EP3983151A1 - Vorrichtung zur verarbeitung von zum laserschmelzen geeignetem pulver mit zentralem schutzgasverteiler und mit sauerstoffmonitoring - Google Patents

Vorrichtung zur verarbeitung von zum laserschmelzen geeignetem pulver mit zentralem schutzgasverteiler und mit sauerstoffmonitoring

Info

Publication number
EP3983151A1
EP3983151A1 EP20727247.7A EP20727247A EP3983151A1 EP 3983151 A1 EP3983151 A1 EP 3983151A1 EP 20727247 A EP20727247 A EP 20727247A EP 3983151 A1 EP3983151 A1 EP 3983151A1
Authority
EP
European Patent Office
Prior art keywords
powder
protective gas
central
component
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20727247.7A
Other languages
English (en)
French (fr)
Inventor
Wolfgang Laib
Daniel GIEK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trumpf Laser und Systemtechnik Se
Original Assignee
Trumpf Laser und Systemtechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trumpf Laser und Systemtechnik GmbH filed Critical Trumpf Laser und Systemtechnik GmbH
Publication of EP3983151A1 publication Critical patent/EP3983151A1/de
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • B22F10/322Process control of the atmosphere, e.g. composition or pressure in a building chamber of the gas flow, e.g. rate or direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/52Hoppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/70Gas flow means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • Device for processing powder suitable for laser melting with central protective gas distributor and with oxygen monitoring
  • the present invention relates to a device for processing powder suitable for laser melting with at least one component which is or is coming into contact with the powder and to which a protective gas is supplied.
  • a workpiece is built up layer by layer by melting a powder using a laser beam.
  • the melting process takes place in a protective gas atmosphere.
  • the powder is cleaned with a sieve station. After the melting process, the unmelted powder can be cleaned and reused for a new construction process.
  • the powder can be stored in powder silos, for example, before the melting process.
  • DE 10 2009 005 769 A1 describes a system for reusing residual powder from a system for the additive manufacturing of three-dimensional objects.
  • the system comprises a construction device for applying the powder material as and for shaping an object by irradiation.
  • the system comprises a suction device separate from the construction device for transporting the residual powder and a sieving station for sieving the residual powder.
  • a central inert gas distributor that can be or is connected to a protective gas source, to which the at least one component is connected via a controllable valve
  • a controller which controls the valve based on measurement data from the oxygen sensor.
  • At least some, preferably all of the components of a process chain processing the powder, which are under protective gas, are each connected to the central protective gas distributor via a controllable valve, the controller controlling the valves on the basis of measurement data from the oxygen sensors.
  • the powder is stored in the powder silo and in the sieving station under a protective gas atmosphere, with the amount of protective gas in the at least one component (sieving station, powder silo, glovebox, component chamber, ...) being centrally controlled according to the invention by the protective gas distributor and the controller.
  • the associated valve is opened to supply protective gas.
  • the protective gas distributor and the central control no protective gas supply devices have to be operated separately for each powder silo.
  • the advantages of this central protective gas control are the potential savings through the reduction of components, the uniform data structure and the simplified operation. Environmental influences are reduced to a minimum by the regulated protective gas atmosphere, which significantly and measurably increases process reliability.
  • the device according to the invention enables a simple expansion of the protective gas distribution to further components of the device by connection to the central protective gas distributor.
  • the device can be adapted to various specifications with comparatively little expenditure of time via the central control and its uniform data structure.
  • the control has interfaces that are required for the central function (protective gas control). Examples of the additional interfaces are:
  • Any (any) "gas-tight" component of the process chain can be connected to the device (as a module). It only has to be implemented with the standardized interfaces (supply of protective gas supply and discharge, attachment of oxygen sensor).
  • a protective gas preparation system is also preferably connected to the protective gas distributor in order to centrally prepare the protective gas returned by the components.
  • the central protective gas distributor, the control and / or the central protective gas preparation are arranged at a central sieving station (as the most important or central component of the powder processing).
  • the protective gas preparation, control and visualization elements are only available once (at the sieving station).
  • the control of the sieve station can, for example, take over the regulation for all components.
  • the operator can switch components on and off via HMI (Human Machine Interface) and define component-specific properties or control limits, such as Protective gas flooding time for initial filling, control range for the oxygen concentration, etc.
  • the protective gas comprises argon and / or nitrogen. These protective gases effectively prevent the powder from oxidizing when the laser is melted.
  • the invention also relates to a device for processing powder suitable for laser melting with at least one component in contact with or coming into contact with the powder to which a protective gas is supplied, characterized by:
  • a central data processing unit that records and evaluates the measurement data from the oxygen sensor.
  • At least some, preferably all of the components of a process chain processing the powder which are under protective gas have oxygen sensors, the data processing unit recording and evaluating the measurement data from the oxygen sensors.
  • the data management / evaluation according to the invention of the measured oxygen values enables a component-specific powder or oxygen concentration history (oxygen monitoring).
  • the powder condition can be determined over its life cycle be recorded as detailed and comprehensive as possible. Together with the data from the melting process, a comprehensive quality statement can be made about the resulting component.
  • the status data oxygen and optionally other parameters such as air / gas humidity, temperature, etc.
  • visualizing them the operator now has the option of preparing quality assurance reports.
  • the process uncertainty can be steadily reduced.
  • the at least one component can be, for example, a powder silo for storing powder, a sieving station for cleaning the powder fed in from a powder silo, a process chamber of a system for additive manufacturing of components, or an unpacking station for unpacking and cleaning a freshly manufactured component act.
  • the powder preferably comprises nickel, titanium and / or aluminum.
  • the powder comprises alloys of nickel, titanium and / or aluminum.
  • FIG. 1 shows a device according to the invention for processing powder suitable for laser melting with a central protective gas distributor and a central data processing unit; and FIG. 2 schematically shows the components of a das under protective gas
  • the device 1 shown in Fig. 1 is used to process powder suitable for Laserschmel zen and has one or more (here only three by way of example) powder silos 2 in which the same or different powder materials are stored.
  • a powder hose 3 is connected to one of the powder silos 2 and to a sieving station 4 in order to convey powder from the one powder silo 2 into the sieving station 4 for cleaning the powder.
  • the cleaned powder is then conveyed to a system (not shown here) for additive manufacturing of components, in which a component is built up layer by layer by melting powder by means of a laser beam, or transported by means of containers.
  • a central protective gas distributor 7 is connected to a protective gas source 5 via a hose 6, to which in turn both the powder silos 2 and the screening station 4 are each connected via a hose 8 and a - e.g. electrically - an excuseba res valve 9 are connected to introduce protective gas.
  • oxygen sensors 10 which measure the oxygen concentration prevailing therein.
  • the temperature, humidity and / or pressure can also be measured.
  • valves 9 and the oxygen sensors 10 are connected to a central controller 12 via control lines 11, which in the exemplary embodiment shown go via the central protective gas distributor 7, which controls the valves 9 electrically based on measurement data from the oxygen sensors 10 in order to open and close the Valves 9 to maintain a predetermined oxygen concentration in the powder silos 2 and in the screening station 4.
  • the valves 9 can also be arranged directly on the protective gas distributor 7.
  • the control lines 11 can also be connected directly to the controller 12.
  • a protective gas preparation 13 for cleaning the protective gas can also be connected to the protective gas distributor 7.
  • the protective gas distributor 7, the controller 12 and the protective gas preparation 13 are arranged on the screening station 4.
  • the oxygen sensors 10 are also connected to a central data processing unit 13, which can be designed separately or, as shown in FIG. 1, part of the controller 12.
  • the data processing unit 13 records the measurement data from the oxygen sensors 10 and evaluates them in order to obtain a component-specific powder or oxygen concentration history (oxygen monitoring) and, if necessary, to visualize it for the operator.
  • the powder condition can be recorded in detail and comprehensively over its life cycle.
  • other parameters such as air / gas humidity and temperature, can also be evaluated. Together with the data from the melting process, a comprehensive quality statement can be made about the resulting component.
  • FIG. 2 shows schematically the components of a process chain processing the powder, which are under protective gas. These are, seen in the conveying direction of the powder from left to right, a delivered container 14 with new powder, the powder silo 2 for the new powder, the sieving station 4 for cleaning the powder fed from the powder silo 2, a storage container 15 for the cleaned powder, a process chamber 16 of a system for additive manufacturing of components, an unpacking station 17 for unpacking and cleaning a freshly manufactured component and the powder silo 2 for excess powder.
  • All these components of the process chain under protective gas are connected to the protective gas distributor 7 via hoses 8 and have oxygen sensors 10 which are connected to the controller 12 and to the data processing unit 13 via control lines 11.
  • the data processing unit 13 records the measurement data from the oxygen sensors 10 and evaluates them.
  • the device 1 according to the invention enables customers with increased process requirements to carry out powder handling under controlled environmental conditions along the process chain.
  • the device 1 according to the invention can in particular be used in a modular manner for any handling steps in pre- and post-processing and includes a central control, regulation, data acquisition and evaluation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Powder Metallurgy (AREA)
  • Laser Beam Processing (AREA)

Abstract

Eine Vorrichtung (1) zur Verarbeitung von zum Laserschmelzen geeignetem Pulver, mit mindestens einer in Kontakt mit dem Pulver stehenden oder kommenden Komponente (2,4,14-17), der ein Schutzgas zugeführt wird, umfasst erfindungsgemäß einen an eine Schutzgasquelle (5) anschließbaren oder angeschlossenen, zentralen Schutzgasverteiler (7), an den die mindestens eine Komponente (2,4,14-17) über ein ansteuerbares Ventil (9) angeschlossen ist, einen Sauerstoffsensor (10) in der mindestens einen Komponente (2,4,14-17), und eine Steuerung (12), welche das Ventil (9) anhand von Messdaten des Sauerstoffsensors (10) ansteuert. Alternativ oder zusätzlich zum zentralen Schutzgasverteiler (7) kann die Vorrichtung (1) eine Datenverarbeitungseinheit (13) aufweisen, welche die Messdaten des Sauerstoffsensors (10) aufzeichnet und auswertet.

Description

Vorrichtung zur Verarbeitung von zum Laserschmelzen geeignetem Pulver mit zentralem Schutzgasverteiler und mit Sauerstoffmonitoring
Die vorliegende Erfindung betrifft eine Vorrichtung zur Verarbeitung von zum La serschmelzen geeignetem Pulver mit mindestens einer in Kontakt mit dem Pulver stehenden oder kommenden Komponente, der ein Schutzgas zugeführt wird.
Verfahren zum Laserschmelzen (Laser-Metal-Fusion) sind aus dem Stand der Technik bekannt. Dabei wird ein Werkstück Schicht für Schicht durch Schmelzen aus einem Pulver mittels eines Laserstrahls aufgebaut. Um unter anderem die Kontaminierung des Pulvers mit Sauerstoff zu vermeiden, findet der Schmelzpro zess unter Schutzgasatmosphäre statt. Vor dem Schmelzprozess wird das Pulver mit einer Siebstation gereinigt. Nach dem Schmelzprozess kann das nicht ge schmolzene Pulver gereinigt und für einen neuen Bauprozess wiederverwendet werden. Das Pulver kann vor dem Schmelzprozess beispielsweise in Pulversilos gelagert werden.
Die DE 10 2009 005 769 A1 beschreibt ein System zur Wiederverwendung von Restpulver aus einer Anlage zur generativen Fertigung von dreidimensionalen Ob jekten. Das System umfasst eine Bauvorrichtung zur Auftragung des Pulvermateri als und zur Ausformung eines Objekts durch Bestrahlung. Weiterhin umfasst das System eine von der Bauvorrichtung getrennte Saugvorrichtung zum Transport des Restpulvers und eine Siebstation zum Sieben des Restpulvers.
Es ist die Aufgabe der vorliegenden Erfindung, eine Vorrichtung der eingangs genannten Art dahingehend weiterzubilden, dass das Pulverhandling unter kon trollierten Umgebungsbedingungen und mit einem Monitoring der Umgebungs bedingungen durchgeführt werden kann.
Diese Aufgabe wird bei der eingangs genannten Vorrichtung erfindungsgemäß gelöst durch:
- einen an eine Schutzgasquelle anschließbaren oder angeschlossenen, zentra len Schutzgasverteiler, an den die mindestens eine Komponente über ein an steuerbares Ventil angeschlossen ist,
- ein Sauerstoffsensor in der mindestens einen Komponente, und
- eine Steuerung, welche das Ventil anhand von Messdaten des Sauerstoffsen sors ansteuert.
Besonders bevorzugt sind zumindest einige, vorzugsweise alle unter Schutzgas stehenden Komponenten einer das Pulver verarbeitenden Prozesskette an den zentralen Schutzgasverteiler jeweils über ein ansteuerbares Ventil angeschlossen, wobei die Steuerung die Ventile anhand von Messdaten der Sauerstoffsensoren ansteuert. Die Lagerung des Pulvers in dem Pulversilo und in der Siebstation erfolgt unter Schutzgasatmosphäre, wobei die Menge an Schutzgas in der mindestens einen Komponente (Siebstation, Pulversilo, Glovebox, Bauteilkammer, ... ) erfindungsge mäß durch den Schutzgasverteiler und die Steuerung zentral gesteuert wird.
Wenn die gemessene Sauerstoffkonzentration in der Komponente einen vorgege benen Grenzwert überschreitet, wird das zugehörige Ventil geöffnet, um Schutz gas zuzuführen. Durch den Schutzgasverteiler und die zentrale Steuerung müssen keine Schutzgas-Zuführungseinrichtungen für jedes Pulversilo separat bedient werden. Die Vorteile dieser zentralen Schutzgasregelung sind das Einsparpotenzi al durch Reduzierung von Bauteilen, die einheitliche Datenstruktur und die verein fachte Bedienung. Umgebungseinflüsse werden durch die geregelte Schutzgasat mosphäre auf ein Minimum reduziert, wodurch die Prozesssicherheit dadurch deutlich und messbar erhöht wird.
Durch die erfindungsgemäße Vorrichtung wird eine einfache Erweiterung der Schutzgasverteilung auf weitere Komponenten der Vorrichtung durch Anschluss an den zentralen Schutzgasverteiler ermöglicht. Die Vorrichtung kann über die zentrale Steuerung und ihre einheitliche Datenstruktur mit vergleichsweise wenig Zeitaufwand an verschiedene Vorgaben angepasst werden. Dazu weist die Steue rung Schnittstellen auf, die für die zentrale Funktion (Schutzgasregelung) erforder lich sind. Beispiele für die zusätzlichen Schnittstellen sind:
- Eingänge für Sensorik (Sauerstoff, Feuchtigkeit, ... ).
- Ausgänge, um die Ventile (Aktoren) anzusteuern, oder mechanische Anschlüsse, um beispielsweise Prozessgase (Argon, Stickstoff) den anderen Komponenten "bedarfsgerecht" zur Verfügung zu stellen. Der zentrale Schutzgasverteiler mit ausreichend Steckplätzen ermöglicht hierbei das Schalten L/ersorgen von bspw. mehreren Pulversilos.
Jede (beliebige) "gasdichte" Komponente der Prozesskette kann (als Modul) an die Vorrichtung angeschlossen werden. Sie muss nur mit den standardisierten Schnittstellen (Versorgung Schutzgas- Zu- und Abführung, Anbau Sauerstoffsen sor) ausgeführt werden. Weiter bevorzugt ist an den Schutzgasverteiler eine Schutzgasaufbereitung ange schlossen, um so das von den Komponenten rückgeführte Schutzgas zentral auf zubereiten.
Bei einer vorteilhaften Ausführungsform der Erfindung sind der zentrale Schutz gasverteiler, die Steuerung und/oder die zentrale Schutzgasaufbereitung an einer zentralen Siebstation (als wichtigste bzw. zentrale Komponente der Pulververar beitung) angeordnet. Die Elemente Schutzgasaufbereitung, Steuerung und Visua lisierung sind nur einmal (an der Siebstation) vorhanden. Die Steuerung der Sieb station kann beispielsweise die Regelung für alle Komponenten übernehmen. Der Bediener kann über HMI(Human Machine Interface) Komponenten zu- und ab schalten sowie komponentenspezifische Eigenschaften oder Regelgrenzen defi nieren, wie z.B. Schutzgas-Flutungszeit für Erstbefüllung, Regelbereich für die Sauerstoffkonzentration, etc.
Bei einer weiteren Ausgestaltung weist das Schutzgas Argon und/oder Stickstoff auf. Diese Schutzgase verhindern effektiv eine Oxidation des Pulvers bei der La serschmelze.
Die Erfindung betrifft in einem weiteren Aspekt auch eine Vorrichtung zur Verar beitung von zum Laserschmelzen geeignetem Pulver mit mindestens einer in Kon takt mit dem Pulver stehenden oder kommenden Komponente, der ein Schutzgas zugeführt wird, gekennzeichnet durch:
einen Sauerstoffsensor in der Komponente, und
eine zentrale Datenverarbeitungseinheit, welche die Messdaten des Sauer stoffsensors aufzeichnet und auswertet.
Besonders bevorzugt weisen zumindest einige, vorzugsweise alle unter Schutzgas stehenden Komponenten einer das Pulver verarbeitenden Prozesskette Sauer stoffsensoren auf, wobei die Datenverarbeitungseinheit die Messdaten der Sauer stoffsensoren aufzeichnet und auswertet.
Die erfindungsgemäße Datenverwaltung/-auswertung der gemessenen Sauerstoff werte ermöglicht eine Bauteil-spezifische Pulver- bzw. Sauerstoffkonzentrations historie (Sauerstoffmonitoring). Der Pulverzustand kann über seinen Lebenslauf möglichst detailliert und umfassend aufgezeichnet werden. Gemeinsam mit den Daten aus dem Schmelzprozess kann somit eine umfassende Qualitätsaussage über das resultierende Bauteil gemacht werden. Über die Auswertung der Zu standsdaten (Sauerstoff und optional weiterer Parameter wie Luft-/Gasfeuchte, Temperatur etc.) und deren Visualisierung hat der Bediener fortan die Möglichkeit, Qualitätssicherungsberichte anzufertigen. Durch die Integration immer weiterer Komponenten und Prozessschritte unter definierten geregelten Bedingungen kann somit die Prozessunsicherheit stetig verringert werden.
Bei der mindestens einen Komponente kann es sich beispielsweise um ein Pulver silo zur Bevorratung von Pulver, eine Siebstation zum Reinigen des aus einem Pulversilo zugeförderten Pulvers, eine Prozesskammer einer Anlage zum additi ven Fertigen von Bauteilen oder eine Entpackstation zum Entpacken und Reinigen eines frisch gefertigten Bauteils handeln.
Bevorzugt weist das Pulver Nickel, Titan und/oder Aluminium auf. Insbesondere umfasst das Pulver Legierungen von Nickel, Titan und/oder Aluminium.
Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstands der Erfindung sind der Beschreibung, der Zeichnung und den Ansprüchen entnehmbar. Ebenso können die vorstehend genannten und die noch weiter aufgeführten Merkmale je für sich oder zu mehreren in beliebigen Kombinationen Verwendung finden. Die gezeigten und beschriebenen Ausführungsformen sind nicht als abschließende Aufzählung zu verstehen, sondern haben vielmehr beispielhaften Charakter für die Schilderung der Erfindung.
Es zeigt:
Fig. 1 eine erfindungsgemäße Vorrichtung zur Verarbeitung von zum La serschmelzen geeignetem Pulver mit einem zentralen Schutzgasver teiler und einer zentralen Datenverarbeitungseinheit; und Fig. 2 schematisch die unter Schutzgas stehenden Komponenten einer das
Pulver verarbeitenden Prozesskette. Die in Fig. 1 gezeigte Vorrichtung 1 dient zur Verarbeitung von zum Laserschmel zen geeignetem Pulver und weist ein oder mehrere (hier lediglich beispielhaft drei) Pulversilos 2 auf, in dem gleiche oder verschiedene Pulvermaterialien bevorratet sind. Ein Pulverschlauch 3 ist an eines der Pulversilos 2 und an eine Siebstation 4 angeschlossen, um Pulver aus dem einen Pulversilo 2 in die Siebstation 4 zur Rei nigung des Pulvers zu fördern. Das gereinigte Pulver wird dann weiter an eine hier nicht gezeigte Anlage zur additiven Fertigung von Bauteilen, in der ein Bauteil durch Schmelzen von Pulver mittels eines Laserstrahls Schicht für Schicht aufge baut wird, gefördert oder mittels Behältern transportiert.
An eine Schutzgasquelle 5 ist über einen Schlauch 6 ein zentraler Schutzgasver teiler 7 angeschlossen, an den wiederum sowohl die Pulversilos 2 als auch die Siebstation 4 jeweils über einen Schlauch 8 und ein - z.B. elektrisch - ansteuerba res Ventil 9 angeschlossen sind, um Schutzgas einzuleiten. In den Pulversilos 2 und in der Siebstation 4 befinden sich Sauerstoffsensoren 10, welche die darin jeweils herrschende Sauerstoffkonzentration messen. Zusätzlich können auch noch die Temperatur, die Feuchtigkeit und/oder der Druck gemessen werden.
Die Ventile 9 und die Sauerstoffsensoren 10 sind über Steuerleitungen 11 , die im gezeigten Ausführungsbeispiel über den zentralen Schutzgasverteiler 7 gehen, mit einer zentralen Steuerung 12 verbunden, welche die Ventile 9 anhand von Mess daten der Sauerstoffsensoren 10 elektrisch ansteuert, um durch Öffnen und Schließen der Ventile 9 eine vorgegebene Sauerstoffkonzentration in den Pulver silos 2 und in der Siebstation 4 aufrechtzuerhalten. Statt wie in Fig. 1 an den Pul versilos 2 und an der Siebstation 4 können die Ventile 9 auch direkt am Schutz gasverteiler 7 angeordnet sein. Auch können die Steuerleitungen 1 1 direkt an die Steuerung 12 angeschlossen sein.
An den Schutzgasverteiler 7 kann weiterhin noch eine Schutzgasaufbereitung 13 zur Reinigung des Schutzgases angeschlossen sein. Im gezeigten Ausführungs bespiel sind der Schutzgasverteiler 7, die Steuerung 12 und die Schutzgasaufbe reitung 13 an der Siebstation 4 angeordnet. Die Sauerstoffsensoren 10 sind auch an eine zentrale Datenverarbeitungseinheit 13 angeschlossen, welche separat oder, wie in Fig. 1 gezeigt, Teil der Steuerung 12 ausgeführt sein kann. Die Datenverarbeitungseinheit 13 zeichnet die Messda ten der Sauerstoffsensoren 10 auf und wertet sie aus, um eine Bauteil-spezifische Pulver- bzw. Sauerstoffkonzentrationshistorie (Sauerstoffmonitoring) zu erhalten und ggf. dem Bediener zu visualisieren. Der Pulverzustand kann so über seinen Lebenslauf detailliert und umfassend aufgezeichnet werden. Zusätzlich können auch andere Parameter, wie z.B. Luft-/Gasfeuchte und Temperatur, mit ausgewer tet werden. Gemeinsam mit den Daten aus dem Schmelzprozess kann somit eine umfassende Qualitätsaussage über das resultierende Bauteil gemacht werden.
Fig. 2 zeigt schematisch die unter Schutzgas stehenden Komponenten einer das Pulver verarbeitenden Prozesskette. Das sind, in Förderrichtung des Pulvers von links nach rechts gesehen, ein angelieferter Behälter 14 mit Neupulver, das Pul versilo 2 für das Neupulver, die Siebstation 4 zum Reinigen des aus dem Pulversi lo 2 zugeförderten Pulvers, einen Vorratsbehälter 15 für das gereinigte Pulver, eine Prozesskammer 16 einer Anlage zum additiven Fertigen von Bauteilen, eine Entpackstation 17 zum Entpacken und Reinigen eines frisch gefertigten Bauteils sowie das Pulversilo 2 für überschüssiges Pulver.
All diese unter Schutzgas stehenden Komponenten der Prozesskette sind über Schläuche 8 an den Schutzgasverteiler 7 angeschlossen und weisen Sauerstoff sensoren 10 auf, die über Steuerleitungen 1 1 mit der Steuerung 12 und mit der Datenverarbeitungseinheit 13 verbunden sind. Die Datenverarbeitungseinheit 13 zeichnet die Messdaten der Sauerstoffsensoren 10 auf und wertet sie aus.
Die erfindungsgemäße Vorrichtung 1 ermöglicht es Kunden mit erhöhten Pro zessanforderungen, entlang der Prozesskette das Pulverhandling unter kontrollier ten Umgebungsbedingungen durchzuführen. Die erfindungsgemäße Vorrichtung 1 kann insbesondere modular für beliebige Handling-Schritte im Pre- und Postpro cessing verwendet werden und beinhaltet eine zentrale Steuerung, Regelung, Da tenerfassung und Auswertung.

Claims

Patentansprüche
1. Vorrichtung (1 ) zur Verarbeitung von zum Laserschmelzen geeignetem Pul ver, mit mindestens einer in Kontakt mit dem Pulver stehenden oder kom menden Komponente (2,4,14-17), der ein Schutzgas zugeführt wird, gekennzeichnet durch:
- einen an eine Schutzgasquelle (5) anschließbaren oder angeschlosse nen, zentralen Schutzgasverteiler (7), an den die mindestens eine Kom ponente (2,4,14-17) über ein ansteuerbares Ventil (9) angeschlossen ist,
- einen Sauerstoffsensor (10) in der mindestens einen Komponente
(2,4,14-17), und
- eine Steuerung (12), welche das Ventil (9) anhand von Messdaten des Sauerstoffsensors (10) ansteuert.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass zumindest ei nige, vorzugsweise alle unter Schutzgas stehenden Komponenten (2,4,14- 17) einer das Pulver verarbeitenden Prozesskette an den zentralen Schutz gasverteiler (7) jeweils über ein ansteuerbares Ventil (9) angeschlossen sind und dass die Steuerung (12) die Ventile (9) anhand von Messdaten der Sauerstoffsensoren (10) ansteuert.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass an den zentralen Schutzgasverteiler (6) eine zentrale Schutzgasaufbereitung (13) angeschlossen ist.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekenn zeichnet, dass der zentrale Schutzgasverteiler (7) und/oder die Steuerung (12) und/oder die zentrale Schutzgasaufbereitung (13) an einer zentralen Siebstation (4) zum Reinigen von Pulver angeordnet sind.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekenn zeichnet, dass das Schutzgas Argon und/oder Stickstoff aufweist.
6. Vorrichtung (1 ) zur Verarbeitung von zum Laserschmelzen geeignetem Pul ver, insbesondere nach einem der vorhergehenden Ansprüche, mit mindes tens einer in Kontakt mit dem Pulver stehenden oder kommenden Kompo nente (2,4,14-17), der ein Schutzgas zugeführt wird,
gekennzeichnet durch:
- einen Sauerstoffsensor (10) in der Komponente (2,4,14-17), und
- eine zentrale Datenverarbeitungseinheit (13), welche die Messdaten des Sauerstoffsensors (10) aufzeichnet und auswertet.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass zumindest ei nige, vorzugsweise alle unter Schutzgas stehenden Komponenten (2,4,14- 17) einer das Pulver verarbeitenden Prozesskette Sauerstoffsensoren (10) aufweisen und die Datenverarbeitungseinheit (13) die Messdaten der Sau erstoffsensoren (10) aufzeichnet und auswertet.
8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekenn zeichnet, dass mindestens eine der Komponenten ein Pulversilo (2) zur Be vorratung von Pulver, eine Siebstation (4) zum Reinigen des aus einem Pulversilo (2) zugeförderten Pulvers, eine Prozesskammer (16) einer Anla ge zur additiven Fertigung von Bauteilen oder eine Entpackstation (17) zum Entpacken und Reinigen eines frisch gefertigten Bauteils ist.
9. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekenn zeichnet, dass das Pulver Nickel, Titan und/oder Aluminium aufweist.
EP20727247.7A 2019-06-14 2020-05-19 Vorrichtung zur verarbeitung von zum laserschmelzen geeignetem pulver mit zentralem schutzgasverteiler und mit sauerstoffmonitoring Pending EP3983151A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019208689.6A DE102019208689A1 (de) 2019-06-14 2019-06-14 Vorrichtung zur Verarbeitung von zum Laserschmelzen geeignetem Pulver mit zentralem Schutzgasverteiler und mit Sauerstoffmonitoring
PCT/EP2020/063917 WO2020249369A1 (de) 2019-06-14 2020-05-19 Vorrichtung zur verarbeitung von zum laserschmelzen geeignetem pulver mit zentralem schutzgasverteiler und mit sauerstoffmonitoring

Publications (1)

Publication Number Publication Date
EP3983151A1 true EP3983151A1 (de) 2022-04-20

Family

ID=70779752

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20727247.7A Pending EP3983151A1 (de) 2019-06-14 2020-05-19 Vorrichtung zur verarbeitung von zum laserschmelzen geeignetem pulver mit zentralem schutzgasverteiler und mit sauerstoffmonitoring

Country Status (5)

Country Link
US (1) US20220080505A1 (de)
EP (1) EP3983151A1 (de)
CN (1) CN113993643A (de)
DE (1) DE102019208689A1 (de)
WO (1) WO2020249369A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4201555A1 (de) * 2021-12-21 2023-06-28 Linde GmbH Verfahren zur herstellung von bauteilen aus einer nickel-titan-legierung unter verwendung eines additiven herstellungsverfahrens.

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009005769A1 (de) * 2009-01-23 2010-08-05 Eos Gmbh Electro Optical Systems Verfahren und System zur Wiederverwendung von Restpulver aus einer Anlage zur generativen Fertigung von dreidimensionalen Objekten
CN103952698B (zh) * 2014-05-09 2016-02-24 张百成 一种选择性激光熔化铺粉与气氛循环保护一体化装置
GB2520161B (en) * 2014-09-24 2015-10-07 Lpw Technology Ltd Transport of Powders
WO2016079494A2 (en) * 2014-11-21 2016-05-26 Renishaw Plc Additive manufacturing apparatus and methods
DE102016105094A1 (de) * 2016-03-18 2017-09-21 Cl Schutzrechtsverwaltungs Gmbh Siebeinrichtung zur generativen Herstellung von Bauteilen
CN205702443U (zh) * 2016-06-30 2016-11-23 成都雍熙聚材科技有限公司 一种可独立进行气体置换的3d打印设备储粉筒
CN205834234U (zh) * 2016-06-30 2016-12-28 成都雍熙聚材科技有限公司 一种可独立进行气体置换的3d打印设备粉末回收桶
CN106041077B (zh) * 2016-07-11 2018-10-30 中北大学 激光快速成形保护气体进气装置
DE102016116501A1 (de) * 2016-09-02 2018-03-08 Cl Schutzrechtsverwaltungs Gmbh Abtrennvorrichtung zur Abtrennung von partikulären Baumaterialbestandteilen aus einem Gasstrom
US20180281237A1 (en) * 2017-03-28 2018-10-04 Velo3D, Inc. Material manipulation in three-dimensional printing
DE102017008333A1 (de) * 2017-09-05 2019-03-07 Linde Aktiengesellschaft Modulares Lagersystem
CN108971492B (zh) * 2018-09-21 2023-10-27 天津镭明激光科技有限公司 一种增材制造激光成型系统集成设备的控制系统及方法
CN109080141B (zh) * 2018-09-21 2019-12-03 天津镭明激光科技有限公司 增材制造一体化辅助设备、工作方法及筛分、收料设备

Also Published As

Publication number Publication date
DE102019208689A1 (de) 2020-12-17
WO2020249369A1 (de) 2020-12-17
CN113993643A (zh) 2022-01-28
US20220080505A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
EP3181334B1 (de) Verfahren und vorrichtung zur herstellung von dreidimensionalen bauteilen mittels überschussmengensensor
EP3247536B1 (de) Regelung des strahlmitteldurchsatzes einer strahlanlage
DE69006582T2 (de) Verfahren zum Füllen von Behältern mit flüssigen und/oder gelatinösen und/oder korrosiven oder klebrigen Produkten, oder abrasiven Suspensionen und Vorrichtung zur Durchführung des Verfahrens.
EP2736653A1 (de) Verfahren zum betreiben einer filtervorrichtung und filtervorrichtung
DE102017009833C5 (de) Anlage und Verfahren zur Metallpulveraufarbeitung
EP4058227A1 (de) Verfahren und anlage zur rückgewinnung von prozessiertem pulverförmigem aufbaumaterial sowie rückgewinnungseinrichtung und kartusche für eine solche rückgewinnungseinrichtung
DE60313833T2 (de) Bodenverarbeitungsmaschine
EP3983151A1 (de) Vorrichtung zur verarbeitung von zum laserschmelzen geeignetem pulver mit zentralem schutzgasverteiler und mit sauerstoffmonitoring
EP2788103B1 (de) Filteranlage und reinigungsverfahren für rohgas enthaltend lack-overspray
EP3814038B1 (de) Verfahren zum betreiben einer einrichtung zur additiven herstellung eines dreidimensionalen objekts und derartige einrichtung
DE19808765A1 (de) Pulverbeschichtungsanlage und -verfahren zum Speisen und Mischen von Pulver in einer Beschichtungsanlage
WO2022013366A1 (de) Betreiben einer strahlanlage mit steuerdaten
EP1803664A2 (de) Vorrichtung zur Unterbrechung eines kontinuierlichen Produktstroms einer Rundläuferpresse
EP0014769A1 (de) Verfahren und Vorrichtung zur pneumatisch in Abhängigkeit der abgeführten Fördergutmenge steuerbaren Beschickung eines Reaktors
DE3241704C2 (de)
DE102019115170A1 (de) Anlage und Betrieb einer Anlage zur additiven Fertigung
DE102020206285A1 (de) Gaskonzentrationsmessgerät, steuerverfahren für gaskonzentrationsmessgerät, laminierungsformvorrichtung und steuerverfahren für sauerstoffkonzentrationsmessgerät für eine laminierungsformvorrichtung
EP1342505A1 (de) Anlage zur Beschichtung von Gegenständen mit Pulver
EP0334019A2 (de) Druckluftentleereinrichtung für einen Schüttgutbehälter mit mindestens zwei Entleeröffnungen sowie ein Verfahren zur Entleerung des Schüttgutbehälters
EP3544786A1 (de) Transportieren von pulverförmigem aufbaumaterial für die herstellung dreidimensionaler objekte
WO2000032473A1 (de) Verfahren und vorrichtung zur befüllung von gebinden
WO2023147911A1 (de) VORRICHTUNG UND VERFAHREN ZUR HERSTELLUNG VON BAUTEILEN UNTER BERÜCKSICHTIGUNG VON INLINE-ERMITTELTEN FLIEßEIGENSCHAFTEN EINES PULVERS
EP4396117A1 (de) Behandlungssystem zum behandeln von kegs
DE102021208111A1 (de) Kontrollierte Oxidation
DE202022103583U1 (de) Pulvertank für Vorrichtungen zur additiven Fertigung von Bauteilen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TRUMPF LASER- UND SYSTEMTECHNIK SE