EP3978831B1 - Conditionneur d'air - Google Patents

Conditionneur d'air Download PDF

Info

Publication number
EP3978831B1
EP3978831B1 EP20822547.4A EP20822547A EP3978831B1 EP 3978831 B1 EP3978831 B1 EP 3978831B1 EP 20822547 A EP20822547 A EP 20822547A EP 3978831 B1 EP3978831 B1 EP 3978831B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
connection pipe
cycle
pipe
pipe diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20822547.4A
Other languages
German (de)
English (en)
Other versions
EP3978831A4 (fr
EP3978831A1 (fr
Inventor
Takuro Yamada
Eiji Kumakura
Atsushi Yoshimi
Ikuhiro Iwata
Tomoatsu Minamida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Publication of EP3978831A1 publication Critical patent/EP3978831A1/fr
Publication of EP3978831A4 publication Critical patent/EP3978831A4/fr
Application granted granted Critical
Publication of EP3978831B1 publication Critical patent/EP3978831B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication

Definitions

  • the present invention relates to a refrigerant cycle system including a cascade heat exchanger.
  • JP 2014-74508 A discloses a refrigerant cycle system including a cascade heat exchanger.
  • a refrigerant cycle system constitutes a dual refrigerant cycle that includes a primary-side cycle including a heat-source heat exchanger and a secondary-side cycle including a usage heat exchanger.
  • Another refrigerant cycle system is disclosed in EP 2 910 872 A1 forming the basis for the preamble of claim 1.
  • a refrigerant cycle system includes a vapor compression primary-side cycle that circulates a first refrigerant, a vapor compression secondary-side cycle that circulates a second refrigerant, and a cascade heat exchanger that exchanges heat between the first refrigerant and the second refrigerant.
  • the first refrigerant and the second refrigerant are the same refrigerant.
  • the primary-side cycle includes a heat-source heat exchanger for giving cold or heat to the first refrigerant, and a primary-side connection pipe that connects the cascade heat exchanger and the heat-source heat exchanger.
  • the secondary-side cycle includes a usage heat exchanger for using the cold or the heat obtained by the second refrigerant from the cascade heat exchanger, and a secondary-side connection pipe that connects the cascade heat exchanger and the usage heat exchanger.
  • the primary-side connection pipe includes a primary-side gas connection pipe and a primary-side liquid connection pipe.
  • the secondary-side connection pipe includes a secondary-side gas connection pipe and a secondary-side liquid connection pipe.
  • the pipe diameter of the secondary-side gas connection pipe is smaller than the pipe diameter of the primary-side gas connection pipe, or the pipe diameter of the secondary-side liquid connection pipe is smaller than the pipe diameter of the primary-side liquid connection pipe.
  • the pipe diameter of the connection pipe in the secondary-side cycle is smaller than the pipe diameter of the connection pipe in the primary-side cycle. Consequently, it is possible to increase the flow speed of refrigerant in the secondary-side cycle. Therefore, a refrigerating-machine oil that has flowed out from the compressor easily returns to the compressor.
  • a refrigerant cycle system is the refrigerant cycle system according to the first aspect in which the second refrigerant is carbon dioxide.
  • the refrigerating capacity of the secondary-side cycle is 4.5 kW or more and 5.6 kW or less.
  • the pipe diameter of the secondary-side gas connection pipe is 7.9 mm (5/16 inches).
  • a refrigerant cycle system is the refrigerant cycle system according to the first aspect in which the second refrigerant is carbon dioxide.
  • the refrigerating capacity of the secondary-side cycle is 7.1 kW or more and 9.0 kW or less.
  • the pipe diameter of the secondary-side gas connection pipe is 9.5 mm (3/8 inches).
  • a refrigerant cycle system is the refrigerant cycle system according to the first aspect in which the second refrigerant is carbon dioxide.
  • the refrigerating capacity of the secondary-side cycle is 16 kW or more and 22.4 kW or less.
  • the pipe diameter of the secondary-side gas connection pipe is 12.7 mm (1/2 inches).
  • a refrigerant cycle system is the refrigerant cycle system according to the first aspect in which the second refrigerant is carbon dioxide.
  • the refrigerating capacity of the secondary-side cycle is 5.6 kW or more and 8.0 kW or less.
  • the pipe diameter of the secondary-side liquid connection pipe is 4.8 mm (3/16 inches).
  • a refrigerant cycle system is the refrigerant cycle system according to the first aspect in which the second refrigerant is carbon dioxide.
  • the refrigerating capacity of the secondary-side cycle is 11.2 kW or more and 16 kW or less.
  • the pipe diameter of the secondary-side liquid connection pipe is 6.4 mm (1/4 inches).
  • a refrigerant cycle system is the refrigerant cycle system according to the first aspect in which the second refrigerant is carbon dioxide.
  • the refrigerating capacity of the secondary-side cycle is 16 kW or more and 28 kW or less.
  • the pipe diameter of the secondary-side liquid connection pipe is 7.9 mm (5/16 inches).
  • a refrigerant cycle system is the refrigerant cycle system according to the first aspect in which the second refrigerant is carbon dioxide.
  • the refrigerating capacity of the secondary-side cycle is 33.5 kW or more and 45 kW or less.
  • the pipe diameter of the secondary-side liquid connection pipe is 9.5 mm (3/8 inches).
  • a refrigerant cycle system is the refrigerant cycle system according to the first aspect in which the second refrigerant is R32.
  • the refrigerating capacity of the secondary-side cycle is 16 kW or more and 22.4 kW or less.
  • the pipe diameter of the secondary-side gas connection pipe is 15.9 mm (5/8 inches).
  • a refrigerant cycle system is the refrigerant cycle system according to the first aspect in which the second refrigerant is R32.
  • the refrigerating capacity of the secondary-side cycle is 2.8 kW or more and 3.6 kW or less.
  • the pipe diameter of the secondary-side liquid connection pipe is 4.8 mm (3/16 inches).
  • a refrigerant cycle system is the refrigerant cycle system according to the first aspect in which the second refrigerant is R32.
  • the refrigerating capacity of the secondary-side cycle is 14 kW or more and 16 kW or less.
  • the pipe diameter of the secondary-side liquid connection pipe is 7.9 mm (5/16 inches).
  • a refrigerant cycle system is the refrigerant cycle system according to the first aspect in which the second refrigerant is R32.
  • the refrigerating capacity of the secondary-side cycle is 28 kW or more and 33.5 kW or less.
  • the pipe diameter of the secondary-side liquid connection pipe is 9.5 mm (3/8 inches).
  • a refrigerant cycle system is the refrigerant cycle system according to the first aspect in which the second refrigerant is R454B.
  • the refrigerating capacity of the secondary-side cycle is 9.0 kW or more and 11.2 kW or less.
  • the pipe diameter of the secondary-side gas connection pipe is 15.9 mm (5/8 inches).
  • a refrigerant cycle system is the refrigerant cycle system according to the first aspect in which the second refrigerant is R454B.
  • the refrigerating capacity of the secondary-side cycle is 16.0 kW or more and 22.4 kW or less.
  • the pipe diameter of the secondary-side gas connection pipe is 19.1 mm (3/4 inches).
  • a refrigerant cycle system is the refrigerant cycle system according to the first aspect in which the second refrigerant is R454B.
  • the refrigerating capacity of the secondary-side cycle is 16 kW or more and 22.4 kW or less.
  • the pipe diameter of the secondary-side liquid connection pipe is 9.5 mm (3/8 inches).
  • a refrigerant cycle system is the refrigerant cycle system according to the first aspect in which the second refrigerant is R454B.
  • the refrigerating capacity of the secondary-side cycle is 45 kW or more and 56 kW or less.
  • the pipe diameter of the secondary-side liquid connection pipe is 12.7 mm (1/2 inches).
  • a refrigerant cycle system is the refrigerant cycle system according to the first aspect in which the second refrigerant is R454B.
  • the refrigerating capacity of the secondary-side cycle is 85 kW or more and 109 kW or less.
  • the pipe diameter of the secondary-side liquid connection pipe is 15.9 mm (5/8 inches).
  • a refrigerant cycle system is the refrigerant cycle system according to any one of the first aspect to the seventeenth aspect in which the pipe diameter of the secondary-side gas connection pipe is less than or equal to 90% of the pipe diameter of the primary-side gas connection pipe, or the pipe diameter of the secondary-side liquid connection pipe is less than or equal to 90% of the pipe diameter of the primary-side liquid connection pipe.
  • a refrigerant cycle system is the refrigerant cycle system according to any one of the first aspect to the eighteenth aspect in which a compression ratio of the secondary-side cycle is smaller than a compression ratio of the primary-side cycle.
  • Fig. 1 is a view illustrating a refrigerant cycle system 100 according to a first
  • Fig. 1 illustrates a refrigerant cycle system 100.
  • the refrigerant cycle system 100 is configured to acquire cold or heat from a heat source and supply the cold or the heat to a user.
  • the "acquire cold from a heat source” means releasing heat to the heat source.
  • the "acquire heat from a heat source” means absorbing heat from the heat source.
  • the “supply the cold to a user” means absorbing heat from an environment in which the user is present.
  • the “supply heat to a user” means releasing heat into an environment in which the user is present.
  • the refrigerant cycle system 100 includes one heat source unit 10, one cascade unit 30, and one usage unit 50.
  • the heat source unit 10 and the cascade unit 30 are connected to each other to configure a primary-side cycle 20.
  • the primary-side cycle 20 is a vapor compression circuit that circulates a first refrigerant.
  • the cascade unit 30 and the usage unit 50 are connected to each other to configure a secondary-side cycle 40.
  • the secondary-side cycle 40 is a vapor compression circuit that circulates a second refrigerant.
  • the first refrigerant and the second refrigerant are the same refrigerant.
  • the heat source unit 10 acquires cold or heat from outside air that is a heat source.
  • the heat source unit 10 includes a compressor 11, a four-way switching valve 12, a heat-source heat exchanger 13, a heat-source expansion valve 14, a subcooling expansion valve 15, a subcooling heat exchanger 16, a liquid shutoff valve 18, and a gas shutoff valve 19.
  • the compressor 11 sucks and compresses low-pressure gas refrigerant that is the first refrigerant and discharges high-pressure gas refrigerant.
  • the four-way switching valve 12 makes connection indicated by the solid lines in Fig. 1 during cooling operation and makes connection indicated by the broken lines in Fig. 1 during heating operation.
  • the heat-source heat exchanger 13 exchanges heat between the first refrigerant and outside air.
  • the heat-source heat exchanger 13 functions as a condenser during cooling operation and functions as an evaporator during heating operation.
  • the heat-source expansion valve 14 adjusts the flow rate of the first refrigerant.
  • the heat-source expansion valve 14 also functions as a decompression device that decompresses the first refrigerant.
  • the subcooling expansion valve 15 produces cooling gas by decompressing the first refrigerant that circulates.
  • the subcooling heat exchanger 16 exchanges heat between the first refrigerant that circulates and the cooling gas, thereby giving a degree of subcooling to the first refrigerant.
  • the liquid shutoff valve 18 and the gas shutoff valve 19 shut off a flow path in which the first refrigerant circulates, for example, during work of installation of the heat source unit 10.
  • the cascade unit 30 is configured to exchange heat between the first refrigerant and the second refrigerant.
  • the cascade unit 30 includes a primary-side expansion valve 31, a secondary-side expansion valve 32, a compressor 33, a four-way switching valve 34, a cascade heat exchanger 35, a liquid shutoff valve 38, and a gas shutoff valve 39.
  • the primary-side expansion valve 31 adjusts the amount of the first refrigerant that circulates in the primary-side cycle 20.
  • the primary-side expansion valve 31 also decompresses the first refrigerant.
  • the secondary-side expansion valve 32 adjusts the amount of the second refrigerant that circulates in the secondary-side cycle 40.
  • the secondary-side expansion valve 32 also decompresses the second refrigerant.
  • the compressor 33 sucks and compresses low-pressure gas refrigerant that is the second refrigerant and discharges high-pressure gas refrigerant.
  • the four-way switching valve 34 functions as a switching device and makes connection indicated by the solid lines in Fig. 1 during cooling operation and connection indicated by the broken lines in Fig. 1 during heating operation.
  • the cascade heat exchanger 35 exchanges heat between the first refrigerant and the second refrigerant.
  • the cascade heat exchanger 35 is, for example, a plate heat exchanger.
  • the cascade heat exchanger 35 includes a first refrigerant passage 351 and a second refrigerant passage 352.
  • the first refrigerant passage 351 allows the first refrigerant to pass therethrough.
  • the second refrigerant passage 352 allows the second refrigerant to pass therethrough.
  • the cascade heat exchanger 35 functions as an evaporator for the first refrigerant and a condenser for the second refrigerant during cooling operation and functions as an evaporator for the first refrigerant and a condenser for the second refrigerant during heating operation.
  • the liquid shutoff valve 38 and the gas shutoff valve 39 shut off a flow path in which the second refrigerant circulates, for example, during work of installation of the cascade unit 30.
  • the usage unit 50 is configured to supply cold or heat to a user.
  • the usage unit 50 includes a usage heat exchanger 51 and a usage expansion valve 52.
  • the usage heat exchanger 51 is configured to cause cold or heat to be used by a user.
  • the usage heat exchanger 51 is a microchannel heat exchanger and includes a flat multi-hole pipe.
  • the usage expansion valve 52 adjusts the amount of the second refrigerant that circulates in the secondary-side cycle 40.
  • the usage expansion valve 52 also functions as a decompression device that decompresses the second refrigerant.
  • a primary-side connection pipe includes a primary-side liquid connection pipe 21 and a primary-side gas connection pipe 22.
  • the primary-side liquid connection pipe 21 connects the liquid shutoff valve 18 of the heat source unit 10 and the cascade unit 30.
  • the primary-side gas connection pipe 22 connects the gas shutoff valve 19 of the heat source unit 10 and the cascade unit 30.
  • a secondary-side connection pipe includes a secondary-side liquid connection pipe 41 and a secondary-side gas connection pipe 42.
  • the secondary-side liquid connection pipe 41 connects the liquid shutoff valve 38 of the cascade unit 30 and the usage unit 50.
  • the secondary-side gas connection pipe 42 connects the gas shutoff valve 39 of the cascade unit 30 and the usage unit 50.
  • the compressor 11 sucks low-pressure gas refrigerant that is the first refrigerant and discharges high-pressure gas refrigerant.
  • the high-pressure gas refrigerant reaches the heat-source heat exchanger 13 via the four-way switching valve 12.
  • the heat-source heat exchanger 13 condenses the high-pressure gas refrigerant and thereby produces high-pressure liquid refrigerant.
  • the refrigerant that is the first refrigerant releases heat into outside air.
  • the high-pressure liquid refrigerant passes through the heat-source expansion valve 14 that is full opened, passes through the subcooling heat exchanger 16, and reaches the primary-side expansion valve 31 via the liquid shutoff valve 18 and the primary-side liquid connection pipe 21.
  • the primary-side expansion valve 31 whose opening degree is appropriately set decompresses the high-pressure liquid refrigerant and thereby produces low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant enters the first refrigerant passage 351 of the cascade heat exchanger 35.
  • the cascade heat exchanger 35 evaporates the low-pressure gas-liquid two-phase refrigerant and thereby produces low-pressure gas refrigerant.
  • the first refrigerant absorbs heat from the second refrigerant.
  • the low-pressure gas refrigerant exits the first refrigerant passage 351, passes through the primary-side gas connection pipe 22 and the gas shutoff valve 19, and is sucked by the compressor 11 via the four-way switching valve 12.
  • a portion of the high-pressure liquid refrigerant that has exited the heat-source expansion valve 14 is decompressed by the subcooling expansion valve 15 whose opening degree is appropriately set, and becomes gas-liquid two-phase cooling gas.
  • the cooling gas passes through the subcooling heat exchanger 16. At this time, the cooling gas cools the high-pressure liquid refrigerant and thereby gives a degree of subcooling.
  • the cooling gas exits the subcooling heat exchanger 16, mixes with the low-pressure gas refrigerant that comes from the four-way switching valve 12, and is sucked by the compressor 11.
  • the compressor 33 sucks low-pressure gas refrigerant that is the second refrigerant and discharges high-pressure gas refrigerant.
  • the high-pressure gas refrigerant enters the second refrigerant passage 352 of the cascade heat exchanger 35 via the four-way switching valve 34.
  • the cascade heat exchanger 35 condenses the high-pressure gas refrigerant and thereby produces high-pressure liquid refrigerant.
  • the second refrigerant releases heat into the first refrigerant.
  • the high-pressure liquid refrigerant exits the second refrigerant passage 352 and reaches the secondary-side expansion valve 32.
  • the secondary-side expansion valve 32 whose opening degree is appropriately set decompresses the high-pressure liquid refrigerant and thereby produces low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant passes through the liquid shutoff valve 38 and the secondary-side liquid connection pipe 41 and reaches the usage expansion valve 52.
  • the usage expansion valve 52 whose opening degree is appropriately set further reduces the pressure of the low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant reaches the usage heat exchanger 51.
  • the usage heat exchanger 51 evaporates the low-pressure gas-liquid two-phase refrigerant and thereby produces low-pressure gas refrigerant.
  • the refrigerant that is the second refrigerant absorbs heat from an environment in which a user is present.
  • the low-pressure gas refrigerant exits the usage heat exchanger 51, passes through the secondary-side gas connection pipe 42 and the gas shutoff valve 39, and is sucked by the compressor 33 via the four-way switching valve 12.
  • the compressor 11 sucks low-pressure gas refrigerant that is the first refrigerant and discharges high-pressure gas refrigerant.
  • the high-pressure gas refrigerant passes through the gas shutoff valve 19 and the primary-side gas connection pipe 22 via the four-way switching valve 12 and enters the first refrigerant passage 351 of the cascade heat exchanger 35.
  • the cascade heat exchanger 35 condenses the high-pressure gas refrigerant and thereby produces high-pressure liquid refrigerant. At this time, the first refrigerant releases heat into the second refrigerant.
  • the high-pressure liquid refrigerant passes through the primary-side expansion valve 31 that is full opened, then passes through the primary-side liquid connection pipe 21, the liquid shutoff valve 18, and the subcooling heat exchanger 16, and reaches the heat-source expansion valve 14.
  • the heat-source expansion valve 14 whose opening degree is appropriately set decompresses the high-pressure liquid refrigerant and thereby produces low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant reaches the heat-source heat exchanger 13.
  • the heat-source heat exchanger 13 evaporates the low-pressure gas-liquid two-phase refrigerant and thereby produces low-pressure gas refrigerant.
  • the refrigerant that is the first refrigerant absorbs heat from outside air.
  • the low-pressure gas refrigerant passes through the four-way switching valve 12 and is sucked by the compressor 11.
  • the compressor 33 sucks low-pressure gas refrigerant that is the second refrigerant and discharges high-pressure gas refrigerant.
  • the high-pressure gas refrigerant passes through the gas shutoff valve 39 and the secondary-side gas connection pipe 42 via the four-way switching valve 34 and reaches the usage heat exchanger 51.
  • the usage heat exchanger 51 condenses the high-pressure gas refrigerant and thereby produces high-pressure liquid refrigerant.
  • the refrigerant that is the second refrigerant releases heat into an environment in which a user is present.
  • the high-pressure liquid refrigerant reaches the usage expansion valve 52.
  • the usage expansion valve 52 whose opening degree is appropriately set decompresses the high-pressure liquid refrigerant and thereby produces low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant passes through the secondary-side liquid connection pipe 41 and the liquid shutoff valve 38 and reaches the secondary-side expansion valve 32.
  • the secondary-side expansion valve 32 whose opening degree is appropriately set further reduces the pressure of the low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant enters the second refrigerant passage 352 of the cascade heat exchanger 35.
  • the cascade heat exchanger 35 evaporates the low-pressure gas-liquid two-phase refrigerant and thereby produces low-pressure gas refrigerant.
  • the second refrigerant absorbs heat from the first refrigerant.
  • the low-pressure gas refrigerant exits the second refrigerant passage 352, passes through the four-way switching valve 34, and is s
  • the pipe diameter of the primary-side gas connection pipe 22 and the primary-side liquid connection pipe 21 in the dual cycle are the same as those indicated in the field of the "SINGLE".
  • the values indicated in millimeter unit in the tables indicate pipes that are manufactured according to a standard based on inch unit. That is, the value 4.8 mm indicates 3/16 inches. The value 6.4 mm indicates 1/4 inches. The value 7.9 mm indicates 5/16 inches. The value 9.5 mm indicates 3/8 inches. The value 12.7 mm indicates 1/2 inches. The value 15.9 mm indicates 5/8 inches. The value 19.1 mm indicates 3/4 inches. The value 22.2 mm indicates 7/8 inches. The value 25.4 mm indicates 1 inch. The value 28.6 mm indicates 9/8 inches. The value 31.8 mm indicates 5/4 inches. The value 38.1 mm indicates 3/2 inches. The value 44.5 mm indicates 7/4 inches. The value 50.8 mm indicates 2 inches. The value 63.5 mm indicates 5/2 inches.
  • the pipe diameter of the secondary-side gas connection pipe 42 is 7.9 mm. This pipe diameter is smaller than the pipe diameter 9.5 mm of a gas connection pipe in a single cycle having the same capacity.
  • the pipe diameter of the secondary-side gas connection pipe 42 is 9.5 mm. This pipe diameter is smaller than the pipe diameter 12.7 mm of a gas connection pipe in a single cycle having the same capacity.
  • the pipe diameter of the secondary-side gas connection pipe 42 is 12.7 mm. This pipe diameter is smaller than the pipe diameter 15.9 mm of a gas connection pipe in a single cycle having the same capacity.
  • the pipe diameter of the secondary-side liquid connection pipe 41 is 4.8 mm. This pipe diameter is smaller than the pipe diameter 6.4 mm of a liquid connection pipe in a single cycle having the same capacity.
  • the pipe diameter of the secondary-side liquid connection pipe 41 is 6.4 mm. This pipe diameter is smaller than the pipe diameter 7.9 mm of a liquid connection pipe in a single cycle having the same capacity.
  • the pipe diameter of the secondary-side liquid connection pipe 41 is 7.9 mm. This pipe diameter is smaller than the pipe diameter 9.5 mm of a liquid connection pipe in a single cycle having the same capacity.
  • the pipe diameter of the secondary-side liquid connection pipe 41 is 9.5 mm. This pipe diameter is smaller than the pipe diameter 12.7 mm of a liquid connection pipe in a single cycle having the same capacity.
  • the pipe diameter of the secondary-side gas connection pipe 42 is 15.9 mm. This pipe diameter is smaller than the pipe diameter 19.1 mm of a gas connection pipe in a single cycle having the same capacity.
  • the pipe diameter of the secondary-side liquid connection pipe 41 is 4.8 mm. This pipe diameter is smaller than the pipe diameter 6.4 mm of a liquid connection pipe in a single cycle having the same capacity.
  • the pipe diameter of the secondary-side liquid connection pipe is 7.9 mm. This pipe diameter is smaller than the pipe diameter 9.5 mm of a liquid connection pipe in a single cycle having the same capacity.
  • the pipe diameter of the secondary-side liquid connection pipe is 9.5 mm. This pipe diameter is smaller than the pipe diameter 12.7 mm of a liquid connection pipe in a single cycle having the same capacity.
  • the pipe diameter of the secondary-side gas connection pipe 42 is 15.9 mm. This pipe diameter is smaller than the pipe diameter 19.1 mm of a gas connection pipe in a single cycle having the same capacity.
  • the pipe diameter of the secondary-side gas connection pipe 42 is 19.1 mm. This pipe diameter is smaller than the pipe diameter 22.2 mm of a gas connection pipe in a single cycle having the same capacity.
  • the pipe diameter of the secondary-side liquid connection pipe 41 is 9.5 mm. This pipe diameter is smaller than the pipe diameter 12.7 mm of a liquid connection pipe in a single cycle having the same capacity.
  • the pipe diameter of the secondary-side liquid connection pipe 41 is 12.7 mm. This pipe diameter is smaller than the pipe diameter 15.9 mm of a liquid connection pipe in a single cycle having the same capacity.
  • the pipe diameter of the secondary-side liquid connection pipe 41 is 15.9 mm. This pipe diameter is smaller than the pipe diameter 19.1 mm of a liquid connection pipe in a single cycle having the same capacity.
  • the pipe diameter of the connection pipe in the secondary-side cycle 40 is smaller than the pipe diameter of the connection pipe in the primary-side cycle 20. Consequently, it is possible to increase the flow speed of refrigerant in the secondary-side cycle. Therefore, a refrigerating-machine oil that has flowed out from the compressor easily returns to the compressor.
  • the pipe diameter of the secondary-side gas connection pipe 42 may be less than or equal to 90% of the pipe diameter of the primary-side gas connection pipe 22, or the pipe diameter of the secondary-side liquid connection pipe 41 may be less than or equal to 90% of the pipe diameter of the primary-side liquid connection pipe 21.
  • the compression ratio of the secondary-side cycle 40 may be smaller than the compression ratio of the primary-side cycle 20.
  • the refrigerant cycle system 100 includes the one heat source unit 10, the one cascade unit 30, and the one usage unit 50.
  • the refrigerant cycle system 100 may include the one heat source unit 10, a plurality of the cascade units 30, and a plurality of the usage units 50.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Claims (19)

  1. Système à cycle de réfrigérant comprenant :
    un cycle côté primaire (20) d'un type à compression de vapeur, le cycle côté primaire faisant circuler un premier réfrigérant ;
    un cycle côté secondaire (40) d'un type à compression de vapeur, le cycle côté secondaire faisant circuler un second réfrigérant ; et
    un échangeur de chaleur (35) en cascade qui effectue un échange de chaleur entre le premier réfrigérant et le second réfrigérant,
    dans lequel le cycle côté primaire inclut un échangeur de chaleur (13) de source de chaleur pour donner du froid ou de la chaleur au premier réfrigérant, et un tuyau de raccordement côté primaire (21, 22) qui raccorde l'échangeur de chaleur en cascade et l'échangeur de chaleur à source de chaleur,
    le cycle côté secondaire inclut un échangeur de chaleur (51) d'utilisation pour utiliser le froid ou la chaleur obtenu par le second réfrigérant depuis l'échangeur de chaleur en cascade, et un tuyau de raccordement côté secondaire (41, 42) qui raccorde l'échangeur de chaleur en cascade et l'échangeur de chaleur d'utilisation,
    le tuyau de raccordement côté primaire inclut un tuyau de raccordement de gaz côté primaire (22) et un tuyau de raccordement de liquide côté primaire (21), et
    le tuyau de raccordement côté secondaire inclut un tuyau de raccordement de gaz côté secondaire (42) et un tuyau de raccordement de liquide côté secondaire (41), caractérisé en ce que
    le premier réfrigérant et le second réfrigérant sont le même réfrigérant, et en ce que
    (a) un diamètre de tuyau du tuyau de raccordement de gaz côté secondaire est plus petit qu'un diamètre de tuyau du tuyau de raccordement de gaz côté primaire, ou
    (b) un diamètre de tuyau du tuyau de raccordement de liquide côté secondaire est plus petit qu'un diamètre de tuyau du tuyau de raccordement de liquide côté primaire.
  2. Système à cycle de réfrigérant selon la revendication 1,
    dans lequel le second réfrigérant est du dioxyde de carbone,
    une capacité de réfrigération du cycle côté secondaire est de 4,5 kW ou plus et de 5,6 kW ou moins, et
    le diamètre de tuyau du tuyau de raccordement de gaz côté secondaire est de 7,9 mm (5/16 de pouce).
  3. Système à cycle de réfrigérant selon la revendication 1,
    dans lequel le second réfrigérant est du dioxyde de carbone,
    une capacité de réfrigération du cycle côté secondaire est de 7,1 kW ou plus et de 9,0 kW ou moins, et
    le diamètre de tuyau du tuyau de raccordement de gaz côté secondaire est de 9,5 mm (3/8 de pouce).
  4. Système à cycle de réfrigérant selon la revendication 1,
    dans lequel le second réfrigérant est du dioxyde de carbone,
    une capacité de réfrigération du cycle côté secondaire est de 16 kW ou plus et de 22,4 kW ou moins, et
    le diamètre de tuyau du tuyau de raccordement de gaz côté secondaire est de 12,7 mm (1/2 pouce).
  5. Système à cycle de réfrigérant selon la revendication 1,
    dans lequel le second réfrigérant est du dioxyde de carbone,
    une capacité de réfrigération du cycle côté secondaire est de 5,6 kW ou plus et de 8,0 kW ou moins, et
    le diamètre de tuyau du tuyau de raccordement de liquide côté secondaire est de 4,8 mm (3/16 de pouce).
  6. Système à cycle de réfrigérant selon la revendication 1,
    dans lequel le second réfrigérant est du dioxyde de carbone,
    une capacité de réfrigération du cycle côté secondaire est de 11,2 kW ou plus et de 16 kW ou moins, et
    le diamètre de tuyau du tuyau de raccordement de liquide côté secondaire est de 6,4 mm (1/4 de pouce).
  7. Système à cycle de réfrigérant selon la revendication 1,
    dans lequel le second réfrigérant est du dioxyde de carbone,
    une capacité de réfrigération du cycle côté secondaire est de 16 kW ou plus et de 28 kW ou moins, et
    le diamètre de tuyau du tuyau de raccordement de liquide côté secondaire est de 7,9 mm (5/16 de pouce).
  8. Système à cycle de réfrigérant selon la revendication 1,
    dans lequel le second réfrigérant est du dioxyde de carbone,
    une capacité de réfrigération du cycle côté secondaire est de 33,5 kW ou plus et de 45 kW ou moins, et
    le diamètre de tuyau du tuyau de raccordement de liquide côté secondaire est de 9,5 mm (3/8 de pouce).
  9. Système à cycle de réfrigérant selon la revendication 1,
    dans lequel le second réfrigérant est du R32,
    une capacité de réfrigération du cycle côté secondaire est de 16 kW ou plus et de 22,4 kW ou moins, et
    le diamètre de tuyau du tuyau de raccordement de gaz côté secondaire est de 15,9 mm (5/8 de pouce).
  10. Système à cycle de réfrigérant selon la revendication 1,
    dans lequel le second réfrigérant est du R32,
    une capacité de réfrigération du cycle côté secondaire est de 2,8 kW ou plus et de 3,6 kW ou moins, et
    le diamètre de tuyau du tuyau de raccordement de liquide côté secondaire est de 4,8 mm (3/16 de pouce).
  11. Système à cycle de réfrigérant selon la revendication 1,
    dans lequel le second réfrigérant est du R32,
    une capacité de réfrigération du cycle côté secondaire est de 14 kW ou plus et de 16 kW ou moins, et
    le diamètre de tuyau du tuyau de raccordement de liquide côté secondaire est de 7,9 mm (5/16 pouce).
  12. Système à cycle de réfrigérant selon la revendication 1,
    dans lequel le second réfrigérant est du R32,
    une capacité de réfrigération du cycle côté secondaire est de 28 kW ou plus et de 33,5 kW ou moins, et
    le diamètre de tuyau du tuyau de raccordement de liquide côté secondaire est de 9,5 mm (3/8 de pouce).
  13. Système à cycle de réfrigérant selon la revendication 1,
    dans lequel le second réfrigérant est du R454B,
    une capacité de réfrigération du cycle côté secondaire est de 9,0 kW ou plus et de 11,2 kW ou moins, et
    le diamètre de tuyau du tuyau de raccordement de gaz côté secondaire est de 15,9 mm (5/8 de pouce).
  14. Système à cycle de réfrigérant selon la revendication 1,
    dans lequel le second réfrigérant est du R454B,
    une capacité de réfrigération du cycle côté secondaire est de 16,0 kW ou plus et de 22,4 kW ou moins, et
    le diamètre de tuyau du tuyau de raccordement de gaz côté secondaire est de 19,1 mm (3/4 de pouce).
  15. Système à cycle de réfrigérant selon la revendication 1,
    dans lequel le second réfrigérant est du R454B,
    une capacité de réfrigération du cycle côté secondaire est de 16 kW ou plus et de 22,4 kW ou moins, et
    le diamètre de tuyau du tuyau de raccordement de liquide côté secondaire est de 9,5 mm (3/8 de pouce).
  16. Système à cycle de réfrigérant selon la revendication 1,
    dans lequel le second réfrigérant est du R454B,
    une capacité de réfrigération du cycle côté secondaire est de 45 kW ou plus et de 56 kW ou moins, et
    le diamètre de tuyau du tuyau de raccordement de liquide côté secondaire est de 12,7 mm (1/2 de pouce).
  17. Système à cycle de réfrigérant selon la revendication 1,
    dans lequel le second réfrigérant est du R454B,
    une capacité de réfrigération du cycle côté secondaire est de 85 kW ou plus et de 109 kW ou moins, et
    le diamètre de tuyau du tuyau de raccordement de liquide côté secondaire est de 15,9 mm (5/8 de pouce).
  18. Système à cycle de réfrigérant selon l'une quelconque des revendications 1 à 17,
    dans lequel le diamètre de tuyau du tuyau de raccordement de gaz côté secondaire est inférieur ou égal à 90 % du diamètre de tuyau du tuyau de raccordement de gaz côté primaire, ou le diamètre de tuyau du tuyau de raccordement de liquide côté secondaire est inférieur ou égal à 90 % du diamètre de tuyau du tuyau de raccordement de liquide côté primaire.
  19. Système à cycle de réfrigérant selon l'une quelconque des revendications 1 à 18,
    dans lequel un rapport de compression du cycle côté secondaire est inférieur à un rapport de compression du cycle côté primaire.
EP20822547.4A 2019-06-12 2020-06-10 Conditionneur d'air Active EP3978831B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019109592A JP2020201011A (ja) 2019-06-12 2019-06-12 空調機
PCT/JP2020/022922 WO2020250952A1 (fr) 2019-06-12 2020-06-10 Conditionneur d'air

