EP3976235A1 - Installation de filtration membranaire de liquides et procede de production d'eau potable avec celle-ci sans post-mineralisation - Google Patents

Installation de filtration membranaire de liquides et procede de production d'eau potable avec celle-ci sans post-mineralisation

Info

Publication number
EP3976235A1
EP3976235A1 EP20726498.7A EP20726498A EP3976235A1 EP 3976235 A1 EP3976235 A1 EP 3976235A1 EP 20726498 A EP20726498 A EP 20726498A EP 3976235 A1 EP3976235 A1 EP 3976235A1
Authority
EP
European Patent Office
Prior art keywords
membranes
filtration
installation
pressure
upm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20726498.7A
Other languages
German (de)
English (en)
Inventor
Claire Ventresque
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veolia Water Solutions and Technologies Support SAS
Original Assignee
Veolia Water Solutions and Technologies Support SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veolia Water Solutions and Technologies Support SAS filed Critical Veolia Water Solutions and Technologies Support SAS
Publication of EP3976235A1 publication Critical patent/EP3976235A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/031Two or more types of hollow fibres within one bundle or within one potting or tube-sheet
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/06Specific process operations in the permeate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/24Quality control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/24Quality control
    • B01D2311/246Concentration control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/025Permeate series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/06Use of membrane modules of the same kind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/08Use of membrane modules of different kinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the field of the invention is that of the design and production of installations used to filter liquids under pressure using filtration membranes with a view to removing pollutants, in particular micropollutants, and of reduce the hardness to produce drinking water.
  • Such liquids can in particular be sea water, borehole water or surface water.
  • Membrane filtration processes are widely used in the production of drinking water.
  • the membranes they use have a porous structure which allows them to retain pollutants, in particular micropollutants such as herbicides, pesticides or drug residues and to limit the transfer of one or more solutes with respect to the 'water.
  • microfiltration membranes have pores of 0.1 ⁇ m to 1 ⁇ m
  • those for ultrafiltration have pores from 5 nm to 0.1 ⁇ m
  • those for nanofiltration (NF) have pores of a few nanometers.
  • reverse osmosis membranes have an even more dense structure.
  • OIBP low pressure reverse osmosis membranes
  • Ol seawater desalination
  • reverse osmosis, low pressure reverse osmosis and nanofiltration membrane filtration modules are generally spiral membrane modules or hollow fiber membrane modules. These modules are arranged in series within pressure tubes which commonly have a size allowing them to accommodate up to eight modules positioned in series.
  • the water to be filtered is introduced at one end of the pressure tube and passes through the filtration membranes.
  • the filtered liquid (permeate) is collected by a perforated recovery tube arranged along the longitudinal axis at the center of modules.
  • Inter-connector devices make it possible to connect the permeate recovery tubes of the various membrane filtration modules arranged in series inside the pressure tube.
  • the permeate is recovered at the end of the pressure tubes using permeate collectors, each connected to permeate discharge means.
  • the concentrate consisting of water concentrated in solutes, is collected at the opposite end of the pressure tube from the inlet water.
  • these pressure tubes are associated in blocks (also designated by the English term “skids”) in which they are mounted in parallel. Collectors are placed at the outlet of the pressure tubes to collect the permeate and the concentrate. These different collectors are each connected to a common collector.
  • the installations can be organized into several filtration stages: the concentrate leaving the first stage feeds and is treated by the membranes of a second stage, the concentrate coming from the second stage feeds and is treated by the membranes of a third stage.
  • the permeates of each stage are brought together.
  • reverse osmosis membranes can be used in the same pressure tube, the salt passages of which are of the same order of magnitude but with different permeabilities, in order to distribute the membrane production flows in the pressure tubes.
  • the patent application DOW (WO200582497A1) relates to a method and an apparatus for treating water of high osmotic pressure, especially sea water, by passing the water through pressure tubes containing at least three elements of pressure.
  • Spiral nanofiltration or reverse osmosis membranes having different permeabilities, the most permeable membrane being placed at the tail (concentrate side).
  • This invention consists in better distributing the flows between the spiral membranes of the same pressure tube and in reducing the operating pressure.
  • Membrane installations for the production of drinking water including the membranes of filtration are only reverse osmosis or low pressure reverse osmosis membranes have the drawback of producing completely demineralized water.
  • all of the dissolved salts, in particular the dissolved calcium, in the liquids to be filtered are retained by the reverse osmosis membranes or the low pressure reverse osmosis membranes. It follows that these waters must be remineralized to be made drinkable.
  • the post-mineralization step involves the use of chemicals which can lead to an increase in the turbidity of the water produced. This is the case, for example, with lime remineralization. This step therefore requires the inclusion of additional equipment in the installations. This post-mineralization step therefore significantly increases the overall cost of the drinking water operation and the risks of contamination of the water produced.
  • An objective of the present invention is to provide a membrane filtration technique for the production of drinking water which makes it possible to dispense with any post-mineralization stage of the water produced by the membranes, whether by addition of reagent or by supply of water. hard water, while allowing the effective reduction of the micropollutants contained in the liquids to be treated.
  • An objective of the invention is also to provide such a technique which makes it possible to obtain filtered water having a given target hardness even when the temperature of the liquids to be treated or their calcium concentration varies.
  • Another objective of the present invention is to provide a method implementing such an installation making it possible to operate the membranes with higher hydraulic yields than those obtainable with the methods of the prior art.
