EP3978132A1 - Device for transporting a fluid in a duct section of a microfluidic element - Google Patents

Device for transporting a fluid in a duct section of a microfluidic element Download PDF

Info

Publication number
EP3978132A1
EP3978132A1 EP21204270.9A EP21204270A EP3978132A1 EP 3978132 A1 EP3978132 A1 EP 3978132A1 EP 21204270 A EP21204270 A EP 21204270A EP 3978132 A1 EP3978132 A1 EP 3978132A1
Authority
EP
European Patent Office
Prior art keywords
fluid
pressure
transport
pressure source
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21204270.9A
Other languages
German (de)
French (fr)
Inventor
Lutz Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thinxxs Microtechnology GmbH
Original Assignee
Thinxxs Microtechnology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thinxxs Microtechnology GmbH filed Critical Thinxxs Microtechnology GmbH
Publication of EP3978132A1 publication Critical patent/EP3978132A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/14Means for pressure control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0694Valves, specific forms thereof vents used to stop and induce flow, backpressure valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance

Definitions

  • the invention relates to a device for transporting a fluid in a duct system of a microfluidic element, in particular a flow cell.
  • liquids e.g. blood to be examined
  • reagents for example, or / and feed a detection area
  • a common task is to separate a specific amount of liquid from a larger bulk sample fed into the flow cell and transport the separated amount of liquid onward.
  • the separated quantity of liquid often has to be divided further into partial quantities of the same or different sizes, with the partial quantities having to be transported further.
  • the invention is based on the object of creating a new device of the type mentioned at the outset, which makes it possible to control transport processes in microfluidic elements more precisely and reliably than in the prior art and at the same time reduce the production costs for the microfluidic elements.
  • the device according to the invention that achieves this object is characterized by a pressure source for pressurizing a front end face in the transport direction of the fluid that fills the cross-section of the channel section.
  • the fluid is not only moved through the channel strand of the microfluidic element by overcoming a resistance caused by friction and capillary forces, but also by overcoming a counterforce generated by the said pressurization.
  • the pressure applied according to the invention at the front end face of the fluid in particular a front liquid meniscus, prevents unwanted detachment of small amounts of fluid from the end face and wetting-related advances or lagging of parts of the amount of fluid close to the delimiting channel walls and thus ensures that the transported fluid is precisely delimited at its Front.
  • the microfluidic element can be closed off in a fluid-tight manner from the outside and environmental contamination by escaping fluid can be prevented. Since coatings for hydrophilization or hydrophobicization, valves for fluid control and/or extremely high accuracy requirements for the microstructures are no longer required, the manufacturing effort is reduced.
  • the pressure source which is preferably a compressed gas source, can be an integral component of the microfluidic element or, for example, a component of an operator device to which the microfluidic element can be coupled.
  • the pressure source comprises a closed space in which a pressurized gas, eg air, is introduced by displacement of the front end face of the fluid transported in the ductwork is compressible.
  • a pressurized gas eg air
  • the pressure built up in the closed space depending on the position of the end surface in the ductwork is applied to the end surface, and the force generated by this pressure must be overcome in addition to the flow resistance when transporting the fluid.
  • the force used to transport the fluid within the microfluidic element can be of different types. While an inertial force, in particular centrifugal force, can be used to shift the fluid in the duct system, in a preferred embodiment of the invention the duct system can be connected to a transport pressure source that acts on the fluid in the transport direction.
  • the transport pressure source can also be an integral part of the microfluidic element.
  • This transport pressure source can be used to apply a compressed gas, e.g.
  • the pressure force generated must overcome the flow resistance and the pressure force applied at the opposite end against the plug-like quantity of fluid according to the invention.
  • the pressure generated by the pressure source at the front end face is clearly functionally related to the position of the front end face in the duct line. This condition is approximately met by the previously mentioned pressure source comprising a closed space. If necessary, a correction factor that takes the ambient temperature into account is determined.
  • a device that detects the pressure on the front end face e.g. a pressure sensor, can advantageously be provided, which uses the functional relationship to determine the position of the front end face in the duct line.
  • the position of a quantity of fluid filling the duct line like a plug within the flow cell can also be determined and its transport precisely controlled.
  • the transport of the fluid can be interrupted by setting the pressure P1 of the transport pressure source equal to the pressure P2 at the front end face.
  • the transport direction can even be reversed.
  • a quantity of fluid that fills the duct line in the manner of a plug can therefore be pushed back and forth as desired within a duct line and positioned at the desired locations eg in reaction areas, detection areas, filters or areas in which it comes into contact with a reagent stored in the microfluidic element or with a test strip known from diagnostics.
  • the pressure rise characteristic of the compressed gas source having the closed space can advantageously be influenced in a desired manner in that the closed space can be expanded by the compressed gas compressed therein.
  • the closed space can have a wall on one side formed by a stretchable film.
  • the closed space of the pressure source can be accommodated in a plate that forms the microfluidic element and/or can be formed by a separate container that can be connected to the plate.
  • the duct line advantageously has at least one cross-sectional widening to form a chamber, e.g. a detection chamber, a mixing chamber, a reaction chamber or the like.
  • the chamber may contain dry reagents, e.g., substances for performing a PCR or for capturing analytes of the fluid sample, filters, membranes, test strips, mixing blades, detection means such as optical windows, prisms and electrical conductors, and other means for analysis and synthesis.
  • a plurality of duct lines can run together in a single duct line which is connected or can be connected to a pressure source.
  • the multiple duct lines can each be connected or can be connected to a transport pressure source, so that a sequence or mixture of different fluids can be generated and transported in the single duct line by sequential activation of the transport pressure sources.
  • a duct line can also branch into a plurality of duct lines that are each connected or can be connected to a pressure source, and in this way can further divide a quantity of fluid into partial quantities without using a plurality of pressure sources or valves.
  • the back pressure applied according to the invention at the front end surfaces of the partial amounts of fluid allows not only an even division of the total amount into partial amounts, but also the spatial separation of the partial amounts by the transport gas flowing after the partial amounts of fluid in the channel strands.
  • the application of back pressure to the fluid to be transported according to the invention also ensures that channel sections with different cross-sectional dimensions are completely filled. Especially in the case of cracks and dimensional changes within a duct run, zones usually occur that are not completely flown through or wetted, which can lead to air bubbles being trapped. This is avoided by the invention.
  • a plate-shaped flow cell has an inlet opening 1 for a fluid, eg a blood sample.
  • the inlet opening 1 is located in the bottom of a pot-like storage vessel 2 molded onto the flow cell.
  • a channel 3 extends from the inlet opening, which runs in a meandering manner up to a widening 4 and is led further from the widening 4 to a branch 5 .
  • a duct 6 opens into the duct 9, which is in communication with an opening to which a source of air pressure can be connected, as will be explained below.
  • a channel 8 leading to a ventilation opening branches off from the channel 3.
  • the cross section of channel 8 is significantly smaller than the cross section of channel 3.
  • the channel 3 divides into two branch channels 9 and 9', which are symmetrical to the longitudinal central axis of the flow cell and divide again at two further junctions 10 and 10'.
  • the channel 3 thus merges into a total of four branches 11, 11', 11" and 11'".
  • the four branches have the same design and have identical volumes.
  • Each of the four branches 11, 11′, 11′′ and 11′′′ contains a first meandering channel section 12, which is followed by a channel widening 13.
  • the channel widening 13 contains a dry reagent.
  • the channel widening 13 is followed by a second meandering channel section 14
  • the channel section 14 is followed by a further widened channel 15, which in the relevant exemplary embodiment serves as a reaction chamber and can contain a further dry reagent, e.g.
  • each branch 11, 11′, 11′′, 11′′′′ forms a chamber 17 with a volume that is significantly larger than the volume of the widenings 13, 15 and 16.
  • the plate-shaped flow cell consists of a plastic plate in which recesses are incorporated to form the channels and cavities described above, and a film sealing the recesses and welded or glued to the plastic plate in a fluid-tight manner.
  • the known plastic processing methods in particular injection molding, can be used to produce the plate.
  • a substrate having a plurality of layers and laminated foils could be provided.
  • Other materials include glass, silicon and metal and composite materials.
  • Other processing methods include hot stamping and laser cutting.
  • a fluid sample for example a blood sample, is introduced into the reservoir 2 at the inlet port 1 .
  • the channel 3 fills up to the widening 4 by capillary action.
  • the channel 3 can be made hydrophilic by plasma treatment or wet-chemical pretreatment.
  • the blood sample could be introduced into the channel 3 by applying pressure, e.g. with the aid of a pipette or syringe.
  • This task could also be performed by an operator facility provided for the flow cell. Air can escape from the channel 3 via the ventilation channel 8 .
  • the widening 4 limits the filling of the channel 3 and thus the precise measurement of a sample quantity, as is shown in Figure 3a is shown.
  • the inlet opening 1 and the channel 8 are closed and the opening 7 is connected to an air pressure source 18 which can be part of an operating device provided for the flow cell.
  • the measured amount of sample can be conveyed beyond the widening 4 in the channel 3 to the branch 5, where the amount of sample is divided into halves.
  • a further division into halves takes place at the branches 10 and 10', so that each of the branches 11, 11', 11" and 11′′′ receives a quarter of the measured sample quantity.
  • the pressure in the chambers 17 increases as a result of compression as the fluid is transported through the channel 3.
  • the air pressure P1 exerted by the compressed air source 18 must be greater than the respective air pressure P2 in the chambers 17, which is applied to the front end surfaces 42 of the fluid quantities in the transport direction.
  • Each position of the sub-sample quantities filling the duct line like plugs corresponds to a specific pressure P2 in the chambers 17. If the pressure P1 of the compressed air source 18 is equal to the pressure P2, the sub-sample quantities remain in place.
  • Figure 3b are the sub-sample amounts just in the channel section 12.
  • the sub-sample amounts according to 3c are transferred to the expansions 13, where they each come into contact with a dry reagent. Reducing the pressure P1 causes the sub-sample quantities to flow back into the meandering channel sections 12, where mixing takes place. Another increase in pressure leads the sub-sample quantity via the widened channels 13 into the next meandering channel section 14. In the channel sections 14, the mixing is completed.
  • a further increase in the pressure P1 results in a transfer to the expansions 15, where a reaction takes place in the exemplary embodiment shown, for example a PCR. Sample testing is completed in the flares 16 where measurements are performed on the processed samples.
  • the compressed air source 18 can have a measuring device for determining the respective pressure P2, which uses a predetermined relationship between the pressure P2 and the positions of the subsets to determine their position and, if necessary, automatically controls the transport of the subsets.
  • the structure of the flow cell shown largely corresponds to that of the flow cell described above. Only the ventilation channel 8 and the channel 6 with the opening 7 are missing.
  • the sample inlet 1 can be connected to a pressure source and a sample quantity filling the storage vessel 2 can be pressed into the channel 3 .
  • the volume of the measured amount of sample thus corresponds approximately to the volume of the storage vessel 2 or to a partial amount predetermined by the person entering it.
  • the sample quantity measured in this way is processed further as described above.
  • FIG figure 5 shows that a pressure source can also be integrated into a flow cell.
  • a pressure source can also be integrated into a flow cell.
  • such an integrated pressure source is formed by a recess 19 which is covered by a flexible membrane 20.
  • the pressure in a pressure line 21 can be increased by a defined amount.
  • the recess 19 could also contain a liquid.
  • a sample liquid could flow through the space formed by the recess 19 .
  • a blister with a curved, compressible foil hood could also be used.
  • an "air spring” is formed by the closed chamber 17 integrated into the flow cell plate.
  • FIG. 6 shows an embodiment of an "air spring” with a chamber 22 which is covered by a flexible membrane 23.
  • the membrane which is made of plastic, an elastomer, silicone or TPE, for example, can be expanded in such a way that a desired increase in pressure occurs in the chamber 22 .
  • the dimensions of the “air spring” are therefore advantageously smaller when the flow cell is not in use than when it is in operation.
  • the bulging of the flexible membrane 23 delimiting the chamber 22 can be determined, for example, with the aid of a simple distance sensor and used to determine the pressure P2 and thus the position of the front fluid meniscus and thus set up a regulation for the fluid transport.
  • the volume of the chamber 22 can be adjusted in the desired manner via the position of the plunger.
  • the stamp can be part of an operator facility.
  • FIG. 7 12 shows a variant of an "air spring” with a separate vessel component 25 that can be attached to a flow cell, with a sealing ring 26 surrounding an opening formed on the flow cell plate.
  • a separate vessel component 27 can be plugged onto a flow cell, in which case, for example, a plug-in crown, a press fit and/or a LUER connection can be used.
  • the slab-shaped flow cell need not have a "spring chamber" itself.
  • the space required for the integrated chamber can be used for other purposes.
  • the vessel component 27 has an adjustable stopper 28, through which the air volume of the vessel component can be varied, so that different conditions for the transport of a fluid within a flow cell can be set.
  • air spring can be part of an operator's facility and a corresponding connection to the flow cell corresponding to the connection of 7 can be made with the help of a ring seal.
  • FIG 9 Flow cell shown three channel strands 29, 30 and 31 for transporting different fluids.
  • Each of the channel strands 29, 30, 31 can be connected to an inlet opening for the relevant fluid and a pressure source.
  • a pressure source common to all three duct lines could be used.
  • the duct runs 29 to 31 converge at a mixing point 32 from which a single duct 33 runs to a closed chamber 34 .
  • sequences of the different fluids contained in the duct lines 29 to 31 can be generated in the duct 33, the size of the subsets being controllable via the pressure applied to the respective duct line.
  • the channel 33 can branch again, with branches 35, 35' each being connected to an air spring chamber 36 or 36'.
  • a fluid sequence generated in the channel 33 at the mixing point 32 can be divided further, with a sequence each reaching the branches 35 and 35 ′, the components of which each have half the fluid quantity of the sequence in the channel 33 .
  • This can be advantageous in order to limit the sequential pressurization of channels 29-31 simplify. If fluid sequences with particularly small subsets are to be generated, this would require a very short and precise pressurization.
  • their accuracy is decisive and this accuracy can be adjusted very precisely during production of the microfluidic element by injection molding.
  • Figure 10b shows a branching duct with one branch 37 connected to a chamber 38 and another branch 39 connected to a chamber 40.
  • the volume of chamber 38 is greater than the volume of chamber 40.
  • the pressure in the smaller chamber 40 increases faster than in chamber 38. Accordingly, a larger partial package is formed at the branching point in branch 37 than in branch 39.
  • the ratio can be adjusted vary as appropriate with the splitting of the fluid packet at the bifurcation point.
  • FIG. 11 shows further exemplary embodiments for flow cells, wherein in the exemplary embodiment of FIG Figure 11a a canal branch with a matrix-like branching and in Figure 11b a ductwork with a star-shaped branching is shown.
  • the duct line has a central inlet opening 41, which at the same time forms a branching point.
  • a pneumatic pressure source for example, can be connected to the branching point.
  • the embodiment of Figure 11b is particularly suitable for the transport of fluid by centrifugal force.
  • the flow cell is rotated around the inlet opening 41 .

Abstract

Die Erfindung betrifft eine Vorrichtung zum Transportieren eines Fluids in einem Kanalstrang eines Mikrofluidelements, insbesondere einer Flusszelle. Erfindungsgemäß ist eine Druckquelle zur Druckbeaufschlagung einer in Transportrichtung vorderen Endfläche (42) des den Kanalstrang im Querschnitt vollständig ausfüllenden Fluids vorgesehen. Vorzugsweise umfasst die Druckquelle einen geschlossenen Raum (17; 22; 34; 36, 38, 40) , in welchem ein Druckgas, z.B. Luft, durch Verschiebung der vorderen Endfläche (42) des in dem Kanalstrang transportierten Fluids komprimierbar ist.The invention relates to a device for transporting a fluid in a duct system of a microfluidic element, in particular a flow cell. According to the invention, a pressure source is provided for pressurizing a front end surface (42) in the transport direction of the fluid that completely fills the ductwork in cross section. Preferably, the pressure source comprises a closed space (17; 22; 34; 36, 38, 40) in which a pressurized gas, e.g. air, can be compressed by displacement of the front end face (42) of the fluid transported in the ductwork.

Description

Die Erfindung betrifft eine Vorrichtung zum Transportieren eines Fluids in einem Kanalstrang eines Mikrofluidelements, insbesondere einer Flusszelle.The invention relates to a device for transporting a fluid in a duct system of a microfluidic element, in particular a flow cell.

Beim Betrieb mikrofluidischer Flusszellen, wie sie zunehmend für analytische und diagnostische Zwecke oder bei Synthesen als Einwegprodukte zum Einsatz kommen, müssen Flüssigkeiten, z.B. zu untersuchendes Blut, innerhalb der Flusszelle an bestimmte Stellen transportiert werden, um die Flüssigkeiten z.B. mit Reagenzien in Kontakt zu bringen oder/und einem Detektionsbereich zuzuführen.When operating microfluidic flow cells, which are increasingly used for analytical and diagnostic purposes or in syntheses as single-use products, liquids, e.g. blood to be examined, must be transported to specific points within the flow cell in order to bring the liquids into contact with reagents, for example, or / and feed a detection area.

Eine häufige Aufgabe besteht in der Abtrennung einer bestimmten Flüssigkeitsmenge aus einer größeren, in die Flusszelle eingegebenen Gesamtprobe und dem Weitertransport der abgetrennten Flüssigkeitsmenge. Oft muss die abgetrennte Flüssigkeitsmenge weiter in gleich oder unterschiedlich große Teilmengen aufgeteilt werden, wobei die Teilmengen weiterzutransportieren sind. Mitunter besteht auch die Aufgabe, über mehrere Kanäle herangeführte Mengen unterschiedlicher Flüssigkeiten in einem einzigen Kanal zwecks Weitertransport einer Mischung oder Sequenz der Mengen zusammenzuführen.A common task is to separate a specific amount of liquid from a larger bulk sample fed into the flow cell and transport the separated amount of liquid onward. The separated quantity of liquid often has to be divided further into partial quantities of the same or different sizes, with the partial quantities having to be transported further. Sometimes there is also the task of bringing together amounts of different liquids brought in via several channels in a single channel for the purpose of further transport of a mixture or sequence of the amounts.

Zum Transport von Flüssigkeiten innerhalb von Flusszellen wird das in Transportrichtung nachlaufende Ende einer Flüssigkeitsmenge, die im Querschnitt einen Kanalstrang vollständig ausfüllt, mit Druck beaufschlagt, wie dies z.B. in der US 7 125 711 , US 6 615 856 und der US 6 296 020 beschrieben ist. Die den Kanalstrang pfropfenartig ausfüllende Flüssigkeitsmenge wird durch die Druckbeaufschlagung entgegen dem Strömungswiderstand durch den Kanalstrang hindurch bewegt. Der in Transportrichtung vor der Flüssigkeit liegende Bereich des Kanalstrangs steht dabei in Verbindung mit einer Entlüftungsöffnung.For the transport of liquids within flow cells, the end of a quantity of liquid that is trailing in the transport direction and that completely fills a channel section in cross section is pressurized, as is the case, for example, in FIG U.S. 7,125,711 , U.S. 6,615,856 and the U.S. 6,296,020 is described. The amount of liquid filling the canal strand like a plug is counteracted by the pressurization Flow resistance moves through the ductwork. The area of the ductwork lying in front of the liquid in the direction of transport is connected to a ventilation opening.

Der Erfindung liegt die Aufgabe zugrunde, eine neue Vorrichtung der eingangs erwähnten Art zu schaffen, die es ermöglicht, Transportvorgänge in Mikrofluidelementen präziser und sicherer als nach dem Stand der Technik steuern zu können und gleichzeitig den Fertigungsaufwand für die Mikrofluidelemente zu verringern.The invention is based on the object of creating a new device of the type mentioned at the outset, which makes it possible to control transport processes in microfluidic elements more precisely and reliably than in the prior art and at the same time reduce the production costs for the microfluidic elements.

Die diese Aufgabe lösende Vorrichtung nach der Erfindung ist gekennzeichnet durch eine Druckquelle zur Druckbeaufschlagung einer in Transportrichtung vorderen Endfläche des den Kanalstrang im Querschnitt ausfüllenden Fluids.The device according to the invention that achieves this object is characterized by a pressure source for pressurizing a front end face in the transport direction of the fluid that fills the cross-section of the channel section.

Erfindungsgemäß wir das Fluid nicht nur unter Überwindung eines durch Reibung und Kapillarkräfte verursachten Widerstandes durch den Kanalstrang des Mikrofluidelements hindurch bewegt, sondern auch unter Überwindung einer durch die genannte Druckbeaufschlagung erzeugten Gegenkraft. Der erfindungsgemäß an der vorderen Endfläche des Fluids, insbesondere einem vorderen Flüssigkeitsmeniskus, anliegende Druck, verhindert ungewollte Ablösungen kleiner Fluidmengen von der Endfläche sowie benetzungsbedingtes Voraneilen oder Zurückbleiben von Teilen der Fluidmenge nahe den begrenzenden Kanalwänden und sorgt so für eine exakte Begrenzung des transportierten Fluids an dessen Vorderseite. Durch Verbindung des Kanalstrangs mit der erfindungsgemäßen Druckquelle statt mit einer Entlüftungsöffnung lässt sich das Mikrofluidelement nach außen fluiddicht abschließen und eine Umweltkontamination durch austretendes Fluids verhindern. Indem Beschichtungen zur Hydrophilisierung oder Hydrophobisierung, Ventile zur Fluidsteuerung und/oder extrem hohe Genauigkeitsanforderungen an die Mikrostrukturen entfallen, verringert sich der Fertigungsaufwand.According to the invention, the fluid is not only moved through the channel strand of the microfluidic element by overcoming a resistance caused by friction and capillary forces, but also by overcoming a counterforce generated by the said pressurization. The pressure applied according to the invention at the front end face of the fluid, in particular a front liquid meniscus, prevents unwanted detachment of small amounts of fluid from the end face and wetting-related advances or lagging of parts of the amount of fluid close to the delimiting channel walls and thus ensures that the transported fluid is precisely delimited at its Front. By connecting the duct line to the pressure source according to the invention instead of to a ventilation opening, the microfluidic element can be closed off in a fluid-tight manner from the outside and environmental contamination by escaping fluid can be prevented. Since coatings for hydrophilization or hydrophobicization, valves for fluid control and/or extremely high accuracy requirements for the microstructures are no longer required, the manufacturing effort is reduced.

Die Druckquelle, bei der es sich vorzugsweise um eine Druckgasquelle handelt, kann integraler Bestandteil des Mikrofluidelements oder z.B. Bestandteil einer Betreibereinrichtung sein, an die das Mikrofluidelement koppelbar ist.The pressure source, which is preferably a compressed gas source, can be an integral component of the microfluidic element or, for example, a component of an operator device to which the microfluidic element can be coupled.

In einer besonders bevorzugten Ausführungsform der Erfindung umfasst die Druckquelle einen geschlossenen Raum, in welchem ein Druckgas, z.B. Luft, durch Verschiebung der vorderen Endfläche des in dem Kanalstrang transportierten Fluids komprimierbar ist. Der je nach Position der Endfläche im Kanalstrang in dem geschlossenen Raum aufgebaute Druck liegt an der Endfläche an, und die durch diesen Druck erzeugte Kraft ist beim Transport des Fluids neben dem Strömungswiderstand zu überwinden.In a particularly preferred embodiment of the invention, the pressure source comprises a closed space in which a pressurized gas, eg air, is introduced by displacement of the front end face of the fluid transported in the ductwork is compressible. The pressure built up in the closed space depending on the position of the end surface in the ductwork is applied to the end surface, and the force generated by this pressure must be overcome in addition to the flow resistance when transporting the fluid.

Die zum Transport des Fluids innerhalb des Mikrofluidelements genutzte Kraft kann unterschiedlicher Art sein. Während zur Verschiebung des Fluids im Kanalstrang z.B. eine Trägheitskraft, insbesondere Zentrifugalkraft, einsetzbar ist, lässt sich in einer bevorzugten Ausführungsform der Erfindung der Kanalstrang mit einer das Fluid in Transportrichtung beaufschlagenden Transportdruckquelle verbinden. Die Transportdruckquelle kann auch integraler Bestandteil des Mikrofluidelements sein.The force used to transport the fluid within the microfluidic element can be of different types. While an inertial force, in particular centrifugal force, can be used to shift the fluid in the duct system, in a preferred embodiment of the invention the duct system can be connected to a transport pressure source that acts on the fluid in the transport direction. The transport pressure source can also be an integral part of the microfluidic element.

Durch diese Transportdruckquelle lässt sich die in Transportrichtung hintere Endfläche einer den Kanalstrang pfropfenartig ausfüllenden Fluidmenge mit einem Druckgas, z.B. Luft, beaufschlagen. Die erzeugte Druckkraft muss den Strömungswiderstand und die am entgegengesetzten Ende gegen die pfropfenartige Fluidmenge erfindungsgemäß anliegende Druckkraft überwinden.This transport pressure source can be used to apply a compressed gas, e.g. The pressure force generated must overcome the flow resistance and the pressure force applied at the opposite end against the plug-like quantity of fluid according to the invention.

In weiterer Ausgestaltung der Erfindung steht der durch die Druckquelle an der vorderen Endfläche erzeugte Druck in einem eindeutigen funktionalen Zusammenhang mit der Position der vorderen Endfläche in dem Kanalstrang. Diese Bedingung ist durch die vorangehend erwähnte, einen geschlossenen Raum umfassende Druckquelle annähernd erfüllt. Gegebenenfalls wird ein die Umgebungstemperatur berücksichtigender Korrekturfaktor ermittelt.In a further embodiment of the invention, the pressure generated by the pressure source at the front end face is clearly functionally related to the position of the front end face in the duct line. This condition is approximately met by the previously mentioned pressure source comprising a closed space. If necessary, a correction factor that takes the ambient temperature into account is determined.

Bei Erfüllung der genannten Bedingung kann vorteilhaft eine den Druck an der vorderen Endfläche erfassende Einrichtung, z.B. ein Drucksensor, vorgesehen sein, welche anhand des funktionalen Zusammenhangs die Position der vorderen Endfläche in dem Kanalstrang ermittelt. So lässt sich auch die Lage einer den Kanalstrang pfropfenartig ausfüllenden Fluidmenge innerhalb der Flusszelle bestimmen und ihr Transport genau steuern. Vorteilhaft kann der Transport des Fluids durch Einstellung des Drucks P1 der Transportdruckquelle gleich dem Druck P2 an der vorderen Endfläche unterbrochen werden.If the stated condition is met, a device that detects the pressure on the front end face, e.g. a pressure sensor, can advantageously be provided, which uses the functional relationship to determine the position of the front end face in the duct line. In this way, the position of a quantity of fluid filling the duct line like a plug within the flow cell can also be determined and its transport precisely controlled. Advantageously, the transport of the fluid can be interrupted by setting the pressure P1 of the transport pressure source equal to the pressure P2 at the front end face.

Durch Einstellung des Drucks (P1) der Transportdruckquelle kleiner als der Druck (P2) an der vorderen Endfläche lässt sich die Transportrichtung sogar umkehren. Eine den Kanalstrang pfropfenartig ausfüllende Fluidmenge kann innerhalb eines Kanalstrangs also beliebig hin und her geschoben und an gewünschten Stellen positioniert werden, z.B. in Reaktionsbereichen, Detektionsbereichen, Filtern oder Bereichen, in denen es mit einer im Mikrofluidelement gespeicherten Reagenz oder einem aus der Diagnostik bekannten Teststreifen in Kontakt kommt.By setting the pressure (P1) of the transport pressure source smaller than the pressure (P2) at the front end surface, the transport direction can even be reversed. A quantity of fluid that fills the duct line in the manner of a plug can therefore be pushed back and forth as desired within a duct line and positioned at the desired locations eg in reaction areas, detection areas, filters or areas in which it comes into contact with a reagent stored in the microfluidic element or with a test strip known from diagnostics.

Die Druckanstiegscharakteristik der den geschlossenen Raum aufweisenden Druckgasquelle kann vorteilhaft in gewünschter Weise dadurch beeinflusst werden, dass der geschlossene Raum durch das darin komprimierte Druckgas ausdehnbar ist. Zum Beispiel kann der geschlossene Raum an einer Seite eine Wand aufweisen, die durch eine dehnbare Folie bilden.The pressure rise characteristic of the compressed gas source having the closed space can advantageously be influenced in a desired manner in that the closed space can be expanded by the compressed gas compressed therein. For example, the closed space can have a wall on one side formed by a stretchable film.

Der geschlossene Raum der Druckquelle lässt sich in einer das Mikrofluidelement bildenden Platte unterbringen oder/und durch einen mit der Platte verbindbaren, separaten Behälter gebildet sein.The closed space of the pressure source can be accommodated in a plate that forms the microfluidic element and/or can be formed by a separate container that can be connected to the plate.

Der Kanalstrang weist vorteilhaft wenigstens eine Querschnittsaufweitung zur Bildung einer Kammer, z.B. einer Detektionskammer, einer Mischkammer, einer Reaktionskammer o. dgl. auf. Insbesondere kann die Kammer Trockenreagenzien, z.B. Substanzen zur Durchführung einer PCR oder zum Fangen von Analyten der Fluidprobe, Filter, Membranen, Teststreifen, Lamellen zum Mischen, Detektionsmittel, wie optische Fenster, Prismen und elektrische Leiter, sowie andere Mittel zur Analyse und Synthese enthalten.The duct line advantageously has at least one cross-sectional widening to form a chamber, e.g. a detection chamber, a mixing chamber, a reaction chamber or the like. In particular, the chamber may contain dry reagents, e.g., substances for performing a PCR or for capturing analytes of the fluid sample, filters, membranes, test strips, mixing blades, detection means such as optical windows, prisms and electrical conductors, and other means for analysis and synthesis.

In Transportrichtung können mehrere Kanalstränge in einem einzigen, mit einer Druckquelle verbundenen oder verbindbaren Kanalstrang zusammen laufen.In the direction of transport, a plurality of duct lines can run together in a single duct line which is connected or can be connected to a pressure source.

Die mehreren Kanalstränge können jeweils mit einer Transportdruckquelle verbunden oder verbindbar sein, so dass durch sequenzielle Aktivierung der Transportdruckquellen in dem einzigen Kanalstrang eine Sequenz oder Mischung unterschiedlicher Fluide erzeugt und transportiert werden kann.The multiple duct lines can each be connected or can be connected to a transport pressure source, so that a sequence or mixture of different fluids can be generated and transported in the single duct line by sequential activation of the transport pressure sources.

In Transportrichtung kann sich ein Kanalstrang auch in mehrere, jeweils mit einer Druckquelle verbundene oder verbindbare Kanalstränge verzweigen, und so eine Fluidmenge ohne Verwendung mehrerer Druckquellen oder Ventile weiter in Teilmengen aufteilen. Der erfindungsgemäß an den vorderen Endflächen der Teilfluidmengen anliegende Gegendruck erlaubt nicht nur eine gleichmäßige Aufteilung der Gesamtmenge in Teilmengen, sondern auch die räumliche Trennung der Teilmengen durch das den Fluidteilmengen in den Kanalsträngen nachströmende Transportgas.In the transport direction, a duct line can also branch into a plurality of duct lines that are each connected or can be connected to a pressure source, and in this way can further divide a quantity of fluid into partial quantities without using a plurality of pressure sources or valves. The back pressure applied according to the invention at the front end surfaces of the partial amounts of fluid allows not only an even division of the total amount into partial amounts, but also the spatial separation of the partial amounts by the transport gas flowing after the partial amounts of fluid in the channel strands.

Dadurch können ohne gegenseitige Beeinflussung der Teilfluidmengen untereinander parallel unterschiedliche Untersuchungen, Analysen oder Synthesen durchgeführt werden.As a result, different investigations, analyzes or syntheses can be carried out in parallel without the partial fluid quantities mutually influencing one another.

Durch die erfindungsgemäße Beaufschlagung des zu transportierenden Fluids mit Gegendruck wird ferner die vollständige Befüllung von Kanalabschnitten mit unterschiedlichen Querschnittsabmessungen sichergestellt. Gerade bei Sprüngen und Dimensionsänderungen innerhalb eines Kanalstrangs treten in der Regel Zonen auf, die nicht vollständig durchströmt oder benetzt werden, was zu einem Einschließen von Luftblasen führen kann. Dies wird durch die Erfindung vermieden.The application of back pressure to the fluid to be transported according to the invention also ensures that channel sections with different cross-sectional dimensions are completely filled. Especially in the case of cracks and dimensional changes within a duct run, zones usually occur that are not completely flown through or wetted, which can lead to air bubbles being trapped. This is avoided by the invention.

Indem die Zweige mit unterschiedlichen Druckquellen verbunden sind, lässt sich ein gewünschtes Verhältnis der Teilmengen einstellen.By connecting the branches to different pressure sources, a desired ratio of the subsets can be set.

Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen und der beiliegenden, sich auf diese Ausführungsbeispiele beziehenden Zeichnungen weiter erläutert. Es zeigen:

Fig. 1
eine Flusszelle mit einer erfindungsgemäßen Vorrichtung zum Transportieren eines Fluids,
Fig. 2
die Flusszelle von Fig. 1 in einer Detailansicht,
Fig. 3
eine die Funktion der Flusszelle von Fig. 1 erläuternde Darstellung,
Fig. 4
eine Abwandlung der Flusszelle von Fig. 1,
Fig. 5
ein Ausführungsbeispiel für eine in ein Mikrofluidelement integrierte Transportdruckquelle,
Fig. 6 bis 8
verschiedene Ausführungsbeispiele einer erfindungsgemäßen Druck quelle mit einem geschlossenen Kompressionsraum,
Fig. 9
ein Mikrobauelement mit in einem einzigen Strang zusammenlaufenden Kanalsträngen,
Fig. 10
Ausführungsbeispiele für sich verzweigende Kanalstränge, und
Fig. 11
weitere Ausführungsbeispiele für Flusszellen mit Vorrichtungen nach der Erfindung.
The invention is explained in more detail below on the basis of exemplary embodiments and the accompanying drawings relating to these exemplary embodiments. Show it:
1
a flow cell with a device according to the invention for transporting a fluid,
2
the flow cell of 1 in a detail view,
3
a the function of the flow cell of 1 explanatory presentation,
4
a modification of the flow cell from 1 ,
figure 5
an embodiment of a transport pressure source integrated into a microfluidic element,
Figures 6 to 8
various exemplary embodiments of a pressure source according to the invention with a closed compression chamber,
9
a microdevice with channel strands merging into a single strand,
10
Exemplary embodiments for branching duct lines, and
11
further exemplary embodiments for flow cells with devices according to the invention.

Eine plattenförmige Flusszelle weist eine Einlassöffnung 1 für ein Fluid, z.B. eine Blutprobe, auf. Die Einlassöffnung 1 befindet sich im Boden eines an die Flusszelle angeformten, topfartigen Vorratsgefäßes 2.A plate-shaped flow cell has an inlet opening 1 for a fluid, eg a blood sample. The inlet opening 1 is located in the bottom of a pot-like storage vessel 2 molded onto the flow cell.

Von der Einlassöffnung erstreckt sich ein Kanal 3, der etwa bis zu einer Aufweitung 4 mäanderförmig verläuft und von der Aufweitung 4 weiter zu einer Verzweigung 5 geführt ist.A channel 3 extends from the inlet opening, which runs in a meandering manner up to a widening 4 and is led further from the widening 4 to a branch 5 .

Nahe der Einlassöffnung 1 mündet in den Kanal 9 eine Kanal 6, der in Verbindung mit einer Öffnung steht, an die sich, wie weiter unten erläutert wird, eine Luftdruckquelle anschließen lässt.Close to the inlet opening 1, a duct 6 opens into the duct 9, which is in communication with an opening to which a source of air pressure can be connected, as will be explained below.

Nahe der Verzweigung 5 zweigt von dem Kanal 3 ein zu einer Entlüftungsöffnung führender Kanal 8 ab. Der Querschnitt des Kanals 8 ist wesentlich kleiner als der Querschnitt des Kanals 3.Near the junction 5, a channel 8 leading to a ventilation opening branches off from the channel 3. The cross section of channel 8 is significantly smaller than the cross section of channel 3.

An der Verzweigung 5 teilt sich der Kanal 3 in zwei zur Längsmittelachse der Flusszelle symmetrische Zweigkanäle 9 und 9' auf, die sich an zwei weiteren Verzweigungen 10 und 10' nochmals aufteilen. So geht der Kanals 3 in insgesamt vier Zweige 11, 11', 11 " und 11'" über. Die vier Zweige stimmen in dem gezeigten Ausführungsbeispiel in ihrer Ausgestaltung überein und haben identische Volumina.At the junction 5, the channel 3 divides into two branch channels 9 and 9', which are symmetrical to the longitudinal central axis of the flow cell and divide again at two further junctions 10 and 10'. The channel 3 thus merges into a total of four branches 11, 11', 11" and 11'". In the exemplary embodiment shown, the four branches have the same design and have identical volumes.

Jeder der vier Zweige 11, 11', 11" und 11‴ enthält einen ersten mäanderförmigen Kanalabschnitt 12, dem eine Kanalaufweitung 13 folgt. Die Kanalaufweitung 13 enthält in dem gezeigten Ausführungsbeispiel eine Trockenreagenz. An die Kanalaufweitung 13 schließt sich ein zweiter mäanderförmiger Kanalabschnitt 14 an. Dem Kanalabschnitt 14 folgt eine weitere Kanalaufweitung 15, die in dem betreffenden Ausführungsbeispiel als Reaktionskammer dient und eine weitere Trockenreagenz, z.B. Reagenzien durch Durchführung einer PCR, enthalten kann.Each of the four branches 11, 11′, 11″ and 11‴ contains a first meandering channel section 12, which is followed by a channel widening 13. In the exemplary embodiment shown, the channel widening 13 contains a dry reagent. The channel widening 13 is followed by a second meandering channel section 14 The channel section 14 is followed by a further widened channel 15, which in the relevant exemplary embodiment serves as a reaction chamber and can contain a further dry reagent, e.g.

Im Abstand zu der Kanalaufweitung 15 folgt eine dritte Aufweitung 16, die eine Detektionskammer bildet. Das Ende jedes Zweiges 11, 11', 11", 11'" bildet jeweils eine Kammer 17 mit einem im Vergleich zum Volumen der Aufweitungen 13, 15 und 16 deutlich größeren Volumen.At a distance from the channel widening 15 follows a third widening 16, which forms a detection chamber. The end of each branch 11, 11′, 11″, 11″″ forms a chamber 17 with a volume that is significantly larger than the volume of the widenings 13, 15 and 16.

Die plattenförmige Flusszelle besteht in dem gezeigten Ausführungsbeispiel aus einer Kunststoffplatte, in die zur Bildung der vorangehend beschriebenen Kanäle und Kavitäten Ausnehmungen eingearbeitet sind, und einer die Ausnehmungen verschließenden, mit der Kunststoffplatte fluiddicht verschweißten oder verklebten Folie. Zur Herstellung der Platte können die bekannten Kunststoffbearbeitungsverfahren, insbesondere das Spritzgießen, zur Anwendung kommen. Abweichend von dem beschriebenen Aufbau könnten ein mehrere Lagen aufweisendes Substrat sowie laminierte Folien vorgesehen sein. Als Materialien kommen ferner Glas, Silizium, Metall und Verbundwerkstoffe in Betracht. Als weitere Bearbeitungsverfahren sind Heißprägen und Laserschneiden zu nennen.In the exemplary embodiment shown, the plate-shaped flow cell consists of a plastic plate in which recesses are incorporated to form the channels and cavities described above, and a film sealing the recesses and welded or glued to the plastic plate in a fluid-tight manner. The known plastic processing methods, in particular injection molding, can be used to produce the plate. Deviating from the structure described, a substrate having a plurality of layers and laminated foils could be provided. Other materials include glass, silicon and metal and composite materials. Other processing methods include hot stamping and laser cutting.

Verschiedene Beispiele für die Ausgestaltung von Kammern bzw. Reaktions- und Detektionsbereiche bildenden Kanalaufweitungen finden sich in der hier einbezogenen deutschen Patentanmeldung 10 2009 015 395.0 des Anmelders.Various examples for the design of chambers or channel widenings forming reaction and detection areas can be found in the document included here German patent application 10 2009 015 395.0 of the applicant.

Im folgenden wird die Funktionsweise der vorangehend beschriebenen Flusszelle erläutert.The functioning of the flow cell described above is explained below.

Eine Fluidprobe, z.B. eine Blutprobe, wird in das Vorratsgefäß 2 bei der Einlassöffnung 1 eingegeben. Durch Kapillarwirkung füllt sich der Kanal 3 bis zu der Aufweitung 4. Zur Unterstützung der Kapillarwirkung kann der Kanal 3 durch Plasmabehandlung oder nasschemische Vorbehandlung hydrophilisiert sein.A fluid sample, for example a blood sample, is introduced into the reservoir 2 at the inlet port 1 . The channel 3 fills up to the widening 4 by capillary action. To support the capillary action, the channel 3 can be made hydrophilic by plasma treatment or wet-chemical pretreatment.

Alternativ zu einer solchen Selbstbefüllung ließe sich die Blutprobe durch Druckbeaufschlagung, z.B. mit Hilfe einer Pipette oder Spritze in den Kanal 3 einbringen. Diese Aufgabe könnte auch eine für die Flusszelle vorgesehene Betreibereinrichtung übernehmen. Über den Entlüftungskanal 8 kann Luft aus dem Kanal 3 entweichen.As an alternative to such a self-filling, the blood sample could be introduced into the channel 3 by applying pressure, e.g. with the aid of a pipette or syringe. This task could also be performed by an operator facility provided for the flow cell. Air can escape from the channel 3 via the ventilation channel 8 .

Die Aufweitung 4 sorgt für eine Begrenzung der Befüllung des Kanals 3 und damit für eine genaue Abmessung einer Probenmenge, wie dies in Fig. 3a gezeigt ist.The widening 4 limits the filling of the channel 3 and thus the precise measurement of a sample quantity, as is shown in Figure 3a is shown.

Zur Verarbeitung der Probenmenge in der Flusszelle werden die Einlassöffnung 1 und der Kanal 8 geschlossen und die Öffnung 7 mit einer Luftdruckquelle 18 verbunden, die Bestandteil einer für die Flusszelle vorgesehenen Betreibereinrichtung sein kann.In order to process the amount of sample in the flow cell, the inlet opening 1 and the channel 8 are closed and the opening 7 is connected to an air pressure source 18 which can be part of an operating device provided for the flow cell.

Mit Hilfe der Luftdruckquelle 18 lässt sich die abgemessene Probenmenge über die Aufweitung 4 im Kanal 3 hinaus zu der Verzweigung 5 befördern, wo sich die Probenmenge in Hälften aufteilt. Eine weitere Aufteilung in Hälften erfolgt an den Verzweigungen 10 und 10', so dass in die Zweige 11, 11', 11" und 11‴ jeweils ein viertel der abgemessenen Probenmenge gelangt.With the aid of the air pressure source 18, the measured amount of sample can be conveyed beyond the widening 4 in the channel 3 to the branch 5, where the amount of sample is divided into halves. A further division into halves takes place at the branches 10 and 10', so that each of the branches 11, 11', 11" and 11‴ receives a quarter of the measured sample quantity.

Da die Zweige an ihren der Öffnung 7 fernen Enden geschlossen sind, steigt beim Transport des Fluids durch den Kanal 3 der Druck in den Kammern 17 durch Kompression an. Damit die Probenmenge und die Teilprobenmenge befördert werden können, muss der durch die Druckluftquelle 18 ausgeübte Luftdruck P1 größer sein als der jeweilige Luftdruck P2 in den Kammern 17, der an den in Transportrichtung vorderen Endflächen 42 der Fluidmengen anliegt.Since the branches are closed at their ends remote from the opening 7, the pressure in the chambers 17 increases as a result of compression as the fluid is transported through the channel 3. In order for the sample and aliquot to be conveyed, the air pressure P1 exerted by the compressed air source 18 must be greater than the respective air pressure P2 in the chambers 17, which is applied to the front end surfaces 42 of the fluid quantities in the transport direction.

Jede Position der den Kanalstrang pfropfenartig ausfüllenden Teilprobenmengen entspricht einem bestimmten Druck P2 in den Kammern 17. Ist der Druck P1 der Druckluftquelle 18 gleich dem Druck P2, so verbleiben die Teilprobenmengen an Ort und Stelle.Each position of the sub-sample quantities filling the duct line like plugs corresponds to a specific pressure P2 in the chambers 17. If the pressure P1 of the compressed air source 18 is equal to the pressure P2, the sub-sample quantities remain in place.

In Fig. 3b befinden sich die Teilprobenmengen gerade in dem Kanalabschnitt 12. Durch Erhöhung des Drucks P1 können die Teilprobenmengen gemäß Fig. 3c in die Aufweitungen 13 überführt werden, wo sie jeweils mit einer Trockenreagenz in Berührung kommen. Verminderung des Drucks P1 bewirkt einen Rückfluss der Teilprobenmengen in die mäanderförmigen Kanalabschnitte 12, wo eine Durchmischung erfolgt. Erneuter Anstieg des Druck führt die Teilprobenmenge über die Kanalaufweitungen 13 in den nächsten mäanderförmigen Kanalabschnitt 14. In den Kanalabschnitten 14 wird die Durchmischung abgeschlossen. Durch weiteren Anstieg des Drucks P1 erfolgt eine Überführung in die Aufweitungen 15, wo in dem gezeigten Ausführungsbeispiel eine Reaktion stattfindet, z.B. PCR. Die Probenuntersuchungen werden in den Aufweitungen 16 abgeschlossen, wo an den bearbeiteten Proben Messungen durchgeführt werden.In Figure 3b are the sub-sample amounts just in the channel section 12. By increasing the pressure P1, the sub-sample amounts according to 3c are transferred to the expansions 13, where they each come into contact with a dry reagent. Reducing the pressure P1 causes the sub-sample quantities to flow back into the meandering channel sections 12, where mixing takes place. Another increase in pressure leads the sub-sample quantity via the widened channels 13 into the next meandering channel section 14. In the channel sections 14, the mixing is completed. A further increase in the pressure P1 results in a transfer to the expansions 15, where a reaction takes place in the exemplary embodiment shown, for example a PCR. Sample testing is completed in the flares 16 where measurements are performed on the processed samples.

Die Druckluftquelle 18 kann eine Messeinrichtung zur Bestimmung des jeweiligen Drucks P2 aufweisen, die anhand eines vorbestimmten Zusammenhangs zwischen dem Druck P2 und den Positionen der Teilmengen deren Position ermittelt und ggf. den Transport der Teilmengen automatisch steuert.The compressed air source 18 can have a measuring device for determining the respective pressure P2, which uses a predetermined relationship between the pressure P2 and the positions of the subsets to determine their position and, if necessary, automatically controls the transport of the subsets.

Eine in Fig. 4 gezeigte Flusszelle stimmt in ihrem Aufbau mit der vorangehend beschriebenen Flusszelle weitgehend überein. Lediglich fehlen der Entlüftungskanal 8 sowie der die Öffnung 7 aufweisende Kanal 6.one inside 4 The structure of the flow cell shown largely corresponds to that of the flow cell described above. Only the ventilation channel 8 and the channel 6 with the opening 7 are missing.

Zur Abmessung einer Probemenge kann bei dieser Ausführungsform der Probeneingang 1 mit einer Druckquelle verbunden und eine das Vorratsgefäß 2 ausfüllende Probenmenge in den Kanal 3 gedrückt werden. Das Volumen der abgemessenen Probenmenge entspricht also etwa dem Volumen des Vorratsgefäßes 2 oder einer vom Eingebenden vorherbestimmten Teilmenge. Die Weiterverarbeitung der so bemessenen Probenmenge erfolgt wie oben beschrieben.In order to measure a sample quantity, in this embodiment the sample inlet 1 can be connected to a pressure source and a sample quantity filling the storage vessel 2 can be pressed into the channel 3 . The volume of the measured amount of sample thus corresponds approximately to the volume of the storage vessel 2 or to a partial amount predetermined by the person entering it. The sample quantity measured in this way is processed further as described above.

Anstelle einer externen an die Öffnung 7 oder den Probeneingang 1,2 angeschlossenen Druckquelle kann, wie aus Fig. 5 hervorgeht, eine Druckquelle auch in eine Flusszelle integriert sein. Gemäß Fig. 5 ist eine solche integrierte Druckquelle durch eine Vertiefung 19 gebildet, die durch eine flexible Membran 20 abgedeckt ist.Instead of an external pressure source connected to the opening 7 or the sample inlet 1,2, as shown in FIG figure 5 shows that a pressure source can also be integrated into a flow cell. According to figure 5 such an integrated pressure source is formed by a recess 19 which is covered by a flexible membrane 20.

Durch Eindrücken der flexiblen Membran 20 in die Vertiefung 19 lässt sich der Druck in einer Druckleitung 21 um einen definierten Betrag erhöhen.By pressing the flexible membrane 20 into the depression 19, the pressure in a pressure line 21 can be increased by a defined amount.

Anstelle einer Druckbeaufschlagung durch Druckgas könnte in der Vertiefung 19 auch eine Flüssigkeit enthalten sein. Insbesondere könnte der durch die Vertiefung 19 gebildete Raum von einer Probenflüssigkeit durchströmt werden.Instead of being pressurized by pressurized gas, the recess 19 could also contain a liquid. In particular, a sample liquid could flow through the space formed by the recess 19 .

Anstelle der Vertiefung und einer Membran ließe sich auch ein Blister mit einer gewölbten, zusammendrückbaren Folienhaube verwenden.Instead of the indentation and a membrane, a blister with a curved, compressible foil hood could also be used.

Bei dem in den Fig. 1 und 4 gezeigten Ausführungsbeispiel ist eine "Luftfeder" durch die in die Flusszellenplatte integrierte geschlossene Kammer 17 gebildet.At the in the 1 and 4 In the embodiment shown, an "air spring" is formed by the closed chamber 17 integrated into the flow cell plate.

Fig. 6 zeigt ein Ausführungsbeispiel für eine "Luftfeder" mit einer Kammer 22, die durch eine flexible Membran 23 abgedeckt ist. Die z.B. aus Kunststoff, einem Elastomer, aus Silikon oder TPE bestehende Membran lässt sich in solcher Weise ausweiten, dass sich in der Kammer 22 ein gewünschter Druckanstieg einstellt. Vorteilhaft sind die Abmessungen der "Luftfeder" im ungenutzten Zustand der Flusszelle daher kleiner als im Betriebszustand. Die Auswölbung der die Kammer 22 begrenzenden flexiblen Membran 23 kann z.B. mit Hilfe eines einfachen Abstandssensors ermittelt und dazu verwendet werden, den Druck P2 und damit die Position des vorderen Fluidmeniskus zu bestimmen und so eine Regelung für den Fluidtransport aufzubauen. 6 shows an embodiment of an "air spring" with a chamber 22 which is covered by a flexible membrane 23. The membrane, which is made of plastic, an elastomer, silicone or TPE, for example, can be expanded in such a way that a desired increase in pressure occurs in the chamber 22 . The dimensions of the “air spring” are therefore advantageously smaller when the flow cell is not in use than when it is in operation. The bulging of the flexible membrane 23 delimiting the chamber 22 can be determined, for example, with the aid of a simple distance sensor and used to determine the pressure P2 and thus the position of the front fluid meniscus and thus set up a regulation for the fluid transport.

Es kann von Vorteil sein, die Auslenkung der flexiblen Membran 23 mit Hilfe eines integrierten oder externen Stempels 24 zu begrenzen. Gegebenfalls lässt sich über die Position des Stempels das Volumen der Kammer 22 in gewünschter Weise einstellen. Der Stempel kann Bestandteil einer Betreibereinrichtung sein.It can be advantageous to limit the deflection of the flexible membrane 23 using an integrated or external stamp 24 . If necessary, the volume of the chamber 22 can be adjusted in the desired manner via the position of the plunger. The stamp can be part of an operator facility.

Fig. 7 zeigt eine Variante einer "Luftfeder" mit einem separaten Gefäßbauteil 25, dass an eine Flusszelle ansetzbar ist, wobei ein Dichtring 26 eine an der Flusszellenplatte gebildete Öffnung umgibt. 7 12 shows a variant of an "air spring" with a separate vessel component 25 that can be attached to a flow cell, with a sealing ring 26 surrounding an opening formed on the flow cell plate.

In einer in Fig. 8 gezeigten Variante einer "Luftfeder" ist ein separates Gefäßbauteil 27 auf eine Flusszelle aufsteckbar, wobei z.B. ein Steckkronus, eine Presspassung oder/und ein LUER-Anschluss zur Anwendung kommen können.in a 8 In the variant of an "air spring" shown, a separate vessel component 27 can be plugged onto a flow cell, in which case, for example, a plug-in crown, a press fit and/or a LUER connection can be used.

Sowohl bei dem Ausführungsbeispiel gemäß Fig. 7 als auch bei dem Ausführungsbeispiel nach Fig. 8 braucht die plattenförmige Flusszelle selbst keine "Federkammer" aufzuweisen. Vorteilhaft kann für die integrierte Kammer benötigter Raum anderweitig genutzt werden.Both in the embodiment according to 7 as well as in the embodiment 8 the slab-shaped flow cell need not have a "spring chamber" itself. Advantageously, the space required for the integrated chamber can be used for other purposes.

Wie Fig. 8 erkennen lässt, weist das Gefäßbauteil 27 einen verstellbaren Stopfen 28 auf, durch den sich das Luftvolumen des Gefäßbeauteils variieren lässt, so dass unterschiedliche Bedingungen für den Transport eines Fluids innerhalb einer Flusszelle einstellbar sind.As 8 can be seen, the vessel component 27 has an adjustable stopper 28, through which the air volume of the vessel component can be varied, so that different conditions for the transport of a fluid within a flow cell can be set.

Es versteht sich, dass die "Luftfeder" Bestandteil einer Betreibereinrichtung sein und ein entsprechender Anschluss zur Flusszelle entsprechend dem Anschluss von Fig. 7 mit Hilfe einer Ringdichtung hergestellt werden kann.It is understood that the "air spring" can be part of an operator's facility and a corresponding connection to the flow cell corresponding to the connection of 7 can be made with the help of a ring seal.

Während in den Fig. 1 und 4 eine Flusszelle mit nur einem einzigen, sich mehrfach verzweigenden Kanalstrang für den Transport eines einzigen, über die Einlassöffnung 1 zugeführten Fluids gezeigt ist, umfasst eine ausschnittweise in Fig. 9 dargestellte Flusszelle drei Kanalstränge 29, 30 und 31 zum Transport unterschiedlicher Fluide. Jeder der Kanalstränge 29, 30, 31 kann mit einer Einlassöffnung für das betreffende Fluid und einer Druckquelle verbunden sein. Alternativ ließe sich eine allen drei Kanalsträngen gemeinsame Druckquelle einsetzen.while in the 1 and 4 a flow cell with only a single, multiply branching duct line for the transport of a single fluid supplied via the inlet opening 1 is shown, includes a detail in FIG 9 Flow cell shown three channel strands 29, 30 and 31 for transporting different fluids. Each of the channel strands 29, 30, 31 can be connected to an inlet opening for the relevant fluid and a pressure source. Alternatively, a pressure source common to all three duct lines could be used.

Die Kanalstränge 29 bis 31 laufen an einem Mischpunkt 32 zusammen, von dem ein einziger Kanal 33 zu einer geschlossenen Kammer 34 verläuft. Durch aufeinanderfolgende Beaufschlagung je eines der Kanalstränge 29 bis 31 mit Druck können im Kanal 33 Sequenzen der unterschiedlichen, in den Kanalsträngen 29 bis 31 enthaltenen Fluide erzeugt werden, wobei die Größe der Teilmengen über den an den jeweiligen Kanalstrang angelegten Druck steuerbar ist.The duct runs 29 to 31 converge at a mixing point 32 from which a single duct 33 runs to a closed chamber 34 . By successively applying pressure to one of the duct lines 29 to 31, sequences of the different fluids contained in the duct lines 29 to 31 can be generated in the duct 33, the size of the subsets being controllable via the pressure applied to the respective duct line.

Wie aus Fig. 10a hervorgeht, lässt sich der Kanal 33 wieder verzweigen, wobei Zweige 35, 35' jeweils mit einer Luftfederkammer 36 bzw. 36' in Verbindung stehen.How out Figure 10a As can be seen, the channel 33 can branch again, with branches 35, 35' each being connected to an air spring chamber 36 or 36'.

Eine im Kanal 33 am Mischpunkt 32 erzeugte Fluidsequenz lässt sich weiter aufteilen, wobei in die Zweige 35 und 35' jeweils eine Sequenz gelangt, deren Bestandteile jeweils die halbe Fluidmenge der Sequenz im Kanal 33 aufweisen. Dies kann vorteilhaft sein, um die aufeinanderfolgende Druckbeaufschlagung der Kanäle 29 bis 31 zu vereinfachen. Sollen Fluidsequenzen mit besonders kleinen Teilmengen erzeugt werden, so würde das eine sehr kurze und genaue Druckbeaufschlagung erfordern. Beim nachträglichen Aufteilen einer zunächst größeren Sequenz in kleinere Sequenzen passiv über die Volumina der Teilstränge, ist deren Genauigkeit maßgebend und diese Genauigkeit lässt sich bei der Herstellung des Mikrofluidelements durch Spritzgießen sehr präzise einstellen.A fluid sequence generated in the channel 33 at the mixing point 32 can be divided further, with a sequence each reaching the branches 35 and 35 ′, the components of which each have half the fluid quantity of the sequence in the channel 33 . This can be advantageous in order to limit the sequential pressurization of channels 29-31 simplify. If fluid sequences with particularly small subsets are to be generated, this would require a very short and precise pressurization. When subsequently dividing an initially larger sequence into smaller sequences passively via the volumes of the partial strands, their accuracy is decisive and this accuracy can be adjusted very precisely during production of the microfluidic element by injection molding.

Es versteht sich, dass durch die in Fig. 10a gezeigte Anordnung mit zwei übereinstimmenden Zweigen anstelle einer Sequenz auch ein einziges Fluidpaket in zwei Hälften aufgeteilt werden kann.It is understood that by the in Figure 10a shown arrangement with two matching branches instead of a sequence a single fluid packet can be divided into two halves.

Fig. 10b zeigt einen sich verzweigenden Kanal, wobei ein Zweig 37 mit einer Kammer 38 und ein anderer Zweig 39 mit einer Kammer 40 verbunden ist. Das Volumen der Kammer 38 ist größer als das Volumen der Kammer 40. Figure 10b Figure 13 shows a branching duct with one branch 37 connected to a chamber 38 and another branch 39 connected to a chamber 40. The volume of chamber 38 is greater than the volume of chamber 40.

Beim Transport eines Fluidpakets steigt der Druck in der kleineren Kammer 40 schneller an als in der Kammer 38. Entsprechend entsteht am Verzweigungspunkt im Zweig 37 ein größeres Teilpaket als in dem Zweig 39. Durch unterschiedliche Wahl der Größen der Kammern 38, 40 lässt sich das Verhältnis der Aufteilung des Fluidpakets am Verzweigungspunkt geeignet variieren.When a fluid package is transported, the pressure in the smaller chamber 40 increases faster than in chamber 38. Accordingly, a larger partial package is formed at the branching point in branch 37 than in branch 39. By choosing different sizes for chambers 38, 40, the ratio can be adjusted vary as appropriate with the splitting of the fluid packet at the bifurcation point.

Fig. 11 zeigt weitere Ausführungsbeispiele für Flusszellen, wobei in dem Ausführungsbeispiel von Fig. 11a ein Kanalstrang mit einer matrixartigen Verzweigung und in Fig. 11b ein Kanalstrang mit einer sternförmigen Verzweigung gezeigt ist. Der Kanalstrang weist eine zentrale Einlassöffnung 41 auf, die gleichzeitig einen Verzweigungspunkt bildet. 11 shows further exemplary embodiments for flow cells, wherein in the exemplary embodiment of FIG Figure 11a a canal branch with a matrix-like branching and in Figure 11b a ductwork with a star-shaped branching is shown. The duct line has a central inlet opening 41, which at the same time forms a branching point.

Am Verzweigungspunkt lässt sich z.B. eine pneumatische Druckquelle anschließen. Das Ausführungsbeispiel von Fig. 11b eignet sich insbesondere zum Transport von Fluid durch Fliehkraft. Hierzu wird die Flusszelle in Rotation um die Einlassöffnung 41 versetzt.A pneumatic pressure source, for example, can be connected to the branching point. The embodiment of Figure 11b is particularly suitable for the transport of fluid by centrifugal force. For this purpose, the flow cell is rotated around the inlet opening 41 .

Claims (15)

Vorrichtung zum Transportieren eines Fluids in einem Kanalstrang eines Mikrofluidselements, insbesondere einer Flusszelle,
gekennzeichnet durch eine Druckquelle zur Druckbeaufschlagung einer in Transportrichtung vorderen Endfläche (42) des den Kanalsrang im Querschnitt vollständig ausfüllenden Fluids.
Device for transporting a fluid in a channel line of a microfluidic element, in particular a flow cell,
characterized by a pressure source for pressurizing a front end surface (42) in the transport direction of the fluid which completely fills the channel rank in cross section.
Vorrichtung nach Anspruch 1,
dadurch gekennzeichnet,
dass die Druckquelle einen geschlossenen Raum(17; 22; 34; 36, 38, 40) umfasst, in welchem ein Druckgas, z.B. Luft, durch Verschiebung der vorderen Endfläche (42) des in dem Kanalstrang transportierten Fluids komprimierbar ist.
Device according to claim 1,
characterized,
that the pressure source comprises a closed space (17; 22; 34; 36, 38, 40) in which a pressurized gas, eg air, is compressible by displacement of the front end face (42) of the fluid transported in the ductwork.
Vorrichtung nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass der Kanalstrang mit einer das Fluid in Transportrichtung beaufschlagenden Transportdruckquelle (18) verbunden oder verbindbar ist.
Device according to claim 1 or 2,
characterized,
that the duct line is connected or can be connected to a transport pressure source (18) which acts on the fluid in the transport direction.
Vorrichtung nach Anspruch 3,
dadurch gekennzeichnet,
dass die Transportdruckquelle (18) zur Beaufschlagung der in Transportrichtung hinteren Endfläche (43) einer den Kanalstrang pfropfenartig ausfüllenden Fluidmenge mit einem Druckgas, z.B. Luft, vorgesehen ist.
Device according to claim 3,
characterized,
that the transport pressure source (18) is provided for applying a compressed gas, eg air, to the rear end face (43) in the transport direction of a quantity of fluid filling the duct line in the manner of a plug.
Vorrichtung nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet,
dass der durch die Druckquelle an der vorderen Endfläche (42) erzeugte Druck in einem eindeutigen funktionalen Zusammenhang zu der Position der vorderen Endfläche (42) in dem Kanalstrang steht.
Device according to one of claims 1 to 4,
characterized,
that the pressure generated by the pressure source on the front end face (42) is in a clear functional relationship to the position of the front end face (42) in the ductwork.
Vorrichtung nach Anspruch 5,
dadurch gekennzeichnet,
dass eine den Druck an der vorderen Endfläche (42) erfassende Einrichtung vorgesehen ist, welche anhand des funktionalen Zusammenhangs die Position der vorderen Endfläche (42) in dem Kanalstrang ermittelt.
Device according to claim 5,
characterized,
that a device is provided that detects the pressure on the front end face (42) and uses the functional relationship to determine the position of the front end face (42) in the duct line.
Vorrichtung nach einem der Ansprüche 3 bis 6,
dadurch gekennzeichnet,
dass sich der Transport des Fluids durch Einstellung des Drucks (P1) der Transportdruckquelle (18) gleich dem Druck (P2) an der vorderen Endfläche (42) unterbrechen lässt.
Device according to one of claims 3 to 6,
characterized,
that the transport of the fluid can be interrupted by setting the pressure (P1) of the transport pressure source (18) equal to the pressure (P2) at the front end face (42).
Vorrichtung nach einem der Ansprüche 3 bis 7,
dadurch gekennzeichnet,
dass sich die Transportrichtung durch Einstellung des Drucks (P1) der Transportdruckquelle (18) kleiner als der Druck (P2) an der vorderen Endfläche (42) umkehren lässt.
Device according to one of claims 3 to 7,
characterized,
that the transport direction can be reversed by setting the pressure (P1) of the transport pressure source (18) smaller than the pressure (P2) on the front end face (42).
Vorrichtung nach einem der Ansprüche 2 bis 8,
dadurch gekennzeichnet,
dass der geschlossene Raum (22) durch das darin komprimierte Druckgas ausdehnbar ist.
Device according to one of claims 2 to 8,
characterized,
that the closed space (22) is expandable by the compressed gas compressed therein.
Vorrichtung nach einem der Ansprüche 2 bis 8,
dadurch gekennzeichnet,
dass der geschlossene Raum (17) innerhalb einer das Mikrofluidelement bildenden Platte angeordnet oder/und durch einen mit der Platte verbindbaren Behälter (25; 27) gebildet ist.
Device according to one of claims 2 to 8,
characterized,
that the closed space (17) is arranged within a plate forming the microfluidic element and/or is formed by a container (25; 27) that can be connected to the plate.
Vorrichtung nach einem der Ansprüche 1 bis 10,
dadurch gekennzeichnet,
dass der Kanalstrang wenigstens eine Querschnittsaufweitung (13,15,16) zur Bildung einer Kammer aufweist, in der Mittel zur Behandlung und/oder Untersuchung einer Fluidprobe vorgesehen sind.
Device according to one of claims 1 to 10,
characterized,
that the duct line has at least one cross-sectional widening (13, 15, 16) to form a chamber in which means for treating and/or analyzing a fluid sample are provided.
Vorrichtung nach einem der Ansprüche 1 bis 11,
dadurch gekennzeichnet,
dass in Transportrichtung mehrere Kanalstränge (29,30,31) in einem einzigen, mit der Druckquelle (34) verbundenen oder verbindbaren Kanalstrang (33) zusammen laufen.
Device according to one of claims 1 to 11,
characterized,
that in the transport direction, several duct lines (29, 30, 31) converge in a single duct line (33) which is or can be connected to the pressure source (34).
Vorrichtung nach Anspruch 12,
dadurch gekennzeichnet,
dass die mehreren Kanalstränge (29,30,31) jeweils mit einer Transportdruckquelle verbunden oder verbindbar sind.
Device according to claim 12,
characterized,
that the multiple channel lines (29,30,31) are each connected or can be connected to a transport pressure source.
Vorrichtung nach einem der Ansprüche 1 bis 13,
dadurch gekennzeichnet,
dass sich in Transportrichtung ein Kanalstrang in mehrere, jeweils mit einer Druckquelle (17; 36, 36')verbundene oder verbindbare Kanalstränge (8, 9', 11, 11', 11", 11'"; 35, 35') verzweigt.
Device according to one of claims 1 to 13,
characterized,
that in the direction of transport a duct line branches into several duct lines (8, 9', 11, 11', 11", 11"; 35, 35'), each connected or connectable to a pressure source (17; 36, 36').
Vorrichtung nach Anspruch 14,
dadurch gekennzeichnet,
dass die Zweige (37,39) mit unterschiedlichen Druckquellen (38,40) verbunden sind.
Device according to claim 14,
characterized,
that the branches (37,39) are connected to different pressure sources (38,40).
EP21204270.9A 2009-06-05 2010-05-14 Device for transporting a fluid in a duct section of a microfluidic element Pending EP3978132A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE202009008052U DE202009008052U1 (en) 2009-03-23 2009-06-05 Device for transporting a fluid in a channel strand of a microfluidic element
EP10725960A EP2437890A1 (en) 2009-06-05 2010-05-14 Apparatus for transporting a fluid within a channel leg of a microfluidic element
PCT/DE2010/000541 WO2010139295A1 (en) 2009-06-05 2010-05-14 Apparatus for transporting a fluid within a channel leg of a microfluidic element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP10725960A Division EP2437890A1 (en) 2009-06-05 2010-05-14 Apparatus for transporting a fluid within a channel leg of a microfluidic element

Publications (1)

Publication Number Publication Date
EP3978132A1 true EP3978132A1 (en) 2022-04-06

Family

ID=42340358

Family Applications (3)

Application Number Title Priority Date Filing Date
EP10725960A Ceased EP2437890A1 (en) 2009-06-05 2010-05-14 Apparatus for transporting a fluid within a channel leg of a microfluidic element
EP21204270.9A Pending EP3978132A1 (en) 2009-06-05 2010-05-14 Device for transporting a fluid in a duct section of a microfluidic element
EP21204273.3A Pending EP3978133A1 (en) 2009-06-05 2010-05-14 Device for transporting a fluid in a duct section of a microfluidic element

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10725960A Ceased EP2437890A1 (en) 2009-06-05 2010-05-14 Apparatus for transporting a fluid within a channel leg of a microfluidic element

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP21204273.3A Pending EP3978133A1 (en) 2009-06-05 2010-05-14 Device for transporting a fluid in a duct section of a microfluidic element

Country Status (4)

Country Link
US (1) US10315197B2 (en)
EP (3) EP2437890A1 (en)
DE (2) DE102009015395B4 (en)
WO (1) WO2010139295A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1957254B (en) 2004-04-07 2012-01-25 沃德劳有限合伙公司 Disposable chamber for analyzing biologic fluids
US7731901B2 (en) 2005-10-19 2010-06-08 Abbott Laboratories Apparatus and method for performing counts within a biologic fluid sample
DE102009015395B4 (en) 2009-03-23 2022-11-24 Thinxxs Microtechnology Gmbh Flow cell for treating and/or examining a fluid
JP5709894B2 (en) 2009-12-18 2015-04-30 アボット ポイント オブ ケア インコーポレイテッド Biological fluid analysis cartridge
EP2624955A1 (en) 2010-10-07 2013-08-14 BOEHRINGER INGELHEIM microParts GmbH Microfluidic platform
ES2533839T3 (en) 2010-12-30 2015-04-15 Abbott Point Of Care, Inc. Biological fluid analysis cartridge with sample manipulation portion and analysis chamber portion
WO2012162779A1 (en) * 2011-05-27 2012-12-06 The University Of British Columbia Microfluidic cell trap and assay apparatus for high-throughput analysis
US8797527B2 (en) 2011-08-24 2014-08-05 Abbott Point Of Care, Inc. Biologic fluid sample analysis cartridge
GB2516675A (en) 2013-07-29 2015-02-04 Atlas Genetics Ltd A valve which depressurises, and a valve system
GB2516666B (en) 2013-07-29 2015-09-09 Atlas Genetics Ltd Fluidic cartridge for nucleic acid amplification and detection
GB2516669B (en) 2013-07-29 2015-09-09 Atlas Genetics Ltd A method for processing a liquid sample in a fluidic cartridge
GB2516667A (en) 2013-07-29 2015-02-04 Atlas Genetics Ltd An improved cartridge, cartridge reader and method for preventing reuse
GB2516672B (en) 2013-07-29 2015-05-20 Atlas Genetics Ltd A system and method for expelling liquid from a fluidic cartridge
US9610579B2 (en) 2014-01-07 2017-04-04 Daktari Diagnostics, Inc. Fluid delivery devices, systems, and methods
SG11201702557XA (en) 2014-09-29 2017-04-27 Chipcare Corp A device for optical detection of cells comprising a cartridge and fluidic chip and methods thereof
US10466159B2 (en) 2014-11-28 2019-11-05 Chipcare Corporation Multiplex bead array assay
MX2018012447A (en) * 2016-04-29 2019-03-07 Kimberly Clark Co Surface for directional fluid transport.
EP3585517A4 (en) 2016-12-29 2020-09-09 Ador Diagnostics S.r.l. Cartridge for use in in-vitro diagnostics and method of use thereof
KR102104868B1 (en) * 2017-03-29 2020-04-29 킴벌리-클라크 월드와이드, 인크. Surface for directional fluid transfer against external pressure
US10046322B1 (en) 2018-03-22 2018-08-14 Talis Biomedical Corporation Reaction well for assay device
PL425106A1 (en) 2018-03-30 2019-10-07 Bacteromic Spółka Z Ograniczoną Odpowiedzialnością Microflow chip
US10820847B1 (en) 2019-08-15 2020-11-03 Talis Biomedical Corporation Diagnostic system
EP4173708A1 (en) * 2021-10-28 2023-05-03 thinXXS Microtechnology GmbH Microfluidic element, in particular a flow cell with integrated drying reagent

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0501796A2 (en) * 1991-03-01 1992-09-02 Biotrack, Inc. Capillary stop-flow junction having improved stability against accidental fluid flow
US6296020B1 (en) 1998-10-13 2001-10-02 Biomicro Systems, Inc. Fluid circuit components based upon passive fluid dynamics
WO2002012734A1 (en) * 2000-08-04 2002-02-14 Biomicro Systems, Inc. Remote valving for microfluidic flow control
US20020124879A1 (en) * 2001-01-08 2002-09-12 Shay Kaplan Apparatus, and method for propelling fluids
WO2002090771A2 (en) * 2001-05-09 2002-11-14 The Provost Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin A liquid pumping system
US20040184964A1 (en) * 2003-03-20 2004-09-23 Yasuhiro Watanabe Microfluid handling device
US20050214947A1 (en) * 2004-03-24 2005-09-29 Cox David M Liquid processing device including gas trap, and system and method
DE102005019195A1 (en) * 2004-04-28 2005-12-15 Yokogawa Electric Corporation, Musashino Chemical reaction cartridge, method for producing a chemical reaction cartridge and mechanism for actuating a chemical reaction cartridge
US7125711B2 (en) 2002-12-19 2006-10-24 Bayer Healthcare Llc Method and apparatus for splitting of specimens into multiple channels of a microfluidic device
US20090047191A1 (en) * 2007-06-08 2009-02-19 Gafur Zainiev Closed space disposable micro-reactor and uses thereof
WO2009112030A1 (en) * 2008-03-12 2009-09-17 Fluimedix Aps Controlled liquid handling
DE102009015395A1 (en) 2009-03-23 2010-09-30 Thinxxs Microtechnology Ag Micro fluid cell, for analysis and diagnosis of e.g. blood, has a pressure zone to transport the fluid through channels to chambers containing reagents and through a detection chamber

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065263A (en) 1976-04-02 1977-12-27 Woodbridge Iii Richard G Analytical test strip apparatus
US4077845A (en) 1977-04-20 1978-03-07 Miles Laboratories, Inc. Disposable inoculation device and process of using same
DE3541057A1 (en) 1985-11-19 1987-05-21 Kratzer Michael METHOD AND DEVICE FOR MEASURING THE AGGREGATION OF BLOOD PLATES OR THE COAGULATION OF THE BLOOD
US4999304A (en) 1987-12-28 1991-03-12 Miles Inc. Dynamic braking centrifuge
US5154888A (en) 1990-10-25 1992-10-13 Eastman Kodak Company Automatic sealing closure means for closing off a passage in a flexible cuvette
JP3594979B2 (en) 1992-10-23 2004-12-02 イーストマン コダック カンパニー Storage device for increasing and detecting nucleic acid material
DE4410224C2 (en) 1994-03-24 1996-02-29 Meinhard Prof Dr Knoll Miniaturized flow analysis system
US5504011A (en) 1994-10-21 1996-04-02 International Technidyne Corporation Portable test apparatus and associated method of performing a blood coagulation test
US5863502A (en) 1996-01-24 1999-01-26 Sarnoff Corporation Parallel reaction cassette and associated devices
US6001307A (en) 1996-04-26 1999-12-14 Kyoto Daiichi Kagaku Co., Ltd. Device for analyzing a sample
DE19648695C2 (en) 1996-11-25 1999-07-22 Abb Patent Gmbh Device for the automatic and continuous analysis of liquid samples
US5922288A (en) 1997-05-29 1999-07-13 Herst; C. V. Taylor Device for isolating a component of a physiological sample
US6012902A (en) * 1997-09-25 2000-01-11 Caliper Technologies Corp. Micropump
GB9804483D0 (en) 1998-03-02 1998-04-29 Central Research Lab Ltd Apparatus for and method of controlling the rate of flow of fluid along a pathway
DE19933458B4 (en) 1999-07-15 2015-08-20 Eppendorf Ag Equipment and systems for handling liquid samples
AU4907101A (en) 2000-02-23 2001-09-03 Caliper Technologies Inc Multi-reservoir pressure control system
AU2002306486A1 (en) 2001-02-09 2002-08-28 Microchem Solutions Method and apparatus for sample injection in microfabricated devices
JP3949056B2 (en) 2001-04-03 2007-07-25 マイクロニクス, インコーポレイテッド Split concentration cytometer
DE10140699A1 (en) 2001-08-24 2003-03-13 Roche Diagnostics Gmbh Arrangement and method for examining the flowability of a physiological liquid sample
US6615866B2 (en) 2001-09-13 2003-09-09 Morrell Incorporated Hydraulic power assembly having a removable top
DE10222478A1 (en) 2002-05-22 2003-12-04 Bartels Mikrotechnik Gmbh Microchip based analytical device can undertake e.g. liquid separation from a gas by movement of a flexible layer overlying a recess in the chip surface
JP2006520190A (en) 2003-01-21 2006-09-07 マイクロニクス, インコーポレイテッド Methods and systems for microfluidic manipulation, amplification, and analysis of fluids (eg, bacterial assays and antiglobulin tests)
US7854897B2 (en) 2003-05-12 2010-12-21 Yokogawa Electric Corporation Chemical reaction cartridge, its fabrication method, and a chemical reaction cartridge drive system
DE10339452A1 (en) 2003-08-22 2005-03-17 Institut für Physikalische Hochtechnologie e.V. Equipment for microtechnological structuring of fluids used in analytical or combinatorial biology or chemistry, has dosing, splitting and fusion devices in fluid pathway
DE102004005193B4 (en) 2004-02-02 2006-08-24 Medion Diagnostics Gmbh Device for separating individual particles from particle agglutinations
US7273590B2 (en) 2004-04-29 2007-09-25 Industrial Technology Research Institute gravity-driven apparatus and method for control of microfluidic devices
US20060002817A1 (en) * 2004-06-30 2006-01-05 Sebastian Bohm Flow modulation devices
US7655470B2 (en) 2004-10-29 2010-02-02 University Of Chicago Method for manipulating a plurality of plugs and performing reactions therein in microfluidic systems
US7491363B2 (en) 2004-07-15 2009-02-17 Applied Biosystems, Llc. Fluid processing device
DE102004046396A1 (en) 2004-09-24 2006-04-13 Land Baden-Württemberg, vertreten durch das Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg, vertreten durch den Minister A particle sedimentation apparatus and method for performing a particle sedimentation
WO2006044841A2 (en) * 2004-10-18 2006-04-27 Applera Corporation Fluid processing device including size-changing barrier
DE102004051573B4 (en) 2004-10-22 2007-03-15 Yokogawa Electric Corporation, Musashino Process for treating a waste liquid in chemical reaction cartridges and chemical reaction cartridge in which the process is used
JP2010266203A (en) 2008-05-20 2010-11-25 Sony Corp Method and device for acquisition of biological information, and method and device for measurement of physiologically active substance

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0501796A2 (en) * 1991-03-01 1992-09-02 Biotrack, Inc. Capillary stop-flow junction having improved stability against accidental fluid flow
US6296020B1 (en) 1998-10-13 2001-10-02 Biomicro Systems, Inc. Fluid circuit components based upon passive fluid dynamics
WO2002012734A1 (en) * 2000-08-04 2002-02-14 Biomicro Systems, Inc. Remote valving for microfluidic flow control
US6615856B2 (en) 2000-08-04 2003-09-09 Biomicro Systems, Inc. Remote valving for microfluidic flow control
US20020124879A1 (en) * 2001-01-08 2002-09-12 Shay Kaplan Apparatus, and method for propelling fluids
WO2002090771A2 (en) * 2001-05-09 2002-11-14 The Provost Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin A liquid pumping system
US7125711B2 (en) 2002-12-19 2006-10-24 Bayer Healthcare Llc Method and apparatus for splitting of specimens into multiple channels of a microfluidic device
US20040184964A1 (en) * 2003-03-20 2004-09-23 Yasuhiro Watanabe Microfluid handling device
US20050214947A1 (en) * 2004-03-24 2005-09-29 Cox David M Liquid processing device including gas trap, and system and method
DE102005019195A1 (en) * 2004-04-28 2005-12-15 Yokogawa Electric Corporation, Musashino Chemical reaction cartridge, method for producing a chemical reaction cartridge and mechanism for actuating a chemical reaction cartridge
US20090047191A1 (en) * 2007-06-08 2009-02-19 Gafur Zainiev Closed space disposable micro-reactor and uses thereof
WO2009112030A1 (en) * 2008-03-12 2009-09-17 Fluimedix Aps Controlled liquid handling
DE102009015395A1 (en) 2009-03-23 2010-09-30 Thinxxs Microtechnology Ag Micro fluid cell, for analysis and diagnosis of e.g. blood, has a pressure zone to transport the fluid through channels to chambers containing reagents and through a detection chamber

Also Published As

Publication number Publication date
WO2010139295A1 (en) 2010-12-09
DE102009015395A1 (en) 2010-09-30
DE202009008052U1 (en) 2009-08-27
DE102009015395B4 (en) 2022-11-24
US10315197B2 (en) 2019-06-11
EP2437890A1 (en) 2012-04-11
EP3978133A1 (en) 2022-04-06
US20120082599A1 (en) 2012-04-05

Similar Documents

Publication Publication Date Title
EP3978132A1 (en) Device for transporting a fluid in a duct section of a microfluidic element
EP2576065B1 (en) Flow cell with cavity and diaphragm
DE102009023430B4 (en) Apparatus and method for controlling fluid flows in lab-on-a-chip systems and method of manufacturing the apparatus
EP2389529B1 (en) Valve, in particular for a component in microfluid technology
EP3164212B1 (en) Reagent reservoir for fluids
EP2435741B1 (en) Valve for lab-on-a-chip systems
DE102011004125A1 (en) Device for the hermetically sealed storage of liquids for a microfluidic system
EP3406340B1 (en) Flow cell with housing component
DE102009001257A1 (en) Apparatus and method for handling liquids
DE10209897A1 (en) Micro Components Connection System
DE102010041833B4 (en) Microfluidic chip with multiple cylinder-piston arrangements
DE102005055545B4 (en) Device and method for filling a pressure measuring transducer
EP2754495A2 (en) Microfluidic channel system with bubble capture device and method for the removal of gas bubbles
WO2010031559A1 (en) Microfluidic valve, microfluidic pump, microfluidic system, and a production method
EP2486313B1 (en) Microfluidic structure and method for positioning a fluid volume in a microfluidic system
WO2018210644A1 (en) Single-use filtering module and single-use cleaning module, each insertable in a modular filtering system
EP4173708A1 (en) Microfluidic element, in particular a flow cell with integrated drying reagent
DE102008004139B3 (en) Liquid moving device for moving liquid back and forth over sensor surface of analytic sensor utilized in bio analytics field, has channel designed in such manner that counter pressure difference opposite to pressure difference is produced
DE102021207014A1 (en) Microfluidic device and method of operating a microfluidic device
WO2012045753A1 (en) Microfluidic platform
DE102010041972A1 (en) A microfluidic device and method of controlling fluid flow using the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 2437890

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THINXXS MICROTECHNOLOGY GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221005

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR