EP3966101A1 - Method and device for determining sloshing - Google Patents

Method and device for determining sloshing

Info

Publication number
EP3966101A1
EP3966101A1 EP20723138.2A EP20723138A EP3966101A1 EP 3966101 A1 EP3966101 A1 EP 3966101A1 EP 20723138 A EP20723138 A EP 20723138A EP 3966101 A1 EP3966101 A1 EP 3966101A1
Authority
EP
European Patent Office
Prior art keywords
wind
sea
swell
sloshing
significant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20723138.2A
Other languages
German (de)
French (fr)
Other versions
EP3966101B1 (en
Inventor
Erwan CORBINEAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaztransport et Technigaz SA
Original Assignee
Gaztransport et Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport et Technigaz SA filed Critical Gaztransport et Technigaz SA
Publication of EP3966101A1 publication Critical patent/EP3966101A1/en
Application granted granted Critical
Publication of EP3966101B1 publication Critical patent/EP3966101B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/24Means for preventing unwanted cargo movement, e.g. dunnage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/20Monitoring properties or operating parameters of vessels in operation using models or simulation, e.g. statistical models or stochastic models

Definitions

  • the invention relates to the field of methods and device for determining sloshing, in particular for determining the sloshing of liquid cargo of ships.
  • the liquid contained in a tank is subjected to various movements.
  • the movements at sea of a vessel including the tank for example under the effect of climatic conditions such as sea state or wind, cause agitation of the liquid in the tank.
  • the agitation of the liquid generally referred to as "sloshing" or sloshing, causes stress on the walls of the tank which can adversely affect the integrity of the tank.
  • the integrity of the tank is particularly important in the context of an LNG tank because of the flammable or explosive nature of the liquid transported and the risk of a cold spot on the steel hull of the floating unit.
  • the present inventors have found that it is difficult to take precise sea states into account in a digital model given the large number of possible sea states, in particular the existence of multimodal sea conditions in certain circumstances.
  • An idea underlying the invention is to determine the sloshing of the liquid contained in the ship by a relatively economical method in terms of computing time and computing resources.
  • another idea at the basis of this invention is to provide a method for determining the sloshing by determining a less complex sea state to reduce the calculation time without reducing the reliability of determining the sloshing.
  • the invention provides a method for determining the sloshing of a liquid cargo of a ship, said method comprising: a step of determining a monomodal excitation as a function of a wave state and a wind sea state to which said ship is subjected, a step of determining a datum relating to the sloshing of said loading as a function of the monomodal excitation.
  • the method is advantageous in that it determines a monomodal excitation equivalent to a multimodal excitation comprising the wave state and the sea state of the wind.
  • the sloshing is thus determined for an equivalent monomodal excitation and not from multimodal excitation, which would be much more complex to model by calculation or by experiment.
  • the process is thus less computationally intensive and requires less computation time compared to the state of the art.
  • such a method may include one or more of the following characteristics.
  • the sloshing determination step can be done in different ways.
  • the data relating to the sloshing is determined as a function of the monomodal excitation by consulting a previously established database comprising data representing the sloshing as a function of the monomodal excitation.
  • the database can include sloshing levels obtained experimentally in the laboratory or during on-board measurement campaigns at sea depending on the single-mode excitation.
  • the data relating to the sloshing is determined by a previously established numerical modeling expressing the sloshing as a function of the monomodal excitation.
  • the swell state and / or the wind sea state define the ship's environmental data.
  • the swell state comprises a significant height of the swell and / or a peak period of the swell and / or a direction of the swell with respect to a longitudinal axis of the vessel.
  • the wind sea state comprises a significant wind sea height and / or a wind sea peak period and / or a wind sea direction relative to a longitudinal axis.
  • the state of the swell and / or the state of the sea of the wind are determined in real time by sensors provided in the ship and configured to measure a significant height of the swell and / or a period of peak swell and / or swell direction and significant wind sea height and / or peak wind period and / or wind sea direction.
  • the state of the swell and / or the sea state of the wind are determined indirectly from the meteorological and ocean conditions.
  • the state of the swell and / or the sea state of the wind are determined by weather prediction.
  • the swell state comprises a significant height the swell and the sea state of the wind comprises a significant sea height of the wind
  • the monomodal excitation has a significant total height equal to a root mean square. from said significant height the swell and from said significant sea height the wind.
  • the swell state comprises a peak wave period and the wind sea state comprises a peak sea period of the wind
  • the single-mode excitation has an equal total peak period. to one of the peak swell period and the peak sea wind period selected as the period causing the most severe load sloshing.
  • the method can comprise a step for selecting the total peak period from among the peak period of the swell and the peak period of the wind by: a first consultation of the database, for example data acquired by the experiment, to determine a first sloshing caused by the period of peak swell, a second database lookup to determine a second sloshing caused by the windy sea peak period, and a determination of the most severe toss of the first toss and second toss.
  • the swell state comprises a swell direction and the wind sea state comprises a wind sea direction
  • the single-mode excitation has a total direction equivalent to one of the wave direction and the wind direction of sea closest to a direction perpendicular to the longitudinal axis of the vessel.
  • the method comprises a step of determining a probability of damage to a vessel of the vessel comprising all or part of the load as a function of the data relating to the sloshing and a filling level of said tank.
  • the probability of damage is relative to a density of probability of encountering a pressure on an internal surface of the tank greater than an internal resistance of the tank as a function of the data relating to the sloshing and the filling level of the tank.
  • the filling level of the tank can be determined by filling level sensors arranged in said tank.
  • the method comprises a step of issuing a sound or visual signal for an operator of the vessel when the data relating to the sloshing is greater than a predetermined threshold.
  • the method further comprises a step consisting in detecting that the ship is subjected to a significantly multimodal excitation.
  • a significantly multimodal excitation is detected when: the significant height of the swell and the significant height of the sea of the wind are not zero, and a difference between the wave direction and the wind sea direction is greater than 15 °, and the significant swell height and the significant sea height of the wind are less than 85% of a root mean square of the significant swell height and the significant sea height of the wind.
  • the method comprises, following the detection that the ship is subjected to a significantly multimodal excitation, a step of determining a datum relating to the sloshing as a function of the sea state of the wind and the state of the swell of significantly multimodal excitement.
  • the method may further comprise, in response to the detection that the ship is not subjected to a significantly multimodal excitation, a step of determining the data relating to the sloshing of the load as a function of a recombinant monomodal excitation corresponding to the swell state and wind sea state.
  • the recombinant single-mode excitation is provided by meteorological or oceanic services.
  • the liquid is a liquefied gas, for example liquefied natural gas.
  • a device for determining the sloshing of a liquid cargo of a ship comprising a processor configured to implement the aforementioned method.
  • Such a device or method for determining sloshing can be installed in a floating, coastal or deep-water structure, in particular an LNG vessel, a floating storage and regasification unit (FSRU), a floating production and remote storage unit (FPSO), a barge and others.
  • a device or method for determining the sloshing can be implemented for the sizing of the floating structure, in particular the sizing of a vessel of a ship or of said vessel as a function of the data relating to the sloshing of the load determined by a such device or such method.
  • Such a device or method for determining the sloshing can also be implemented to determine navigation instructions, for example a speed of the ship, a direction, to be executed automatically or by a shipmaster, in order to reduce or avoid a level of sloshing. of the ship.
  • a ship for example for transporting a cold liquid product such as liquefied natural gas, comprising at least one tank comprising a load and the device for determining the aforementioned sloshing.
  • FIG. 1 is a schematic representation in longitudinal section of a ship comprising a plurality of tanks comprising a liquid load.
  • FIG. 2 is a schematic representation of a wind sea state and a swell state to which the vessel of FIG. 1 may be subjected.
  • FIG. 3 is a schematic representation of a method for determining the sloshing of the vessel of FIG. 1.
  • FIG. 4 is a schematic representation of a device for determining the sloshing of the vessel of FIG. 1.
  • a ship 1 comprising a double hull forming a supporting structure in which are arranged a plurality of sealed and thermally insulating tanks.
  • a supporting structure has for example a polyhedral geometry, for example of prismatic shape.
  • Such sealed and thermally insulating tanks are provided, for example, for the transport of liquefied gas.
  • the liquefied gas is stored and transported in such tanks at a low temperature which requires thermally insulating tank walls in order to maintain the liquefied gas at this temperature. It is therefore particularly important to keep the integrity of the vessel walls intact, on the one hand to maintain the tightness of the vessel and prevent liquefied gas leaks from the vessels and, on the other hand, to avoid degradation of the insulating characteristics. of the vessel in order to maintain the gas in its liquefied form.
  • Such sealed and thermally insulating tanks also include an insulating barrier anchored to the double hull of the ship and carrying at least one waterproof membrane.
  • such tanks can be produced according to Mark III® type technologies, as described for example in FR2691520, of NO96® type as described for example in FR2877638, or other such as described for example in WO14057221 .
  • FIG. 1 illustrates a ship 1 comprising four sealed and thermally insulating tanks 2.
  • the tanks 2 are interconnected by a cargo handling system (not shown) which may include many components, for example pumps, valves and lines so as to allow the transfer of liquid from the vessel. 'one of the tanks 2 to another tank 2.
  • a cargo handling system (not shown) which may include many components, for example pumps, valves and lines so as to allow the transfer of liquid from the vessel. 'one of the tanks 2 to another tank 2.
  • the four tanks 2 show in Figure 1 an initial state of filling. In this initial state, the tanks are partially filled. A first tank 3 is filled to approximately 60% of its capacity. A second tank 4 is filled to approximately 35% of its capacity. A third tank 5 is filled to approximately 35% of its capacity. A fourth tank 6 is filled to approximately 40% of its capacity.
  • This partial filling of the tanks 3, 4, 5, 6 can generate significant risks of damaging said tanks 3, 4, 5, 6 when the ship 1 is sailing at sea. Indeed, when it is at sea, the ship 1 is subject to many movements related to navigation conditions.
  • the ship 1 is subject on the one hand to a first sea excitation of the wind represented by axis 10 and to a second excitation of the swell represented by axis 12 in Fig. 2.
  • the wind sea induces waves having a wind sea direction parallel to the axis 10 with respect to a longitudinal axis 16 of the vessel 1, a significant sea height of the wind and a peak sea period of the wind.
  • swell causes waves with a swell direction parallel to axis 12 relative to longitudinal axis 16, a significant swell height, and a peak swell period.
  • the meeting of the waves induced by the swell and the sea of the wind generates a multimodal excitation of the ship 1 causing the movements of the ship 1.
  • a method 200 for determining the sloshing can be implemented by the ship 1 to estimate a monomodal excitation represented by the axis 14 in Fig. 2 equivalent to the total excitation of the vessel. ship 1 caused by the meeting of the sea excitation of wind 10 and the excitement of swell 12.
  • the method 200 comprises the following steps: step 202: acquisition of a wind sea state comprising the significant sea height of the wind , the period of peak sea wind and the sea direction of the wind with respect to the longitudinal axis 16, step 204: acquisition of a swell state comprising the significant height of the swell , the peak swell period and the direction of the swell with respect to the longitudinal axis 16, step 206: determination of the monomodal excitation by determination of a total height , the total peak period and total management , depending on the sea state of the wind and the state of the swell, step 208: determination of a datum relating to the sloshing of the liquid included in the vessel 1 as a function of the monomodal excitation determined in step 206.
  • steps 202 and 204 are carried out by acquiring measurements relating to the sea state of the wind and to the state of the swell by sensors deployed in the ship 1.
  • steps 202 and 204 are carried out by acquiring predictions of the state of the swell and the state of the sea of the wind previously determined.
  • the total height is determined in step 206 by solving the following equation:
  • the total peak period is determined in step 206 by determining the peak period among those of the swell and the sea of wind causing the most severe sloshing of the loading in monomodal excitation, for example by consulting a database or by numerical calculation.
  • the total direction is determined in step 206 by determining the direction of the wave direction and the sea direction of the wind closest to a direction perpendicular 18 to the longitudinal axis 16 of the ship 1. In a case where these two directions are symmetrical with respect to the perpendicular direction 18, the excitation which comes from the front of the ship is retained.
  • Step 208 can be carried out by consulting a database previously established for the vessel 1 or by numerical calculation from a previously established digital modeling expressing the sloshing as a function of the monomodal excitation 14.
  • the method 200 comprises a step 210 of determining a risk of damaging of a tank 2 as a function of the data relating to the sloshing determined in step 208 and the filling level of said tank 2.
  • the risk of damaging is determined by the following equation:
  • SC being a sloshing level generated by the data relating to sloshing for the filling level fl of the tank, represents the probability density of encountering a pressure on an internal surface of the tank greater than the resistance of said internal surface of the tank as a function of the level of sloshing , is the internal surface of the tank impacted by the liquid, and is the duration of the navigation operation of the vessel 1 subjected to the sea state of the wind and the swell generating the sloshing level for the filling level fl.
  • the law is a statistical law for example of type GEV, Weibull, Pareto, Gumbel.
  • One, several or all of the parameters of this law are, for example, defined from single-mode tests of liquid movement in the laboratory or from single-mode measurement campaigns at sea.
  • FIG. 4 illustrates a device 300 for determining the tossing that can be loaded onto the ship 1.
  • This device 300 comprises a central unit 302 configured to carry out the various steps of the method 200 to determine the data relating to the tossing of the ship and / or the risk. damage to a tank 2 of the vessel 1.
  • the central unit 302 is connected to a plurality of onboard sensors 304 making it possible to obtain the various quantities indicated above.
  • the sensors 304 comprise, for example and in a non-exhaustive manner, a filling level sensor 306 of each tank, various sensors 308 (accelerometer, strain gauge, strain gauge, sound, light) allowing the central unit 302 via a dedicated algorithm to detect the impacts linked to the movements of the liquid in tanks 3, 4, 5, 6, etc.
  • the device 300 further comprises a man-machine interface 310.
  • This man-machine interface 310 comprises a display means 312 allowing an operator of the ship 1 to obtain the various information, for example information on the datum relating to the determined tossing. by implementing the steps of the method 200, the risk of damaging one of the tanks 2 of the vessel 1, the quantities obtained by the sensors 308 such as the intensity of the movements of liquid in the tanks, information on the impacts linked to these movements of liquid, the movements of the ship, the loading status of the ship or even meteorological information.
  • the man-machine interface 310 further comprises an acquisition means 314 allowing the operator to manually supply quantities to the central unit 302, typically to provide the central unit 302 with data that cannot be obtained by sensors because the vessel does not have the necessary sensor or the sensor is damaged.
  • the acquisition means allows the operator to enter information on the sea state of the wind and / or the state of the swell.
  • the device 300 comprises a database 316.
  • This database 316 includes, for example, certain quantities obtained in the laboratory or during measurement campaigns carried out at sea.
  • the database 316 may include data relating to the sloshing in function. of monomodal excitation.
  • the database can store data representative of the global or local stresses exerted on the vessel wall, for each value of amplitude, frequency and incidence of the monomodal excitation. These data representative of the stresses exerted on the vessel wall may for example be a distribution of the pressure exerted on the vessel wall, namely the P surf function. .
  • the calculations of the risk of damage are also pre-established and the database can directly store data representative of the risk of damage. for each value of the significant height, peak period and direction of the monomodal excitation.
  • the device 300 also includes a communication interface 318 allowing the central unit 302 to communicate with remote devices, for example to obtain meteorological data, ship position data or the like.
  • the central unit 302 is configured to determine a navigation datum, for example a ship's heading, a speed, etc., as a function of the datum relating to the sloshing and / or the risk of damage.
  • a navigation datum for example a ship's heading, a speed, etc.
  • central unit 302 can be produced in different forms, individually or distributed, by means of hardware and / or software components.
  • Usable hardware components are ASIC-specific integrated circuits, FPGA programmable logic arrays or microprocessors.
  • Software components can be written in different programming languages, for example C, C ++, Java or VHDL. This list is not exhaustive

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Ship Loading And Unloading (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Measurement Of Radiation (AREA)
  • Coating With Molten Metal (AREA)

Abstract

The invention relates to a method (200) for determining the sloshing of a liquid load of a ship, the method (200) comprising: a step (206) of determining a single-mode excitation on the basis of a multi-mode excitation to which the vessel is subjected, the multi-mode excitation comprising a wave state and a sea state of the wind, wherein the wave state comprises a wave direction and the sea state of the wind comprises a sea direction of the wind, and wherein the single-mode excitation has a total direction equivalent to either the wave direction or the sea direction of the wind closest to a direction perpendicular to the longitudinal axis of the ship, and a step (208) of determining a datum relating to the sloshing of the load on the basis of the single-mode excitation.

Description

    Méthode et dispositif de détermination du ballottementMethod and device for determining sloshing
  • L’invention se rapporte au domaine des méthodes et dispositif de détermination du ballotement, en particulier de détermination du ballotement de chargement liquide des navires.The invention relates to the field of methods and device for determining sloshing, in particular for determining the sloshing of liquid cargo of ships.
  • Arrière-plan technologiqueTechnological background
  • Durant son stockage et/ou son transport, le liquide contenu dans une cuve est soumis à différents mouvements. En particulier, les mouvements en mer d’un navire comprenant la cuve, par exemple sous l’effet des conditions climatiques telles que l’état de la mer ou le vent, entraînent une agitation du liquide dans la cuve. L’agitation du liquide, généralement désignée sous le terme de « sloshing » ou ballottement, engendre des contraintes sur les parois de la cuve qui peuvent nuire à l’intégrité de la cuve. Or, l’intégrité de la cuve est particulièrement importante dans le cadre d’une cuve de GNL de par la nature inflammable ou explosive du liquide transporté et le risque de point froid sur la coque en acier de l’unité flottante.During its storage and / or transport, the liquid contained in a tank is subjected to various movements. In particular, the movements at sea of a vessel including the tank, for example under the effect of climatic conditions such as sea state or wind, cause agitation of the liquid in the tank. The agitation of the liquid, generally referred to as "sloshing" or sloshing, causes stress on the walls of the tank which can adversely affect the integrity of the tank. However, the integrity of the tank is particularly important in the context of an LNG tank because of the flammable or explosive nature of the liquid transported and the risk of a cold spot on the steel hull of the floating unit.
  • On connait une méthode décrite par US8643509 pour déterminer un risque d’endommagement de la cuve engendré par le ballotement du liquide et alerter un conducteur du navire lorsque le risque d’endommagement dépasse un seuil prédéterminé. La méthode détermine le risque d’endommagement engendré par le ballotement en fonction des états de mer auxquels est soumis le navire, qui sont déterminés à partir des conditions climatiques et océaniques, et d’un modèle numérique du navire.There is a known method described by US8643509 for determining a risk of damage to the tank caused by the sloshing of the liquid and alerting a ship's operator when the risk of damage exceeds a predetermined threshold. The method determines the risk of damage from sloshing based on the sea states to which the vessel is subjected, which are determined from climatic and ocean conditions, and a digital model of the vessel.
  • Résumésummary
  • Les présents inventeurs ont constaté qu’une prise en compte précise des états de mer est complexe à mettre en œuvre dans un modèle numérique étant donné le nombre important des états mer possibles, notamment l’existence de conditions de mer multimodales dans certaines circonstances. The present inventors have found that it is difficult to take precise sea states into account in a digital model given the large number of possible sea states, in particular the existence of multimodal sea conditions in certain circumstances.
  • Une idée à la base de l’invention est de déterminer le ballotement du liquide contenu dans le navire par une méthode relativement économique en temps de calcul et en ressources de calcul. Pour cela, une autre idée à la base de cette invention est de fournir une méthode de détermination du ballotement par détermination d’un état de mer moins complexe pour réduire le temps de calcul sans diminuer la fiabilité de détermination du ballotement.An idea underlying the invention is to determine the sloshing of the liquid contained in the ship by a relatively economical method in terms of computing time and computing resources. For this, another idea at the basis of this invention is to provide a method for determining the sloshing by determining a less complex sea state to reduce the calculation time without reducing the reliability of determining the sloshing.
  • Selon un mode de réalisation, l’invention fournit un procédé de détermination du ballotement d’un chargement liquide d’un navire, ledit procédé comprenant :
    une étape de détermination d’une excitation monomodale en fonction d’un état de la houle et d’un état de mer du vent auxquels est soumis ledit navire,
    une étape de détermination d’une donnée relative au ballotement dudit chargement en fonction de l’excitation monomodale.
    According to one embodiment, the invention provides a method for determining the sloshing of a liquid cargo of a ship, said method comprising:
    a step of determining a monomodal excitation as a function of a wave state and a wind sea state to which said ship is subjected,
    a step of determining a datum relating to the sloshing of said loading as a function of the monomodal excitation.
  • Le procédé est avantageux en ce qu’il détermine une excitation monomodale équivalente à une excitation multimodale comprenant l’état de houle et l’état de mer du vent. Le ballotement est ainsi déterminé pour une excitation monomodale équivalente et non à partir de l’excitation multimodale, qui serait bien plus complexe à modéliser par le calcul ou par l’expérience. Le procédé est ainsi moins gourmand en ressources calculatoires et nécessite moins de temps de calcul comparé à l’état de l’art. The method is advantageous in that it determines a monomodal excitation equivalent to a multimodal excitation comprising the wave state and the sea state of the wind. The sloshing is thus determined for an equivalent monomodal excitation and not from multimodal excitation, which would be much more complex to model by calculation or by experiment. The process is thus less computationally intensive and requires less computation time compared to the state of the art.
  • Selon des modes de réalisation, un tel procédé peut comporter une ou plusieurs des caractéristiques suivantes.According to embodiments, such a method may include one or more of the following characteristics.
  • L’étape de détermination du ballotement peut être réalisée de différentes manières. Selon un mode de réalisation, la donnée relative au ballotement est déterminée en fonction de l’excitation monomodale par consultation d’une base de données préalablement établie comportant des données représentant le ballotement en fonction de l’excitation monomodale. La base de données peut comprendre des niveaux de ballotement obtenus expérimentalement en laboratoire ou lors de campagnes de mesures embarquées en mer en fonction de l’excitation monomodale. Selon un autre mode de réalisation, la donnée relative au ballotement est déterminée par une modélisation numérique préalablement établie exprimant le ballotement en fonction de l’excitation monomodale.The sloshing determination step can be done in different ways. According to one embodiment, the data relating to the sloshing is determined as a function of the monomodal excitation by consulting a previously established database comprising data representing the sloshing as a function of the monomodal excitation. The database can include sloshing levels obtained experimentally in the laboratory or during on-board measurement campaigns at sea depending on the single-mode excitation. According to another embodiment, the data relating to the sloshing is determined by a previously established numerical modeling expressing the sloshing as a function of the monomodal excitation.
  • L’état de la houle et/ou l’état de mer du vent définissent des données environnementales du navire. Selon un mode de réalisation, L’état de la houle comprend une hauteur significative de la houle et/ou une période de pic de la houle et/ou une direction de la houle par rapport à un axe longitudinal du navire. Selon un mode de réalisation, l’état de mer du vent comprend une hauteur significative de mer du vent et/ou une période de pic de mer du vent et/ou une direction de mer du vent par rapport un axe longitudinal.The swell state and / or the wind sea state define the ship's environmental data. According to one embodiment, the swell state comprises a significant height of the swell and / or a peak period of the swell and / or a direction of the swell with respect to a longitudinal axis of the vessel. According to one embodiment, the wind sea state comprises a significant wind sea height and / or a wind sea peak period and / or a wind sea direction relative to a longitudinal axis.
  • Selon un mode de réalisation, l’état de la houle et/ou l’état de mer du vent sont déterminés en temps réel par des capteurs prévus dans le navire et configurés pour mesurer une hauteur significative de la houle et/ou une période de pic de la houle et/ou une direction de la houle et une hauteur significative de mer du vent et/ou une période de pic de mer du vent et/ou une direction de mer du vent.According to one embodiment, the state of the swell and / or the state of the sea of the wind are determined in real time by sensors provided in the ship and configured to measure a significant height of the swell and / or a period of peak swell and / or swell direction and significant wind sea height and / or peak wind period and / or wind sea direction.
  • Selon un mode de réalisation, l’état de la houle et/ou l’état de mer du vent sont déterminés de façon indirecte à partir des conditions météorologiques et océaniques. According to one embodiment, the state of the swell and / or the sea state of the wind are determined indirectly from the meteorological and ocean conditions.
  • Selon un mode de réalisation, l’état de la houle et/ou l’état de mer du vent sont déterminés par prédiction météorologique. According to one embodiment, the state of the swell and / or the sea state of the wind are determined by weather prediction.
  • L’excitation monomodale peut être déterminée de différentes manières. Selon un mode de réalisation, l’état de la houle comprend une hauteur significative la houle et l’état de mer du vent comprend une hauteur significative de mer du vent, et l’excitation monomodale présente une hauteur significative totale égale à une moyenne quadratique de ladite hauteur significative la houle et de ladite hauteur significative de mer du vent. Single-mode excitation can be determined in different ways. According to one embodiment, the swell state comprises a significant height the swell and the sea state of the wind comprises a significant sea height of the wind, and the monomodal excitation has a significant total height equal to a root mean square. from said significant height the swell and from said significant sea height the wind.
  • Selon un mode de réalisation, l’état de la houle comprend une période de pic de la houle et l’état de mer du vent comprend une période de pic de mer du vent, et l’excitation monomodale présente une période de pic totale égale à l’une parmi la période de pic de la houle et la période de pic de mer du vent sélectionnée en tant que la période engendrant le ballotement du chargement le plus sévère. Dans ce cas, le procédé peut comprendre une étape pour sélectionner la période de pic totale parmi la période de pic de la houle et la période de pic de mer du vent par :
    une première consultation de base de données, par exemple données acquises par l’expérimentation, pour déterminer un premier ballotement engendré par la période de pic de la houle ,
    une deuxième consultation de base de données pour déterminer un deuxième ballotement engendré par la période de pic de mer de vent, et
    une détermination du ballotement le plus sévère parmi le premier ballotement et le deuxième ballotement.
    According to one embodiment, the swell state comprises a peak wave period and the wind sea state comprises a peak sea period of the wind, and the single-mode excitation has an equal total peak period. to one of the peak swell period and the peak sea wind period selected as the period causing the most severe load sloshing. In this case, the method can comprise a step for selecting the total peak period from among the peak period of the swell and the peak period of the wind by:
    a first consultation of the database, for example data acquired by the experiment, to determine a first sloshing caused by the period of peak swell,
    a second database lookup to determine a second sloshing caused by the windy sea peak period, and
    a determination of the most severe toss of the first toss and second toss.
  • Selon un mode de réalisation, l’état de la houle comprend une direction de la houle et l’état de mer du vent comprend une direction de mer du vent, et l’excitation monomodale présente une direction totale équivalente à l’une parmi la direction de la houle et la direction de mer du vent la plus proche d’une direction perpendiculaire à l’axe longitudinal du navire. According to one embodiment, the swell state comprises a swell direction and the wind sea state comprises a wind sea direction, and the single-mode excitation has a total direction equivalent to one of the wave direction and the wind direction of sea closest to a direction perpendicular to the longitudinal axis of the vessel.
  • Selon un mode de réalisation, le procédé comporte une étape de détermination d’une probabilité d’endommagement d’une cuve du navire comprenant la totalité ou une partie du chargement en fonction de la donnée relative au ballotement et d’un niveau de remplissage de ladite cuve. En particulier, la probabilité d’endommagement est relative à une densité de probabilité de rencontrer une pression sur une surface interne de la cuve supérieure à une résistance interne de la cuve en fonction de la donnée relative au ballotement et du niveau de remplissage de la cuve.According to one embodiment, the method comprises a step of determining a probability of damage to a vessel of the vessel comprising all or part of the load as a function of the data relating to the sloshing and a filling level of said tank. In particular, the probability of damage is relative to a density of probability of encountering a pressure on an internal surface of the tank greater than an internal resistance of the tank as a function of the data relating to the sloshing and the filling level of the tank. .
  • En particulier, le niveau de remplissage de la cuve peut être déterminée par des capteurs de niveau de remplissage agencés dans ladite cuve. In particular, the filling level of the tank can be determined by filling level sensors arranged in said tank.
  • Selon un mode de réalisation, le procédé comprend une étape d’émission d’un signal sonore ou visuel pour un opérateur du navire lorsque la donnée relative au ballotement est supérieure à un seuil prédéterminé.According to one embodiment, the method comprises a step of issuing a sound or visual signal for an operator of the vessel when the data relating to the sloshing is greater than a predetermined threshold.
  • Selon un mode de réalisation, le procédé comprend en outre une étape consistant à détecter que le navire est soumis à une excitation significativement multimodale. Dans ce cas, une excitation significativement multimodale est détectée lorsque :
    la hauteur significative de la houle et de la hauteur significative de mer du vent sont non nulles, et
    une différence entre la direction de la houle et de la direction de mer du vent est supérieure à 15°, et
    la hauteur significative de la houle et la hauteur significative de mer du vent sont inférieures à 85% d’une moyenne quadratique de la hauteur significative de la houle et de la hauteur significative de mer du vent.
    According to one embodiment, the method further comprises a step consisting in detecting that the ship is subjected to a significantly multimodal excitation. In this case, a significantly multimodal excitation is detected when:
    the significant height of the swell and the significant height of the sea of the wind are not zero, and
    a difference between the wave direction and the wind sea direction is greater than 15 °, and
    the significant swell height and the significant sea height of the wind are less than 85% of a root mean square of the significant swell height and the significant sea height of the wind.
  • Selon ce mode de réalisation, le procédé comprend suite à la détection que le navire est soumis à une excitation significativement multimodale, une étape de détermination d’une donnée relative au ballotement en fonction de l’état de mer du vent et l’état de la houle de l’excitation significativement multimodale. Le procédé peut comporter en outre, en réponse à la détection que le navire n’est pas soumis à une excitation significativement multimodale, une étape de détermination de la donnée relative au ballotement du chargement en fonction d’une excitation monomodale recombinée correspondant à l’état de la houle et l’état de mer du vent. Dans ce cas, l’excitation monomodale recombinée est fournie par des services météorologiques ou océaniques. According to this embodiment, the method comprises, following the detection that the ship is subjected to a significantly multimodal excitation, a step of determining a datum relating to the sloshing as a function of the sea state of the wind and the state of the swell of significantly multimodal excitement. The method may further comprise, in response to the detection that the ship is not subjected to a significantly multimodal excitation, a step of determining the data relating to the sloshing of the load as a function of a recombinant monomodal excitation corresponding to the swell state and wind sea state. In this case, the recombinant single-mode excitation is provided by meteorological or oceanic services.
  • Selon un mode de réalisation, le liquide est un gaz liquéfié, par exemple du gaz naturel liquéfié.According to one embodiment, the liquid is a liquefied gas, for example liquefied natural gas.
  • Selon un autre aspect de l’invention, il est proposé un dispositif de détermination du ballotement d’un chargement liquide d’un navire, ledit dispositif comprenant un processeur configuré pour mettre en œuvre le procédé précité. According to another aspect of the invention, there is provided a device for determining the sloshing of a liquid cargo of a ship, said device comprising a processor configured to implement the aforementioned method.
  • Un tel dispositif ou procédé de détermination du ballotement peut être installé dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO), une barge et autres. En outre, un tel dispositif ou procédé de détermination du ballotement peut être implémenté pour le dimensionnement de la structure flottante en particulier le dimensionnement d’une cuve d’un navire ou dudit navire en fonction de la donnée relative au ballotement du chargement déterminée par un tel dispositif ou un tel procédé. Un tel dispositif ou procédé de détermination du ballotement peut aussi être implémenté pour déterminer des consignes de navigation par exemple une vitesse du navire, une direction, à exécuter automatiquement ou par un conducteur du navire, afin de réduire ou d’éviter un niveau de ballotement du navire.Such a device or method for determining sloshing can be installed in a floating, coastal or deep-water structure, in particular an LNG vessel, a floating storage and regasification unit (FSRU), a floating production and remote storage unit ( FPSO), a barge and others. In addition, such a device or method for determining the sloshing can be implemented for the sizing of the floating structure, in particular the sizing of a vessel of a ship or of said vessel as a function of the data relating to the sloshing of the load determined by a such device or such method. Such a device or method for determining the sloshing can also be implemented to determine navigation instructions, for example a speed of the ship, a direction, to be executed automatically or by a shipmaster, in order to reduce or avoid a level of sloshing. of the ship.
  • Selon un autre aspect de l’invention, il est proposé un navire par exemple pour le transport d’un produit liquide froid tel que le gaz naturel liquéfiée, comportant au moins une cuve comprenant un chargement et le dispositif de détermination du ballotement précité.According to another aspect of the invention, there is provided a ship, for example for transporting a cold liquid product such as liquefied natural gas, comprising at least one tank comprising a load and the device for determining the aforementioned sloshing.
  • Brève description des figuresBrief description of the figures
  • L’invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l’invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.The invention will be better understood, and other aims, details, characteristics and advantages thereof will emerge more clearly during the following description of several particular embodiments of the invention, given solely by way of illustration and not by way of limitation. , with reference to the accompanying drawings.
  • la figure 1 est une représentation schématique en coupe longitudinale d’un navire comportant une pluralité de cuves comprenant un chargement liquide. FIG. 1 is a schematic representation in longitudinal section of a ship comprising a plurality of tanks comprising a liquid load.
  • la figure 2 est une représentation schématique d’un état de mer du vent et d’un état de houle auxquels peut être soumis le navire de la figure 1. FIG. 2 is a schematic representation of a wind sea state and a swell state to which the vessel of FIG. 1 may be subjected.
  • la figure 3 est une représentation schématique d’un procédé de détermination du ballotement du navire de la figure 1. FIG. 3 is a schematic representation of a method for determining the sloshing of the vessel of FIG. 1.
  • la figure 4 est une représentation schématique d’un dispositif de détermination du ballotement du navire de la figure 1. FIG. 4 is a schematic representation of a device for determining the sloshing of the vessel of FIG. 1.
  • Les figures sont décrites ci-après dans le cadre d’un navire 1 comportant une double coque formant une structure porteuse dans laquelle sont agencées une pluralité de cuves étanches et thermiquement isolantes. Une telle structure porteuse présente par exemple une géométrie polyédrique, par exemple de forme prismatique. The figures are described below in the context of a ship 1 comprising a double hull forming a supporting structure in which are arranged a plurality of sealed and thermally insulating tanks. Such a supporting structure has for example a polyhedral geometry, for example of prismatic shape.
  • De telles cuves étanche et thermiquement isolante sont prévues par exemple pour le transport de gaz liquéfié. Le gaz liquéfié est stocké et transporté dans de telles cuves à une température basse ce qui nécessite des parois de cuve thermiquement isolantes afin de maintenir le gaz liquéfié à cette température. Il est donc particulièrement important de maintenir intacte l’intégrité des parois de cuves d’une part pour conserver l’étanchéité de la cuve et éviter les fuites de gaz liquéfié hors des cuves et, d’autre part, éviter les dégradations des caractéristiques isolantes de la cuve afin de maintenir le gaz sous sa forme liquéfiée. Such sealed and thermally insulating tanks are provided, for example, for the transport of liquefied gas. The liquefied gas is stored and transported in such tanks at a low temperature which requires thermally insulating tank walls in order to maintain the liquefied gas at this temperature. It is therefore particularly important to keep the integrity of the vessel walls intact, on the one hand to maintain the tightness of the vessel and prevent liquefied gas leaks from the vessels and, on the other hand, to avoid degradation of the insulating characteristics. of the vessel in order to maintain the gas in its liquefied form.
  • De telles cuves étanches et thermiquement isolantes comportent aussi une barrière isolante ancrée sur la double coque de navire et portant au moins une membrane étanche. A titre d’exemple, de telles cuves peuvent être réalisées selon les technologies de type Mark III®, tel que décrit par exemple dans FR2691520, de type NO96® tel que décrit par exemple dans FR2877638, ou autre tel que décrit par exemple dans WO14057221.Such sealed and thermally insulating tanks also include an insulating barrier anchored to the double hull of the ship and carrying at least one waterproof membrane. By way of example, such tanks can be produced according to Mark III® type technologies, as described for example in FR2691520, of NO96® type as described for example in FR2877638, or other such as described for example in WO14057221 .
  • La figure 1 illustre un navire 1 comportant quatre cuves 2 étanches et thermiquement isolantes. Sur un tel navire 1, les cuves 2 sont connectées entre elles par un système de manutention de cargaison (non illustré) pouvant inclure de nombreux composants, par exemple des pompes, des vannes et des conduites de manière à permettre le transfert de liquide depuis l’une des cuves 2 vers une autre cuve 2. FIG. 1 illustrates a ship 1 comprising four sealed and thermally insulating tanks 2. On such a vessel 1, the tanks 2 are interconnected by a cargo handling system (not shown) which may include many components, for example pumps, valves and lines so as to allow the transfer of liquid from the vessel. 'one of the tanks 2 to another tank 2.
  • Les quatre cuves 2 présentent sur la figure 1 un état de remplissage initial. Dans cet état initial, les cuves sont partiellement remplies. Une première cuve 3 est remplie à environ 60% de sa capacité. Une deuxième cuve 4 est remplie à environ 35% de sa capacité. Une troisième cuve 5 est remplie à environ 35% de sa capacité. Une quatrième cuve 6 est remplie à environ 40% de sa capacité.The four tanks 2 show in Figure 1 an initial state of filling. In this initial state, the tanks are partially filled. A first tank 3 is filled to approximately 60% of its capacity. A second tank 4 is filled to approximately 35% of its capacity. A third tank 5 is filled to approximately 35% of its capacity. A fourth tank 6 is filled to approximately 40% of its capacity.
  • Ce remplissage partiel des cuves 3, 4, 5, 6 peut engendrer des risques important d’endommagement desdites cuves 3, 4, 5, 6 lorsque le navire 1 navigue en mer. En effet, lorsqu’il est en mer, le navire 1 est sujet à de nombreux mouvements liés aux conditions de navigation. This partial filling of the tanks 3, 4, 5, 6 can generate significant risks of damaging said tanks 3, 4, 5, 6 when the ship 1 is sailing at sea. Indeed, when it is at sea, the ship 1 is subject to many movements related to navigation conditions.
  • En particulier, le navire 1 est sujet d’une part à une première excitation de mer du vent représentée par l’axe 10 et à une deuxième excitation de la houle représentée par l’axe 12 sur la Fig.2. La mer du vent induit des vagues ayant une direction de mer du vent parallèle à l’axe 10 par rapport à un axe longitudinal 16 du navire 1, une hauteur significative de mer du vent et une période de pic de mer du vent. De façon similaire, la houle provoque des vagues ayant une direction de la houle parallèle à l’axe 12 par rapport à l’axe longitudinal 16, une hauteur significative de la houle et une période de pic de la houle. La rencontre des vagues induites par la houle et la mer du vent engendre une excitation multimodale du navire 1 provoquant les mouvements du navire 1. Ces mouvements du navire 1 se répercutent sur le liquide contenu dans les cuves 3, 4, 5, 6 qui, en conséquence, est sujet à du ballotement dans les cuves 3, 4, 5, 6 en produisant des impacts sur les parois de cuves. Lorsque le ballotement dépasse la capacité des parois de cuves à absorber ou disperser le ballotement, les impacts sur les parois de cuves 3, 4, 5, 6 peuvent dégrader les parois de cuves 3, 4, 5, 6. Or il est important de conserver l’intégrité des parois de cuves 3, 4, 5, 6 pour conserver l’étanchéité et les caractéristiques d’isolation des cuves 3, 4, 5, 6. Il est donc important de déterminer le ballotement afin d’éviter de telles dégradations. In particular, the ship 1 is subject on the one hand to a first sea excitation of the wind represented by axis 10 and to a second excitation of the swell represented by axis 12 in Fig. 2. The wind sea induces waves having a wind sea direction parallel to the axis 10 with respect to a longitudinal axis 16 of the vessel 1, a significant sea height of the wind and a peak sea period of the wind. Similarly, swell causes waves with a swell direction parallel to axis 12 relative to longitudinal axis 16, a significant swell height, and a peak swell period. The meeting of the waves induced by the swell and the sea of the wind generates a multimodal excitation of the ship 1 causing the movements of the ship 1. These movements of the ship 1 have repercussions on the liquid contained in the tanks 3, 4, 5, 6 which, as a result, is subject to sloshing in tanks 3, 4, 5, 6 producing impacts on the tank walls. When the sloshing exceeds the capacity of the tank walls to absorb or disperse the sloshing, the impacts on the tank walls 3, 4, 5, 6 can degrade the tank walls 3, 4, 5, 6. However, it is important to maintain the integrity of the walls of tanks 3, 4, 5, 6 to maintain the tightness and insulation characteristics of tanks 3, 4, 5, 6. It is therefore important to determine the sloshing in order to avoid such degradations.
  • Pour cela, un procédé 200, représenté sur la Fig.3, de détermination du ballotement peut être mis en œuvre par le navire 1 pour estimer une excitation monomodale représentée par l’axe 14 sur la Fig.2 équivalente à l’excitation totale du navire 1 provoquée par la rencontre de l’excitation de mer du vent 10 et l’excitation de la houle 12. For this, a method 200, shown in Fig. 3, for determining the sloshing can be implemented by the ship 1 to estimate a monomodal excitation represented by the axis 14 in Fig. 2 equivalent to the total excitation of the vessel. ship 1 caused by the meeting of the sea excitation of wind 10 and the excitement of swell 12.
  • Le procédé 200 comprend les étapes suivantes :
    étape 202 : acquisition d’un état de mer du vent comprenant la hauteur significative de mer du vent , la période de pic de mer du vent et la direction de mer du vent par rapport à l’axe longitudinal 16,
    étape 204 : acquisition d’un état de la houle comprenant la hauteur significative de la houle , la période de pic de la houle et la direction de la houle par rapport à l’axe longitudinal 16,
    étape 206 : détermination de l’excitation monomodale par détermination d’une hauteur totale , la période de pic totale et la direction totale , en fonction de l’état de mer du vent et de l’état de la houle,
    étape 208 : détermination d’une donnée relative au ballotement du liquide compris dans le navire 1 en fonction de l’excitation monomodale déterminée à l’étape 206.
    The method 200 comprises the following steps:
    step 202: acquisition of a wind sea state comprising the significant sea height of the wind , the period of peak sea wind and the sea direction of the wind with respect to the longitudinal axis 16,
    step 204: acquisition of a swell state comprising the significant height of the swell , the peak swell period and the direction of the swell with respect to the longitudinal axis 16,
    step 206: determination of the monomodal excitation by determination of a total height , the total peak period and total management , depending on the sea state of the wind and the state of the swell,
    step 208: determination of a datum relating to the sloshing of the liquid included in the vessel 1 as a function of the monomodal excitation determined in step 206.
  • Selon un mode de réalisation, les étapes 202 et 204 sont réalisées par acquisition de mesures relatives à l’état de mer du vent et à l’état de la houle par des capteurs déployés dans le navire 1. Alternativement, les étapes 202 et 204 sont réalisées par acquisition de prédictions de l’état de la houle et l’état de mer du vent préalablement déterminés.According to one embodiment, steps 202 and 204 are carried out by acquiring measurements relating to the sea state of the wind and to the state of the swell by sensors deployed in the ship 1. Alternatively, steps 202 and 204 are carried out by acquiring predictions of the state of the swell and the state of the sea of the wind previously determined.