  • each UPM comprising:
  • each pressure tube accommodating at least two membrane filtration modules with spiral membranes or hollow fibers mounted in series,
  • said membranes of said filtration modules of said installation are at least of two different types chosen from the group consisting of reverse osmosis membranes and low pressure reverse osmosis membranes on the one hand, and nanofiltration membranes on the other hand, and in that said at least one UPM comprises means for modifying the order of supply of said blocks of pressure tubes which it groups together.
  • the installation comprises two types of membranes, nanofiltration membranes on the one hand and reverse osmosis membranes and / or low pressure reverse osmosis membranes on the other hand.
  • said membranes of at least two different types are provided in different pressure tubes.
  • said membranes of at least two different types are provided in the same pressure tubes.
  • said nanofiltration membranes used allow a rejection rate of less than or equal to 70% of the calcium during a standard CaC test.
  • This standard test is performed on synthetic water consisting of demineralized water containing 500 mg / l of CaCh, the modulus being subjected to a pressure of 75 psi (0.52 MPa) and producing an efficiency of 15% (efficiency defined as flow rate of permeate produced during the test divided by the flow rate of feed water to the membrane module).
  • the rejection of calcium during the standard test is measured at a temperature of 25 ° C and with a flow of 31 L / h / m 2 / bar. This test is called the “standard CaCh test”.
  • the rejection rate is defined as the rate of solute removal (released into the concentrate), expressed as: concentration in the permeate / concentration in the feed.
  • said reverse osmosis membranes and / or said low pressure reverse osmosis membranes allow a rejection rate greater than 90% of the calcium during a standard CaC test.
  • the installation has a ratio of the number of nanofiltration membranes to the total number of membranes of between 5% and 95%.
  • said nanofiltration membranes have a standard specific flux, or permeability, greater than 3 L / h / m 2 / bar and allow a rejection rate of monovalent salts of less than 82%, said rejection being that observed during a test standard on synthetic water consisting of demineralized water containing 2 g / l of NaCl, the modulus being subjected to a pressure of 70 psi (4.8 bars) and producing a yield of 15%.
  • the sodium rejection during the standard test is measured at a temperature of 25 ° C. This test is called the “standard NaCl test”.
  • said reverse osmosis or low pressure reverse osmosis membranes have a standard specific flow greater than 3 L / h / m 2 / bar and allow a rejection rate of monovalent salts greater than or equal to 82%, said rejection being that observed during a standard test with NaCl.
  • the invention also relates to any liquid filtration process for the production of drinking water using such an installation, characterized in that it comprises the steps of supplying the filtration units with at least one UPM according to a first order.
  • each UPM is organized in filtration stages connected in series, each filtration stage comprising, according to the possible configurations thanks to the use of said means making it possible to modify the order of supply of said blocks of pressure tubes, that is to say a single filtration unit, i.e. 2 to 6 filtration units mounted in parallel.
  • one or more blocks of pressure tubes operating in parallel in the first configuration can operate in series in the second configuration and one or more blocks of pressure tubes operating in parallel series in the first configuration can operate in parallel in the second configuration. the second configuration.
  • the invention relates in particular to such a method implemented with an installation comprising a plurality N of UPMs, with N> 1 integer, characterized in that it comprises a step consisting in supplying the blocks of x / N UPM, with x integer varying from 0 to N, according to said first order, and the blocks of the remaining UPMs according to said second order, and to vary x so that the filtered water obtained at the outlet of the installation meets a predetermined quality factor .
  • said parameter is chosen from the group consisting of the temperature of the water to be treated.
  • said quality factor is the hardness of said filtered water obtained at the outlet of the installation.
  • FIG 1 schematically shows a first embodiment of an installation according to the present invention, the direction of the liquids passing through it being indicated by arrows corresponds to a first operating configuration called “high temperature configuration”.
  • FIG 2 schematically represents the same installation operating according to a second configuration called “low temperature water configuration”.
  • FIG 3 schematically shows a second embodiment of an installation according to the present invention, the direction of the liquids passing through it being indicated by arrows corresponds to a first operating configuration called “high temperature configuration”.
  • FIG 4 schematically represents the same installation as that shown in Figure 3 operating according to a second configuration called "low temperature water configuration”.
  • UPMs are shown in Figures 1 and 2. It comprises, in addition to supply means 20 for liquid to be filtered and discharge means 30 for rejected liquid or concentrate, six filtration units 1 to 6.
  • Each block filter contains thirty pressure tubes.
  • Each pressure tube contains six membrane filtration modules mounted in series. This UPM therefore contains 1080 membrane filtration modules. So the plant, which contains six UPMs, each with 1080 membranes, has a total of 6480 membranes.
  • the NF membranes are spiral membranes marketed under the trade reference DOW FILMTEC NF270-400 and the OIBP membranes are spiral membranes marketed under the trade reference DOW FILMTEC ECO-400.
  • the NF membranes used exhibit a flow rate of 55.6 m 3 / day under the standard CaC test and a calcium rejection rate of 40 to 60% under the standard CaC test.
  • the OIBP membranes used have a flow rate of 44 m 3 / day under the standard NaCl test and make it possible to reject 99.7% of the monovalent ions.
  • FIGS. 1 and 2 we therefore distinguish blocks 1, 2 and 3 with NC modules and blocks 4, 5 and 6 with OIBP modules.
  • each UM P of the installation is provided with means making it possible to modify the order of supply of the blocks of pressure tubes which it groups together.
  • These means consist of valves, or any other isolation device, 21 to 26.
  • the order of supplying the modules of each UMP can vary as a function of a parameter.
  • valves or isolation device 21, 23 and 26 are open while the valves or isolation devices 22, 24 and 25 are closed.
  • a first filtration stage made up of NF blocks 1, 2 and 3 fed in parallel
  • a second filtration stage made up of OIBP 4,5 blocks fed in parallel
  • a third filtration stage made up of the OIBP module block 6.
  • the OIBP takes place at the tail of the UPM on two stages, which allows a good rejection of the micropollutants and of the calcium without degrading the operating pressure.
  • the supply order of the blocks 1 to 6 can be modified by closing the valves or isolation devices 21, 23 and 26 and by opening the valves or isolation devices 22, 24 and 25.
  • the first filtration stage consists of the blocks of OIBP 4, 5, 6 modules mounted in parallel
  • the second filtration stage consists of the blocks of modules of NF 2 and 3
  • the third filtration stage consists of the NC module block 1.
  • the nanofiltration takes place at the tail of the UPM on two stages, thus promoting a drop in pressure while offering good rejection of the micropollutants.
  • block 1 operating in parallel in the first configuration operates in series in the second configuration and block 6 operating in series in the first configuration operates in parallel in the second configuration.
  • Simulations have been carried out to show that, thanks to the invention, it is possible to maintain the hardness of the water produced by the installation within a fixed range, for example between 8 and 9 ° F, while maintaining good rejection of the micropollutants, even if the temperature or the quality of the water to be filtered varies.
  • Bicarbonate content 230 mg / l
  • nitrates 20 mg / l
  • Chloride content 30 mg / l
  • the flow rate of treated water produced is 100,000 m 3 / d -
  • the objective for the water produced is set at a minimum of 30 mg / l of calcium (corresponds to a hardness of 8 ° F) whatever the temperature of the water to be filtered.
  • the maximum desired concentration is 35 mg / L of calcium (corresponds to a hardness of 9 ° F).
  • the proportion (x / 6) of UPM of the installation operating in the first configuration and of UPM operating in the second configuration was varied as a function of the temperature of the water to be filtered. .
  • Table 1 below indicates for each temperature interval, and for each proportion (0/6; 1/6; 2/6; 3/6; 4/6; 5/6; 6/6), the concentration of calcium (Ca, major component of the hardness) of the permeate, the nitrate (NO3) concentration of the permeate as well as the supply pressure (P) of the UPMs.
  • the installation in double stream contains a proportion of 25% of NF modules and 75% of OIPB modules.
  • Bicarbonate content 230 mg / l
  • nitrates 20 mg / l
  • Chloride content 30 mg / l
  • the flow of treated water produced is 100,000 m3 / d.
  • the objective for produced water is set at a minimum of 30 mg / l of calcium regardless of the calcium concentration of the inlet water to be filtered.
  • the maximum desired concentration is 35 mg / l of calcium.
  • Table 4 indicates for each calcium content in the inlet water to be filtered, and for each proportion (0/6; 1/6; 2/6; 3/6; 4/6; 5/6 ; 6/6), the calcium concentration (major component of the hardness) of the permeate, the nitrate concentration of the permeate and the supply pressure. [TABLE 4]
  • the double-channel installation contains a proportion of 30% of NF modules and 70% of OIPB modules.
  • This double channel was used to filter the same water with the same variations in calcium concentrations.
  • Table 5 indicates, for each calcium content in the inlet water, the concentrations of calcium (the major component of hardness) and of nitrates in the permeate and the supply pressure.
  • a second embodiment of an installation according to the present invention comprises six UPMs such as that shown in Figures 3 and 4 similar to that shown with reference to Figures 1 and 2 except in that it has valves or other device for 'additional insulation (21a, 22a, 22b, 22c, 23a, 23b) and in that it includes four filter blocks instead of six.
  • one of these blocks contains thirty pressure tubes, each pressure tube containing six NF modules, another block (block 2a) contains sixty pressure tubes, each pressure tube containing six NF modules, another block (block 4) contains thirty pressure tubes, each pressure tube containing six OIBP modules and another block (block 6a) contains sixty pressure tubes, each pressure tube containing six OIBP modules.
  • the capacity of the UPM shown in these Figures 3 and 4 is therefore the same as that shown in Figures 1 and 2.
  • valves or isolation device 21, 21a, 23, 23a, 23b and 26 are open while the valves or isolation devices 22, 22a, 22b, 22c, 24 and 25 are closed.
  • a first filtration stage made up of two NF blocks 1 and 2a supplied in parallel, a second filtration stage made up of OIBP block 6a, and a third filtration stage made up of OIBP block 4 are thus defined.
  • the OIBP takes place at the tail of the UPM on two stages, which allows good rejection of micropollutants and calcium without degrading the operating pressure.
  • the order of supply of the blocks can be modified by closing the valves or isolation devices 21, 21 a, 23, 23a, 23b and 26 and by opening the valves or isolation devices 22, 22a , 22b, 22c, 24 and 25.
  • the first filtration stage consists of blocks of OIBP 4 and 6a modules mounted in parallel
  • the second filtration stage consists of the NF 2a block
  • the third filtration stage consists of the NF 1 module block.
  • the nanofiltration takes place at the tail of the UPM on two stages, thus promoting a drop in pressure while offering good rejection of the micropollutants.
  • the block 1 operating in parallel in the first configuration operates in series in the second configuration and the blocks 6a operating in series in the first configuration operate in parallel in the second configuration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Installation pour la filtration sous pression de liquide en vue de la production d'eau potable comprenant au moins une unité de production membranaire d'eau potable (UPM), chaque UPM comprenant: une pluralité de blocs de filtration contenant chacun un faisceau de tubes de pression montés en parallèle, chaque tube de pression accueillant au moins deux modules de filtration membranaire à membranes spiralées ou à fibres creuses montés en série, des moyens d'amenée (20) de liquide à filtrer, des moyens d'évacuation de liquide filtré, et des moyens d'évacuation (30) de concentrât, caractérisée en ce les membranes des modules de filtration sont au moins de deux différents types choisis dans le groupe constitué par les membranes d'osmose inverse et les membranes d'osmose inverse basse pression (4-6) d'une part, et les membranes de nanofiltration (1-3) d'autre part, et en ce que au moins une UPM comprend des moyens (21-26) permettant de modifier l'ordre d'alimentation des blocs de tubes de pression qu'elle regroupe. Procédé consistant à alimenter les blocs de filtration d'au moins une UPM selon un premier ordre d'alimentation dans lequel les tubes contenant des membranes de nanofiltration sont en tête d'UPM, puis à alimenter les tubes de pression selon un second ordre d'alimentation dans lequel les tubes de pression contenant des membranes de d'osmose inverse ou des membranes d'osmose inverse basse pression sont en tête d'UPM.

Description

DESCRIPTION
TITRE : INSTALLATION DE FILTRATION MEMBRANAIRE DE LIQUIDES ET PROCEDE DE
PRODUCTION D'EAU POTABLE AVEC CELLE-CI SANS POST-MINERALISATION
DOMAINE
Le domaine de l'invention est celui de la conception et de la réalisation des installations mises en oeuvre pour filtrer sous pression des liquides à l'aide de membranes de filtration en vue d'en éliminer les polluants, notamment les micropolluants, et d'en réduire la dureté, pour produire de l'eau potable. De tels liquides peuvent notamment être de l'eau de mer, de l'eau de forage ou de l'eau de surface.
ART ANTERIEUR
Les procédés de filtration membranaire sont abondamment utilisés dans le cadre de la production d'eau potable. Les membranes qu'ils mettent en oeuvre ont une structure poreuse qui leur permet de retenir les polluants, notamment les micropolluants tels que les herbicides, les pesticides ou les résidus de médicaments et de limiter le transfert d'un ou plusieurs solutés par rapport à l'eau.
Ainsi, les membranes de microfiltration ont des pores de 0,1 pm à 1 pm, celles d'ultra filtration des pores de 5 nm à 0,1 pm, celles de nanofiltration (NF) des pores de quelques nanomètres. Enfin les membranes d'osmose inverse présentent une structure encore plus dense. On distingue parmi les membranes d'osmose inverse, les membranes d'osmose inverse basse pression (OIBP) qui présentent une perméabilité supérieure à celle des membranes d'osmose inverse utilisées en dessalement d'eau de mer (Ol). Ces membranes d'osmose inverse permettent ainsi de retenir la quasi-totalité des solutés. Les membranes de nanofiltration se distinguent des membranes d'osmose inverse basse pression par le fait qu'elles ne retiennent que partiellement les ions monovalents.
Dans les installations de production d'eau potable, les modules de filtration membranaire d'osmose inverse, d'osmose inverse basse pression et de nanofiltration sont en général des modules de membranes spiralées ou des modules de membranes à fibres creuses. Ces modules sont disposés en série au sein de tubes de pression qui présentent couramment une taille leur permettant d'accueillir jusqu'à huit modules positionnés en série. L'eau à filtrer est introduite à une extrémité du tube de pression et traverse les membranes de filtration. Le liquide filtré (perméat) est collecté par un tube de récupération perforé disposé selon l'axe longitudinal au centre des modules. Des dispositifs inter-connecteurs permettent de connecter entre eux les tubes de récupération du perméat des différents modules de filtration membranaire disposés en série à l'intérieur du tube de pression. Le perméat est récupéré à l'extrémité des tubes de pression grâce à des collecteurs de perméat, chacun reliés à des moyens d'évacuation de perméat. Le concentrât, constituée d'eau concentrée en solutés, est récupéré à l'extrémité opposée du tube de pression par rapport à l'eau d'entrée.
En pratique, ces tubes de pression sont associés en blocs (aussi désignés par le terme anglais « skids ») dans lesquels ils sont montés en parallèle. Des collecteurs sont disposés à la sortie des tubes de pression pour collecter le perméat et le concentrât. Ces différents collecteurs sont reliés chacun à un collecteur commun.
Les installations peuvent être organisées en plusieurs étages de filtration : le concentrât sortant du premier étage alimente et est traité par les membranes d'un deuxième étage, le concentrât issu du deuxième étage alimente et est traité par les membranes d'un troisième étage... Les perméats de chaque étage sont rassemblés.
Beaucoup d'installations utilisant cette technologie comprennent un nombre important de blocs de filtration. C'est notamment le cas des installations de production d'eau potable à partir d'eau de mer, qui comprennent souvent plus de dix blocs, chacun pouvant regrouper jusqu'à deux cents tubes de pression accueillant chacun jusqu'à huit modules de filtration membranaire montés en série.
Pour minimiser l'énergie consommée dans les systèmes à membranes en dessalement d'eau on peut utiliser dans un même tube de pression des membranes d'osmose inverse dont les passages en sels sont du même ordre de grandeur mais avec des perméabilités différentes, afin de répartir les flux de production des membranes dans les tubes de pression.
Par exemple, la demande de brevet DOW (WO200582497A1) concerne une méthode et un appareil pour traiter des eaux de forte pression osmotique, spécialement l'eau de mer, en passant l'eau à travers des tubes de pression contenant au moins trois éléments de membranes spiralées de nanofiltration ou d'osmose inverse ayant des perméabilités différentes, la membrane la plus perméable étant placée en queue (côté concentrât). Cette invention consiste à mieux répartir les flux entre les membranes spiralées d'un même tube de pression et à diminuer la pression d'opération.
Les installations membranaires pour la production d'eau potable dont les membranes de filtration sont uniquement des membranes d'osmose inverse ou d'osmose inverse basse pression présentent l'inconvénient de produire des eaux totalement déminéralisées. En effet, la totalité des sels dissous, notamment du calcium dissous, dans les liquides à filtrer est retenue par les membranes d'osmose inverse ou les membranes d'osmose inverse basse pression. Il s'ensuit que ces eaux doivent être reminéralisées pour être rendues potables.
Les installations pour la production d'eau potable dont les membranes de filtration sont uniquement des membranes de nanofiltration présentent l'inconvénient de produire des eaux qui, en fonction de la ressource, peuvent contenir des teneurs en ions monovalents ou en micropolluants de faibles poids moléculaire trop importantes ou, du fait de la plus faible réjection des ions divalents, peuvent ne pas être assez déminéralisées.
En effet, il n'existe pas sur le marché de membranes capables à la fois de retenir certains micropolluants de faible poids moléculaire et de laisser passer une partie des ions calcium. L'étape de post-minéralisation implique l'utilisation de produits chimiques qui peut conduire à une augmentation de la turbidité de l'eau produite. C'est le cas par exemple de la reminéralisation à la chaux. Cette étape nécessite donc d'inclure dans les installations des équipements supplémentaires. Cette étape de post-minéralisation augmente donc de façon non négligeable le coût global de l'opération de potabilisation et les risques de contamination de l'eau produite.
Pour éviter ou minimiser une telle post-minéralisation, il est connu des installations intégrant deux filières montées en parallèle, l'une avec uniquement des membranes d'osmose inverse et l'autre sans membrane, on parle alors de bypass, ou uniquement avec des membranes dont le passage en sels est plus élevé, typiquement des membranes de nanofiltration, dans lesquelles une partie des liquides est traitée dans une filière et une autre partie dans l'autre filière. On obtient ainsi une eau traitée constituée par le mélange des eaux issues des deux filières qui n'a pas besoin d'être reminéralisée. De telles double-filières présentent l'inconvénient d'être plus coûteuses à mettre en oeuvre que les filières classiques. De plus, elles ne permettent pas d'obtenir des eaux potabilisées ayant une dureté fixe donnée, dans le cas où la température ou la dureté des eaux à traiter varie.
On notera aussi que les rendements hydrauliques des membranes des installations de l'art antérieur sont généralement limités, ce qui implique des pertes en eau relativement importantes. Pour réduire ce phénomène, des traitements par réactifs chimiques des eaux à filtrer peuvent être mis en place. Toutefois, ceci conduit à augmenter les coûts globaux.
OBJECTIFS DE L'INVENTION
Un objectif de la présente invention est de proposer une technique de filtration membranaire pour la production d'eau potable qui permet de s'affranchir de toute étape de post minéralisation des eaux produites par les membranes que ce soit par ajout de réactif ou par apport d'eau dure, tout en permettant l'abattement efficace des micropolluants contenus dans les liquides à traiter.
Un objectif de l'invention est aussi de proposer une telle technique qui permet d'obtenir des eaux filtrées ayant une dureté cible donnée même lorsque la température des liquides à traiter ou leur concentration en calcium varie.
Un autre objectif de la présente invention est de proposer un procédé mettant en oeuvre une telle installation permettant de faire fonctionner les membranes avec des rendements hydrauliques supérieurs à ceux pouvant être obtenus avec les procédés de l'art antérieur.
EXPOSE DE L'INVENTION
Ces objectifs, ainsi que d'autres qui apparaîtront par la suite, sont atteints grâce à l'invention qui concerne toute installation pour la filtration sous pression de liquide en vue de la production d'eau potable comprenant au moins une unité de production membranaire d'eau potable (UPM), chaque UPM comprenant:
une pluralité de blocs de filtration contenant chacun un faisceau de tubes de pression montés en parallèle, chaque tube de pression accueillant au moins deux modules de filtration membranaire à membranes spiralées ou à fibres creuses montés en série,
des moyens d'amenée de liquide à filtrer, des moyens d'évacuation de liquide filtré, et des moyens d'évacuation de concentrât, caractérisée en ce que lesdites membranes desdits modules de filtration de ladite installation sont au moins de deux différents types choisis dans le groupe constitué par les membranes d'osmose inverse et les membranes d'osmose inverse basse pression d'une part, et les membranes de nanofiltration d'autre part, et en ce que ladite au moins une UPM comprend des moyens permettant de modifier l'ordre d'alimentation desdits blocs de tubes de pression qu'elle regroupe.
Ainsi, selon l'invention l'installation comprend deux types de membranes, des membranes de nanofiltration d'une part et des membranes d'osmose inverse et/ou des membranes d'osmose inverse basse pression d'autre part. Selon un premier mode de réalisation, lesdites membranes d'au moins deux différents types sont prévues dans différents tubes de pression.
Selon un autre mode de réalisation, lesdites membranes d'au moins deux types différents sont prévues dans de mêmes tubes de pression.
Avantageusement, lesdites membranes de nanofiltration utilisées permettent un taux de réjection inférieur ou égal à 70 % du calcium lors d'un test standard au CaC . Ce test standard est effectué sur une eau synthétique constituée d'eau déminéralisée contenant 500 mg/l de CaCh, le module étant soumis à une pression de 75 psi (0,52 MPa) et produisant un rendement de 15 % (rendement défini comme le débit de perméat produit lors du test divisé par le débit d'eau d'alimentation du module membranaire). La réjection du calcium lors du test standard est mesurée à une température de 25°C et avec un flux de 31 L/h/m2/bar. Ce test est dit « test standard au CaCh ». Le taux de réjection est défini comme le taux d'élimination du soluté (rejeté dans le concentrât), exprimé par : concentration dans le perméat / concentration dans l'alimentation.
Egalement avantageusement, lesdites membranes d'osmose inverse et/ou lesdites membranes d'osmose inverse basse pression permettent un taux de réjection supérieur à 90 % du calcium lors d'un test standard au CaC .
Avantageusement, l'installation présente un ratio de nombres de membranes de nanofiltration sur le nombre total de membranes compris entre 5% et 95%.
Préférentiellement, lesdites membranes de nanofiltration présentent un flux spécifique standard, ou perméabilité, supérieur à 3 L/h/m2/bar et permettent un taux de réjection des sels monovalents inférieur à 82 %, ladite réjection étant celle constatée lors d'un test standard sur une eau synthétique constituée d'eau déminéralisée contenant 2g/l de NaCI, le module étant soumis à une pression de 70 psi (4,8 bars) et produisant un rendement de 15 %. La réjection du sodium lors du test standard est mesurée à une température de 25°C. Ce test est dit « test standard au NaCI ».
Egalement préférentiellement, lesdites membranes d'osmose inverse ou d'osmose inverse basse pression présentent un flux spécifique standard supérieur à 3 L/h/m2/bar et permettent un taux de réjection des sels monovalents supérieur ou égal à 82 %, ladite réjection étant celle constatée lors d'un test standard au NaCI. L'invention concerne également tout procédé de filtration de liquide pour la production d'eau potable mettant en oeuvre une telle installation caractérisé en ce qu'il comprend les étapes consistant à alimenter les blocs de filtration d'au moins une UPM selon un premier ordre d'alimentation dans lequel les tubes contenant des membranes de nanofiltration sont en tête d'UPM, puis en fonction de la variation d'un paramètre, à alimenter les tubes de pression selon un second ordre d'alimentation dans lequel les tubes de pression contenant des membranes d'osmose inverse ou des membranes d'osmose inverse basse pression sont en tête d'UPM. Avantageusement, chaque UPM est organisée en étages de filtration connectés en série, chaque étage de filtration comprenant, selon les configurations possibles grâce à la mise en oeuvre desdits moyens permettant de modifier l'ordre d'alimentation desdits blocs de tubes de pression, soit un seul bloc de filtration, soit 2 à 6 blocs de filtration montés en parallèle.
Ainsi, selon l'invention un ou plusieurs blocs de tubes de pression fonctionnant en parallèle dans la première configuration peuvent fonctionner en série dans la seconde configuration et une ou plusieurs blocs de tubes de pression fonctionnant en série parallèledans la première configuration peuvent fonctionner en parallèle dans la seconde configuration.
L'invention concerne notamment un tel procédé mis en oeuvre avec une installation comprenant une pluralité N d'UPM, avec N>1 entier, caractérisé en ce qu'il comprend une étape consistant à alimenter les blocs de x/N UPM, avec x entier variant de 0 à N, selon ledit premier ordre, et les blocs des UPM restantes selon ledit second ordre, et à faire varier x de façon telle que l'eau filtrée obtenue en sortie de l'installation réponde à un facteur de qualité prédéterminée.
Préférentiellement, ledit paramètre est choisi dans le groupe constitué par la température des eaux à traiter.
Egalement préférentiellement, ledit facteur de qualité est la dureté de ladite eau filtrée obtenue en sortie de l'installation.
LISTE DES FIGURES
L'invention, ainsi que les différents avantages qu'elle présente seront plus facilement compris grâce à la description qui va suivre de modes de réalisation de celle-ci donnée à titre illustratif et non limitatif, en référence aux dessins dans lesquels : [Fig 1] représente schématiquement un premier mode de réalisation d'une installation selon la présente invention, le sens des liquides y transitant étant indiqué par des flèches correspond à une première configuration de fonctionnement dite « configuration température élevée ».
[Fig 2] représente schématiquement la même installation fonctionnant selon une seconde configuration dite « configuration eau basse température ».
[Fig 3] représente schématiquement un second mode de réalisation d'une installation selon la présente invention, le sens des liquides y transitant étant indiqué par des flèches correspond à une première configuration de fonctionnement dite « configuration température élevée ».
[Fig 4] représente schématiquement la même installation que celle représentée à la figure 3 fonctionnant selon une seconde configuration dite « configuration eau basse température ».
DESCRIPTION DE MODES DE REALISATION
Un premier mode de réalisation d'une installation selon la présente invention est constituée de six UPM identiques (N=6), chacune étant dimensionnée pour produire 695 m3/h d'eau potable avec un rendement de 85 % à partir d'eau ayant une pression osmotique inférieure à 20 bars. Une de ces UPM est représentée sur les figures 1 et 2. Elle comprend, outre des moyens d'amenée 20 de liquide à filtrer et des moyens d'évacuation 30 de liquide rejeté ou concentrât, six blocs de filtration 1 à 6. Chaque bloc de filtration contient trente tubes de pression. Chaque tube de pression contient six modules de filtration membranaire montés en série. Ainsi cette UPM contient 1080 modules de filtration membranaire. Donc l'usine, qui contient six UPM, chacune de 1080 membranes, regroupe 6480 membranes en tout.
Plus précisément, trois de ces blocs contiennent des modules NF et les trois autres des modules OIBP.
Dans le cadre de ce mode de réalisation, les membranes NF sont des membranes spiralées commercialisées sous la référence commerciale DOW FILMTEC NF270-400 et les membranes d'OIBP sont des membranes spiralées commercialisées sous la référence commerciale DOW FILMTEC ECO-400.
Les membranes NF utilisées présentent un débit de 55,6 m3/jour sous test standard CaC et un taux de réjection en calcium de 40 à 60 % sous test standard CaC .
Les membranes OIBP utilisées présentent quant à elles un débit de 44 m3/jour sous test standard NaCI et permettent de rejeter 99, 7 % des ions monovalents. Sur les figures 1 et 2 on distingue donc les blocs 1,2 et 3 avec des modules NF et les blocs 4, 5 et 6 avec des modules OIBP.
Selon l'invention, chaque UM P de l'installation est pourvue de moyens permettant de modifier l'ordre d'alimentation des blocs de tubes de pression qu'elle regroupe. Ces moyens sont constitués de vannes, ou de tout autre dispositif d'isolation, 21 à 26.
Selon l'invention, l'ordre d'alimentation des modules de chaque UMP peut varier en fonction d'un paramètre.
Ainsi, en référence à la figure 1, selon une première configuration, les vannes ou dispositif d'isolation 21, 23 et 26 sont ouvertes tandis que les vannes ou dispositifs d'isolation 22, 24 et 25 sont fermées. Sont ainsi délimités, un premier étage de filtration constitué des blocs NF 1, 2 et 3 alimentés en parallèle, un deuxième étage de filtration constitué des blocs OIBP 4,5 alimentés en parallèle, et un troisième étage de filtration constitué du bloc de module OIBP 6. Selon une telle configuration, l'OIBP a lieu en queue de l'UPM sur deux étages, ce qui permet une bonne réjection des micropolluants et du calcium sans dégrader la pression d'opération. Selon l'invention, l'ordre d'alimentation des blocs 1 à 6 peut être modifié en fermant les vannes ou dispositifs d'isolation 21, 23 et 26 et en ouvrant les vannes ou dispositifs d'isolation 22, 24 et 25. Selon cette seconde configuration, le premier étage de filtration est constitué des blocs de modules OIBP 4, 5, 6 montés en parallèle, le deuxième étage de filtration est constitué des blocs de modules de NF 2 et 3 et le troisième étage de filtration est constitué du bloc de modules NF 1.
Selon une telle seconde configuration, la nanofiltration a lieu en queue de l'UPM sur deux étages, favorisant ainsi une baisse de pression tout en offrant une bonne réjection des micropolluants.
Ainsi, le bloc 1 fonctionnant en parallèle dans la première configuration fonctionne en série dans la seconde configuration et le bloc 6 fonctionnant en série dans la première configuration fonctionne en parallèle dans la seconde configuration.
Des simulations ont été réalisées pour montrer que, grâce à l'invention, on peut maintenir la dureté de l'eau produite par l'installation dans un intervalle fixé, par exemple entre 8 et 9°F, tout en maintenant une bonne réjection des micropolluants, même en cas de variation de la température ou de la qualité de l'eau à filtrer.
Dans une première batterie de simulations, l'installation a été calculée pour filtrer une eau de dureté constante et de température variable selon les saisons, ayant les caractéristiques suivantes : Teneur en calcium =110 mg/l,
Teneur en magnésium = 8 mg/l,
Teneur en sodium = 22 mg/l,
Teneur en bicarbonates = 230 mg/l, nitrates = 20 mg/l,
Teneur en chlorures = 30 mg/l,
Teneur en sulfates = 120 mg/l,
Teneur SiC = 10 mg/l,
pH = 7,1
et dont la température a varié sur un an de 5°C à 25°C.
Le débit d'eau traitée produite est de 100 000 m3/j- L'objectif pour l'eau produite est fixé à un minimum de 30 mg/l de calcium (correspond à une dureté de 8 °F) quelle que soit la température de l'eau à filtrer. La concentration maximale souhaitée est de 35 mg/l de calcium (correspond à une dureté de 9°F). Dans le cadre de cette première batterie de simulations on a fait varier la proportion (x/6) d'UPM de l'installation fonctionnant en première configuration et d'UPM fonctionnant en seconde configuration en fonction de la température de l'eau à filtrer. Le tableau 1 ci-après indique pour chaque créneau de températures, et pour chaque proportion (0/6 ; 1/6 ; 2/6 ; 3/6 ; 4/6 ; 5/6 ; 6/6), la concentration en calcium (Ca, composé majoritaire de la dureté) du perméat, la concentration en nitrate (NO3) du perméat ainsi que la pression d'alimentation (P) des UPM.
[TABLEAU 1]
A titre comparatif, la même eau a été traitée avec une installation de type double filière de l'art antérieur mettant en oeuvre huit UPM contenant chacune 135 tubes de pression arrangés en trois étages. Chaque tube de pression contenant six modules de filtration membranaires, cette installation contient donc le même nombre de modules de filtration membranaires que celle selon l'invention, soit 6480 modules. Les mêmes modules NF et OIBP que dans l'installation selon l'invention ont été mis en oeuvre.
