EP3966101B1 - Method and device for determining sloshing - Google Patents
Method and device for determining sloshing Download PDFInfo
- Publication number
- EP3966101B1 EP3966101B1 EP20723138.2A EP20723138A EP3966101B1 EP 3966101 B1 EP3966101 B1 EP 3966101B1 EP 20723138 A EP20723138 A EP 20723138A EP 3966101 B1 EP3966101 B1 EP 3966101B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- swell
- sloshing
- excitation
- sea
- wind
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 39
- 230000005284 excitation Effects 0.000 claims description 50
- 239000007788 liquid Substances 0.000 claims description 22
- 238000005259 measurement Methods 0.000 claims description 5
- 230000000007 visual effect Effects 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 claims 1
- 238000004364 calculation method Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 238000007667 floating Methods 0.000 description 5
- 239000003949 liquefied natural gas Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 3
- 238000013019 agitation Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000037007 arousal Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B25/00—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
- B63B25/24—Means for preventing unwanted cargo movement, e.g. dunnage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B79/00—Monitoring properties or operating parameters of vessels in operation
- B63B79/20—Monitoring properties or operating parameters of vessels in operation using models or simulation, e.g. statistical models or stochastic models
Definitions
- the invention relates to the field of methods and device for determining the sloshing, in particular for determining the sloshing of the liquid loading of ships.
- the liquid contained in a tank is subjected to various movements.
- the movements at sea of a ship comprising the tank for example under the effect of climatic conditions such as the state of the sea or the wind, cause agitation of the liquid in the tank.
- the agitation of the liquid generally referred to as "sloshing" or sloshing, generates stresses on the walls of the tank which can affect the integrity of the tank.
- the integrity of the tank is particularly important in the context of an LNG tank due to the flammable or explosive nature of the transported liquid and the risk of a cold spot on the steel hull of the floating unit.
- the present inventors have observed that precise consideration of the sea states is complex to implement in a numerical model given the large number of possible sea states, in particular the existence of multimodal sea conditions in certain circumstances.
- An idea underlying the claimed invention is to determine the sloshing of the liquid contained in the vessel by a method that is relatively economical in terms of calculation time and calculation resources.
- another idea underlying this invention is to provide a less complex method for determining sloshing by determining a sea state in order to reduce the calculation time without reducing the reliability of sloshing determination.
- the method is advantageous in that it determines a monomodal excitation equivalent to a multimodal excitation comprising the swell state and the sea state of the wind.
- the sloshing is thus determined for an equivalent monomodal excitation and not from the multimodal excitation, which would be much more complex to model by calculation or by experience.
- the method is thus less greedy in computational resources and requires less computation time compared to the state of the art.
- such a method may comprise one or more of the following characteristics.
- the step of determining the sloshing can be carried out in different ways.
- the datum relating to the sloshing is determined as a function of the monomodal excitation by consulting a previously established database comprising data representing the sloshing as a function of the monomodal excitation.
- the database can include sloshing levels obtained experimentally in the laboratory or during on-board measurement campaigns at sea as a function of monomodal excitation.
- the datum relating to the sloshing is determined by a previously established numerical modeling expressing the sloshing as a function of the monomodal excitation.
- the state of the swell and/or the sea state of the wind define environmental data of the ship.
- the state of the swell comprises a significant height of the swell and/or a peak period of the swell and/or a direction of the swell with respect to a longitudinal axis of the vessel.
- the wind sea state comprises a significant wind sea height and/or a wind sea peak period and/or a wind sea direction with respect to a longitudinal axis.
- the state of the swell and/or the sea state of the wind are determined in real time by sensors provided in the ship and configured to measure a significant height of the swell and/or a period of swell peak and/or swell direction and significant wind sea height and/or wind sea peak period and/or wind sea direction.
- the state of the swell and/or the sea state of the wind are determined indirectly from the meteorological and oceanic conditions.
- the state of the swell and/or the sea state of the wind are determined by weather prediction.
- Monomodal excitation can be determined in different ways.
- the swell state includes a significant swell height and the wind sea state includes a significant wind sea height
- the single-mode excitation has a total significant height equal to a root mean square said significant swell height and said significant wind sea height.
- the swell state includes a swell direction and the wind sea state includes a wind sea direction
- the single-mode excitation has a total direction equivalent to one of the direction of the swell and the sea direction of the wind closest to a direction perpendicular to the longitudinal axis of the ship.
- the method comprises a step of determining a probability of damage to a tank of the ship comprising all or part of the load as a function of the data relating to the sloshing and of a filling level of said tank.
- the probability of damage is relative to a probability density of encountering a pressure on an internal surface of the tank greater than an internal resistance of the tank as a function of the datum relating to the sloshing and the filling level of the tank.
- the filling level of the tank can be determined by filling level sensors arranged in said tank.
- the method comprises a step of emitting an audible or visual signal for an operator of the ship when the datum relating to the sloshing is greater than a predetermined threshold.
- the method comprises following the detection that the ship is subjected to a significantly multimodal excitation, a step of determining a datum relating to the sloshing according to the sea state of the wind and the state of significantly multimodal arousal swell.
- the method may further comprise, in response to the detection that the ship is not subjected to a significantly multimodal excitation, a step of determining the datum relating to the sloshing of the load as a function of a recombined monomodal excitation corresponding to the swell state and wind sea state.
- the recombined single-mode excitation is provided by meteorological or oceanic services.
- the liquid is a liquefied gas, for example liquefied natural gas.
- a device for determining the sloshing of a liquid load of a ship comprising a processor configured to implement the aforementioned method.
- Such a device or method for determining sloshing can be installed in a floating, coastal or deep-water structure, in particular an LNG carrier, a floating storage and regasification unit (FSRU), a floating production and remote storage unit (FPSO), a barge and others.
- a device or method for determining the sloshing can be implemented for the dimensioning of the floating structure, in particular the dimensioning of a tank of a ship or of said ship according to the data relating to the sloshing of the load determined by a such device or process.
- Such a device or method for determining sloshing can also be implemented to determine navigation instructions, for example a speed of the ship, a direction, to be executed automatically or by a driver of the ship, in order to reduce or avoid a level of sloshing of the ship.
- a ship for example for the transport of a cold liquid product such as liquefied natural gas, comprising at at least one tank comprising a load and the device for determining the aforementioned sloshing.
- a cold liquid product such as liquefied natural gas
- a ship 1 comprising a double hull forming a supporting structure in which are arranged a plurality of watertight and thermally insulating tanks.
- a carrier structure has for example a polyhedral geometry, for example of prismatic shape.
- Such sealed and thermally insulating tanks are provided for example for the transport of liquefied gas.
- the liquefied gas is stored and transported in such tanks at a low temperature, which requires thermally insulating tank walls in order to maintain the liquefied gas at this temperature. It is therefore particularly important to maintain the integrity of the walls of the tanks intact, on the one hand to preserve the tightness of the tank and avoid leaks of liquefied gas from the tanks and, on the other hand, to avoid degradation of the insulating characteristics. of the tank in order to maintain the gas in its liquefied form.
- Such watertight and thermally insulating tanks also comprise an insulating barrier anchored to the double ship hull and carrying at least one watertight membrane.
- such tanks can be made according to Mark III ® type technologies, as described for example in FR2691520 , of the NO96 ® type as described for example in FR2877638 , or other as described for example in WO14057221 .
- the figure 1 illustrates a ship 1 comprising four watertight and thermally insulating tanks 2 .
- the tanks 2 are interconnected by a cargo handling system (not shown) which may include many components, for example example pumps, valves and pipes so as to allow the transfer of liquid from one of the tanks 2 to another tank 2.
- a cargo handling system (not shown) which may include many components, for example example pumps, valves and pipes so as to allow the transfer of liquid from one of the tanks 2 to another tank 2.
- the four tanks 2 present on the figure 1 an initial filling state. In this initial state, the tanks are partially filled. A first tank 3 is filled to about 60% of its capacity. A second tank 4 is filled to about 35% of its capacity. A third tank 5 is filled to about 35% of its capacity. A fourth tank 6 is filled to approximately 40% of its capacity.
- the ship 1 is subject on the one hand to a first sea excitation of the wind represented by the axis 10 and to a second excitation of the swell represented by the axis 12 on the Fig.2 .
- the wind sea induces waves having a wind sea direction parallel to the axis 10 with respect to a longitudinal axis 16 of the ship 1, a significant wind sea height and a peak wind sea period.
- the swell causes waves having a swell direction parallel to the axis 12 with respect to the longitudinal axis 16, a significant swell height and a peak swell period.
- the meeting of the waves induced by the swell and the sea of the wind generates a multimodal excitation of the ship 1 causing the movements of the ship 1.
- a method 200 for determining the sloshing can be implemented by the ship 1 to estimate a monomodal excitation represented by the axis 14 on the Fig.2 equivalent to the total excitation of the ship 1 caused by the meeting of the sea excitation of the wind 10 and the excitation of the swell 12.
- steps 202 and 204 are performed by acquiring measurements relating to the sea state, wind and swell state by sensors deployed in the ship 1.
- steps 202 and 204 are carried out by acquiring predictions of the state of the swell and the sea state of the wind previously determined.
- the total peak period Tp tot is determined in step 206 by determining the peak period from among those of the swell Tp swell and of the wind sea Tp windsea causing the most severe load sloshing in monomodal excitation, for example by consulting a database or by numerical calculation.
- the total direction Hg tot is determined in step 206 by determining the direction among the direction of the swell Hg swell and the sea direction of the wind Hg windsea closest to a direction perpendicular 18 to the longitudinal axis 16 of the ship 1. In a case where these two directions are symmetrical with respect to the perpendicular direction 18, the excitation which comes from the front of the ship is retained.
- Step 208 can be carried out by consulting a database previously established for the ship 1 or by digital calculation from a previously established digital model expressing the sloshing as a function of the monomodal excitation 14.
- the law prob tk is a statistical law for example of the GEV, Weibull, Pareto, Gumbel type.
- GEV GEV
- Weibull Pareto
- Gumbel type of the parameters of this law.
- One, several or all of the parameters of this law are for example defined from monomodal tests of liquid movement in the laboratory or monomodal measurement campaigns at sea.
- the figure 4 illustrates a device 300 for determining the sloshing that can be embarked on the ship 1.
- This device 300 comprises a central unit 302 configured to carry out the different steps of the method 200 to determine the data relating to the sloshing of the ship and/or the risk of damage of a tank 2 of the ship 1.
- the central unit 302 is connected to a plurality of on-board sensors 304 making it possible to obtain the various quantities indicated above.
- the sensors 304 comprise, for example and in a non-exhaustive manner, a filling level sensor 306 of each tank, various sensors 308 (accelerometer, strain gauge, strain gauge, sound, light) allowing the central unit 302 via a dedicated algorithm to detect the impacts linked to the movements of the liquid in the tanks 3, 4, 5, 6, etc.
- the device 300 further comprises a man-machine interface 310.
- This man-machine interface 310 comprises a display means 312 allowing an operator of the ship 1 to obtain the various information, for example information on the data relating to the sloshing determined by implementing the steps of the method 200, the risk of damage to one of the tanks 2 of the ship 1, the quantities obtained by the sensors 308 such as the intensity of the movements of liquid in the tanks, information on the impacts linked to these movements of liquid, the movements of the ship, the state of loading of the ship or even meteorological information.
- the man-machine interface 310 further comprises an acquisition means 314 enabling the operator to manually supply quantities to the central unit 302, typically to supply the central unit 302 with data which cannot be obtained by sensors because the vessel does not have the required sensor or the sensor is damaged.
- the acquisition means allows the operator to enter information on the sea state of the wind and/or the state of the swell.
- the device 300 comprises a database 316.
- This database 316 comprises, for example, certain quantities obtained in the laboratory or during measurement campaigns on board at sea.
- the database 316 can comprise data relating to sloshing according to monomodal excitation.
- the database can store data representative of the global or local stresses exerted on the vessel wall, for each value of amplitude, frequency and incidence of the monomodal excitation. These data representative of the stresses exerted on the vessel wall may for example be a distribution of the pressure exerted on the vessel wall, namely the function P surf .
- the calculations of the risk of damage are also pre-established and the database can directly store data representative of the risk of damage Risk ope for each value of the significant height, peak period and direction of monomodal excitation.
- the device 300 also comprises a communication interface 318 enabling the central unit 302 to communicate with remote devices, for example to obtain meteorological data, ship position data or other.
- the central unit 302 is configured to determine a navigation datum, for example a course of the ship, a speed, etc., as a function of the datum relating to the sloshing and/or the risk of damage.
- a navigation datum for example a course of the ship, a speed, etc.
- central unit 302 Certain elements represented, in particular the central unit 302, can be produced in different forms, in a unitary or distributed manner, by means of hardware and/or software components.
- Material components that can be used are specific integrated circuits ASIC, programmable logic networks FPGA or microprocessors.
- Software components can be written in different programming languages, for example C, C++, Java or VHDL. This list is not exhaustive
Landscapes
- Ocean & Marine Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Probability & Statistics with Applications (AREA)
- Physics & Mathematics (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Ship Loading And Unloading (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Measurement Of Radiation (AREA)
- Coating With Molten Metal (AREA)
- Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
Description
L'invention se rapporte au domaine des méthodes et dispositif de détermination du ballotement, en particulier de détermination du ballotement de chargement liquide des navires.The invention relates to the field of methods and device for determining the sloshing, in particular for determining the sloshing of the liquid loading of ships.
Durant son stockage et/ou son transport, le liquide contenu dans une cuve est soumis à différents mouvements. En particulier, les mouvements en mer d'un navire comprenant la cuve, par exemple sous l'effet des conditions climatiques telles que l'état de la mer ou le vent, entraînent une agitation du liquide dans la cuve. L'agitation du liquide, généralement désignée sous le terme de « sloshing » ou ballottement, engendre des contraintes sur les parois de la cuve qui peuvent nuire à l'intégrité de la cuve. Or, l'intégrité de la cuve est particulièrement importante dans le cadre d'une cuve de GNL de par la nature inflammable ou explosive du liquide transporté et le risque de point froid sur la coque en acier de l'unité flottante.During its storage and/or its transport, the liquid contained in a tank is subjected to various movements. In particular, the movements at sea of a ship comprising the tank, for example under the effect of climatic conditions such as the state of the sea or the wind, cause agitation of the liquid in the tank. The agitation of the liquid, generally referred to as "sloshing" or sloshing, generates stresses on the walls of the tank which can affect the integrity of the tank. However, the integrity of the tank is particularly important in the context of an LNG tank due to the flammable or explosive nature of the transported liquid and the risk of a cold spot on the steel hull of the floating unit.
On connait une méthode décrite par
Les présents inventeurs ont constaté qu'une prise en compte précise des états de mer est complexe à mettre en œuvre dans un modèle numérique étant donné le nombre important des états mer possibles, notamment l'existence de conditions de mer multimodales dans certaines circonstances.The present inventors have observed that precise consideration of the sea states is complex to implement in a numerical model given the large number of possible sea states, in particular the existence of multimodal sea conditions in certain circumstances.
Une idée à la base de l'invention revendiquée est de déterminer le ballotement du liquide contenu dans le navire par une méthode relativement économique en temps de calcul et en ressources de calcul. Pour cela, une autre idée à la base de cette invention est de fournir une méthode de détermination du ballotement par détermination d'un état de mer moins complexe pour réduire le temps de calcul sans diminuer la fiabilité de détermination du ballotement.An idea underlying the claimed invention is to determine the sloshing of the liquid contained in the vessel by a method that is relatively economical in terms of calculation time and calculation resources. For this, another idea underlying this invention is to provide a less complex method for determining sloshing by determining a sea state in order to reduce the calculation time without reducing the reliability of sloshing determination.
Selon un mode de réalisation, l'invention fournit un procédé de détermination du ballotement d'un chargement liquide d'un navire, ledit procédé comprenant :
- une étape de détermination d'une excitation monomodale en fonction d'un état de la houle et d'un état de mer du vent auxquels est soumis ledit navire,
- une étape de détermination d'une donnée relative au ballotement dudit chargement en fonction de l'excitation monomodale.
- a step of determining a monomodal excitation as a function of a state of the swell and a sea state of the wind to which said ship is subjected,
- a step of determining data relating to the sloshing of said load as a function of the monomodal excitation.
Le procédé est avantageux en ce qu'il détermine une excitation monomodale équivalente à une excitation multimodale comprenant l'état de houle et l'état de mer du vent. Le ballotement est ainsi déterminé pour une excitation monomodale équivalente et non à partir de l'excitation multimodale, qui serait bien plus complexe à modéliser par le calcul ou par l'expérience. Le procédé est ainsi moins gourmand en ressources calculatoires et nécessite moins de temps de calcul comparé à l'état de l'art.The method is advantageous in that it determines a monomodal excitation equivalent to a multimodal excitation comprising the swell state and the sea state of the wind. The sloshing is thus determined for an equivalent monomodal excitation and not from the multimodal excitation, which would be much more complex to model by calculation or by experience. The method is thus less greedy in computational resources and requires less computation time compared to the state of the art.
Selon des modes de réalisation, un tel procédé peut comporter une ou plusieurs des caractéristiques suivantes.According to embodiments, such a method may comprise one or more of the following characteristics.
L'étape de détermination du ballotement peut être réalisée de différentes manières. Selon un mode de réalisation, la donnée relative au ballotement est déterminée en fonction de l'excitation monomodale par consultation d'une base de données préalablement établie comportant des données représentant le ballotement en fonction de l'excitation monomodale. La base de données peut comprendre des niveaux de ballotement obtenus expérimentalement en laboratoire ou lors de campagnes de mesures embarquées en mer en fonction de l'excitation monomodale. Selon un autre mode de réalisation, la donnée relative au ballotement est déterminée par une modélisation numérique préalablement établie exprimant le ballotement en fonction de l'excitation monomodale.The step of determining the sloshing can be carried out in different ways. According to one embodiment, the datum relating to the sloshing is determined as a function of the monomodal excitation by consulting a previously established database comprising data representing the sloshing as a function of the monomodal excitation. The database can include sloshing levels obtained experimentally in the laboratory or during on-board measurement campaigns at sea as a function of monomodal excitation. According to another embodiment, the datum relating to the sloshing is determined by a previously established numerical modeling expressing the sloshing as a function of the monomodal excitation.
L'état de la houle et/ou l'état de mer du vent définissent des données environnementales du navire. Selon un mode de réalisation, L'état de la houle comprend une hauteur significative de la houle et/ou une période de pic de la houle et/ou une direction de la houle par rapport à un axe longitudinal du navire. Selon un mode de réalisation, l'état de mer du vent comprend une hauteur significative de mer du vent et/ ou une période de pic de mer du vent et/ou une direction de mer du vent par rapport un axe longitudinal.The state of the swell and/or the sea state of the wind define environmental data of the ship. According to one embodiment, the state of the swell comprises a significant height of the swell and/or a peak period of the swell and/or a direction of the swell with respect to a longitudinal axis of the vessel. According to one embodiment, the wind sea state comprises a significant wind sea height and/or a wind sea peak period and/or a wind sea direction with respect to a longitudinal axis.
Selon un mode de réalisation, l'état de la houle et/ou l'état de mer du vent sont déterminés en temps réel par des capteurs prévus dans le navire et configurés pour mesurer une hauteur significative de la houle et/ou une période de pic de la houle et/ou une direction de la houle et une hauteur significative de mer du vent et/ou une période de pic de mer du vent et/ou une direction de mer du vent.According to one embodiment, the state of the swell and/or the sea state of the wind are determined in real time by sensors provided in the ship and configured to measure a significant height of the swell and/or a period of swell peak and/or swell direction and significant wind sea height and/or wind sea peak period and/or wind sea direction.
Selon un mode de réalisation, l'état de la houle et/ou l'état de mer du vent sont déterminés de façon indirecte à partir des conditions météorologiques et océaniques.According to one embodiment, the state of the swell and/or the sea state of the wind are determined indirectly from the meteorological and oceanic conditions.
Selon un mode de réalisation, l'état de la houle et/ou l'état de mer du vent sont déterminés par prédiction météorologique.According to one embodiment, the state of the swell and/or the sea state of the wind are determined by weather prediction.
L'excitation monomodale peut être déterminée de différentes manières. Selon un mode de réalisation, l'état de la houle comprend une hauteur significative la houle et l'état de mer du vent comprend une hauteur significative de mer du vent, et l'excitation monomodale présente une hauteur significative totale égale à une moyenne quadratique de ladite hauteur significative la houle et de ladite hauteur significative de mer du vent.Monomodal excitation can be determined in different ways. According to one embodiment, the swell state includes a significant swell height and the wind sea state includes a significant wind sea height, and the single-mode excitation has a total significant height equal to a root mean square said significant swell height and said significant wind sea height.
Selon un mode de réalisation, l'état de la houle comprend une période de pic de la houle et l'état de mer du vent comprend une période de pic de mer du vent, et l'excitation monomodale présente une période de pic totale égale à l'une parmi la période de pic de la houle et la période de pic de mer du vent sélectionnée en tant que la période engendrant le ballotement du chargement le plus sévère. Dans ce cas, le procédé peut comprendre une étape pour sélectionner la période de pic totale parmi la période de pic de la houle et la période de pic de mer du vent par :
- une première consultation de base de données, par exemple données acquises par l'expérimentation, pour déterminer un premier ballotement engendré par la période de pic de la houle ,
- une deuxième consultation de base de données pour déterminer un deuxième ballotement engendré par la période de pic de mer de vent, et
- une détermination du ballotement le plus sévère parmi le premier ballotement et le deuxième ballotement.
- a first database consultation, for example data acquired by experimentation, to determine a first sloshing generated by the peak period of the swell,
- a second database consultation to determine a second sloshing generated by the peak sea wind period, and
- a determination of the most severe sloshing among the first sloshing and the second sloshing.
Selon un mode de réalisation, l'état de la houle comprend une direction de la houle et l'état de mer du vent comprend une direction de mer du vent, et l'excitation monomodale présente une direction totale équivalente à l'une parmi la direction de la houle et la direction de mer du vent la plus proche d'une direction perpendiculaire à l'axe longitudinal du navire.According to one embodiment, the swell state includes a swell direction and the wind sea state includes a wind sea direction, and the single-mode excitation has a total direction equivalent to one of the direction of the swell and the sea direction of the wind closest to a direction perpendicular to the longitudinal axis of the ship.
Selon un mode de réalisation, le procédé comporte une étape de détermination d'une probabilité d'endommagement d'une cuve du navire comprenant la totalité ou une partie du chargement en fonction de la donnée relative au ballotement et d'un niveau de remplissage de ladite cuve. En particulier, la probabilité d'endommagement est relative à une densité de probabilité de rencontrer une pression sur une surface interne de la cuve supérieure à une résistance interne de la cuve en fonction de la donnée relative au ballotement et du niveau de remplissage de la cuve.According to one embodiment, the method comprises a step of determining a probability of damage to a tank of the ship comprising all or part of the load as a function of the data relating to the sloshing and of a filling level of said tank. In particular, the probability of damage is relative to a probability density of encountering a pressure on an internal surface of the tank greater than an internal resistance of the tank as a function of the datum relating to the sloshing and the filling level of the tank. .
En particulier, le niveau de remplissage de la cuve peut être déterminée par des capteurs de niveau de remplissage agencés dans ladite cuve.In particular, the filling level of the tank can be determined by filling level sensors arranged in said tank.
Selon un mode de réalisation, le procédé comprend une étape d'émission d'un signal sonore ou visuel pour un opérateur du navire lorsque la donnée relative au ballotement est supérieure à un seuil prédéterminé.According to one embodiment, the method comprises a step of emitting an audible or visual signal for an operator of the ship when the datum relating to the sloshing is greater than a predetermined threshold.
Selon un mode de réalisation, le procédé comprend en outre une étape consistant à détecter que le navire est soumis à une excitation significativement multimodale. Dans ce cas, une excitation significativement multimodale est détectée lorsque :
- la hauteur significative de la houle et de la hauteur significative de mer du vent sont non nulles, et
- une différence entre la direction de la houle et de la direction de mer du vent est supérieure à 15°, et
- la hauteur significative de la houle et la hauteur significative de mer du vent sont inférieures à 85% d'une moyenne quadratique de la hauteur significative de la houle et de la hauteur significative de mer du vent.
- the significant wave height and the significant wind sea height are non-zero, and
- a difference between the direction of the swell and the direction of the sea wind is greater than 15°, and
- the significant wave height and the significant wind sea height are less than 85% of a quadratic mean of the significant wave height and the significant wind sea height.
Selon ce mode de réalisation, le procédé comprend suite à la détection que le navire est soumis à une excitation significativement multimodale, une étape de détermination d'une donnée relative au ballotement en fonction de l'état de mer du vent et l'état de la houle de l'excitation significativement multimodale. Le procédé peut comporter en outre, en réponse à la détection que le navire n'est pas soumis à une excitation significativement multimodale, une étape de détermination de la donnée relative au ballotement du chargement en fonction d'une excitation monomodale recombinée correspondant à l'état de la houle et l'état de mer du vent. Dans ce cas, l'excitation monomodale recombinée est fournie par des services météorologiques ou océaniques.According to this embodiment, the method comprises following the detection that the ship is subjected to a significantly multimodal excitation, a step of determining a datum relating to the sloshing according to the sea state of the wind and the state of significantly multimodal arousal swell. The method may further comprise, in response to the detection that the ship is not subjected to a significantly multimodal excitation, a step of determining the datum relating to the sloshing of the load as a function of a recombined monomodal excitation corresponding to the swell state and wind sea state. In this case, the recombined single-mode excitation is provided by meteorological or oceanic services.
Selon un mode de réalisation, le liquide est un gaz liquéfié, par exemple du gaz naturel liquéfié.According to one embodiment, the liquid is a liquefied gas, for example liquefied natural gas.
Selon un autre aspect de l'invention, il est proposé un dispositif de détermination du ballotement d'un chargement liquide d'un navire, ledit dispositif comprenant un processeur configuré pour mettre en œuvre le procédé précité.According to another aspect of the invention, there is proposed a device for determining the sloshing of a liquid load of a ship, said device comprising a processor configured to implement the aforementioned method.
Un tel dispositif ou procédé de détermination du ballotement peut être installé dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO), une barge et autres. En outre, un tel dispositif ou procédé de détermination du ballotement peut être implémenté pour le dimensionnement de la structure flottante en particulier le dimensionnement d'une cuve d'un navire ou dudit navire en fonction de la donnée relative au ballotement du chargement déterminée par un tel dispositif ou un tel procédé. Un tel dispositif ou procédé de détermination du ballotement peut aussi être implémenté pour déterminer des consignes de navigation par exemple une vitesse du navire, une direction, à exécuter automatiquement ou par un conducteur du navire, afin de réduire ou d'éviter un niveau de ballotement du navire.Such a device or method for determining sloshing can be installed in a floating, coastal or deep-water structure, in particular an LNG carrier, a floating storage and regasification unit (FSRU), a floating production and remote storage unit ( FPSO), a barge and others. In addition, such a device or method for determining the sloshing can be implemented for the dimensioning of the floating structure, in particular the dimensioning of a tank of a ship or of said ship according to the data relating to the sloshing of the load determined by a such device or process. Such a device or method for determining sloshing can also be implemented to determine navigation instructions, for example a speed of the ship, a direction, to be executed automatically or by a driver of the ship, in order to reduce or avoid a level of sloshing of the ship.
Selon un autre aspect de l'invention, il est proposé un navire par exemple pour le transport d'un produit liquide froid tel que le gaz naturel liquéfiée, comportant au moins une cuve comprenant un chargement et le dispositif de détermination du ballotement précité.According to another aspect of the invention, a ship is proposed, for example for the transport of a cold liquid product such as liquefied natural gas, comprising at at least one tank comprising a load and the device for determining the aforementioned sloshing.
L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l'invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
- [
Fig.1 ] lafigure 1 est une représentation schématique en coupe longitudinale d'un navire comportant une pluralité de cuves comprenant un chargement liquide. - [
Fig.2 ] lafigure 2 est une représentation schématique d'un état de mer du vent et d'un état de houle auxquels peut être soumis le navire de lafigure 1 . - [
Fig.3 ] lafigure 3 est une représentation schématique d'un procédé de détermination du ballotement du navire de lafigure 1 . - [
Fig.4 ] lafigure 4 est une représentation schématique d'un dispositif de détermination du ballotement du navire de lafigure 1 .
- [
Fig.1 ] thefigure 1 is a schematic representation in longitudinal section of a ship comprising a plurality of tanks comprising a liquid load. - [
Fig.2 ] thepicture 2 is a schematic representation of a sea state of the wind and of a swell state to which the ship of thefigure 1 . - [
Fig.3 ] thepicture 3figure 1 . - [
Fig.4 ] thefigure 4 is a schematic representation of a device for determining the sloshing of the ship of thefigure 1 .
Les figures sont décrites ci-après dans le cadre d'un navire 1 comportant une double coque formant une structure porteuse dans laquelle sont agencées une pluralité de cuves étanches et thermiquement isolantes. Une telle structure porteuse présente par exemple une géométrie polyédrique, par exemple de forme prismatique.The figures are described below in the context of a ship 1 comprising a double hull forming a supporting structure in which are arranged a plurality of watertight and thermally insulating tanks. Such a carrier structure has for example a polyhedral geometry, for example of prismatic shape.
De telles cuves étanche et thermiquement isolante sont prévues par exemple pour le transport de gaz liquéfié. Le gaz liquéfié est stocké et transporté dans de telles cuves à une température basse ce qui nécessite des parois de cuve thermiquement isolantes afin de maintenir le gaz liquéfié à cette température. Il est donc particulièrement important de maintenir intacte l'intégrité des parois de cuves d'une part pour conserver l'étanchéité de la cuve et éviter les fuites de gaz liquéfié hors des cuves et, d'autre part, éviter les dégradations des caractéristiques isolantes de la cuve afin de maintenir le gaz sous sa forme liquéfiée.Such sealed and thermally insulating tanks are provided for example for the transport of liquefied gas. The liquefied gas is stored and transported in such tanks at a low temperature, which requires thermally insulating tank walls in order to maintain the liquefied gas at this temperature. It is therefore particularly important to maintain the integrity of the walls of the tanks intact, on the one hand to preserve the tightness of the tank and avoid leaks of liquefied gas from the tanks and, on the other hand, to avoid degradation of the insulating characteristics. of the tank in order to maintain the gas in its liquefied form.
De telles cuves étanches et thermiquement isolantes comportent aussi une barrière isolante ancrée sur la double coque de navire et portant au moins une membrane étanche. A titre d'exemple, de telles cuves peuvent être réalisées selon les technologies de type Mark III®, tel que décrit par exemple dans
La
Les quatre cuves 2 présentent sur la
Ce remplissage partiel des cuves 3, 4, 5, 6 peut engendrer des risques important d'endommagement desdites cuves 3, 4, 5, 6 lorsque le navire 1 navigue en mer. En effet, lorsqu'il est en mer, le navire 1 est sujet à de nombreux mouvements liés aux conditions de navigation.This partial filling of the
En particulier, le navire 1 est sujet d'une part à une première excitation de mer du vent représentée par l'axe 10 et à une deuxième excitation de la houle représentée par l'axe 12 sur la
Pour cela, un procédé 200, représenté sur la
Le procédé 200 comprend les étapes suivantes :
- étape 202 : acquisition d'un état de mer du vent comprenant la hauteur significative de mer du vent Hswindsea, la période de pic de mer du vent Tpwindsea et la direction de mer du vent Hgwindsea par rapport à l'axe longitudinal 16,
- étape 204 : acquisition d'un état de la houle comprenant la hauteur significative de la houle Hsswell, la période de pic de la houle Tpswell et la direction de la houle Hgswell par rapport à l'axe longitudinal 16,
- étape 206 : détermination de l'excitation monomodale par détermination d'une hauteur totale Hstot, la période de pic totale Tptot et la direction totale Hgtot' en fonction de l'état de mer du vent et de l'état de la houle,
- étape 208 : détermination d'une donnée relative au ballotement du liquide compris dans le navire 1 en fonction de l'excitation monomodale déterminée à l'étape 206.
