’énergie solaire portée par ce rayonnement solaire et donc d’augmenter l’efficacité énergétique sans pour autant augmenter la surface projetée au sol de ce capteur solaire photovoltaïque.
Selon la présente invention, au moins une face interne du capteur solaire photovoltaïque est recouverte de cellules photovoltaïques et chaque face interne du capteur solaire photovoltaïque qui n’est pas recouverte de cellules photovoltaïques est réfléchissante.
Un capteur solaire photovoltaïque peut ainsi comprendre, selon la présente invention, des faces internes qui sont toutes recouvertes de cellules photovoltaïques ou des faces internes recouvertes de cellules photovoltaïques (une au minimum) et d’autres faces internes réfléchissantes.
[Fig. 6] illustre un exemple de capteur solaire photovoltaïque comprenant trois éléments dont les faces internes sont recouvertes de cellules photovoltaïques.
[Fig. 7] illustre un exemple de capteur solaire photovoltaïque comprenant trois éléments dont deux des trois faces internes sont recouvertes de cellules photovoltaïques. La troisième face interne est réfléchissante.
[Fig. 8] illustre un exemple de capteur solaire photovoltaïque comprenant trois éléments dont une seule des trois faces internes est recouverte de cellules photovoltaïques. Les deux autres faces internes sont réfléchissantes.
Dans les figures 6, 7 et 8, les faces des éléments qui sont recouvertes de cellules photovoltaïques sont représentées en trait épais.
L’utilisation de faces internes réfléchissantes du capteur solaire photovoltaïque permet de concentrer le rayonnement solaire sur la ou les faces internes du capteur solaire photovoltaïque qui sont recouvertes de cellules photovoltaïques. Ce qui permet de réduire le nombre de cellules photovoltaïques du capteur solaire photovoltaïque tout en maintenant des puissances électriques similaires à celles obtenues par un capteur solaire photovoltaïque ne comprenant que des faces internes recouvertes de cellules photovoltaïques.
De plus, l’utilisation de faces internes réfléchissantes permet de concentrer le rayonnement solaire vers des faces internes recouvertes de cellules photovoltaïques. Ceci amène plus facilement à une saturation électrique des cellules photovoltaïques recouvrant ces faces internes.
Selon un mode de réalisation particulier et non limitatif, chaque face interne du capteur solaire photovoltaïque est recouverte de cellules photovoltaïques. Selon un mode de réalisation, la face adossée à une face interne d’au moins un élément du capteur solaire photovoltaïque est recouverte de cellules photovoltaïques.
Chaque élément de chaque capteur solaire photovoltaïques comprend deux faces. Chaque élément situé en périphérie de la structure alvéolaire comprend une face interne qui fait face à des faces de d’autres éléments de capteurs solaires photovoltaïques et une face adossée à cette face interne. Cette face adossée ne fait face à aucune autre face interne.
Ce mode de réalisation permet d’augmenter la surface de captage de rayonnement solaire, augmentant ainsi l’efficacité énergétique du capteur solaire photovoltaïque sans pour autant augmenter la surface projetée au sol de ce capteur.
Selon un exemple de réalisation particulier et non limitatif, l’une des deux extrémités de la colonne est occultée par un élément, référencé 11 sur la figure 5, dont la section est égale à celle de la colonne.
Selon un mode de réalisation particulier et non limitatif, l’une des deux extrémités de la colonne, référencée 11 sur la figure 5, est occultée par un élément réfléchissant.
Ce mode de réalisation particulier est particulièrement avantageux car tout rayon solaire arrivant au fond de la colonne est réfléchi pour rebondir à nouveau en phase ascendante sur les éléments de la colonne. Ce mode de réalisation permet d’augmenter le captage d’énergie solaire portée par ce rayonnement solaire et donc d’augmenter l’efficacité énergétique du capteur solaire photovoltaïque sans pour autant augmenter la surface projetée au sol de ce capteur.
Selon un mode de réalisation particulier et non limitatif, l’extrémité 11 de la colonne est occultée par au moins une cellule photovoltaïque.
Ce mode de réalisation particulier permet d’augmenter le captage d’énergie solaire portée par ce rayonnement solaire et donc d’augmenter l’efficacité énergétique du capteur solaire photovoltaïque sans pour autant augmenter la surface projetée au sol de ce capteur. Par ailleurs, comme ladite au moins une cellule photovoltaïque est aussi réfléchissante, elle(s) procure(nt) une forte augmentation de l’efficacité énergétique du capteur car les rayons solaires qui viennent la(les) frapper sont réfléchis permettant ainsi de nouveaux rebonds en phase ascendante sur les cellules photovoltaïques recouvrant au moins une face interne de la colonne.
Selon un mode de réalisation particulier et non limitatif, le capteur solaire photovoltaïque comprend en outre un système permettant une adaptation de l’orientation de la colonne au positionnement relatif du soleil par rapport au capteur solaire photovoltaïque et une augmentation de la surface de captage de rayonnement solaire.
Ce mode de réalisation est particulièrement avantageux car il permet d’orienter le capteur solaire photovoltaïque par rapport au soleil de manière à optimiser la surface de captage lors du premier rebond du rayonnement solaire sur les cellules photovoltaïques recouvrant au moins une face interne d’au moins un élément du capteur solaire photovoltaïque.
Selon un second aspect, la présente invention concerne un dispositif de conversion d’énergie solaire en énergie électrique comprenant plusieurs capteurs solaires photovoltaïques. Chaque capteur solaire photovoltaïque est formé d’un assemblage d’au moins trois éléments de forme parallélépipédique rectangle assemblés entre eux pour former une colonne dont la hauteur est supérieure à la plus grande largeur des éléments, chaque élément comprenant deux faces. Les faces des éléments des capteurs solaires photovoltaïques se faisant face à l’intérieur de colonnes sont appelées faces internes des capteurs solaires photovoltaïques. Au moins une face interne de chaque capteur solaire photovoltaïque est recouverte de cellules photovoltaïques et chaque face interne d’un capteur solaire photovoltaïque qui n’est pas recouverte de cellules photovoltaïques est réfléchissante. Lesdits capteurs solaires photovoltaïques sont assemblés selon une structure alvéolaire permettant à chaque capteur solaire photovoltaïque de partager au moins un de ses éléments avec d’autres capteurs solaires photovoltaïques du dispositif de conversion d’énergie solaire en énergie électrique.
La section de la structure alvéolaire, c’est-à-dire la surface projetée au sol de l’ensemble de ses capteurs solaires photovoltaïques, n’est pas limitée à une forme particulière. Il faut toutefois que les capteurs solaires photovoltaïques aient une même section. Il faut aussi que la section des capteurs permette que chaque capteur solaire photovoltaïque de la structure alvéolaire partage un à deux de ses éléments avec d’autres capteurs solaires photovoltaïques du dispositif de conversion d’énergie solaire en énergie électrique.
Par exemple, les capteurs solaires photovoltaïques peuvent avoir une section carré telle qu’illustrée à la figure 1.
Selon un mode de réalisation particulier et non limitatif, la section des capteurs solaires photovoltaïques est un triangle équilatéral.
Ce mode de réalisation permet d’obtenir des surfaces de captage de rayonnement solaire supérieure à celle correspondant à des capteurs solaires photovoltaïques comprenant des capteurs solaires photovoltaïques de section triangulaire équilatéral.
Selon un mode de réalisation particulier et non limitatif, la section des capteurs solaires photovoltaïques est un triangle rectangle isocèle.
Ce mode de réalisation permet d’obtenir des surfaces de captage de rayonnement solaire supérieure à celle correspondant à des capteurs solaires photovoltaïques comprenant des capteurs solaires photovoltaïques de section triangulaire rectangle isocèle.
Selon un mode de réalisation particulier et non limitatif, chaque face interne de chaque capteur solaire photovoltaïque est recouverte de cellules photovoltaïques.
Selon un mode de réalisation particulier et non limitatif, la face adossée à une face interne d’au moins un élément d’au moins un capteur solaire photovoltaïque est recouverte de cellules photovoltaïques.
L’assemblage de capteurs solaires photovoltaïques de section triangulaire équilatérale ou triangle rectangle isocèle en structure alvéolaire peut être créée par adjonction répétée d’un ou de deux nouveaux éléments de section triangulaire équilatérale ou triangle rectangle isocèle.
La somme des surfaces S des éléments de la structure alvéolaire est égale à une surface GS qui s’étend lorsque de nouveaux éléments sont ajoutés à la structure alvéolaire. Le ratio de la structure alvéolaire comprenant trois éléments est de trois faces (3F) par surface S. En ajoutant deux nouveaux éléments (et former une nouvelle colonne), ce ratio est proche de 1 ,5F par surface S réalisant ainsi un gain de près de moitié du nombre d’éléments nécessairement associées à toute nouvelle colonne ajoutée à la structure alvéolaire.
[Fig. 9] représente schématiquement une vue de dessus d’une structure alvéolaire selon un exemple de réalisation particulier et non limitatif de la présente invention.
La structure alvéolaire comprend 6 capteurs solaires photovoltaïques de section triangulaire équilatérale selon la présente invention assemblés selon une structure alvéolaire.
On peut noter que chaque face des éléments 100 séparant deux capteurs solaires photovoltaïques est soit recouverte de cellules photovoltaïques soit réfléchissante tandis que les faces externes des éléments 101 qui n’appartiennent qu’à un seul capteur solaire photovoltaïque peuvent être recouvertes de cellules photovoltaïques ou réfléchissantes. Une face externe d’un élément est la face de cet élément qui s’oppose à la face interne de cet élément.
La structure alvéolaire de la figure 9 est dite de rang 1 , c’est-à-dire que chacun des capteurs solaires photovoltaïques a un sommet égal au centre de la structure alvéolaire.
Six directions des faces internes des capteurs solaires photovoltaïques sont définies à partir de la structure alvéolaire de la figure 9 : deux directions obliques droit, deux obliques gauche et deux horizontales.
Les deux directions obliques droit correspondent aux faces d’éléments qui suivent la direction oblique droit. La distinction des deux directions obliques droit vient du fait que les faces des éléments qui sont orientés selon cette direction oblique droit sont recouverts ou non de cellules photovoltaïques.
Par exemple, sur la figure 10, les faces 10, 11 , 12 et 13 sont orientées selon une première direction oblique droit. Si au moins l’une de ces faces est recouverte par des cellules photovoltaïques alors un circuit électrique de courant continu est associé aux cellules recouvrant cette ou ces faces pour la conversion d’énergie solaire en énergie électrique. Les faces 20, 21 , 22 et 23 sont orientées selon une deuxième direction oblique droit. Si au moins l’une de ces faces est recouverte par des cellules photovoltaïques alors un circuit électrique de courant continu est associé aux cellules recouvrant cette ou ces faces pour la conversion d’énergie solaire en énergie électrique.
Par exemple, sur la figure 11 , les faces 30, 31 , 32 et 33 sont orientées selon une première direction oblique gauche. Si au moins l’une de ces faces est recouverte par des cellules photovoltaïques alors un circuit électrique de courant continu est associé aux cellules recouvrant cette ou ces faces pour la conversion d’énergie solaire en énergie électrique. Les faces 40, 41 , 42 et 43 sont orientées selon une deuxième direction oblique gauche. Si au moins l’une de ces faces est recouverte par des cellules photovoltaïques alors un circuit électrique de courant continu est associé aux cellules recouvrant cette ou ces faces pour la conversion d’énergie solaire en énergie électrique.
Par exemple, sur la figure 12, les faces 50, 51 , 52 et 53 sont orientées selon une première direction horizontale. Si au moins l’une de ces faces est recouverte par des cellules photovoltaïques alors un circuit électrique de courant continu est associé aux cellules recouvrant cette ou ces faces pour la conversion d’énergie solaire en énergie électrique. Les faces 60, 61 , 62 et 63 sont orientées selon une deuxième direction horizontale. Si au moins l’une de ces faces est recouverte par des cellules photovoltaïques alors un circuit électrique de courant continu est associé aux cellules recouvrant cette ou ces faces pour la conversion d’énergie solaire en énergie électrique.
Le nombre de directions des faces internes des capteurs solaires photovoltaïques qui sont recouvertes de cellules photovoltaïques définit un nombre de circuits électriques de courant continu utilisés pour la conversion d’énergie solaire en énergie électrique. Chaque circuit électrique de courant continu relie les cellules photovoltaïques recouvrant les faces internes orientées selon une même direction. En remplaçant les faces internes recouvertes de cellules photovoltaïques orientées selon une même direction par des faces réfléchissantes, le nombre de circuits électrique de courant continu est réduit tout en concernant des puissances électriques équivalentes.
[Fig. 13] représente schématiquement une vue de dessus d’une structure alvéolaire selon un exemple de réalisation particulier et non limitatif de la présente invention. La structure alvéolaire comprend 24 capteurs solaires photovoltaïques de section triangulaire équilatérale assemblés selon une structure alvéolaire.
La structure alvéolaire de la figure 13 est dite de rang 2, c’est-à-dire qu’elle comprend les 6 capteurs solaires photovoltaïques de la structure alvéolaire de rang 1 de la figure 9 auxquels s’ajoutent 18 nouveaux capteurs solaires photovoltaïques, chacun de ces nouveaux capteurs photovoltaïques ayant soit un de leur éléments soit un de leurs sommets en commun avec l’un des 6 capteurs solaires photovoltaïques de la structure alvéolaire de rang 1 .
Selon ce principe, des structures alvéolaires de rang supérieur peuvent être construite par agrandissement successifs de structures alvéolaire précédentes.
Figure imgf000018_0001
Le tableau ci-dessus donne des exemples de structure a véolaire de différents rangs dans lequel NC indique les numéros des capteurs solaires photovoltaïques de la structure photovoltaïque, NEA indique le nombre d’éléments ajoutés par rang, SE est le nombre d’éléments de la structure alvéolaire, NCA est le nombre de capteurs solaires photovoltaïques ajoutés par rang et SC est le nombre de capteurs solaires photovoltaïques de la structure alvéolaire.
A partir du tableau, on peut constater que plus le rang de la structure alvéolaire augmente plus le ratio SE/SC diminue. Passant de 3 au rang 0 à 1 ,583 au rang 6.
Plus la structure alvéolaire s’agrandit, plus nous obtenons un gain d’économie d’éléments ajoutés pour une surface S adjointe : de 3 faces à 1 ,5 faces pour S seule.
Par exemple, au rang 6 nous avons 342 éléments pour 216 capteurs solaires photovoltaïques.
La surface projetée au sol de la structure alvéolaire de rang 6 est égale à environ 3 367cm2 (216x — 62 pour une cellule de 6 cm de côté) alors qu’elle serait égale à 32 832 cms2 (342x96 pour une cellule de 6 par 8 cm) pour un capteurs solaire photovoltaïque actuel de surface de captage équivalente.
Au travers de cet exemple, on constate tout l’intérêt d’utiliser un dispositif de conversion d’énergie solaire en énergie électrique comprenant plusieurs capteurs solaires photovoltaïques assemblés selon une structure alvéolaire car la surface projetée au sol de ce dispositif est bien inférieure (environ 10 fois moins selon l’exemple illustré) que celle d’un capteur solaire photovoltaïques actuel.
Selon un mode de réalisation particulier et non limitatif, l’une des deux extrémités de la colonne d’au moins un capteur solaire photovoltaïque est occultée.
Selon un mode de réalisation particulier et non limitatif, ladite extrémité de la colonne d’au moins un capteur solaire photovoltaïque est occultée par un élément réfléchissant.
Selon un mode de réalisation particulier et non limitatif, ladite extrémité de la colonne d’au moins un capteur solaire photovoltaïque est occultée par au moins une cellule photovoltaïque.
Selon un mode de réalisation particulier et non limitatif, chaque capteur solaire photovoltaïque est formé de trois éléments et présente une section triangulaire équilatérale. Selon un mode de réalisation particulier et non limitatif, chaque capteur solaire photovoltaïque est formé de trois éléments et présente une section triangulaire rectangle isocèle.
Selon un mode de réalisation particulier et non limitatif, illustré à la figure 14, le dispositif de conversion d’énergie solaire en énergie électrique comprend en outre un système 71 permettant une adaptation de l’orientation des colonnes de capteurs solaires photovoltaïques au positionnement relatif du soleil par rapport au dispositif et une augmentation de la surface de captage de rayonnement solaire.
Ce mode de réalisation est particulièrement avantageux car il permet d’orienter le dispositif de conversion d’énergie solaire en énergie électrique par rapport au soleil de manière à optimiser la surface de captage du rayonnement solaire par les cellules photovoltaïques recouvrant la face interne d’au moins un élément d’au moins un capteur solaire photovoltaïque.
Ce mode de réalisation est avantageux car il permet d’orienter la structure alvéolaire de capteurs solaires photovoltaïques de manière à optimiser les surfaces de captage des faces internes des capteurs solaires photovoltaïques.
La figure 15 illustre schématiquement un exemple d’augmentation de la surface de captage lorsque l’assemblage de capteurs solaires photovoltaïques est orienté par un système 71 et ce pour un angle d’incidence du rayonnement solaire identique à celui de la figure 2.
Selon un mode de réalisation particulier et non limitatif, le dispositif de conversion d’énergie solaire en énergie électrique comprend en outre un support 74 réfléchissant sur lequel se pose l’assemblage 72 des capteurs solaires photovoltaïques.
Selon un mode de réalisation particulier et non limitatif, la surface du support 74 est supérieure à la surface de l’assemblage 72 des capteurs solaires photovoltaïques projetée au sol.
Ce mode est avantageux car les faces externes des capteurs solaires photovoltaïques qui sont recouvertes de cellules photovoltaïques sont alors soumis à un double rayonnement : le rayonnement solaire mais aussi le rayonnement solaire réfléchit sur le support (effet Albedo). L’efficacité des cellules photovoltaïques est ainsi augmentée, augmentant la capacité de captage des capteurs solaires photovoltaïques et du dispositif de conversion d’énergie solaire en énergie électrique.
Selon un mode de réalisation particulier et non limitatif, une face au dos du support 74 qui n’est pas en contact avec les capteurs solaires photovoltaïques est recouverte de cellules photovoltaïques.
Selon un mode de réalisation particulier et non limitatif, le dispositif de conversion d’énergie solaire en énergie électrique comprend en outre un couvercle 70 transparent posé sur le support 74 et recouvrant l’assemblage 72 des capteurs solaires photovoltaïques.
Ce mode de réalisation est avantageux car le couvercle 70 permet de protéger l’assemblage des capteurs solaires photovoltaïques contre les chocs et les intempéries par exemple tout en laissant passer le rayonnement solaire.
Selon l’exemple de la figure 14, la forme de la surface projetée au sol du couvercle est de la même forme que la surface projetée au sol de l’assemble 72 de capteurs solaires photovoltaïques. Toutefois, la surface projetée au sol du couvercle peut être différente de la surface projetée au sol de l’assemblage 72 de capteurs solaires photovoltaïques.
Selon un mode de réalisation particulier et non limitatif, le support 74 et le couvercle 72 sont en verre.
Ce mode de réalisation est avantageux car il permet de coller entre eux le support et le couvercle qui présentent des dilatations similaires.
Selon un mode de réalisation particulier et non limitatif, l’espace entre le couvercle 70 et le support 74 est mis sous vide.
L’inventeur a réalisé un prototype du dispositif de conversion d’énergie solaire en énergie électrique comprenant trois capteurs solaires photovoltaïques.
Chaque capteur solaire photovoltaïque est formé d’un assemblage de trois cellules photovoltaïques de forme parallélépipédique rectangle assemblés entre elles pour former une colonne dont la hauteur est supérieure à la plus grande largeur des cellules photovoltaïques. Chaque face interne de chaque capteur solaire photovoltaïque de chaque colonne du dispositif de conversion d’énergie solaire en énergie électrique est recouverte d’une cellule photovoltaïque. L’une des deux extrémités de chaque colonne est occultée par un élément réfléchissant (et non par une cellule photovoltaïque). Les trois colonnes ne sont pas montées selon une structure alvéolaire et les faces externes des capteurs solaires photovoltaïques ne sont pas recouvertes de cellules photovoltaïques.
Chaque cellule photovoltaïque rectangulaire a une surface de 48 cm2 (Longueur L=8cm et largeur c=6cm). Chaque cellule photovoltaïque fournit une tension de 1 ,8V sous 50 ohms de charge lorsqu’elle est exposée à un rayonnement solaire pour une inclinaison optimale.
La surface de captage de chaque capteur solaire photovoltaïque est de l’ordre de 46,7
Figure imgf000022_0001
Avec le même type de cellules photovoltaïques sous une même luminosité naturelle (soleil sans nuage) en quasi même instant t avec une charge de 50 ohms et pour une inclinaison optimale pour chaque structure, ce prototype de dispositif avec juste un captage des rayons solaire en interne des colonnes fournit une tension de 9V pour 1 ,8V pour une cellule photovoltaïque plane ayant une surface équivalente totale d’environ 48 cm2. Soit une augmentation de l’efficacité énergétique du prototype.
Le dispositif de conversion d’énergie solaire en énergie électrique selon la présente invention est une nouvelle technologie de captage d’énergie solaire (renouvelable) et décarbonée.
Selon les expérimentations de l’inventeur, ce dispositif permet un rendement énergétique environ 4 fois supérieur à celui d’un capteur solaire photovoltaïque actuel à surface de captage équivalente. De plus, à surface de captage égale, un dispositif de conversion d’énergie solaire en énergie électrique selon la présente invention requiert environ 10 fois moins de surface au sol qu’un capteur solaire photovoltaïques actuel.
Dans un rapport de puissance/surface, le dispositif selon la présente invention permet un gain considérable de matière et de logistique transport avant et après fabrication par rapport à un capteur solaire photovoltaïque actuel. Pour la fabrication du dispositif selon la présente invention, une même cellule bifaciale photovoltaïque ou un même ensemble de cellules photovoltaïques peut être utilisé pour construire les colonnes, d’où un coût de fabrication réduit lorsque ces cellules photovoltaïques seront fabriquées en masse. Même si le coût premier d’un dispositif selon la présente invention est supérieur à celui d’un capteur solaire photovoltaïque actuel, sa production électrique totale sur 20 ans (en général) avec un amortissement sur 8 ans, procurera un gain financier au final du fait de sa production électrique supérieure et de l’augmentation du prix de l’électricité programmée.
Quand on parle implantation, on parle problème écologique c’est-à-dire d’occupation de surface agricole, de déforestation, d’obtention de permis de construire pour les grandes surfaces, de prix des terrains, de problème d’implantation en zone urbaine, etc. Le rapport de puissance/surface et la miniaturisation du dispositif selon la présente invention induira une implantation plus facile, notamment chez les particuliers et sur des surfaces nouvelles (voiture, avion, bateau, remorque de camion, abri de jardin, en ville, toit terrasse, etc.).
La miniaturisation du dispositif selon la présente invention utilisant des colonnes de section triangulaire permet d’obtenir une surface de captage supérieure à celle obtenue par une miniaturisation d’un dispositif utilisant des colonnes de section carré. La miniaturisation d’un dispositif s’entendant de la division d’une surface d’une forme donnée en plusieurs surfaces de même forme.
Selon un mode de réalisation du dispositif de conversion d’énergie solaire en énergie électrique, la structure alvéolaire comprend 3 types d’éléments triangulaires bifaciaux : un premier type d’élément triangulaire bifacial dont une première face et une deuxième face sont recouvertes de cellules photovoltaïques ; un deuxième type d’élément triangulaire dont une première face est recouverte de cellules photovoltaïques et une deuxième face est réfléchissante (c’est-à-dire non recouverte de cellules photovoltaïques) ; et un troisième type d’éléments dont les deux faces sont réfléchissantes (non recouvertes de cellules photovoltaïques).
Bien entendu, la présente invention ne se limite pas aux exemples de réalisation décrits ci-avant mais s’étend à tout capteur solaire photovoltaïque et/ou tout dispositif de conversion d’énergie solaire en énergie électrique qui inclurait des composants/éléments secondaires sans pour cela sortir de la portée de la présente invention. Il en serait de même d’un dispositif de conversion d’énergie solaire en énergie électrique qui ne présenterait qu’une partie de ses cellules photovoltaïques assemblés selon une structure alvéolaire.

Claims

REVENDICATIONS
1 . Dispositif de conversion d’énergie solaire en énergie électrique comprenant plusieurs capteurs solaires photovoltaïques,
- chaque capteur solaire photovoltaïque est formé d’un assemblage d’au moins trois éléments de forme parallélépipédique rectangle assemblés entre eux pour former une colonne dont la hauteur est supérieure à la plus grande largeur des éléments, chaque élément comprenant deux faces, les faces des éléments des capteurs solaires photovoltaïques se faisant face à l’intérieur de colonnes étant appelées faces internes des capteurs solaires photovoltaïques,
- au moins une face interne de chaque capteur solaire photovoltaïque est recouverte de cellules photovoltaïques et chaque face interne qui n’est pas recouverte de cellules photovoltaïques est réfléchissante,
- lesdits capteurs solaires photovoltaïques étant assemblés selon une structure alvéolaire permettant à chaque capteur solaire photovoltaïque de partager au moins un de ses éléments avec d’autres capteurs solaires photovoltaïques.
2. Dispositif selon la revendication 1 , dans lequel chaque face interne de chaque capteur solaire photovoltaïque est recouverte de cellules photovoltaïques.
3. Dispositif selon la revendication 1 ou 2, dans lequel la face adossée à une face interne d’au moins un élément d’au moins un capteur solaire photovoltaïque est recouverte de cellules photovoltaïques.
4. Dispositif selon l’une des revendications précédentes, dans lequel l’une des deux extrémités de la colonne d’au moins un capteur solaire photovoltaïque est occultée.
5. Dispositif selon la revendication 4, dans lequel ladite extrémité de la colonne d’au moins un capteur solaire photovoltaïque est occultée par un élément réfléchissant.
6. Dispositif selon l’une des revendications 5 ou 6, dans lequel ladite extrémité de la colonne d’au moins un capteur solaire photovoltaïque est occultée par au moins une cellule photovoltaïque.
7. Dispositif selon l’une des revendications précédentes, dans lequel chaque capteur solaire photovoltaïque est formé de trois éléments et présente une section triangulaire équilatérale.
8. Dispositif selon l’une des revendications 1 à 6, dans lequel chaque capteur solaire photovoltaïque est formé de trois éléments et présente une section triangulaire rectangle isocèle.
9. Dispositif selon l’une des revendications précédentes, comprenant en outre un système permettant une adaptation de l’orientation des colonnes des capteurs solaires photovoltaïques au positionnement relatif du soleil par rapport au dispositif et une augmentation de la surface de captage de rayonnement solaire.
10. Dispositif selon l’une des revendications précédentes, qui comprend en outre un support réfléchissant sur lequel se pose l’assemblage des capteurs solaires photovoltaïques.
11 . Dispositif selon la revendication 10, dans lequel une surface du support est supérieure à la surface de l’assemblage des capteurs solaires photovoltaïques projetée au sol.
12. Dispositif selon la revendication 10 ou 11 , dans lequel une face au dos du support qui n’est pas en contact avec les capteurs solaires photovoltaïques est recouverte de cellules photovoltaïques.
13. Dispositif selon l’une des revendications 10 à 12, qui comporte en outre un couvercle transparent posé sur le support et recouvrant l’assemblage des capteurs solaires photovoltaïques.
14. Dispositif selon la revendication 13, dans lequel le support et le couvercle sont en verre.
15. Dispositif selon la revendication 13 ou 14, dans lequel l’espace entre le couvercle et le support est mis sous vide.
PCT/FR2023/050425 2022-04-06 2023-03-24 Dispositif de conversion d'energie solaire en energie electrique WO2023194672A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2203133 2022-04-06
FR2203133A FR3134479A1 (fr) 2022-04-06 2022-04-06 Capteur solaire photovoltaïque et dispositif de conversion d’énergie solaire en énergie électrique

Publications (1)

Publication Number Publication Date
WO2023194672A1 true WO2023194672A1 (fr) 2023-10-12

Family

ID=81927716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/050425 WO2023194672A1 (fr) 2022-04-06 2023-03-24 Dispositif de conversion d'energie solaire en energie electrique

Country Status (2)

Country Link
FR (1) FR3134479A1 (fr)
WO (1) WO2023194672A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103579387A (zh) * 2013-10-31 2014-02-12 平顶山市中嘉能源科技有限公司 一种菱形窝状薄膜太阳能电池板
CN203434178U (zh) * 2012-08-13 2014-02-12 郭雨浚 太阳能集电装置及太阳能集电装置系统
CN103618496A (zh) * 2013-10-31 2014-03-05 平顶山市中嘉能源科技有限公司 蜂窝状薄膜太阳能电池板
EP2993782A1 (fr) * 2014-09-05 2016-03-09 Novosol GmbH & Co. KG Capteur solaire
GB2532202A (en) * 2014-11-05 2016-05-18 Drewes Dietmar Solar panel arrangement

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101762795B1 (ko) * 2016-03-16 2017-07-28 고원준 양면태양전지셀을 이용한 양면유리 태양전지 모듈과 입체형 반사체를 접목한 고효율 태양전지 시스템
US11463043B2 (en) * 2019-09-23 2022-10-04 David Lawrence Hammers Internally reflective solar panel system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203434178U (zh) * 2012-08-13 2014-02-12 郭雨浚 太阳能集电装置及太阳能集电装置系统
CN103579387A (zh) * 2013-10-31 2014-02-12 平顶山市中嘉能源科技有限公司 一种菱形窝状薄膜太阳能电池板
CN103618496A (zh) * 2013-10-31 2014-03-05 平顶山市中嘉能源科技有限公司 蜂窝状薄膜太阳能电池板
EP2993782A1 (fr) * 2014-09-05 2016-03-09 Novosol GmbH & Co. KG Capteur solaire
GB2532202A (en) * 2014-11-05 2016-05-18 Drewes Dietmar Solar panel arrangement

Also Published As

Publication number Publication date
FR3134479A1 (fr) 2023-10-13

Similar Documents

Publication Publication Date Title
Lumb et al. GaSb‐based solar cells for full solar spectrum energy harvesting
EP2646757B1 (fr) Panneau solaire flottant et installation solaire constituee d'un assemblage de tels panneaux
FR2919758A1 (fr) Systeme de groupement de cellules solaires photovoltaiques a concentrateurs.
US7081584B2 (en) Solar based electrical energy generation with spectral cooling
EP3754842B1 (fr) Module photovoltaïque flottant
WO2015177236A1 (fr) Cellule photovoltaique multi-jonctions a base de materiaux antimoniures
EP0876575B1 (fr) Capteur solaire a dispositif pyramidal orientable
US20150221800A1 (en) Spectral light splitting module and photovoltaic system including concentrator optics
WO2023194672A1 (fr) Dispositif de conversion d'energie solaire en energie electrique
TW201539971A (zh) 利用剪紙工藝啟發之微結構於平板光伏打面板之自主太陽能追蹤
EP1860387A1 (fr) Suiveur solaire à bras articulés
EP0236495A1 (fr) Assemblage photovoltaique de grande efficacite
EP4367791A2 (fr) Procede d'optimisation de la duree de vie d'un module photovoltaique bifacial multijonctions et module ou panneau photovoltaique adapte a ce procede
WO2013167564A2 (fr) Module photovoltaïque et procede de realisation d'un tel module
EP2943730B1 (fr) Positionnement de modules d'une centrale solaire
EP3000136B1 (fr) Procédé de fabrication d'un système photovoltaïque à concentration de lumière
FR3086102A1 (fr) Module solaire ameliore
WO2020094980A1 (fr) Dispositif photovoltaique
FR2960344A1 (fr) Dispositif de production d'énergie électrique photovoltaïque tubulaire
FR3108445A1 (fr) Module solaire amélioré
EP2943983B1 (fr) Assemblage de modules d'une centrale solaire
FR3097244A1 (fr) Bâtiment photovoltaïque
WO2010092157A2 (fr) Generateur photovoltaïque a trois dimensions
FR3143201A1 (fr) Module photovoltaique bifacial
FR3079349A1 (fr) Panneau solaire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23718663

Country of ref document: EP

Kind code of ref document: A1