Afin de permettre l'obtention en hiver, à une température comprise entre 5°C et 10°C, d'une dureté minimale de l'eau produite correspondant à une teneur d'au moins 30 mg/l de calcium, l'installation en double filière contient une proportion de 25% de modules de NF et 75 % de modules d'OIPB.
Cette double filière a été utilisée pour filtrer la même eau avec les mêmes variations de températures. Le tableau 2 ci-après indique pour chaque créneau de températures, les concentrations en calcium (composé majoritaire de la dureté), en nitrates et la pression d'alimentation.
[TABLEAU 2]
Comme on peut le voir sur le tableau 1, il a été possible de maintenir la concentration en calcium de l'eau produite par l'installation entre 30 mg/l et 35 mg/l en faisant varier la proportion (UPM fonctionnant en première configuration/ UPM total) donc en modifiant l'ordre d'alimentation des blocs de tubes de pression des UMP. L'invention permet ainsi de maintenir la teneur en calcium des eaux traitées à environ 30 mg/L . Un tel résultat n'a pu être obtenu avec la double filière de l'art antérieur, comme le montrent les résultats du tableau 2 qui montrent une augmentation de la teneur en calcium bien au-delà de la limite souhaitée de 35 mg/l en pratique en été allant jusqu'à 46 mg/l.
Ces simulations permettent aussi de démontrer que l'invention permet l'obtention de meilleurs taux d'abattement des nitrates.
On démontre par des tests sur 5 membranes de différentes natures que la réjection des nitrates est un bon indicateur de la réjection des micropolluants. Les résultats de ces tests figurent dans le tableau 3 ci-après. Ainsi, les configurations permettant la bonne réjection des nitrates, y compris aux températures les plus élevées, sont à privilégier lorsque une meilleure réjection des micropolluants est souhaitée.
[TABLEAU 3]
Dans une seconde batterie de simulations, l'installation a été calculée pour filtrer une eau de température constante et de dureté variable ayant les caractéristiques suivantes :
Teneur en magnésium = 8 mg/l,
Teneur en sodium = 22 mg/l,
Teneur en bicarbonates = 230 mg/l, nitrates = 20 mg/l,
Teneur en chlorures = 30 mg/l,
Teneur en sulfates = 120 mg/l,
Teneur SiC = 10 mg/l,
Température = 15°C
pH = 7,1
et dont la teneur en calcium a varié de 90 à 140 mg/l.
Le débit d'eau traitée produite est de 100 000 m3/j. L'objectif pour l'eau produite est fixé à un minimum de 30 mg/l de calcium quelle que soit la concentration en calcium de l'eau d'entrée à filtrer. La concentration maximale souhaitée est de 35 mg/l de calcium.
Dans le cadre de cette seconde batterie de simulations, on a fait varier la proportion (x/6) d'UPM de l'installation fonctionnant en première configuration et d'UPM fonctionnant en seconde configuration en fonction de la teneur en calcium de l'eau à filtrer.
Le tableau 4 ci-après indique pour chaque teneur en calcium dans l'eau d'entrée à filtrer, et pour chaque proportion (0/6 ; 1/6 ; 2/6 ; 3/6 ; 4/6 ; 5/6 ; 6/6), la concentration en calcium (composé majoritaire de la dureté) du perméat, la concentration en nitrates du perméat et la pression d'alimentation. [TABLEAU 4]
A titre comparatif, la même eau a été traitée avec une installation de type double filière de l'art antérieur mettant en oeuvre huit UPM contenant chacune 135 tubes de pression arrangés en trois étages. Chaque tube de pression contenant six modules de filtration membranaires, cette installation contient donc le même nombre de modules de filtration membranaires que celle selon l'invention, soit 6480 modules. Les mêmes modules NF et OIBP que dans l'installation selon l'invention ont été mis en oeuvre.
Afin de permettre d'assurer une dureté minimale de l'eau produite correspondant à une teneur d'au moins 30 mg/l de calcium, pour une eau d'alimentation contenant 90 mg/l de calcium, l'installation en double filière contient une proportion de 30% de modules de NF et 70% de modules d'OIPB.
Cette double filière a été utilisée pour filtrer la même eau avec les mêmes variations de concentrations en calcium. Le tableau 5 ci-après indique pour chaque teneur en calcium dans l'eau d'entrée, les concentrations en calcium (composé majoritaire de la dureté) et en nitrates dans le perméat et la pression d'alimentation.
[TABLEAU 5]
Cette deuxième batterie de simulations permet de démontrer que l'art antérieur conduit à une teneur en calcium de l'eau produite allant de 30 à 47 mg/l alors que l'invention permet de maintenir cette concentration autour de 30 - 35 mg/l.
L'abattement des nitrates, et donc des micropolluants est par ailleurs meilleur grâce à l'invention, dans la majorité des cas. Un deuxième mode de réalisation d'une installation selon la présente invention comprend six UPM telles que celle représentée sur les figures 3 et 4 similaire à celle représentée en référence aux figures 1 et 2 sauf en ce qu'elle présente des vannes ou autre dispositif d'isolation supplémentaires (21a, 22a, 22b, 22c, 23a, 23b) et en ce qu'elle comprend quatre blocs de filtration au lieu de six. Plus précisément, un de ces blocs (bloc 1) contient trente tubes de pression, chaque tube de pression contenant six modules NF, un autre bloc (bloc 2a) contient soixante tubes de pression, chaque tube de pression contenant six modules NF , un autre bloc (bloc 4) contient trente tubes de pression, chaque tube de pression contenant six modules OIBP et un autre bloc (bloc 6a) contient soixante tubes de pression, chaque tube de pression contenant six modules OIBP . La capacité de l'UPM représentée sur ces figures 3 et 4 est donc la même que celle représentée aux figures 1 et 2.
En référence à la figure 3, selon une première configuration, les vannes ou dispositif d'isolation 21, 21 a, 23, 23a, 23b et 26 sont ouvertes tandis que les vannes ou dispositifs d'isolation 22, 22a, 22b, 22c, 24 et 25 sont fermées. Sont ainsi délimités, un premier étage de filtration constitué des deux blocs NF 1 et 2a alimentés en parallèle, un deuxième étage de filtration constitué du bloc OIBP 6a, et un troisième étage de filtration constitué du bloc OIBP 4.
Selon une telle configuration, l'OIBP a lieu en queue de l'UPM sur deux étages, ce qui permet une bonne réjection des micropolluants et du calcium sans dégrader la pression d'opération. Selon l'invention, l'ordre d'alimentation des blocs peut être modifié en fermant les vannes ou dispositifs d'isolation 21, 21 a, 23, 23a, 23b et 26 et en ouvrant les vannes ou dispositifs d'isolation 22, 22a, 22b, 22c, 24 et 25.
Selon cette seconde configuration, le premier étage de filtration est constitué des blocs de modules OIBP 4 et 6a montés en parallèle, le deuxième étage de filtration est constitué du bloc NF 2a et le troisième étage de filtration est constitué du bloc de modules NF 1.
Selon une telle seconde configuration, la nanofiltration a lieu en queue de l'UPM sur deux étages, favorisant ainsi une baisse de pression tout en offrant une bonne réjection des micropolluants.
Ainsi, le bloc 1 fonctionnant en parallèle dans la première configuration fonctionne en série dans la seconde configuration et le blocs 6a fonctionnant en série dans la première configuration fonctionnent en parallèle dans la seconde configuration.

Claims

REVENDICATIONS
1. Installation pour la filtration sous pression de liquide en vue de la production d'eau potable comprenant au moins une unité de production membranaire d'eau potable (UPM), chaque UPM comprenant:
une pluralité de blocs de filtration contenant chacun un faisceau de tubes de pression montés en parallèle, chaque tube de pression accueillant au moins deux modules de filtration membranaire à membranes spiralées ou à fibres creuses montés en série, des moyens d'amenée (20) de liquide à filtrer,
des moyens d'évacuation de liquide filtré, et
des moyens (30) d'évacuation de concentrât,
caractérisée en ce que lesdites membranes desdits modules de filtration de ladite installation sont au moins de deux différents types choisis dans le groupe constitué par les membranes d'osmose inverse et les membranes d'osmose inverse basse pression (4-6) d'une part, et les membranes de nanofiltration (1-3) d'autre part,
et en ce que ladite au moins une UPM comprend des moyens (21-26) permettant de modifier l'ordre d'alimentation desdits blocs de tubes de pression qu'elle regroupe.
2. Installation selon la revendication 1 caractérisée en ce que lesdites membranes d'au moins deux différents types sont prévues dans différents tubes de pression.
3. Installation selon la revendication 1 caractérisée en ce que lesdites membranes d'au moins deux types différents sont prévues dans de mêmes tubes de pression.
4. Installation selon l'une des revendication 1 à 3 caractérisée en ce que lesdites membranes de nanofiltration permettent un taux de réjection inférieur ou égal à 70 % du calcium lors d'un test standard au CaCh.
5. Installation selon l'une des revendications 1 à 4 caractérisée en ce que lesdites membranes d'osmose inverse et/ou lesdites membranes d'osmose inverse basse pression permettent un taux de réjection supérieur à 90 % du calcium lors d'un test standard au CaC .
6. Installation selon l'une quelconque des revendications 1 à 5 caractérisée en ce qu'elle présente un ratio de nombres de membranes de nanofiltration sur le nombre de membranes total compris entre 5% et 95%.
7. Installation selon l'une quelconque des revendications 1 à 6 caractérisée en ce que lesdites membranes de nanofiltration présentent une perméabilité supérieure à 3 L/h/m2/bar et permettent un taux de réjection des sels monovalents inférieur à 82%, selon le « test standard NaCI ».
8. Installation selon l'une quelconque des revendications 1 à 6 caractérisé en ce que lesdites membranes d'osmose inverse basse pression présentent une perméabilité supérieure à 3 L/h/m2/bar et permettent un taux de réjection des sels monovalents supérieur ou égal à 82%%, selon le « test standard NaCI ».
9. Installation selon l'une quelconques des revendications 1 à 6 caractérisée en ce que lesdites membranes d'osmose inverse présentent une perméabilité supérieure à 3 L/h/m2/bar et permettent un taux de réjection des sels monovalents supérieur ou égal à 82%, selon le « test standard NaCI ».
10. Procédé de filtration de liquide pour la production d'eau potable mettant en oeuvre une installation selon l'une quelconque des revendications 1 à 9 caractérisé en ce qu'il comprend les étapes consistant à alimenter les blocs de filtration d'au moins une UPM selon un premier ordre d'alimentation dans lequel les tubes contenant des membranes de nanofiltration sont en tête d'UPM, puis, en fonction de la variation d'un paramètre, à alimenter les tubes de pression selon un second ordre d'alimentation dans lequel les tubes de pression contenant des membranes de d'osmose inverse ou des membranes d'osmose inverse basse pression sont en tête d'UPM.
11. Procédé selon la revendication 10 caractérisé en ce que chaque UPM est organisée en étages de filtration connectés en série, chaque étage de filtration comprenant, selon les configurations possibles grâce à la mise en oeuvre desdits moyens permettant de modifier l'ordre d'alimentation desdits blocs de tubes de pression, soit un seul bloc de filtration, soit 2 ou plus blocs de filtration montés en parallèle.
12. Procédé selon la revendication 11 mis en oeuvre avec une installation selon l'une des revendications 1 à 9 comprenant une pluralité N d'UPM, avec N>1 entier, caractérisé en ce qu'il comprend une étape consistant à alimenter les blocs de x/N UPM, avec x entier variant de 0 à N, selon ledit premier ordre, et les blocs des UPM restantes selon ledit second ordre, et à faire varier x de façon telle que l'eau filtrée obtenue en sortie de l'installation réponde à un facteur de qualité.
13. Procédé selon l'une des revendications 10 à 12 caractérisé en ce que ledit paramètre est choisi dans le groupe constitué par la température des eaux à traiter et la concentration en calcium du liquide à traiter.
14. Procédé selon l'une des revendications 10 à 13 caractérisé en ce que ledit facteur de qualité est la dureté de ladite eau filtrée obtenue en sortie de l'installation.
EP20726498.7A 2019-05-24 2020-05-25 Installation de filtration membranaire de liquides et procede de production d'eau potable avec celle-ci sans post-mineralisation Pending EP3976235A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1905469A FR3096279B1 (fr) 2019-05-24 2019-05-24 Installation de filtration membranaire de liquides et procede de production d’eau potable avec celle-ci sans post-mineralisation
PCT/EP2020/064463 WO2020239707A1 (fr) 2019-05-24 2020-05-25 Installation de filtration membranaire de liquides et procede de production d'eau potable avec celle-ci sans post-mineralisation

Publications (1)

Publication Number Publication Date
EP3976235A1 true EP3976235A1 (fr) 2022-04-06

Family

ID=68806828

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20726498.7A Pending EP3976235A1 (fr) 2019-05-24 2020-05-25 Installation de filtration membranaire de liquides et procede de production d'eau potable avec celle-ci sans post-mineralisation

Country Status (6)

Country Link
US (1) US20220234915A1 (fr)
EP (1) EP3976235A1 (fr)
CN (1) CN113874103A (fr)
AU (1) AU2020281687A1 (fr)
FR (1) FR3096279B1 (fr)
WO (1) WO2020239707A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114314756A (zh) * 2022-01-13 2022-04-12 安徽晋亿智能科技有限公司 反渗透水处理分体式净化装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100566800C (zh) 2004-02-25 2009-12-09 陶氏环球技术公司 用于处理具有高渗透强度的溶液的装置
CN102786116A (zh) * 2012-08-30 2012-11-21 北京鑫佰利科技发展有限公司 一种模块化高倍数连续膜浓缩装置
WO2014139116A1 (fr) * 2013-03-14 2014-09-18 General Electric Company Système de filtration sur membrane avec étagement de concentré et recirculation de concentré, étages interchangeables ou les deux
US20160311696A1 (en) * 2015-04-24 2016-10-27 Sst Systems, Inc. Fluid filtration system and method
WO2017079645A1 (fr) * 2015-11-06 2017-05-11 Unlimited Water Solutions Llc Système et procédés de traitement des eaux

Also Published As

Publication number Publication date
US20220234915A1 (en) 2022-07-28
FR3096279A1 (fr) 2020-11-27
WO2020239707A1 (fr) 2020-12-03
FR3096279B1 (fr) 2023-03-24
AU2020281687A1 (en) 2021-12-09
CN113874103A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
EP1633954B1 (fr) Appareil et procede pour traiter un fluide d'injection
FR3004213A1 (fr) Production d'eau d'injection par couplage de procedes d'osmose directe et d'autres procedes de filtration
EP1329425A1 (fr) Procédé et appareil de dessalement
WO2011010500A1 (fr) Système de production d'eau
US10583401B2 (en) Integrated ultrafiltration and reverse osmosis desalination systems
WO2008149324A1 (fr) Systeme de purification de liquide par membrane a moyenne pression
CA2579342A1 (fr) Installation de traitement d'effluents, et procede de clarification et de filtration utilisant cette installation
Vu et al. Performance of a seawater-driven forward osmosis process for pre-concentrating digested sludge centrate: Organic enrichment and membrane fouling
WO2014044976A1 (fr) Procede et dispositif de test sous-marin de systeme de filtration
WO2013164541A2 (fr) Production d'energie par osmose directe
US20090057223A1 (en) Apparatus and method for treating injection fluid
EP3976235A1 (fr) Installation de filtration membranaire de liquides et procede de production d'eau potable avec celle-ci sans post-mineralisation
JP2003200160A (ja) 造水方法および造水装置
EP3317229B2 (fr) Procede de pilotage d'une installation de dessalement alimentee par une source d' energie renouvelable et installation associee
FR2731831A1 (fr) Procede pour separer le sodium d'effluents aqueux provenant du retraitement d'elements combustibles nucleaires uses
WO2010012692A1 (fr) Procede de traitement d'eau ultra rapide et installation correspondante
CN110573460A (zh) 用于供应低盐浓度注射水的过程和系统
JP3375070B2 (ja) 膜処理装置および造水方法
WO2020249668A1 (fr) Procede membranaire de potabilisation d'eaux de surface sans ajout de sequestrant
FR3100807A1 (fr) Procédé et système de dessalement avec une étape d’osmose retardée et une étape d’osmose inverse
JP2001347142A (ja) 逆浸透分離方法
WO1996009877A1 (fr) Elimination de composes par filtration sur membrane et charbon actif
WO2022059737A1 (fr) Système de dessalement d'eau de mer
JP2001252662A (ja) 造水方法
TWI229053B (en) Desalination method and desalination apparatus

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211022

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230118