- step 202: acquisition of a wind sea state comprising the significant wind sea height Hs windsea , the wind sea peak period Tp windsea and the wind sea direction Hg windsea with respect to the
longitudinal axis 16 , - step 204: acquisition of a state of the swell comprising the significant height of the swell Hs swell, the peak period of the swell Tp swell and the direction of the swell Hg swell with respect to the
longitudinal axis 16, - step 206: determination of the monomodal excitation by determining a total height Hs tot , the total peak period Tp tot and the total direction Hg tot' as a function of the sea state of the wind and the state of the swell,
- step 208: determination of a datum relating to the sloshing of the liquid included in the vessel 1 as a function of the monomodal excitation determined in
step 206.
Selon un mode de réalisation, les étapes 202 et 204 sont réalisées par acquisition de mesures relatives à l'état de mer du vent et à l'état de la houle par des capteurs déployés dans le navire 1. Alternativement, les étapes 202 et 204 sont réalisées par acquisition de prédictions de l'état de la houle et l'état de mer du vent préalablement déterminés.According to one embodiment, steps 202 and 204 are performed by acquiring measurements relating to the sea state, wind and swell state by sensors deployed in the ship 1. Alternatively, steps 202 and 204 are carried out by acquiring predictions of the state of the swell and the sea state of the wind previously determined.
Selon un mode de réalisation, la hauteur totale Hstot est déterminée à l'étape 206 par résolution de l'équation suivante :
Selon un mode de réalisation, la période de pic totale Tptot est déterminée à l'étape 206 par détermination de la période de pic parmi celles de la houle Tpswell et de la mer du vent Tpwindsea engendrant le ballotement du chargement le plus sévère en excitation monomodale, par exemple par consultation d'une base de données ou par calcul numérique.According to one embodiment, the total peak period Tp tot is determined in
Selon un mode de réalisation, la direction totale Hgtot est déterminée à l'étape 206 par détermination de la direction parmi la direction de la houle Hgswell et la direction de mer du vent Hgwindsea la plus proche d'une direction perpendiculaire 18 à l'axe longitudinal 16 du navire 1. Dans un cas où ces deux directions sont symétriques par rapport à la direction perpendiculaire 18, on retient l'excitation qui vient de l'avant du navire.According to one embodiment, the total direction Hg tot is determined in
L'étape 208 peut être réalisée par consultation d'une base de données préalablement établie pour le navire 1 ou par calcul numérique à partir d'une modélisation numérique préalablement établie exprimant le ballotement en fonction de l'excitation monomodale 14.Step 208 can be carried out by consulting a database previously established for the ship 1 or by digital calculation from a previously established digital model expressing the sloshing as a function of the
Selon un mode de réalisation, le procédé 200 comprend une étape 210 de détermination d'un risque d'endommagent Riskope d'une cuve 2 en fonction de la donnée relative au ballotement déterminée à l'étape 208 et le niveau de remplissage de ladite cuve 2. En particulier, le risque d'endommagent Riskope est déterminé par l'équation suivante :
avec SC étant un niveau de ballotement engendré par la donnée relative au ballotement pour le niveau de remplissage fl de la cuve,
- Probtk représente la densité de probabilité de rencontrer une pression Pressurf sur une surface interne de la cuve supérieure à la résistance Ressurf de ladite surface interne de la cuve en fonction du niveau de ballotement SC(f l),
- surf est la surface interne de la cuve impactée par le liquide, et tope est la durée d'opération de navigation du navire 1 soumis à l'état de mer du vent et la houle engendrant le niveau de ballotement SC(f l) pour le niveau de remplissage fl.
with SC being a level of sloshing generated by the datum relating to sloshing for the filling level fl of the tank,
- Prob tk represents the density of probability of encountering a pressure Pres surf on an internal surface of the tank greater than the resistance Res surf of said internal surface of the tank as a function of the level of sloshing SC(fl),
- surf is the internal surface of the tank impacted by the liquid, and to ope is the duration of navigation operation of the ship 1 subjected to the sea state of the wind and the swell generating the level of sloshing SC(fl) for the fill level fl.
La loi probtk est une loi statistique par exemple de type GEV, Weibull, Pareto, Gumbel. Un, plusieurs ou l'ensemble des paramètres de cette loi sont par exemple définis à partir d'essais monomodaux de mouvement liquide en laboratoire ou de campagnes de mesures monomodales à la mer.The law prob tk is a statistical law for example of the GEV, Weibull, Pareto, Gumbel type. One, several or all of the parameters of this law are for example defined from monomodal tests of liquid movement in the laboratory or monomodal measurement campaigns at sea.
La
L'unité centrale 302 est connectée à une pluralité de capteurs 304 embarqués permettant d'obtenir les différentes grandeurs indiquées ci-dessus. Ainsi, les capteurs 304 comportent, par exemples et de manière non exhaustive, un capteur de niveau de remplissage 306 de chaque cuve, différents capteurs 308 (accéléromètre, jauge de contrainte, jauge de déformation, son, lumière) permettant à l'unité centrale 302 via un algorithme dédié de détecter les impacts liés aux mouvements du liquide dans les cuves 3, 4, 5, 6, etc.The
Le dispositif 300 comporte en outre une interface homme-machine 310. Cette interface homme machine 310 comporte un moyen d'affichage 312 permettant à un opérateur du navire 1 d'obtenir les différentes informations, par exemples des informations sur la donnée relative au ballotement déterminée en mettant en œuvre les étapes du procédé 200, le risque d'endommagement d'une des cuves 2 du navire 1, les grandeurs obtenues par les capteurs 308 telles que l'intensité des mouvements de liquide dans les cuves, des informations sur les impacts liés à ces mouvements de liquide, les mouvements du navire, l'état de chargement du navire ou encore des informations météorologiques.The
L'interface homme-machine 310 comporte en outre un moyen d'acquisition 314 permettant à l'opérateur de fournir manuellement des grandeurs à l'unité centrale 302, typiquement pour fournir à l'unité centrale 302 des données ne pouvant pas être obtenues par des capteurs car le navire ne comporte pas le capteur nécessaire ou que ce dernier est endommagé. Par exemple, dans un mode de réalisation, le moyen d'acquisition permet à l'opérateur d'entrer des informations sur l'état de mer du vent et/ou l'état de la houle.The man-
Le dispositif 300 comporte une base de données 316. Cette base de données 316 comporte par exemple certaines grandeurs obtenues en laboratoire ou lors de campagnes de mesures embarquées en mer. Par exemple, la base de données 316 peut comporter les données relatives au ballotement en fonction de l'excitation monomodale. En particulier, la base de données peut stocker des données représentatives des contraintes globales ou locales exercées sur la paroi de cuve, pour chaque valeur de d'amplitude, de fréquence et d'incidence de l'excitation monomodale. Ces données représentatives des contraintes exercées sur la paroi de cuve peuvent être par exemple une distribution de la pression exercée sur la paroi de cuve, à savoir la fonction Psurf.The
Dans un mode de réalisation, les calculs du risque d'endommagement sont également préétablis et la base de données peut stocker directement des données représentatives du risque d'endommagement Riskope pour chaque valeur de la hauteur significative, de période de pic et de direction de l'excitation monomodale.In one embodiment, the calculations of the risk of damage are also pre-established and the database can directly store data representative of the risk of damage Risk ope for each value of the significant height, peak period and direction of monomodal excitation.
Le dispositif 300 comporte également une interface de communication 318 permettant à l'unité centrale 302 de communiquer avec des dispositifs distants par exemple pour obtenir des données météorologiques, des données de position du navire ou autre.The
Selon un mode de réalisation, l'unité centrale 302 est configurée pour déterminer une donnée de navigation, par exemple un cap du navire, une vitesse, etc., en fonction de la donnée relative au ballotement et/ou au risque d'endommagement.According to one embodiment, the
Certains éléments représentés, notamment l'unité de centrale 302, peuvent être réalisés sous différentes formes, de manière unitaire ou distribuée, au moyen de composants matériels et/ou logiciels. Des composants matériels utilisables sont les circuits intégrés spécifiques ASIC, les réseaux logiques programmables FPGA ou les microprocesseurs. Des composants logiciels peuvent être écrits dans différents langages de programmation, par exemple C, C++, Java ou VHDL. Cette liste n'est pas exhaustiveCertain elements represented, in particular the
Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée.Although the invention has been described in connection with several particular embodiments, it is quite obvious that it is in no way limited thereto.
L'usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n'exclut pas la présence d'autres éléments ou d'autres étapes que ceux énoncés dans une revendication.The use of the verb "to comprise", "to understand" or "to include" and of its conjugated forms does not exclude the presence of other elements or other steps than those set out in a claim.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.In the claims, any reference sign in parentheses cannot be interpreted as a limitation of the claim.
Claims (11)
- A method (200) for determining the sloshing of a liquid loading of a vessel (1), implemented by a device (300) for determining the sloshing of a liquid loading of a vessel, said method (200) comprising:a step (206) of determination of a monomodal excitation as a function of a multimode excitation to which said vessel is subjected, the multimodal excitation comprising a state of the swell and a wind sea state, wherein the state of the swell comprises a direction of the swell and the wind sea state comprises a wind sea direction, and wherein the monomodal excitation exhibits a total direction equivalent to one out of the direction of the swell and the wind sea direction closest to a direction at right angles to the longitudinal axis of the vessel,a step (208) of determination of a datum relating to the sloshing of said loading as a function of the monomodal excitation, wherein the datum relating to the sloshing is determined as a function of the monomodal excitation through consultation of a previously established database, said database comprising data relating to the sloshing expressing the sloshing as a function of the monomodal excitation, wherein the data relating to the sloshing are determined by experimental measurements, and a step (210) of determination of a probability of damage to a tank (2) of the vessel (1) comprising all or a part of the loading as a function of the datum relating to the sloshing and of a level of filing of said tank,wherein the probability of damage is relative to a density of probability of encountering a pressure on an internal surface of the tank greater than an internal resistance of the tank as a function of the datum relating to the sloshing and of the level of filling of the tank.
- The method (200) as claimed in claim 1, wherein the state of the swell comprises a significant height of the swell and/or a peak period of the swell and/or a direction of the swell with respect to a longitudinal axis of the vessel.
- The method (200) as claimed in either one of claims 1 and 2, wherein the wind sea state comprises a significant wind sea height and/or a peak wind sea period and/or a wind sea direction with respect to a longitudinal axis.
- The method (200) as claimed in any one of claims 1 to 3, wherein the state of the swell comprises a significant height of the swell and the wind sea state comprises a significant wind sea height, and
wherein the monomodal excitation exhibits a total significant height equal to a root mean square of said significant height of the swell and of said significant wind sea height. - The method as claimed in any one of claims 1 to 4, wherein the state of the swell comprises a peak period of the swell and the wind sea state comprises a peak wind sea period, and
wherein the monomodal excitation exhibits a total peak period equal to one out of the peak period of the swell and the peak wind sea period selected as the period generating the most severe sloshing of the loading. - The method as claimed in claim 5, comprising a step for selecting the total peak period out of the peak period of the swell and the peak wind sea period by:a first database consultation to determine a first sloshing generated by the peak period of the swell,a second database consultation to determine a second sloshing generated by the peak wind sea period, anda determination of the most severe sloshing out of the first sloshing and the second sloshing.
- The method as claimed in any one of claims 1 to 6, further comprising a step consisting in detecting that the vessel is subjected to a significantly multimodal excitation.
- The method as claimed in claim 7, wherein a significantly multimodal excitation is detected when:the significant height of the swell and of the significant wind sea height are non-zero, andthe difference between the direction of the swell and of the wind sea direction is greater than 15°, andthe significant height of the swell and the significant wind sea height are less than 85% of a root mean square of the significant height of the swell and of the significant wind sea height.
- The method as claimed in any one of claims 1 to 8, comprising a step of transmission of an audio or visual signal for an operator of the vessel when the datum relating to the sloshing is above a predetermined threshold.
- A device (300) for determining the sloshing of a liquid loading of a vessel, said device comprising a processor (302) configured to implement the method (200) as claimed in any one of claims 1 to 9.
- A vessel (1) comprising a device (300) as claimed in claim 10.]
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1904837A FR3095802B1 (en) | 2019-05-09 | 2019-05-09 | Method and device for determining sloshing |
PCT/EP2020/062678 WO2020225353A1 (en) | 2019-05-09 | 2020-05-07 | Method and device for determining sloshing |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3966101A1 EP3966101A1 (en) | 2022-03-16 |
EP3966101B1 true EP3966101B1 (en) | 2022-12-14 |
Family
ID=69104469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20723138.2A Active EP3966101B1 (en) | 2019-05-09 | 2020-05-07 | Method and device for determining sloshing |
Country Status (9)
Country | Link |
---|---|
US (1) | US11987327B2 (en) |
EP (1) | EP3966101B1 (en) |
CN (1) | CN113795422B (en) |
AU (1) | AU2020269409A1 (en) |
BR (1) | BR112021022113A2 (en) |
ES (1) | ES2939288T3 (en) |
FR (1) | FR3095802B1 (en) |
SG (1) | SG11202112068UA (en) |
WO (1) | WO2020225353A1 (en) |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2691520B1 (en) | 1992-05-20 | 1994-09-02 | Technigaz Ste Nle | Prefabricated structure for forming watertight and thermally insulating walls for containment of a fluid at very low temperature. |
FR2877638B1 (en) | 2004-11-10 | 2007-01-19 | Gaz Transp Et Technigaz Soc Pa | THERMALLY INSULATED AND THERMALLY INSULATED TANK WITH COMPRESSION-RESISTANT CALORIFIC ELEMENTS |
AU2009317982B2 (en) * | 2008-11-21 | 2014-04-24 | Exxonmobil Upstream Research Company | Liquid impact pressure control methods and systems |
KR101010989B1 (en) * | 2008-12-12 | 2011-01-26 | 삼성중공업 주식회사 | Monitoring and controlling method of sloshing to liquid cargo in ship |
FR2945511B1 (en) * | 2009-05-14 | 2011-07-22 | Saipem Sa | VESSEL OR FLOATING SUPPORT EQUIPPED WITH A DEVICE FOR DETECTING THE MOVEMENTS OF LIQUID CARENES |
US8643509B1 (en) | 2011-01-31 | 2014-02-04 | The Boeing Company | Methods and systems for providing sloshing alerts and advisories |
KR101836904B1 (en) * | 2011-10-24 | 2018-03-12 | 대우조선해양 주식회사 | Cargo containment having sloshing load absorbing function and method the same |
FR2996520B1 (en) | 2012-10-09 | 2014-10-24 | Gaztransp Et Technigaz | SEALED AND THERMALLY INSULATING TANK COMPRISING A METALIC MEMBRANE WOUNDED ACCORDING TO ORTHOGONAL PLATES |
KR20140086194A (en) * | 2012-12-28 | 2014-07-08 | 대우조선해양 주식회사 | Method For Reducing Sloshing |
KR20150044546A (en) * | 2013-10-17 | 2015-04-27 | 현대중공업 주식회사 | System and method for Monitoring sloshing of liquid cargo in ship |
CN104266819A (en) * | 2014-09-03 | 2015-01-07 | 河海大学 | Device for simulating liquid sloshing generated under random wave action and wave generation method thereof |
JP6735756B2 (en) | 2014-12-30 | 2020-08-05 | チェントロ ペル リ ストゥディ ディ テクニカ ナヴァーレ − チェテーナ エセ.ピ.ア. | Structure monitoring system for ship hull integrated with navigation decision support system |
CN106383940A (en) * | 2016-09-08 | 2017-02-08 | 大连理工大学 | Method for calculating dangerous rocking condition of LNG independent C-type cabin for ship |
CN106529087B (en) * | 2016-12-07 | 2019-05-14 | 中国海洋石油集团有限公司 | The prediction technique of liquid sloshing degree in a kind of carrier fluid hull cabin |
CN108216496A (en) * | 2017-12-01 | 2018-06-29 | 浙江海洋大学 | The dual system of marine hydraulic hold swings device and its oscillation method processed |
-
2019
- 2019-05-09 FR FR1904837A patent/FR3095802B1/en active Active
-
2020
- 2020-05-07 BR BR112021022113A patent/BR112021022113A2/en unknown
- 2020-05-07 US US17/607,321 patent/US11987327B2/en active Active
- 2020-05-07 SG SG11202112068UA patent/SG11202112068UA/en unknown
- 2020-05-07 EP EP20723138.2A patent/EP3966101B1/en active Active
- 2020-05-07 WO PCT/EP2020/062678 patent/WO2020225353A1/en unknown
- 2020-05-07 AU AU2020269409A patent/AU2020269409A1/en active Pending
- 2020-05-07 ES ES20723138T patent/ES2939288T3/en active Active
- 2020-05-07 CN CN202080034422.4A patent/CN113795422B/en active Active
Also Published As
Publication number | Publication date |
---|---|
US11987327B2 (en) | 2024-05-21 |
SG11202112068UA (en) | 2021-11-29 |
AU2020269409A1 (en) | 2021-11-18 |
WO2020225353A1 (en) | 2020-11-12 |
FR3095802B1 (en) | 2023-03-24 |
US20220204141A1 (en) | 2022-06-30 |
ES2939288T3 (en) | 2023-04-20 |
BR112021022113A2 (en) | 2022-01-04 |
FR3095802A1 (en) | 2020-11-13 |
CN113795422A (en) | 2021-12-14 |
CN113795422B (en) | 2024-06-11 |
EP3966101A1 (en) | 2022-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3803190B1 (en) | Method for controlling the filling levels of tanks | |
EP2429890B1 (en) | Floating support or vessel equipped with a device for detecting the movement of the free surface of a body of liquid | |
EP4153474A1 (en) | Estimation of a tank sloshing response using a statistical model trained by machine learning | |
EP3881149A1 (en) | Maintenance management method for a ship | |
EP3966101B1 (en) | Method and device for determining sloshing | |
EP4160079B1 (en) | Method and system for calculating a transition parameter of a liquefied gas storage medium. | |
WO2022263267A1 (en) | Method and device for estimating the probability of damage caused by the sloshing of a liquid load during an operation of transferring said liquid load between two floating structures | |
WO2022180109A1 (en) | Monitoring and predicting the operation of a pump arranged in a tank for transporting a liquid product on board a vessel | |
RU2791213C2 (en) | Method for controlling tank filling levels | |
KR102718562B1 (en) | How to manage the fill level of your tank | |
WO2015118230A1 (en) | Detection of water in a tensioning buoy | |
FR3145963A1 (en) | Self-supporting box suitable for the support and thermal insulation of a waterproof membrane | |
OA17837A (en) | Water detection in a tensioning buoy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20211015 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20220801 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602020006942 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1537535 Country of ref document: AT Kind code of ref document: T Effective date: 20230115 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20221214 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20221214 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2939288 Country of ref document: ES Kind code of ref document: T3 Effective date: 20230420 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20230400414 Country of ref document: GR Effective date: 20230410 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1537535 Country of ref document: AT Kind code of ref document: T Effective date: 20221214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230414 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230414 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602020006942 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 |
|
26N | No opposition filed |
Effective date: 20230915 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230507 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230507 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230507 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240513 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20240424 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240614 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20240426 Year of fee payment: 5 Ref country code: FR Payment date: 20240524 Year of fee payment: 5 |