EP3969224B1 - Orbitalschleifmaschine mit bremsvorrichtung - Google Patents

Orbitalschleifmaschine mit bremsvorrichtung Download PDF

Info

Publication number
EP3969224B1
EP3969224B1 EP20725457.4A EP20725457A EP3969224B1 EP 3969224 B1 EP3969224 B1 EP 3969224B1 EP 20725457 A EP20725457 A EP 20725457A EP 3969224 B1 EP3969224 B1 EP 3969224B1
Authority
EP
European Patent Office
Prior art keywords
lever
spring
mounting plate
machine tool
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20725457.4A
Other languages
English (en)
French (fr)
Other versions
EP3969224A1 (de
Inventor
Ronald Naderer
Georg PREE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ferrobotics Compliant Robot Technology GmbH
Original Assignee
Ferrobotics Compliant Robot Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ferrobotics Compliant Robot Technology GmbH filed Critical Ferrobotics Compliant Robot Technology GmbH
Publication of EP3969224A1 publication Critical patent/EP3969224A1/de
Application granted granted Critical
Publication of EP3969224B1 publication Critical patent/EP3969224B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B47/00Drives or gearings; Equipment therefor
    • B24B47/26Accessories, e.g. stops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B23/00Portable grinding machines, e.g. hand-guided; Accessories therefor
    • B24B23/02Portable grinding machines, e.g. hand-guided; Accessories therefor with rotating grinding tools; Accessories therefor
    • B24B23/03Portable grinding machines, e.g. hand-guided; Accessories therefor with rotating grinding tools; Accessories therefor the tool being driven in a combined movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/0038Other grinding machines or devices with the grinding tool mounted at the end of a set of bars

Definitions

  • the present description relates to the field of machine tools, in particular an orbital grinding machine for automated, robot-assisted grinding.
  • a machine tool such as a grinding or polishing machine (eg an electrically operated grinding machine with a rotating grinding wheel as the grinding tool) is guided by a manipulator, for example an industrial robot.
  • the machine tool can be coupled in different ways to the so-called TCP ( Tool Center Point ) of the manipulator; the manipulator can usually adjust the position and orientation of the machine practically at will and move the machine tool, for example, on a trajectory parallel to the surface of the workpiece.
  • Industrial robots are usually position-controlled, which allows precise movement of the TCP along the desired trajectory. With a separate actuator, the process force between the machine tool and the workpiece surface can be set and controlled independently of the manipulator.
  • eccentric sanders orbital sanding machines
  • a sanding disk is attached to a mounting plate ( backing pad ), with the sanding plate rotating around an eccentrically arranged first axis of rotation, which itself rotates around a central second axis of rotation.
  • Orbital grinding machines are known per se (see e.g US6257970B1 ) and their functional principle is therefore not further discussed here. Devices are also known that enable the grinding wheels to be changed automatically (see, for example, US8517799B2 ).
  • the problem with orbital grinding machines is that the mounting plate comes to a standstill in an undefined position, whereas for the automated changing of the grinding wheels it can be desirable for the mounting plate to be in a defined position at the start of the automated changing process. Further it can happen that the assembly plate continues to turn for a comparatively long time after the motor has been switched off, which delays the changing process.
  • the inventor's goal is to improve existing orbital grinding machines so that an automated process for changing grinding wheels becomes faster and more reliable.
  • a device with a machine tool and a braking device is described below, the machine tool having an eccentrically mounted, rotatable assembly plate for receiving a tool.
  • the braking device has a frame that is fixed to the machine tool, a leaf spring that is fixed at a first end to the frame, and a lever that is connected to a second end of the spring.
  • the braking device also has an actuator which is designed to move the lever, with movement of the lever tensioning the spring and pressing part of the lever against the mounting plate of the machine tool.
  • FIG 1 illustrates an example of an orbital grinder with a braking device.
  • the grinding machine 1 essentially comprises a motor 11 for driving an eccentrically mounted (in a housing) mounting plate 12 ( backing pad ) on which a grinding wheel 13 can be fastened.
  • the eccentric mounting of the mounting plate 12 causes it to rotate about an eccentric axis of rotation D′ during operation, which in turn rotates about a central axis of rotation D.
  • the grinding wheel 13 thereby performs a small elliptical movement as it rotates (the elliptical path also rotates).
  • the construction of an orbital grinder is known per se and is therefore not explained in more detail here.
  • the rest position of the mounting plate 12 is not defined by the eccentricity e of the axis of rotation D ⁇ (distance between the axes of rotation D and D').
  • the mounting plate 12 continues to run for a while and can stop in any angular position.
  • the grinding machine 1 has a braking device 2 which is designed to brake the mounting plate 12 (when the motor 11 is switched off) and to press it into a defined angular position.
  • 2 shows the same embodiment as 1 with activated brake.
  • the braking device 2 includes a spring 21, in particular a leaf spring made of spring steel.
  • One end of the spring 21 is clamped to a frame 25 of the braking device 2, for example by means a clamping element 24.
  • the spring 21 is clamped between a part of the frame 25 and the clamping element, which can be fastened to the frame 25 by means of screws.
  • a lever 22 is mounted (e.g. also by means of screws) which has the shape of an elongate bar ( bar ) which is bent by approximately 90° at its free end.
  • the linear actuator can be a pneumatic actuator, which can be implemented, for example, as a bellows cylinder.
  • a magnetic actuator can be used, which can be designed, for example, as a lifting magnet ( solenoid actuator ).
  • the actuator 23 acts between the frame 25 and the lever 22.
  • the combination of the lever 22, which is mounted on the frame 25 via a leaf spring, with a direct drive (without gears and other mechanisms) such as a bellows cylinder makes it possible for the braking mechanism (lever 22, spring 21) to do without swivel joints.
  • a direct drive without gears and other mechanisms
  • the braking mechanism (lever 22, spring 21) to do without swivel joints.
  • the bellows cylinder also does not contain any parts that can move in relation to one another; the bellows is merely inflated by means of compressed air, as a result of which the end of the bellows cylinder presses against the lever 22 .