Publications (3)

Publication Number Publication Date
EP3978831A1 EP3978831A1 (fr) 2022-04-06
EP3978831A4 EP3978831A4 (fr) 2022-08-03
EP3978831B1 true EP3978831B1 (fr) 2023-08-09

Family

ID=73744006

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20822547.4A Active EP3978831B1 (fr) 2019-06-12 2020-06-10 Conditionneur d'air

Country Status (7)

Country Link
US (1) US20220316767A1 (fr)
EP (1) EP3978831B1 (fr)
JP (1) JP2020201011A (fr)
CN (1) CN113950602B (fr)
ES (1) ES2961904T3 (fr)
PL (1) PL3978831T3 (fr)
WO (1) WO2020250952A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021054935A1 (fr) * 2019-09-16 2021-03-25 Nokia Solutions And Networks Oy Sélection d'antenne pour signaux de liaison montante dans un système de communication sans fil

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146859A (ja) * 1984-08-13 1986-03-07 株式会社日立製作所 二元冷凍装置
US5025634A (en) * 1989-04-25 1991-06-25 Dressler William E Heating and cooling apparatus
JP3327197B2 (ja) * 1997-08-19 2002-09-24 三菱電機株式会社 冷凍空調装置
JP2001248941A (ja) * 1999-12-28 2001-09-14 Daikin Ind Ltd 冷凍装置
BRPI0103786B1 (pt) * 2001-08-29 2015-06-16 Brasil Compressores Sa Sistema de controle de refrigeração de um ambiente refrigerado, método de controle de um sistema de refrigeração e refrigerador
US6557361B1 (en) * 2002-03-26 2003-05-06 Praxair Technology Inc. Method for operating a cascade refrigeration system
JP4753719B2 (ja) * 2003-11-28 2011-08-24 三菱電機株式会社 冷凍装置及び空気調和装置
JP2006125762A (ja) * 2004-10-29 2006-05-18 Mitsubishi Heavy Ind Ltd 室内機およびこれを備えた空気調和装置ならびにその運転方法
JP4659521B2 (ja) * 2004-12-08 2011-03-30 三菱電機株式会社 冷凍空調装置、冷凍空調装置の運転方法、冷凍空調装置の製造方法、冷凍装置、冷凍装置の製造方法
JP2008032275A (ja) * 2006-07-27 2008-02-14 Daikin Ind Ltd 空気調和装置
JP4609469B2 (ja) * 2007-02-02 2011-01-12 ダイキン工業株式会社 空気調和装置
KR100803144B1 (ko) * 2007-03-28 2008-02-14 엘지전자 주식회사 공기조화기
JP2009126300A (ja) * 2007-11-21 2009-06-11 Denso Corp 冷凍サイクル装置及びそれを備えた車両用空調装置
JP5323023B2 (ja) * 2010-10-19 2013-10-23 三菱電機株式会社 冷凍装置
JP2012193908A (ja) * 2011-03-17 2012-10-11 Toshiba Carrier Corp 二元冷凍サイクル装置
US9429347B2 (en) * 2011-08-04 2016-08-30 Mitsubishi Electric Corporation Refrigeration apparatus
JP5536817B2 (ja) * 2012-03-26 2014-07-02 日立アプライアンス株式会社 冷凍サイクル装置
WO2014038028A1 (fr) * 2012-09-06 2014-03-13 三菱電機株式会社 Dispositif de réfrigération
JP2014074508A (ja) 2012-10-02 2014-04-24 Samsung R&D Institute Japan Co Ltd カスケード熱交換器
EP2910872B1 (fr) * 2012-10-22 2020-03-11 Mitsubishi Electric Corporation Dispositif de congélation
JP2015152240A (ja) * 2014-02-14 2015-08-24 パナソニックIpマネジメント株式会社 空気調和機
CN105980794B (zh) * 2014-03-17 2019-06-25 三菱电机株式会社 冷冻装置以及冷冻装置的控制方法
JP2018115831A (ja) * 2017-01-20 2018-07-26 ダイキン工業株式会社 室内ユニット
WO2020004108A1 (fr) * 2018-06-25 2020-01-02 ダイキン工業株式会社 Système de climatisation
US20200378657A1 (en) * 2019-05-31 2020-12-03 Trane International Inc. Heat transfer circuit with increased bearing lubricant temperature, and method of supplying thereof

Also Published As

Publication number Publication date
US20220316767A1 (en) 2022-10-06
CN113950602B (zh) 2023-08-04
PL3978831T3 (pl) 2024-04-08
EP3978831A4 (fr) 2022-08-03
ES2961904T3 (es) 2024-03-14
EP3978831A1 (fr) 2022-04-06
JP2020201011A (ja) 2020-12-17
CN113950602A (zh) 2022-01-18
WO2020250952A1 (fr) 2020-12-17

Similar Documents

Publication Publication Date Title
EP2995885B1 (fr) Dispositif de réfrigération binaire
US7331196B2 (en) Refrigerating apparatus and refrigerator
JP5332604B2 (ja) 冷暖同時運転型空気調和装置
EP0962725B1 (fr) Conditionneur d'air dans lequel un réfrigérant inflammable est utilisé
WO2007105511A1 (fr) Appareil de refrigeration
US11378318B2 (en) Cascade system for use in economizer compressor and related methods
EP3978831B1 (fr) Conditionneur d'air
US11578898B2 (en) Air conditioning apparatus
US6422035B1 (en) Heat exchanged system efficiency enhancing device
US20150159922A1 (en) Heat pump system
US10739047B2 (en) Heat exchange device suitable for low pressure refrigerant
CN104764248A (zh) 空调器和多联机空调系统
US11359842B2 (en) Air conditioning apparatus
CN110234938B (zh) 空调器的室外系统
US20220316765A1 (en) Air conditioner
CN111795452A (zh) 空气调节系统
CN111829201B (zh) 制冷系统
EP4033175A1 (fr) Climatiseur
JP2024084819A (ja) 空調機
WO2015025414A1 (fr) Dispositif à cycle de réfrigération, et climatiseur et chauffe-eau utilisant le même dispositif à cycle de réfrigération
KR20080024378A (ko) 공기조화기

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211229

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MINAMIDA, TOMOATSU

Inventor name: IWATA, IKUHIRO

Inventor name: YOSHIMI, ATSUSHI

Inventor name: KUMAKURA, EIJI

Inventor name: YAMADA, TAKURO

A4 Supplementary search report drawn up and despatched

Effective date: 20220704

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 9/00 20060101ALI20220628BHEP

Ipc: F25B 1/00 20060101ALI20220628BHEP

Ipc: F25B 41/00 20210101ALI20220628BHEP

Ipc: F25B 7/00 20060101AFI20220628BHEP

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIKIN INDUSTRIES, LTD.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230412

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020015604

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230809

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1597952

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231211

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231109

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231209

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231110

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2961904

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602020015604

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT