EP3987647A1 - Circuit électrique pour charge d'une source de tension continue - Google Patents

Circuit électrique pour charge d'une source de tension continue

Info

Publication number
EP3987647A1
EP3987647A1 EP20731118.4A EP20731118A EP3987647A1 EP 3987647 A1 EP3987647 A1 EP 3987647A1 EP 20731118 A EP20731118 A EP 20731118A EP 3987647 A1 EP3987647 A1 EP 3987647A1
Authority
EP
European Patent Office
Prior art keywords
stage
circuit
branch
frequency
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20731118.4A
Other languages
German (de)
English (en)
Inventor
Nicolas ALLALI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes de Controle Moteur SAS
Original Assignee
Valeo Systemes de Controle Moteur SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes de Controle Moteur SAS filed Critical Valeo Systemes de Controle Moteur SAS
Publication of EP3987647A1 publication Critical patent/EP3987647A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/297Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal for conversion of frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/05Capacitor coupled rectifiers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/1552Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a biphase or polyphase arrangement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to an electrical circuit for charging a DC voltage source using an AC network.
  • the invention applies in particular, but not
  • Application WO2016 / 179329 teaches associating with such a capacitive transformer an inverter connected to a DC voltage source.
  • the object of the invention is to remedy this need and it achieves it, according to one of its aspects, with the aid of an electric circuit for charging a DC voltage source from an AC voltage network, the circuit including:
  • the frequency raising stage arranged between the input of the circuit and the capacitive transformer so that the capacitors of the capacitive transformer are in a part of the circuit traversed by an alternating current at a frequency higher than that of the alternating network, the frequency raising stage comprising a first branch comprising two controllable electronic switches arranged in series, so as to produce a first bidirectional current and voltage switching cell, and
  • the first and second branch of the frequency step-up stage having a common terminal forming an output of the step-up stage and an input of the
  • the invention makes it possible to use a capacitive transformer whose capacitors are arranged in a part of the circuit traversed by an alternating current at a higher frequency than that of the electrical network, so that these capacitors can have a smaller size and / or a lower cost.
  • This capacitive transformer can also be called an “isolation stage”.
  • the resonant inductance (s) associated with these capacitors can also be of reduced size and / or of lower cost.
  • the frequency raising stage being different from the association of a rectifier and an inverter mounted after the rectifier, the invention makes it possible to produce a frequency raising stage more simply. as through the aforementioned association of a rectifier and an inverter, thus reducing the cost of this frequency step-up stage and also improving its efficiency.
  • All the capacitors of the insulation stage can be mounted on the same electronic board, this board carrying, for example, all or part of the rest of the electrical circuit.
  • the input of the circuit can be connected to a connector, single-phase or polyphase, allowing connection to the AC network, the latter being, for example, an industrial electrical network managed by an operator.
  • This AC network can provide a voltage greater than 100V. It can be a single-phase or a polyphase network, for example three-phase.
  • the electrical circuit may not have an impedance matching stage.
  • the first DC voltage source has for example a voltage of value equal to 48 V, or a voltage of value greater than 300V.
  • the frequency step-up stage can be formed by the aforementioned first branch and the second branch.
  • the capacitive transformer can be arranged in a single-phase part of the electrical circuit, the capacitive transformer then comprising a first and a second capacitor, the first capacitor being placed on the phase and the second capacitor being placed on the neutral.
  • the capacitive transformer can be arranged in a polyphase part of the circuit, in particular a three-phase part of the circuit, the capacitive transformer then comprising a plurality of capacitors such that each capacitor is respectively arranged on one phase or on the neutral.
  • the capacitive transformer can then include a number of capacitors equal to the number of phases of this part traversed by the alternating current incremented by 1.
  • the frequency step-up stage can be realized in a delta or star connection.
  • each side of the triangle can define two branches of the frequency raising stage, each of these branches comprising two switches controllable electronics arranged in series, so that each of these branches produces a switching cell, and these two branches on the same side of the triangle have a common terminal forming an output of the frequency raising stage and a input of capacitive transformer.
  • each arm of the star can define two branches of the frequency raising stage, each of these branches comprising two controllable electronic switches arranged in series, so as to produce a cell of switching and these two branches of the same arm of the star have a common terminal forming an output of the frequency raising stage and an input of the capacitive transformer.
  • the two controllable electronic switches of the same branch of the frequency step-up stage can be two opposite doped or same doped field effect transistors, or two bipolar transistors of opposite doping or of the same doping.
  • field effect transistors one of these transistors can be an N-channel MOSFET while the other transistor of this branch is a P-channel MOSFET.
  • both Transistors forming a switching cell can be mounted as a common source or as a common drain.
  • bipolar transistors one of these transistors is for example an NPN while the other transistor is a PNP.
  • the two bipolar transistors forming a switching cell can be mounted as a common emitter or as a common collector.
  • the transistor of the first branch and the transistor of the second branch all having two the same doping can have the same positioning in their respective arm relative to the common terminal.
  • Each of these two transistors of the same doping is for example, within its respective arm, the transistor mounted directly adjacent to this common terminal.
  • these two transistors of the same doping can have different positions in their respective arms relative to this common terminal.
  • One of these transistors is for example the transistor of the first arm directly adjacent to the common terminal while the other of these transistors is the transistor of the second arm which is not directly adjacent to this common terminal, the transistor of the second arm directly adjacent to the common terminal having a different doping.
  • the invention is not limited to the choice of bipolar transistors or field effect transistors for producing bidirectional current and voltage switching cells.
  • the step-up stage can use IGBTs.
  • an inductor can be connected in series with a capacitor of the capacitive transformer, in particular between the terminal forming an input of the capacitive transformer and this capacitor of this capacitive transformer.
  • This inductor can form a resonant inductor and its association with a capacitor of the capacitive transformer can form a resonant LC cell.
  • the first branch of the frequency raising stage comprises a first inductor and the second branch of the frequency raising stage comprises a second inductance, the first and the second inductor being magnetically coupled.
  • Such magnetically coupled inductors belonging respectively to each branch can make it possible to reduce the EMC disturbances.
  • the circuit may include a rectifier mounted between the
  • This rectifier can be a full-wave rectifier, or some other type of rectifier such as a voltage doubler.
  • each branch of the step-up stage may be such that all of the current flowing through one of the controllable electronic switches of that branch also passes through the other controllable electronic switch of that branch. In other words, no node for the current is then placed between these two controllable electronic switches.
  • the circuit can also include a current regulation stage arranged between the rectifier and the first output.
  • This regulation stage for example, implements the power factor correction function (“Power Factor Corrector”), which makes it possible to reduce the reactive current sent to the electrical network.
  • This regulation stage can be formed by a series chopper or a parallel chopper or even a buck / boost converter according to the nominal voltage value of the electrical network and the nominal voltage value of the electrical energy storage unit forming the first source of direct voltage.
  • the step-up stage can be configured to bring a frequency of 50 Hz to a frequency value between 200Hz and 100MHz.
  • the invention is not limited to a circuit for charging a single DC voltage source from the AC network.
  • the circuit may also allow the charging of a second DC voltage source, the circuit comprising: a second output connected to the second DC voltage source, and another
  • capacitive transformer formed using several capacitors, arranged so as to electrically isolate the input from the second output of the circuit.
  • This other capacitive transformer can be functionally connected in parallel with that previously described.
  • No capacitor belonging to this other capacitive transformer for example also belongs to the capacitive transformer described above for the electrical insulation of the input and the first output.
  • the frequency step-up stage may be unique, and therefore common to these different voltage sources.
  • these two DC voltage sources may or may not have the same voltage value, for example 48V or a value greater than 300V. As a variant, these two DC voltage sources can have different voltage values.
  • the different switches of the circuit can be chosen so that this circuit is reversible in terms of power flow.
  • Another subject of the invention is a set comprising:
  • the DC voltage source connected to the first output of the circuit, the latter having in particular a nominal value of 48 V.
  • FIG. 1 shows a circuit according to a first example of implementation of the invention
  • FIG. 2 shows a circuit according to a second example of implementation of the invention
  • FIG. 3 shows a circuit according to a variant of the first example of implementation of the invention
  • FIG. 4 shows a circuit according to a variant of the second example of implementation of the invention.
  • Figures 5 and 6 show variants of the circuit of Figure 1 when the latter is at least partly three-phase, Figure 5 showing a frequency rise stage produced in a delta connection and Figure 6 representing a stage d frequency increase carried out according to a star connection.
  • FIG. 1 An electrical circuit 1 according to a first example of implementation of the invention.
  • This circuit 1 here allows the charging of a first DC voltage source from an AC network.
  • the alternating network is for example an industrial electrical network managed by an operator and which supplies a single-phase voltage in the case of Figure 1.
  • the invention is not limited to a single-phase network, as will be seen below.
  • the frequency of the network voltage is for example equal to 50Hz or 60Hz.
  • the electrical network is connected to an input 3 of the electrical circuit 1 via a connector not shown.
  • the circuit 1 comprises a frequency raising stage 6, which will be described below, and of which an output terminal forms an input terminal for a capacitive transformer which is here formed by two capacitors 30 and 31, the capacitor 30 being arranged on the phase and the capacitor 31 being placed on the neutral of the electrical signal conveyed by the circuit. It can be seen that an inductor 12 is connected in series with the capacitor 30 which is arranged on the phase.
  • a rectifier 7 Downstream of the capacitive transformer for the positive current flowing from the input 3 of the electrical circuit 1 is mounted a rectifier 7 which is here a Graetz bridge performing full-wave rectification.
  • This rectifier 7 comprises controllable electronic switches which are here MOSFET transistors.
  • a regulation stage 8 is present, mounted downstream of the rectifier 7 for the positive current flowing from the input 3 of the electrical circuit 1.
  • the regulation stage implements a series chopper which lowers the voltage rectified by the rectifier 7 into a voltage supplied to the first DC voltage source via a first output 4 of circuit 1.
  • the electronic switches of this regulation stage 8 are controlled so that this regulation stage 8 performs a power factor correction function (“PFC”).
  • the direct voltage source here is an energy storage unit rated at 48V and it can electrically power an electric motor propelling a hybrid or electric vehicle.
  • This frequency step-up stage 6 which allows the capacitive transformer to see an electrical signal whose frequency is greater than that of the network, this frequency being for example between 200Hz and 100MHz.
  • This frequency step-up stage consists in the example of Figure 1 by:
  • first branch 10 comprising two controllable electronic switches 10a and 10b arranged in series, so as to produce a first bidirectional current and voltage switching cell
  • this frequency raising stage 6 has in the example considered two input terminals 13 and 14 in parallel with which a decoupling capacitor is mounted. Each of these terminals 13 and 14 are respectively connected, directly or indirectly, to a terminal of input 3 of the circuit.
  • This frequency step-up stage 5 comprises in the example of FIG. 1 two output terminals.
  • One of these terminals 15 is common to the two branches 10 and 11 and it is connected to the capacitor 30 of the capacitive transformer arranged on the phase of the signal while the other output terminal is connected to the capacitor 31 of the capacitive transformer arranged on the neutral of the electrical signal.
  • each branch 10 and 11 does not contain any component other than the two switches mentioned above. Moreover, in this first example of implementation, any electric current flowing through one of the switches of one of the branches also runs through the other inter-switch of this branch, that is to say that there is no no current node between these two switches.
  • each of these switches is a MOSFET transistor. More precisely, transistor 10a is an N-channel MOSFET transistor and transistor 10b is an N-channel MOSFET transistor, these two transistors being mounted as a common source. Transistor 11a is an N-channel MOSFET transistor and transistor 11b is an N-channel MOSFET transistor, these two transistors also being connected as a common source.
  • Each MOSFET transistor is for example made of gallium nitride (GaN) or of silicon carbide (SiC) or of silicon.
  • the transistors 10a and 1a are for example controlled so that they have a duty cycle of 50% while the transistors 10b and 11b are maintained at l 'on state, and during each negative half-wave of the voltage applied to input 3, the transistors 10b and 11b are controlled so that they have a duty cycle of 50% while the transistors 10a and IIa are maintained in the on state.
  • a circuit 1 according to a second exemplary implementation will now be described with reference to FIG. 2.
  • the inductor 12 of FIG. 1 which is in series with the capacitor 30 of the capacitive transformer is replaced by a first inductor 10c disposed in the first branch 10 and by a second inductor 11c disposed in the second branch 11.
  • These inductors 10c and 11c are here coupled
  • the first branch 10 is formed by placing the two switches 10a and 10b in series as well as by the first inductor 10c in series with these switches.
  • the second branch 11 is formed by the two switches 11a and 1b as well as by the second inductor 11c.
  • any electric current flowing through one of the switches of one of the branches also runs through the other switch of this branch, that is to say that there is no current node between these two switches.
  • FIGS. 3 and 4 represent variants of the first example of implementation and of the second example of implementation respectively.
  • the circuit of Figure 3 differs from that of Figure 1 in that the rectifier 7 is no longer a full-wave rectifier but a voltage doubler.
  • the circuit of Figure 4 differs from that of Figure 2 in that the rectifier 7 is a voltage doubler, and no longer a full-wave rectifier.
  • the AC network is polyphase, in particular three-phase.
  • the capacitive transformer can be arranged in a polyphase, for example three-phase part of circuit 1, including when the AC network is single-phase.
  • Figure 5 shows the case where the frequency step-up stage 6 is produced in a delta connection.
  • Each side of the triangle here defines two branches of the frequency step-up stage 6, each of these branches comprising two controllable electronic switches arranged in series and not shown individually in this figure, so that each branch produces a control cell. switching. It can be seen that two branches on the same side of the triangle have a common terminal forming an output of the frequency step-up stage and an input of the capacitive transformer.
  • FIG. 6 shows the case where the frequency step-up stage 6 is realized in a star connection.
  • Each arm of the star here defines two branches of the frequency raising stage 6, each of these branches comprising two controllable electronic switches arranged in series, so as to form a switching cell.
  • These two branches of the same star arm have a common terminal forming an output of the frequency step-up stage and an input of the capacitive transformer.
  • inductors respectively in series with a capacitor of the capacitive transformer instead of inductors respectively in series with a capacitor of the capacitive transformer, magnetically coupled inductors can be used, similar to what has been described with reference to FIG. 2.
  • a second DC voltage source is charged from the AC network.
  • the frequency step-up stage 6 may be common to the first DC voltage source and to the second DC voltage source.
  • a capacitive transformer as described above can be used to isolate a communication signal between two devices connected by a network, for example a CAN, SPI RS485, RS232 data network, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Circuit électrique (1) pour la charge d'une source de tension continue depuis un réseau de tension alternatif, le circuit comprenant : - une entrée (3) apte à recevoir une tension alternative du réseau de tension, - une première sortie (4) apte à être connectée à la source de tension continue, - un étage d'isolation formé à l'aide de plusieurs condensateurs (30, 31, 32, 33), disposé de manière à isoler électriquement l'entrée (3) de la première sortie (4) du circuit, et - un étage d'élévation de fréquence (6) disposé entre l'entrée du circuit et l'étage d'isolation de manière à ce que les condensateurs de l'étage d'isolation soient dans une partie du circuit parcourue par un courant alternatif à une fréquence supérieure à celle du réseau alternatif.

Description

Circuit électrique pour charge d’une source de tension continue
La présente invention concerne un circuit électrique pour la charge d’une source de tension continue à l’aide d’un réseau alternatif. L’invention s’applique notamment, mais non
exclusivement, pour charger une source de tension continue servant à l’alimentation électrique d’un moteur de propulsion d’un véhicule électrique ou hybride.
Pour des raisons diverses telles que la sûreté, ou le non-référencement entre deux sources de tension, il peut être souhaitable de disposer d’une isolation électrique entre le réseau électrique alternatif et la source de tension continue chargée par ce réseau électrique. Dans ce but, il est connu d’utiliser un transformateur magnétique. Un tel transformateur présente l’inconvénient de devoir utiliser un noyau magnétique. L’emploi d’un tel noyau magnétique génère de
l’encombrement, un alourdissement, un coût important et peut s’avérer difficile à intégrer au circuit électrique.
La demande WO2016/179329 enseigne d’associer à un tel transformateur capacitif un onduleur connecté à une source de tension continue.
Il existe un besoin pour remédier aux inconvénients liés à l’emploi d’un transformateur magnétique.
L’invention a pour but de remédier à ce besoin et elle y parvient, selon l’un de ses aspects, à l’aide d’un circuit électrique pour la charge d’une source de tension continue depuis un réseau de tension alternatif, le circuit comprenant :
- une entrée apte à recevoir une tension alternative du réseau de tension,
- une première sortie apte à être connectée à la source de tension continue,
- un transformateur capacitif formé à l’aide de plusieurs condensateurs, disposé de manière à isoler électriquement l’entrée de la première sortie du circuit, et
- un étage d’élévation de fréquence disposé entre l’entrée du circuit et le transformateur capacitif de manière à ce que les condensateurs du transformateur capacitif soient dans une partie du circuit parcourue par un courant alternatif à une fréquence supérieure à celle du réseau alternatif, l’étage d’élévation de fréquence comprenant une première branche comprenant deux interrupteurs électroniques commandables disposés en série, de manière à réaliser une première cellule de commutation bidirectionnelle en courant et en tension, et
- une deuxième branche comprenant deux interrupteurs électroniques commandables
disposés en série, de manière à réaliser une deuxième cellule de commutation
bidirectionnelle en courant et en tension,
la première et la deuxième branche de l’étage d’élévation de fréquence ayant une borne commune formant une sortie de l’étage d’élévation de fréquence et une entrée du
transformateur capacitif. L’invention permet d’utiliser un transformateur capacitif dont les condensateurs sont disposés dans une partie du circuit parcourue par un courant alternatif à fréquence plus élevée que celle du réseau électrique, de sorte que ces condensateurs peuvent avoir une taille plus réduite et/ou un coût plus faible. Ce transformateur capacitif peut encore être appelé « étage d’isolation ». La ou les inductances résonantes associées à ces condensateurs peuvent également être de taille réduite et ou de coût plus faible. Par ailleurs, l’étage d’élévation de fréquence étant différent de l’association d’un redresseur et d’un onduleur monté à la suite du redresseur, l’invention permet de réaliser un étage d’élévation de fréquence de façon plus simple que par l’intermédiaire de l’association précitée d’un redresseur et d’un onduleur, réduisant ainsi le coût de cet étage d’élévation de fréquence et améliorant par ailleurs son rendement.
Tous les condensateurs de l’étage d’isolation peuvent être montés sur une même carte électronique, cette carte portant par exemple tout ou partie du reste du circuit électrique.
L’entrée du circuit peut être reliée à un connecteur, monophasé ou polyphasé, permettant le branchement au réseau alternatif, ce dernier étant par exemple un réseau électrique industriel géré par un opérateur. Ce réseau alternatif peut fournir une tension supérieure à 100V. Il peut s’agir d’un réseau monophasé ou polyphasé, par exemple triphasé.
Le circuit électrique peut être dépourvu d’étage d’adaptation d’impédance.
La première source de tension continue a par exemple une tension de valeur égale à 48 V, ou une tension de valeur supérieure à 300V.
Dans le cas où le transformateur capacitif est disposé dans une partie monophasée du circuit, l’étage d’élévation de fréquence peut être constitué par la première branche et la deuxième branche précitées.
Le transformateur capacitif peut être disposé dans une partie monophasée du circuit électrique, le transformateur capacitif comprenant alors un premier et un deuxième condensateur, le premier condensateur étant disposé sur la phase et le deuxième condensateur étant disposé sur le neutre.
En variante, le transformateur capacitif peut être disposé dans une partie polyphasée du circuit, notamment une partie triphasée du circuit, le transformateur capacitif comprenant alors une pluralité de condensateurs de telle sorte que chaque condensateur soit respectivement disposé sur une phase ou sur le neutre. Le transformateur capacitif peut alors comprendre un nombre de condensateurs égal au nombre de phases de cette partie parcourue par du courant alternatif incrémenté de 1.
Lorsque le transformateur capacitif est disposé dans une partie triphasée du circuit, l’étage d’élévation de fréquence peut être réalisé selon un montage en triangle ou en étoile.
Dans le cas d’un montage en triangle, chaque côté du triangle peut définir deux branches de l’étage d’élévation de fréquence, chacune de ces branches comprenant deux interrupteurs électroniques commandables disposés en série, de manière à ce que chacune de ces branches réalise une cellule de commutation, et ces deux branches d’un même côté du triangle présentent une borne commune formant une sortie de l’étage d’élévation de fréquence et une entrée du transformateur capacitif.
Dans le cas d’un montage en étoile, chaque bras de l’étoile peut définir deux branches de l’étage d’élévation de fréquence, chacune de ces branches comprenant deux interrupteurs électroniques commandables disposés en série, de manière à réaliser une cellule de commutation et ces deux branches d’un même bras de l’étoile présentent une borne commune formant une sortie de l’étage d’élévation de fréquence et une entrée du transformateur capacitif.
Les deux interrupteurs électroniques commandables d’une même branche de l’étage d’élévation de fréquence peuvent être deux transistors à effet de champ de champ de dopage opposé ou de même dopage, ou deux transistors bipolaires de dopage opposé ou de même dopage. Dans le cas de transistors à effet de champ, l’un de ces transistors peut être un MOSFET canal N tandis que l’autre transistor de cette branche est un MOSFET canal P. Toujours dans le cas de transistors à effet de champ, les deux transistors formant une cellule de commutation peuvent être montés en source commune ou en drain commun. Dans le cas de transistors bipolaires, l’un de ces transistors est par exemple un NPN tandis que l’autre transistor est un PNP. Toujours dans le cas de transistors bipolaires, les deux transistors bipolaires formant une cellule de commutation peuvent être montés en émetteur commun ou en collecteur commun.
Lorsque l’on retrouve au sein de chaque branche de l’étage d’élévation de fréquence deux transistors ayant l’un par rapport à l’autre un dopage opposé, le transistor de la première branche et le transistor de la deuxième branche ayant tous deux le même dopage peuvent avoir le même positionnement dans leur bras respectif relativement à la borne commune. Chacun de ces deux transistors de même dopage est par exemple, au sein de son bras respectif, le transistor monté de manière directement adjacente à cette borne commune. En variante, ces deux transistors de même dopage peuvent avoir des positionnements dans leur bras respectif différents relativement à cette borne commune. L’un de ces transistors est par exemple le transistor du premier bras directement adjacent à la borne commune tandis que l’autre de ces transistors est le transistor du deuxième bras qui n’est pas directement adjacent à cette borne commune, le transistor du deuxième bras directement adjacent à la borne commune ayant un dopage différent.
L’invention n’est pas limitée au choix de transistors bipolaires ou de transistors à effet de champ pour réaliser des cellules de commutation bidirectionnelles en courant et en tension. En variante, l’étage élévateur de fréquence peut utiliser des IGBT.
Lorsque l’invention utilise des transistors MOSFET, ces derniers peuvent être réalisés en nitmre de gallium (GaN) ou en carbure de silicium (SiC) ou en silicium. Selon un premier exemple de mise en œuvre de l’invention, une inductance peut être montée en série avec un condensateur du transformateur capacitif, notamment entre la borne formant une entrée du transformateur capacitif et ce condensateur de ce transformateur capacitif. Cette inductance peut former une inductance résonante et son association avec un condensateur du transformateur capacitif peut former une cellule LC résonante.
Selon un deuxième exemple de mise en œuvre de l’invention, la première branche de l’étage d’élévation de fréquence comprend une première inductance et la deuxième branche de l’étage d’élévation de fréquence comprend une deuxième inductance, la première et la deuxième inductance étant couplées magnétiquement. De telles inductances couplées magnétiquement appartenant respectivement à chaque branche peuvent permettre de réduire les perturbations CEM.
Dans tout ce qui précède, le circuit peut comprendre un redresseur monté entre le
transformateur capacitif et la première sortie. Ce redresseur peut être un redresseur double alternance, ou un autre type de redresseur tel qu’un doubleur de tension.
Dans tout ce qui précède, chaque branche de l’étage élévateur de fréquence peut être telle que tout le courant traversant un des interrupteurs électroniques commandables de cette branche traverse également l’autre interrupteur électronique commandable de cette branche. Autrement dit, aucun nœud pour le courant n’est alors disposé entre ces deux interrupteurs électroniques commandables.
Dans tout ce qui précède, le circuit peut encore comprendre un étage de régulation de courant disposé entre le redresseur et la première sortie. Cet étage de régulation met par exemple en œuvre la fonction de correction du facteur de puissance (« Power Factor Corrector » en anglais), ce qui permet de diminuer le courant réactif envoyé dans le réseau électrique. Cet étage de régulation peut être formé par un hacheur série ou un hacheur parallèle ou encore un convertisseur abaisseur/élévateur (« buck/boost converter » en anglais) selon la valeur de tension nominale du réseau électrique et la valeur de tension nominale de l’unité de stockage d’énergie électrique formant la première source de tension continue.
Dans tout ce qui précède, l’étage élévateur de fréquence peut être configuré pour amener une fréquence de 50 Hz à une valeur de fréquence comprise entre 200Hz et 100MHz.
L’invention n’est pas limitée à un circuit permettant de charger une unique source de tension continue depuis le réseau alternatif. En combinaison de tout ce qui précède, le circuit peut également permettre la charge d’une deuxième source de tension continue, le circuit comprenant : une deuxième sortie connectée à la deuxième source de tension continue, et un autre
transformateur capacitif formé à l’aide de plusieurs condensateurs, disposé de manière à isoler électriquement l’entrée de la deuxième sortie du circuit. Cet autre transformateur capacitif peut être monté fonctionnellement en parallèle de celui précédemment décrit. Aucun condensateur appartenant à cet autre transformateur capacitif n’appartient par exemple également au transformateur capacitif précédemment décrit pour l’isolation électrique de l’entrée et de la première sortie. Lorsque plusieurs sources de tension continues sont chargées par le circuit, l’étage d’élévation de fréquence peut être unique, et donc commun à ces différentes sources de tension.
Lorsque le réseau alternatif permet de charger deux sources de tension continue distinctes, ces deux sources de tension continue peuvent ou non avoir la même valeur de tension, par exemple 48V ou une valeur supérieure à 300V. En variante, ces deux sources de tension continue peuvent présenter des valeurs de tension différentes.
Dans tout ce qui précède, les différents interrupteurs du circuit peuvent être choisis de manière à ce que ce circuit soit réversible en termes de flux de puissance.
L’invention a encore pour objet, selon un autre de ses aspects, un ensemble comprenant :
- le circuit tel que défini ci-dessus, et
- la source de tension continue connectée à la première sortie du circuit, cette dernière ayant notamment une valeur nominale de 48 V.
L’invention pourra être mieux comprise à la lecture de la description qui va suivre d’exemples non limitatifs de mise en œuvre de celle-ci et à l’examen du dessin annexé sur lequel :
- la Figure 1 représente un circuit selon un premier exemple de mise en œuvre de l’invention,
- la Figure 2 représente un circuit selon un deuxième exemple de mise en œuvre de l’invention
- la Figure 3 représente un circuit selon une variante du premier exemple de mise en œuvre de l’invention,
- la Figure 4 représente un circuit selon une variante du deuxième exemple de mise en œuvre de l’invention, et
- les Figures 5 et 6 représentent des variantes du circuit de la figure 1 lorsque ce dernier est au moins en partie triphasé, la Figure 5 représentant un étage d’élévation de fréquence réalisé selon un montage en triangle et la Figure 6 représentant un étage d’élévation de fréquence réalisé selon un montage en étoile.
On a représenté sur la Figure 1 un circuit électrique 1 selon un premier exemple de mise en œuvre de l’invention. Ce circuit 1 permet ici la charge d’une première source de tension continue depuis un réseau alternatif. Le réseau alternatif est par exemple un réseau électrique industriel géré par un opérateur et qui fournit une tension monophasée dans le cas de la Figure 1.
Cependant, l’invention n’est pas limitée à un réseau monophasé, comme on le verra par la suite. La fréquence de la tension du réseau est par exemple égale à 50Hz ou 60Hz. Dans l’exemple considéré, le réseau électrique est relié à une entrée 3 du circuit électrique 1 par l’intermédiaire d’un connecteur non représenté.
Selon ce premier exemple, le circuit 1 comprend un étage d’élévation de fréquence 6, qui sera décrit ci-après, et dont une borne de sortie forme une borne d’entrée pour un transformateur capacitif qui est ici formé par deux condensateurs 30 et 31 , le condensateur 30 étant disposé sur la phase et le condensateur 31 étant disposé sur le neutre du signal électrique véhiculé par le circuit. On constate qu’une inductance 12 est montée en série avec le condensateur 30 qui est disposé sur la phase.
En aval du transformateur capacitif pour le courant positif circulant depuis l’entrée 3 du circuit électrique 1 est monté un redresseur 7 qui est ici un pont de Graetz réalisant un redressement double alternance. Ce redresseur 7 comprend des interrupteurs électroniques commandables qui sont ici des transistors MOSFET.
On constate encore sur la Figure 1 qu’un étage de régulation 8 est présent, monté en aval du redresseur 7 pour le courant positif circulant depuis l’entrée 3 du circuit électrique 1.
Dans l’exemple de la figure 1, l’étage de régulation met en œuvre un hacheur série qui abaisse la tension redressée par le redresseur 7 en une tension fournie à la première source de tension continue via une première sortie 4 du circuit 1. Toujours dans l’exemple décrit, les interrupteurs électroniques de cet étage de régulation 8 sont commandés de manière à ce que cet étage de régulation 8 assure une fonction de correction du facteur de puissance (« PFC » en anglais).
La source de tension continue est ici une unité de stockage d’énergie de valeur nominale de 48V et elle permet d’alimenter électriquement un moteur électrique de propulsion de véhicule hybride ou électrique.
On va maintenant décrire plus en détail l’étage d’élévation de fréquence 6 qui permet que le transformateur capacitif voit un signal électrique dont la fréquence est supérieure à celle du réseau, cette fréquence étant par exemple comprise entre 200Hz et 100MHz. Cet étage d’élévation de fréquence est constitué dans l’exemple de la figure 1 par:
- une première branche 10 comprenant deux interrupteurs électroniques commandables 10a et 10b disposés en série, de manière à réaliser une première cellule de commutation bidirectionnelle en courant et en tension, et
- une deuxième branche 11 comprenant deux interrupteurs électroniques commandables l ia et
1 lb disposés en série, de manière à réaliser une deuxième cellule de commutation bidirectionnelle en courant et en tension.
On constate que cet étage d’élévation de fréquence 6 a dans l’exemple considéré deux bornes d’entrée 13 et 14 en parallèle desquelles un condensateur de découplage est monté. Chacune de ces bornes 13 et 14 est respectivement connectée, directement ou non, à une borne de l’entrée 3 du circuit.
Cet étage d’élévation de fréquence 5 comprend dans l’exemple de la figure 1 deux bornes de sortie. L’une de ces bornes 15 est commune aux deux branches 10 et 11 et elle est connectée au condensateur 30 du transformateur capacitif disposé sur la phase du signal tandis l’autre borne de sortie est connectée au condensateur 31 du transformateur capacitif disposé sur le neutre du signal électrique.
Dans l’exemple considéré, chaque branche 10 et 11 ne contient pas d’autre composant que les deux interrupteurs mentionnés ci-dessus. Par ailleurs, dans ce premier exemple de mise en œuvre, tout courant électrique parcourant l’un des interrupteurs d’une des branches parcourt aussi l’autre intermpteur de cette branche, c’est-à-dire qu’il n’y a pas de nœud de courant entre ces deux intermpteurs.
Dans l’exemple considéré, chacun de ces interrupteurs est un transistor MOSFET. Plus précisément, le transistor 10a est un transistor MOSFET canal N et le transistor 10b est un transistor MOSFET canal N, ces deux transistors étant montés en source commune. Le transistor 1 la est un transistor MOSFET canal N et que le transistor 1 lb est un transistor MOSFET canal N, ces deux transistors étant également montés en source commune.
Chaque transistor MOSFET est par exemple réalisé en nitrure de gallium (GaN) ou en carbure de silicium (SiC) ou en silicium.
Lors de chaque alternance positive de la tension appliquée sur l’entrée 3, on commande par exemple les transistors 10a et 1 la de manière à ce qu’ils présentent un rapport cyclique de 50% tandis que les transistors 10b et 11b sont maintenus à l’état passant, et lors de chaque alternance négative de la tension appliquée sur l’entrée 3, on commande les transistors 10b et 11b de manière à ce qu’ils présentent un rapport cyclique de 50% tandis que les transistors 10a et lia sont maintenus à l’état passant.
Dans le cas où on effectue un redressement synchrone dans le redresseur 7, on peut obtenir en sortie de ce redresseur 7 une tension dont la valeur est égale à la moitié du module de la tension alternative appliquée sur l’entrée 3.
On va maintenant décrire en référence à la figure 2 un circuit 1 selon un deuxième exemple de mise en œuvre. Selon ce deuxième exemple de mise en œuvre, l’inductance 12 de la Figure 1 qui est en série avec le condensateur 30 du transformateur capacitif est remplacée par une première inductance 10c disposée dans la première branche 10 et par une deuxième inductance 11c disposée dans la deuxième branche 11. Ces inductances 10c et 11c sont ici couplées
magnétiquement et elles sont toutes deux directement adjacentes à la borne commune de sortie 15 de l’étage d’élévation de fréquence 6. Ainsi, dans le deuxième exemple de mise en œuvre, la première branche 10 est constituée par la mise en série des deux interrupteurs 10a et 10b ainsi que par la première inductance 10c en série avec ces interrupteurs. La deuxième branche 11 est constituée par les deux interrupteurs 1 la et 1 lb ainsi que par la deuxième inductance 1 le.
Similairement à ce qui a été décrit en référence au premier exemple de mise en œuvre, on constate encore dans ce deuxième exemple de mise en œuvre que tout courant électrique parcourant l’un des interrupteurs d’une des branches parcourt aussi l’autre interrupteur de cette branche, c’est-à- dire qu’il n’y a pas de nœud de courant entre ces deux interrupteurs.
Les figures 3 et 4 représentent des variantes du premier exemple de mise en œuvre et du deuxième exemple de mise en œuvre respectivement.
Le circuit de la figure 3 diffère de celui de la figure 1 en ce que le redresseur 7 n’est plus un redresseur pleine alternance mais un doubleur de tension.
Similairement, le circuit de la figure 4 diffère de celui de la figure 2 en ce que le redresseur 7 est un doubleur de tension, et non plus un redresseur pleine alternance.
L’invention n’est pas limitée aux exemples qui viennent d’être décrits.
Dans des variantes non décrites, le réseau alternatif est polyphasé, notamment triphasé.
Dans d’autres variantes, le transformateur capacitif peut être disposé dans une partie polyphasée, par exemple triphasée, du circuit 1, y compris lorsque le réseau alternatif est monophasé. Ainsi, la Figure 5 représente le cas où l’étage d’élévation de fréquence 6 est réalisé selon un montage en triangle. Chaque côté du triangle définit ici deux branches de l’étage d’élévation de fréquence 6, chacune de ces branches comprenant deux interrupteurs électroniques commandables disposés en série et non représentés individuellement sur cette figure, de manière à ce que chaque branche réalise une cellule de commutation. On constate que deux branches d’un même côté du triangle présentent une borne commune formant une sortie de l’étage d’élévation de fréquence et une entrée du transformateur capacitif.
La Figure 6 représente le cas où l’étage d’élévation de fréquence 6 est réalisé selon un montage en étoile. Chaque bras de l’étoile définit ici deux branches de l’étage d’élévation de fréquence 6, chacune de ces branches comprenant deux interrupteurs électroniques commandables disposés en série, de manière à réaliser une cellule de commutation. Ces deux branches d’un même bras de l’étoile présentent une borne commune formant une sortie de l’étage d’élévation de fréquence et une entrée du transformateur capacitif.
Dans l’exemple des figures 5 et 6, on peut utiliser à la place d’inductances respectivement en série avec un condensateur du transformateur capacitif des inductances couplées magnétiquement, similairement à ce qui a été décrit en référence à la figure 2. Dans des variantes non décrites, une deuxième source de tension continue est chargée depuis le réseau alternatif. Dans ce cas, l’étage d’élévation de fréquence 6 peut être commun à la première source de tension continue et à la deuxième source de tension continue.
L’invention peut encore être utilisée dans d’autres applications. On peut par exemple utiliser un transformateur capacitif tel que décrit précédemment pour réaliser une isolation d’un signal de communication entre deux équipements reliés par un réseau, par exemple un réseau de données CAN, SPI RS485, RS232...

Claims

Revendications
1. Circuit électrique (1) pour la charge d’une source de tension continue depuis un réseau de tension alternatif, le circuit comprenant :
- une entrée (3) apte à recevoir une tension alternative du réseau de tension,
- une première sortie (4) apte à être connectée à la source de tension continue,
- un étage d’isolation formé à l’aide de plusieurs condensateurs (30, 31),
disposé de manière à isoler électriquement l’entrée (3) de la première sortie (4) du circuit, et
- un étage d’élévation de fréquence (6) disposé entre l’entrée (3) du circuit et l’étage d’isolation de manière à ce que les condensateurs de l’étage d’isolation soient dans une partie du circuit parcourue par un courant alternatif à une fréquence supérieure à celle du réseau alternatif, l’étage d’élévation de fréquence (6) étant différent de l’association en série d’un redresseur et d’un onduleur,
l’étage d’élévation de fréquence (6) comprenant :
- une première branche (10) comprenant deux intermpteurs électroniques commandables
(10a, 10b) disposés en série, de manière à réaliser une première cellule de commutation bidirectionnelle en courant et en tension, et
- une deuxième branche (11) comprenant deux intermpteurs électroniques commandables (l ia, 11b) disposés en série, de manière à réaliser une deuxième cellule de commutation bidirectionnelle en courant et en tension,
la première (10) et la deuxième (11) branche de l’étage d’élévation de fréquence (6) ayant une borne commune (15) formant une sortie de l’étage d’élévation de fréquence et une entrée de l’étage d’isolation.
2. Circuit selon la revendication 1, l’étage d’isolation étant disposé dans une partie monophasée du circuit (1), ou dans une partie polyphasée, notamment triphasée, du circuit (1).
3. Circuit selon la revendication 1 ou 2, une inductance (12) étant montée en série avec un condensateur de l’étage d’isolation.
4. Circuit selon la revendication 1 ou 2, la première branche (10) de l’étage d’élévation de fréquence (6) comprenant une première inductance (10c) et la deuxième branche (11) de l’étage d’élévation de fréquence (6) comprenant une deuxième inductance (11c), la première et la deuxième inductance étant couplées magnétiquement.
5. Circuit selon l’une quelconque des revendications précédentes, comprenant un redresseur (7) monté entre l’étage d’isolation et la première sortie.
6. Circuit selon la revendication 5, le redresseur (7) étant un redresseur double alternance ou un doubleur de tension.
7. Circuit selon l’une quelconque des revendications précédentes, chaque branche (10, 11) de l’étage d’élévation de fréquence (6) étant telle que tout le courant traversant une des cellules de commutation de cette branche traverse également l’autre cellule de commutation de cette branche.
8. Circuit selon l’une quelconque des revendications précédentes, comprenant encore un étage de régulation (8) de courant disposé entre le redresseur (7) et la première sortie (4).
9. Circuit selon l’une quelconque des revendications précédentes, l’étage d’élévation de fréquence (6) étant configuré pour amener une fréquence de 50 Hz à une valeur de fréquence comprise entre 200Hz et 100MHz.
10. Ensemble comprenant :
- le circuit selon l’une quelconque des revendications précédentes, et
- la source de tension continue connectée à la première sortie du circuit, cette dernière
ayant notamment une valeur nominale de 48 V.
11. Ensemble selon la revendication 10, comprenant une carte électronique sur laquelle les condensateurs (30, 31) de l’étage d’isolation sont montés.
EP20731118.4A 2019-06-24 2020-06-11 Circuit électrique pour charge d'une source de tension continue Pending EP3987647A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1906832A FR3097701B1 (fr) 2019-06-24 2019-06-24 Circuit électrique pour charge d’une source de tension continue
PCT/EP2020/066190 WO2020260032A1 (fr) 2019-06-24 2020-06-11 Circuit électrique pour charge d'une source de tension continue

Publications (1)

Publication Number Publication Date
EP3987647A1 true EP3987647A1 (fr) 2022-04-27

Family

ID=68138451

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20731118.4A Pending EP3987647A1 (fr) 2019-06-24 2020-06-11 Circuit électrique pour charge d'une source de tension continue

Country Status (5)

Country Link
US (1) US11894688B2 (fr)
EP (1) EP3987647A1 (fr)
CN (1) CN114008888A (fr)
FR (1) FR3097701B1 (fr)
WO (1) WO2020260032A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3139514A1 (fr) 2022-09-12 2024-03-15 : Valeo Systemes De Controle Moteur Equipement de charge d’unités de stockage d’énergie électrique de véhicules

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6525921B1 (en) * 1999-11-12 2003-02-25 Matsushita Electric Industrial Co., Ltd Capacitor-mounted metal foil and a method for producing the same, and a circuit board and a method for producing the same
US8270188B1 (en) * 2011-10-03 2012-09-18 Google Inc. Apparatus and methodology for generating an auxiliary low power output by using three-phase input power
KR101681958B1 (ko) * 2014-08-29 2016-12-05 경북대학교 산학협력단 다단 멀티레벨 ac-ac 컨버터
CA2985091C (fr) * 2015-05-04 2023-09-26 The Regents Of The University Of Colorado, A Body Corporate Transfert d'energie sans fil
US10250120B2 (en) * 2016-05-18 2019-04-02 Northeastern University Power conversion devices and control methods therefor
WO2018071688A1 (fr) * 2016-10-12 2018-04-19 Johnson Controls Technology Company Modèle de batterie et systèmes et procédés d'étalonnage d'application de commande
ES2930112T3 (es) * 2017-11-07 2022-12-07 B G Negev Technologies And Applications Ltd At Ben Gurion Univ Transferencia de potencia inalámbrica capacitiva por medio de redes de adaptación adaptativas

Also Published As

Publication number Publication date
US11894688B2 (en) 2024-02-06
WO2020260032A1 (fr) 2020-12-30
FR3097701B1 (fr) 2022-01-21
US20220247211A1 (en) 2022-08-04
CN114008888A (zh) 2022-02-01
FR3097701A1 (fr) 2020-12-25

Similar Documents

Publication Publication Date Title
JP6211609B2 (ja) スイッチングによる損失を低減する自動車両用バッテリ充電器の制御方法
EP2887527B1 (fr) Bloc d'alimentation électrique compact et modulaire, multi-convertisseurs, notamment pour bornes de recharge rapide de véhicules électriques
JP2017536793A (ja) 電気エネルギー蓄積器のための充電回路、電気駆動システム、および充電回路を作動する方法
JP2015531583A (ja) 自動車バッテリを充電するシステム
WO2020183076A1 (fr) Convertisseur de puissance isole et reconfigurable
WO2020260032A1 (fr) Circuit électrique pour charge d'une source de tension continue
WO2019053370A1 (fr) Chargeur de vehicule comprenant un convertisseur dc/dc
FR2932329A1 (fr) Dispositif de recuperation d'energie dans un variateur de vitesse
EP3207629A1 (fr) Convertisseur dc/dc isole
EP3681756B1 (fr) Chargeur de vehicule comprenant un convertisseur dc/dc
EP2571149B1 (fr) Procédé et ensemble circuit pour réduire le courant de mode commun
FR3140491A1 (fr) Circuit d’alimentation électrique d’une unité de stockage d’énergie électrique de véhicule
Rajan et al. Battery Supported Solar PV-based PMSM Driven Water Pumping System
WO2023275202A1 (fr) Système de conversion de tension et véhicule automobile comportant un tel système
FR3001843A1 (fr) Dispositif et procede correspondant de gestion de batteries de vehicule automobile, en particulier une batterie basse tension et une batterie haute tension
FR3090243A1 (fr) Circuit électrique pour charge d’une source de tension continue
FR3082683A1 (fr) Convertisseur bidirectionnel pour vehicule electrique ou hybride
Liaw et al. Some Basic Issues and Applications of Switch-Mode Rectifiers on Motor Drives and Electric Vehicle Chargers
Dasari et al. Analysis of Solar Integrated Symmetrical Hybrid Switched-Inductor DC-DC Converter Fed SRM Drive for Electric Vehicle Application
TWI253775B (en) Auxiliary power supply
Undrajavarapu et al. Pv fed boost spwm inverter driven single-phase induction motor
FR3141010A1 (fr) Système électrique pour la conversion de la tension continue et pour la charge des batteries d'un véhicule.
FR3007908A1 (fr) Dispositif de conversion d'energie electrique multifonction
Marzouk et al. A combined traction drive and slow battery charger for plug-in hybrid Electric Vehicle application
FR3014611A1 (fr) Dispositif de charge pour vehicule electrique avec une chaine de traction a machine a reluctance commutee

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528