  • the actuator 23 presses against the lever 22 and thus also the free, angled end of the lever 22 against the mounting plate 12, with the spring 21 being bent and pretensioned.
  • This situation is in 2 shown.
  • the free, angled end of the lever 22 presses against the mounting plate 12 the latter is moved into a defined angular position.
  • the eccentric axis of rotation D' is pushed away from the braking device 2 as far as possible.
  • the braking device is arranged on the right side of the grinding machine 1 and the eccentric axis of rotation is shifted as far as possible to the left by the activated braking device.
  • any rotary movement of the mounting plate 12 is braked until it comes to a standstill.
  • the frame 25 consists of several parts and is designed to be mounted on a grinding machine (see Fig Figures 1 and 2 ).
  • the frame 25 comprises a base plate 25a (support), the outer surface of which can be adapted to the (eg cylindrical) surface of the grinding machine.
  • the spring 21 is fastened to the base plate 25a by means of the clamping element 24 and screws 24a. This means that the spring 21 embodied as a leaf spring is clamped between a surface of the base plate 25a and a corresponding surface of the clamping element 24 .
  • the screws 24a ensure the necessary contact pressure.
  • the lever 22 is screwed to the spring 21, as shown in 1 has already been presented.
  • the lever 22 can be seen as an "extension" of the leaf spring 21, so to speak, the lever 22 being rigid in comparison to the spring 21.
  • the frame 25 includes a bracket 25b ( bracket ) which is mounted on the base plate 25a (eg by means of screws 25c) and which at least partially surrounds the lever 22.
  • the actuator 23 is mounted on the bracket 25b so that it can push the lever 22 towards the base plate 25a (and thus towards the grinding machine in use).
  • the actuator 23 is attached to the bracket 25b by means of the screws 25d in such a way that it can push the lever 22 towards the base plate 25a (and thus also towards the grinding machine).
  • the frame 25 can be constructed in a variety of ways. In the 3 The construction shown can be modified in many ways without changing the function of the braking device 2 described here.
  • a frame is therefore understood to mean any structural component or any assembly of structural components that is suitable and designed to fulfill the function described here, namely in particular to enable one end of the spring 21 to be fixed in place and also the actuator 23 to be mounted in such a way that it can move the lever 22 attached to the spring 21.
  • the frame as such is designed to be mounted on the grinding machine.
  • the exemplary embodiments described here relate to a device with a machine tool (in particular an orbital grinding machine) and a braking device, the machine tool having an eccentrically mounted, rotatable mounting plate for receiving a tool.
  • the braking device has a frame (see e.g 3 , frame with base plate 25a and mounting bracket 25b) attached to the machine tool, a spring (see e.g Figures 1 and 2 , leaf spring 21) which is fixed at a first end to the frame, and a lever (see e.g Figures 1 to 3 , lever 22) connected to a second end of the spring.
  • the braking device also has an actuator (see e.g Figures 1 to 3 , pneumatic linear actuator 23) which is designed to move the lever, with movement of the lever tensioning the spring and part of the lever being pressed against the mounting plate of the machine tool.
  • the spring in the examples described here is a leaf spring, which can be made of spring steel, for example, and the lever is connected to the frame (eg to the base plate of the frame) exclusively via the leaf spring.
  • the actuator can be a pneumatic or electric direct drive and in particular does not include a gear or other rotating parts.
  • An example of a pneumatic direct drive is a bellows cylinder.
  • the frame includes a base plate to which the first end of the spring is clamped by a clamp member.
  • the frame may have a bracket attached to the base plate, in this example the actuator being mounted on the bracket (see Fig 3 , Actuator 23 is mounted on bracket 25b by means of screws 25d).
  • the bracket at least partially encloses the lever.
  • the lever is arranged between the actuator mounted on the bracket and the base plate in the assembled state.
  • One end of the lever can be angled, with the angled end of the lever being pressed against a peripheral surface of the mounting plate of the machine tool when the lever is moved by the actuator. Due to a movement of the lever, it is pressed against the assembly plate of the machine tool (grinding machine), whereby the assembly plate is braked and pushed into a defined position.
  • the natural frequency of the lever (see Figures 1 to 3 , Lever 22) which, depending on its geometric shape and the rigidity of the material from which it is made, has certain natural frequencies and associated vibration modes, with one (namely the lowest) natural frequency dominating as a rule.
  • the lever is constructed in such a way that its dominant natural frequency is not excited during operation of the grinding machine. That is, the natural frequency of the lever is higher than a specified maximum rotational frequency (in revolutions per second) of the grinding machine's mounting plate.

Description

    TECHNISCHES GEBIET
  • Die vorliegende Beschreibung betrifft das Gebiet der Werkzeugmaschinen, insbesondere eine Orbitalschleifmaschine zum automatisierten, robotergestützten Schleifen.
  • HINTERGRUND
  • Bei der robotergestützten Oberflächenbearbeitung wird eine Werkzeugmaschine wie z.B. eine Schleif- oder Poliermaschine (z.B. eine elektrisch betriebene Schleifmaschine mit rotierender Schleifscheibe als Schleifwerkzeug) von einem Manipulator, beispielsweise einem Industrieroboter, geführt. Dabei kann die Werkzeugmaschine auf unterschiedliche Weise mit dem sogenannten TCP (Tool Center Point) des Manipulators gekoppelt sein; der Manipulator kann in der Regel Position und Orientierung der Maschine praktisch beliebig einstellen und die Werkzeugmaschine z.B. auf einer Trajektorie parallel zur Oberfläche des Werkstücks bewegen. Industrieroboter sind üblicherweise positionsgeregelt, was eine präzise Bewegung des TCP entlang der gewünschten Trajektorie ermöglicht. Mit einem separaten Aktor kann unabhängig vom Manipulator die Prozesskraft zwischen Werkzeugmaschine und Werkstückoberfläche eingestellt und geregelt werden.
  • In vielen Fällen kommen Exzenterschleifer (Orbitalschleifmaschine, orbital sanding machine) zum Einsatz, bei denen eine Schleifscheibe auf einem Montageteller (backing pad) befestigt ist, wobei der Schleifteller um eine exzentrisch angeordnete erste Drehachse rotiert, die selbst um eine zentrale zweite Drehachse rotiert. Orbitalschleifmaschinen sind an sich bekannt (siehe z.B. US 6257970B1 ) und deren Funktionsprinzip wird daher hier nicht weiter diskutiert. Des Weiteren sind Vorrichtungen bekannt, die ein automatisiertes Wechseln der Schleifscheiben ermöglichen (siehe z.B. US 8517799B2 ). Bei Orbitalschleifmaschinen hat man das Problem, dass der Montageteller in einer undefinierten Position zum Stehen kommt, wohingegen es für das automatisierte Wechseln der Schleifscheiben wünschenswert sein kann, dass beim Beginn des automatisierten Wechselprozesses der Montageteller sich in einer definierten Position befindet. Des Weiteren kommt es vor, dass sich der Montageteller nach dem Ausschalten des Motors noch vergleichsweise lange weiterdreht, was den Wechselprozess verzögert.
  • Der Erfinder hat es sich zur Aufgabe gemacht, existierende Orbitalschleifmaschinen zu verbessern, sodass ein automatisierter Prozess zum Wechseln der Schleifscheiben schneller und zuverlässiger wird.
  • ZUSAMMENFASSUNG
  • Die oben genannte Aufgabe wird durch die Vorrichtung gemäß Anspruch 1 gelöst. Unterschiedliche Ausführungsformen und Weiterentwicklungen sind Gegenstand der abhängigen Ansprüche.
  • Im Folgenden wird eine Vorrichtung mit einer Werkzeugmaschine und einer Bremsvorrichtung beschrieben, wobei die Werkzeugmaschine einen exzentrisch gelagerten drehbaren Montageteller zur Aufnahme eines Werkzeugs aufweist. Die Bremsvorrichtung weist einen Rahmen, der an der Werkzeugmaschine befestigt ist, eine Blattfeder, die mit einem ersten Ende an dem Rahmen fixiert ist, sowie einen Hebel auf, der mit einem zweiten Ende der Feder verbunden ist. Die Bremsvorrichtung weist weiter einen Aktor auf, der dazu ausgebildet ist, den Hebel zu bewegen, wobei bei einer Bewegung des Hebels die Feder gespannt und ein Teil des Hebels gegen den Montageteller der Werkzeugmaschine gedrückt wird.
  • KURZE BESCHREIBUNG DER ZEICHNUNGEN
  • Die Erfindung wird nachfolgend anhand von den in den Abbildungen dargestellten Beispielen näher erläutert. Die Darstellungen sind nicht zwangsläufig maßstabsgetreu und die Erfindung beschränkt sich nicht nur auf die dargestellten Aspekte. Vielmehr wird Wert darauf gelegt, die der Erfindung zugrunde liegenden Prinzipien darzustellen. In den Abbildungen zeigt:
    • Figur 1 illustriert ein Beispiel eines Orbitalschleifers mit einer Bremsvorrichtung gemäß einem Ausführungsbeispiel.
    • Figur 2 zeigt das Beispiel aus Fig. 1 mit aktivierter Bremsvorrichtung.
    • Figur 3 illustriert ein Beispiel der Bremsvorrichtung (ohne Schleifmaschine) detaillierter.
    DETAILLIERTE BESCHREIBUNG
  • Bevor verschiedene Ausführungsbeispiele der vorliegenden Erfindung im Detail erläutert werden, wird zunächst ein Beispiel einer robotergestützten Schleifvorrichtung beschrieben. Es versteht sich, dass die hier beschriebenen Konzepte auch auf andere Arten von Oberflächenbearbeitung (insbesondere Polieren) übertragbar und nicht auf Schleifen beschränkt sind .
  • Figur 1 illustriert ein Beispiel eines Orbitalschleifers mit einer Bremsvorrichtung. Die Schleifmaschine 1 umfasst im Wesentlichen einen Motor 11 zum Antrieb eines (in einem Gehäuse) exzentrisch gelagerten Montagetellers 12 (backing pad), auf dem eine Schleifscheibe 13 befestigt werden kann. Die exzentrische Lagerung des Montagetellers 12 bewirkt, dass im Betrieb sich dieser um eine exzentrische Drehachse D' dreht, die wiederum um eine zentrale Drehachse D rotiert. Die Schleifscheibe 13 führt dadurch eine kleine elliptische Bewegung aus während sie rotiert (wobei die Ellipsenbahn ebenfalls rotiert). Die Konstruktion eines Orbitalschleifers ist an sich bekannt und wird daher hier nicht näher erläutert. Relevant für die weitere Diskussion ist jedoch die Tatsache, dass durch die Exzentrizität e der Drehachse D` (Abstand zwischen den Drehachsen D und D') die Ruhelage des Montagetellers 12 nicht definiert ist. Wenn der Motor 11 abgeschaltet wird, läuft der Montagetellers 12 noch eine Zeit lang weiter und kann in einer beliebigen Winkelposition stehenbleiben.
  • Wie eingangs erwähnt kann es für ein automatisches, robotergestütztes Wechseln der Schleifscheibe 13 von Vorteil sein, wenn der Montageteller 12 sich in einer definierten Winkelposition befindet. Gemäß den hier beschriebenen Ausführungsbeispielen weist die Schleifmaschine 1 eine Bremsvorrichtung 2 auf, die dazu ausgebildet ist, den Montageteller 12 (aus ausgeschaltetem Motor 11) zu bremsen und in eine definierte Winkelposition zu drücken. Fig. 2 zeigt dasselbe Ausführungsbeispiel wie Fig. 1 mit aktivierter Bremse.
  • Gemäß dem in Fig. 1 und 2 dargestellten Ausführungsbeispiel umfasst die Bremsvorrichtung 2 eine Feder 21, insbesondere eine Blattfeder aus Federstahl. Ein Ende der Feder 21 ist an einem Rahmen 25 der Bremsvorrichtung 2 eingespannt, beispielsweise mittels eines Klemmelementes 24. Wie in Fig. 1 dargestellt, wird die Feder 21 zwischen einem Teil des Rahmens 25 und dem Klemmelement, das mittels Schrauben an dem Rahmen 25 befestigt werden kann, eingespannt. An dem anderen Ende der Feder 21 ist ein Hebel 22 montiert (z.B. ebenfalls mittels Schrauben), der die Form einer länglichen Leiste (bar) hat, die an ihrem freien Ende um ca. 90° gebogen ist. Feder 21 und Hebel 22 sind so positioniert, dass das freie Ende des Hebels 22 soweit zu dem Montageteller 12 hin bewegt werden kann, bis das freie Ende des Hebels 22 eine Umfangsfläche (circumferential surface) des Montagetellers 12 berührt. Während dieser Bewegung des Hebels 22 wird die Feder gebogen. Die Bewegung wird durch einen Linearaktor 23 bewirkt. Der Linearaktor kann ein pneumatischer Aktor sein, der beispielsweise als Balgzylinder (bellow cylinder) implementiert sein kann. Alternativ kann ein magnetischer Aktor verwendet werden, der beispielsweise als Hubmagnet (solenoidactuator) ausgeführt sein kann. Unabhängig von der konkreten Implementierung wirkt der Aktor 23 zwischen dem Rahmen 25 und dem Hebel 22.
  • Insbesondere die Kombination des über eine Blattfeder am Rahmen 25 gelagerten Hebels 22 mit einem Direktantrieb (ohne Getriebe und sonstige Mechanismen) wie z.B. einem Balgzylinder ermöglicht es, dass der Bremsmechanismus (Hebel 22, Feder 21) ohne Drehgelenke auskommt. Das heißt, es wird kein Mechanismus benötigt, der zueinander bewegliche Teile beinhaltet. Die Bremsvorrichtung 2 wird dadurch robuster und weniger fehleranfällig. Auch der Balgzylinder beinhaltet keine zueinander beweglichen Teile, es wird lediglich der Balg mittels Druckluft aufgepumpt, wodurch das Ende des Balgzylinders gegen den Hebel 22 drückt.
  • Beim Aktivieren der Bremse drückt der Aktor 23 gegen den Hebel 22 und damit auch das freie, abgewinkelte Ende des Hebels 22 gegen den Montageteller 12, wobei die Feder 21 gebogen und vorgespannt wird. Diese Situation ist in Fig. 2 dargestellt. Dadurch, dass das freie, abgewinkelte Ende des Hebels 22 gegen den Montageteller 12drückt, wird dieser in eine definierte Winkelposition bewegt. Die exzentrische Drehachse D' wird soweit wie möglich von der Bremsvorrichtung 2 weggeschoben. In dem dargestellten Beispiel ist die Bremsvorrichtung an der rechten Seite der Schleifmaschine 1 angeordnet und die exzentrische Drehachse wird durch die aktivierte Bremsvorrichtung so weit wie möglich nach links geschoben. Gleichzeitig wird eine eventuelle Drehbewegung des Montagetellers 12 gebremst, bis dieser still steht.
  • Fig. 3 illustriert eine exemplarische Implementierung der Bremsvorrichtung 2 in einer perspektivischen Darstellung. Der Rahmen 25 besteht aus mehreren Teilen und ist dazu ausgebildet, an einer Schleifmaschine montiert zu werden (siehe Fig. 1 und 2). Der Rahmen 25 umfasst eine Basisplatte 25a (Träger), deren äußere Oberfläche an die (z.B. zylindrische) Oberfläche der Schleifmaschine angepasst sein kann. An der Basisplatte 25a ist die Feder 21 mittels des Klemmelementes 24 und Schrauben 24a befestigt. Das heißt, die als Blattfeder ausgeführte Feder 21 wird zwischen einer Oberfläche der Basisplatte 25a und einer korrespondierenden Oberfläche des Klemmelementes 24 eingeklemmt. Die Schrauben 24a sorgen für die nötige Anpresskraft. Der Hebel 22 ist mit der Feder 21 verschraubt, wie das in Fig. 1 schon dargestellt wurde. Der Hebel 22 kann sozusagen als "Verlängerung" der Blattfeder 21 gesehen werden, wobei der Hebel 22 im Vergleich zur Feder 21 starr ist.
  • Zur Befestigung des Aktors 23 umfasst der Rahmen 25 einen Bügel 25b (bracket), der an der Basisplatte 25a montiert ist (z.B. mittels Schrauben 25c) und der den Hebel 22 zumindest teilweise umgibt. Der Aktor 23 ist an dem Bügel 25b so montiert, dass er den Hebel 22 zur Basisplatte 25a hin drücken kann (und damit im Betrieb zur Schleifmaschine hin). In dem dargestellten Beispiel ist der Aktor 23 mittels den Schrauben 25d an dem Bügel 25b so befestigt, dass er den Hebel 22 zur Basisplatte 25a (und damit auch zur Schleifmaschine) hin drücken kann.
  • Es versteht sich, dass der Rahmen 25 auf verschiedenste Weise konstruiert werden kann. Die in Fig. 3 dargestellte Konstruktion kann auf viele Arten modifiziert werden, ohne dass die hier beschriebene Funktion der Bremsvorrichtung 2 geändert wird. Unter einem Rahmen wird also jede strukturelle Komponente oder jeder Zusammenbau struktureller Komponenten verstanden, die/der dazu geeignet und dazu ausgebildet ist, die hier beschriebene Funktion zu erfüllen, nämlich insbesondere die Fixierung eines Endes der Feder 21 zu ermöglichen sowie auch die Montage des Aktors 23 in einer Weise zu ermöglichen, dass dieser den an der Feder 21 befestigten Hebel 22 bewegen kann. Der Rahmen als solcher ist zur Montage an der Schleifmaschine ausgebildet.
  • Im Folgenden werden einige wichtige Aspekte der hier beschriebenen Ausführungsbeispiele zusammengefasst, wobei es sich um keine abschließende, sondern um eine rein exemplarische Auflistung wichtiger Aspekte und technischer Merkmale handelt.
  • Die hier beschriebenen Ausführungsbeispiele betreffen eine Vorrichtung mit einer Werkzeugmaschine (insbesondere Orbitalschleifmaschine) und einer Bremsvorrichtung, wobei die Werkzeugmaschine einen exzentrisch gelagerten, drehbaren Montageteller zur Aufnahme eines Werkzeugs aufweist. Die Bremsvorrichtung weist einen Rahmen (siehe z.B. Fig. 3, Rahmen mit Basisplatte 25a und Montagebügel 25b), der an der Werkzeugmaschine befestigt ist, eine Feder (siehe z.B. Fig. 1 und 2, Blattfeder 21), die mit einem ersten Ende an dem Rahmen fixiert ist, sowie einen Hebel (siehe z.B. Fig. 1 bis 3, Hebel 22) auf, der mit einem zweiten Ende der Feder verbunden ist. Die Bremsvorrichtung weist weiter einen Aktor (siehe z.B. Fig. 1 bis 3, pneumatischer Linearaktor 23) auf, der dazu ausgebildet ist, den Hebel zu bewegen, wobei bei einer Bewegung des Hebels die Feder gespannt und ein Teil des Hebels gegen den Montageteller der Werkzeugmaschine gedrückt wird. Wie erwähnt ist die Feder in den hier beschriebenen Beispielen eine Blattfeder, die z.B. aus Federstahl gefertigt sein kann, und der Hebel ist ausschließlich über die Blattfeder mit dem Rahmen (z.B. mit der Basisplatte des Rahmens) verbunden.
  • Der Aktor kann ein pneumatischer oder elektrischer Direktantrieb sein und umfasst insbesondere kein Getriebe oder andere rotierende Teile. Ein Beispiel für einen pneumatischen Direktantrieb ist ein Balgzylinder.
  • In einigen Ausführungsbeispielen weist der Rahmen eine Basisplatte auf, an der das erste Ende der Feder mittels eines Klemmelementes festgeklemmt ist. Der Rahmen kann einen Bügel aufweisen, der an der Basisplatte befestigt ist, wobei in diesem Beispiel der Aktor an dem Bügel montiert ist (siehe Fig. 3, Aktor 23 ist mittels Schrauben 25d am Bügel 25b montiert). Der Bügel umschließt den Hebel zumindest teilweise. In diesem Beispiel ist im montierten Zustand der Hebel zwischen den am Bügel montierten Aktor und der Basisplatte angeordnet.
  • Ein Ende des Hebels kann abgewinkelt sein, wobei das abgewinkelte Ende des Hebels bei einer vom Aktor bewirkten Bewegung des Hebels gegen eine Umfangsfläche des Montagetellers der Werkzeugmaschine gedrückt wird. Aufgrund einer Bewegung des Hebels wird dieser gegen den Montageteller der Werkzeugmaschine (Schleifmaschine) gedrückt, wodurch der Montageteller gebremst und in eine definierte Position geschoben wird.
  • Ein weiterer Aspekt betrifft die Eigenfrequenz des Hebels (siehe Fig. 1 bis 3, Hebel 22), der abhängig von seiner geometrischen Form und der Steifigkeit des Materials, aus dem er besteht, bestimmte Eigenfrequenzen und zugehörige Schwingungsmoden aufweist, wobei in der Regel eine (nämlich die niedrigste) Eigenfrequenz dominiert. Der Hebel wird gemäß einem Ausführungsbeispiel so konstruiert, dass seine dominierende Eigenfrequenz während des Betriebs der Schleifmaschine nicht angeregt wird. Das heißt, die Eigenfrequenz des Hebels ist höher als eine spezifizierte maximale Drehfrequenz (in Umdrehungen pro Sekunde) des Montagetellers der Schleifmaschine.

Claims (11)

  1. Eine Vorrichtung, die folgendes aufweist:
    eine Werkzeugmaschine (1) mit einem exzentrisch gelagerten drehbaren Montageteller (12) zur Aufnahme eines Werkzeugs (13); und
    eine Bremsvorrichtung (2) die folgendes aufweist:
    einen Rahmen (25), der an der Werkzeugmaschine (1) befestigt ist;
    eine Blattfeder (21), die mit einem ersten Ende an dem Rahmen (25) fixiert ist;
    einen Hebel (22), der mit einem zweiten Ende der Feder verbunden ist,
    einen Aktor (23), der dazu ausgebildet ist, den Hebel (25) zu bewegen,
    wobei bei einer Bewegung des Hebels (22) die Feder (21) gespannt und ein Teil des Hebels (22) gegen den Montageteller (12) der Werkzeugmaschine (1) gedrückt wird.
  2. Die Vorrichtung gemäß Anspruch 1,
    wobei der Hebel (22) ausschließlich über die Feder (21), insbesondere ohne Drehgelenk, mit dem Rahmen (25) verbunden ist.
  3. Die Vorrichtung gemäß Anspruch 1 oder 2,
    wobei der Aktor (23) ein pneumatischer oder ein elektromechanischer Direktantrieb ist.
  4. Die Vorrichtung gemäß Anspruch 1 oder 2,
    wobei der Aktor (23) ein Balgzylinder ist.
  5. Die Vorrichtung gemäß einem der Ansprüche 1 bis 4,
    wobei der Rahmen (25) eine Basisplatte aufweist, an der das erste Ende der Feder (21) mittels eines Klemmelementes (24) festgeklemmt ist.
  6. Die Vorrichtung gemäß Anspruch 5,
    wobei der Rahmen (25) weiter einen Bügel aufweist, der an der Basisplatte befestigt ist und
    wobei der Aktor (23) an dem Bügel montiert ist.
  7. Die Vorrichtung gemäß Anspruch 6,
    wobei der Bügel den Hebel (22) zumindest teilweise umschließt.
  8. Die Vorrichtung gemäß einem der Ansprüche 1 bis 7,
    wobei ein Ende des Hebels (22) abgewinkelt ist und
    wobei das abgewinkelte Ende des Hebels (22) bei einer vom Aktor (23) bewirkten Bewegung des Hebels (22) gegen eine Umfangsfläche des Montagetellers (12) der Werkzeugmaschine gedrückt wird.
  9. Die Vorrichtung gemäß einem der Ansprüche 1 bis 8,
    wobei, wenn aufgrund einer Bewegung des Hebels (22) dieser gegen den Montageteller (12) der Werkzeugmaschine (1) gedrückt wird, der Montageteller (12) gebremst und in eine definierte Position geschoben wird.
  10. Die Vorrichtung gemäß einem der Ansprüche 1 bis 9,
    wobei der Hebel (22) eine dominierende Eigenfrequenz aufweist, die höher ist als die Drehfrequenz der Werkzeugmaschine im Betrieb.
  11. Die Vorrichtung gemäß einem der Ansprüche 1 bis 10,
    wobei die Werkzeugmaschine (1) eine Orbitalschleifmaschine ist, bei der der Montageteller (12) exzentrisch um eine Drehachse drehbar gelagert ist.
EP20725457.4A 2019-05-14 2020-05-06 Orbitalschleifmaschine mit bremsvorrichtung Active EP3969224B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019112556.1A DE102019112556A1 (de) 2019-05-14 2019-05-14 Orbitalschleifmaschine mit bremsvorrichtung
PCT/EP2020/062515 WO2020229247A1 (de) 2019-05-14 2020-05-06 Orbitalschleifmaschine mit bremsvorrichtung

Publications (2)

Publication Number Publication Date
EP3969224A1 EP3969224A1 (de) 2022-03-23
EP3969224B1 true EP3969224B1 (de) 2023-05-31

Family

ID=70681794

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20725457.4A Active EP3969224B1 (de) 2019-05-14 2020-05-06 Orbitalschleifmaschine mit bremsvorrichtung

Country Status (7)

Country Link
US (1) US20220331933A1 (de)
EP (1) EP3969224B1 (de)
JP (1) JP7333830B2 (de)
KR (1) KR20220002664A (de)
CN (1) CN113825592B (de)
DE (1) DE102019112556A1 (de)
WO (1) WO2020229247A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4238696A1 (de) * 2022-03-01 2023-09-06 X'Pole Precision Tools Inc. Schleifwerkzeugmaschine

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2669072A (en) * 1951-06-07 1954-02-16 Bryant Grinder Corp Grinding wheel reciprocating mechanism
US5595531A (en) * 1995-07-26 1997-01-21 Ryobi North America Random orbit sander having speed limiter
JP3316622B2 (ja) * 1996-03-08 2002-08-19 株式会社マキタ サンダ
US6257970B1 (en) * 1997-01-23 2001-07-10 Hao Chien Chao Ergonomically friendly random orbital construction
DE19952108B4 (de) * 1999-10-29 2007-09-20 Robert Bosch Gmbh Exzentertellerschleifmaschine
DE10047202A1 (de) 2000-09-23 2002-04-11 Bosch Gmbh Robert Motorgetriebene Handschleifmaschine
GB2380151B (en) * 2001-07-20 2004-09-22 Black & Decker Inc Oscillating hand tool
DE10142557A1 (de) * 2001-08-30 2003-03-20 Hilti Ag Handgeführter Exzenterschleifer
DE102010012027A1 (de) * 2010-03-19 2011-09-22 Festool Gmbh Hand-Werkzeugmaschine mit einer Radialbremse
US8517799B2 (en) * 2010-12-07 2013-08-27 The Boeing Company Robotic surface preparation by a random orbital device
DE102012218073A1 (de) * 2012-10-03 2014-06-12 Hilti Aktiengesellschaft Handgeführtes Werkzeuggerät mit einer Bremsvorrichtung zum Bremsen eines Bearbeitungswerkzeuges
CN103862350B (zh) * 2012-12-12 2017-06-27 苏州宝时得电动工具有限公司 具有推杆式止动机构的角磨机
DE202013101858U1 (de) * 2013-04-29 2013-05-17 Sps Holding Gmbh Anlage zum Schleifen von Flächen
DE102016106141A1 (de) * 2016-04-04 2017-10-05 Ferrobotics Compliant Robot Technology Gmbh Wechselstation zum automatischen Wechseln von Schleifmittel
EP3326758B1 (de) * 2016-11-28 2022-08-10 Guido Valentini Elektrowerkzeug
CN213106145U (zh) 2020-07-22 2021-05-04 无锡中车时代智能装备有限公司 机器人用角式电动端面打磨工具

Also Published As

Publication number Publication date
KR20220002664A (ko) 2022-01-06
US20220331933A1 (en) 2022-10-20
EP3969224A1 (de) 2022-03-23
CN113825592B (zh) 2024-02-02
DE102019112556A1 (de) 2020-11-19
JP7333830B2 (ja) 2023-08-25
WO2020229247A1 (de) 2020-11-19
CN113825592A (zh) 2021-12-21
JP2022532593A (ja) 2022-07-15

Similar Documents

Publication Publication Date Title
DE202013101858U1 (de) Anlage zum Schleifen von Flächen
WO2017174577A1 (de) Robotergestützte schleifvorrichtung
EP1954453A1 (de) Tragarm für ein spann- und zentrierelement eines greifergerüstes zum halten von raumformbauteilen in der kfz.-industrie
EP3325214A1 (de) Werkzeugmaschine zum robotergestützten bearbeiten von oberflächen
EP3362215B1 (de) Spanneinrichtung
CH619629A5 (de)
DE102006055605A1 (de) Reifenmontiervorrichtung
WO2019053155A1 (de) Verfahren und system zum automatischen wechseln von wellen
AT512464B1 (de) Anlage zum schleifen von flächen
EP0434891B1 (de) Manipulator für Schmiedemaschinen, insbesondere Mehr-Stössel-Schmiedemaschinen
EP3969224B1 (de) Orbitalschleifmaschine mit bremsvorrichtung
DE102008028238B4 (de) Spannvorrichtung mit Magazinanordnung
AT512049B1 (de) Bearbeitungsvorrichtung für ein zahntechnisches werkstück
EP3697567B1 (de) Absaugung für schleifwerkzeug mit radialbürstenscheibe
AT401486B (de) Manipulator für schmiedemaschinen, z.b. mehrstössel-schmiedemaschinen
DE102014113729A1 (de) Wellenmessverfahren
WO2014183914A1 (de) Vorrichtung zur bandfinishenden bearbeitung eines werkstücks
EP3219438B1 (de) Schleifvorrichtigung
DE102019103677A1 (de) Finishvorrichtung und Verfahren zur Finishbearbeitung eines Werkstücks
DE3841829C2 (de)
DE102016200149B4 (de) Vorrichtung zum Spannen von Werkstücken
EP4149717B1 (de) Vorrichtung und verfahren zum schleifen und honen sowie verwendung der vorrichtung
DE102018123035B4 (de) Werkstückanschlag und Verfahren zur Werkstückhandhabung
DE2217432A1 (de) Selbstspannende mitnehmervorrichtung
EP0013746A2 (de) Vorrichtung zum Einspannen von Werkstücken

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: PREE, GEORG

Inventor name: NADERER, RONALD

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221222

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1570666

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020003392

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230831

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230930

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231002

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020003392

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

26N No opposition filed

Effective date: 20240301