  • Selon un mode de réalisation, la hauteur totale est déterminée à l’étape 206 par résolution de l’équation suivante :According to one embodiment, the total height is determined in step 206 by solving the following equation:
  • Selon un mode de réalisation, la période de pic totale est déterminée à l’étape 206 par détermination de la période de pic parmi celles de la houle et de la mer du vent engendrant le ballotement du chargement le plus sévère en excitation monomodale, par exemple par consultation d’une base de données ou par calcul numérique.According to one embodiment, the total peak period is determined in step 206 by determining the peak period among those of the swell and the sea of wind causing the most severe sloshing of the loading in monomodal excitation, for example by consulting a database or by numerical calculation.
  • Selon un mode de réalisation, la direction totale est déterminée à l’étape 206 par détermination de la direction parmi la direction de la houle et la direction de mer du vent la plus proche d’une direction perpendiculaire 18 à l’axe longitudinal 16 du navire 1. Dans un cas où ces deux directions sont symétriques par rapport à la direction perpendiculaire 18, on retient l’excitation qui vient de l’avant du navire.According to one embodiment, the total direction is determined in step 206 by determining the direction of the wave direction and the sea direction of the wind closest to a direction perpendicular 18 to the longitudinal axis 16 of the ship 1. In a case where these two directions are symmetrical with respect to the perpendicular direction 18, the excitation which comes from the front of the ship is retained.
  • L’étape 208 peut être réalisée par consultation d’une base de données préalablement établie pour le navire 1 ou par calcul numérique à partir d’une modélisation numérique préalablement établie exprimant le ballotement en fonction de l’excitation monomodale 14.Step 208 can be carried out by consulting a database previously established for the vessel 1 or by numerical calculation from a previously established digital modeling expressing the sloshing as a function of the monomodal excitation 14.
  • Selon un mode de réalisation, le procédé 200 comprend une étape 210 de détermination d’un risque d’endommagent d’une cuve 2 en fonction de la donnée relative au ballotement déterminée à l’étape 208 et le niveau de remplissage de ladite cuve 2. En particulier, le risque d’endommagent est déterminé par l’équation suivante :According to one embodiment, the method 200 comprises a step 210 of determining a risk of damaging of a tank 2 as a function of the data relating to the sloshing determined in step 208 and the filling level of said tank 2. In particular, the risk of damaging is determined by the following equation:
  • avec SC étant un niveau de ballotement engendré par la donnée relative au ballotement pour le niveau de remplissage fl de la cuve,
    représente la densité de probabilité de rencontrer une pression sur une surface interne de la cuve supérieure à la résistance de ladite surface interne de la cuve en fonction du niveau de ballotement ,
    est la surface interne de la cuve impactée par le liquide, et
    est la durée d’opération de navigation du navire 1 soumis à l’état de mer du vent et la houle engendrant le niveau de ballotement pour le niveau de remplissage fl.
    with SC being a sloshing level generated by the data relating to sloshing for the filling level fl of the tank,
    represents the probability density of encountering a pressure on an internal surface of the tank greater than the resistance of said internal surface of the tank as a function of the level of sloshing ,
    is the internal surface of the tank impacted by the liquid, and
    is the duration of the navigation operation of the vessel 1 subjected to the sea state of the wind and the swell generating the sloshing level for the filling level fl.
  • La loi est une loi statistique par exemple de type GEV, Weibull, Pareto, Gumbel. Un, plusieurs ou l’ensemble des paramètres de cette loi sont par exemple définis à partir d’essais monomodaux de mouvement liquide en laboratoire ou de campagnes de mesures monomodales à la mer. The law is a statistical law for example of type GEV, Weibull, Pareto, Gumbel. One, several or all of the parameters of this law are, for example, defined from single-mode tests of liquid movement in the laboratory or from single-mode measurement campaigns at sea.
  • La figure 4 illustre un dispositif 300 de détermination du ballotement pouvant être embarqué sur le navire 1. Ce dispositif 300 comporte une unité centrale 302 configurée pour réaliser les différentes étapes du procédé 200 pour déterminer la donnée relative au ballotement du navire et/ou le risque d’endommagement d’une cuve 2 du navire 1. FIG. 4 illustrates a device 300 for determining the tossing that can be loaded onto the ship 1. This device 300 comprises a central unit 302 configured to carry out the various steps of the method 200 to determine the data relating to the tossing of the ship and / or the risk. damage to a tank 2 of the vessel 1.
  • L’unité centrale 302 est connectée à une pluralité de capteurs 304 embarqués permettant d’obtenir les différentes grandeurs indiquées ci-dessus. Ainsi, les capteurs 304 comportent, par exemples et de manière non exhaustive, un capteur de niveau de remplissage 306 de chaque cuve, différents capteurs 308 (accéléromètre, jauge de contrainte, jauge de déformation, son, lumière) permettant à l’unité centrale 302 via un algorithme dédié de détecter les impacts liés aux mouvements du liquide dans les cuves 3, 4, 5, 6, etc.The central unit 302 is connected to a plurality of onboard sensors 304 making it possible to obtain the various quantities indicated above. Thus, the sensors 304 comprise, for example and in a non-exhaustive manner, a filling level sensor 306 of each tank, various sensors 308 (accelerometer, strain gauge, strain gauge, sound, light) allowing the central unit 302 via a dedicated algorithm to detect the impacts linked to the movements of the liquid in tanks 3, 4, 5, 6, etc.
  • Le dispositif 300 comporte en outre une interface homme-machine 310. Cette interface homme machine 310 comporte un moyen d’affichage 312 permettant à un opérateur du navire 1 d’obtenir les différentes informations, par exemples des informations sur la donnée relative au ballotement déterminée en mettant en œuvre les étapes du procédé 200, le risque d’endommagement d’une des cuves 2 du navire 1, les grandeurs obtenues par les capteurs 308 telles que l’intensité des mouvements de liquide dans les cuves, des informations sur les impacts liés à ces mouvements de liquide, les mouvements du navire, l’état de chargement du navire ou encore des informations météorologiques. The device 300 further comprises a man-machine interface 310. This man-machine interface 310 comprises a display means 312 allowing an operator of the ship 1 to obtain the various information, for example information on the datum relating to the determined tossing. by implementing the steps of the method 200, the risk of damaging one of the tanks 2 of the vessel 1, the quantities obtained by the sensors 308 such as the intensity of the movements of liquid in the tanks, information on the impacts linked to these movements of liquid, the movements of the ship, the loading status of the ship or even meteorological information.
  • L’interface homme-machine 310 comporte en outre un moyen d’acquisition 314 permettant à l’opérateur de fournir manuellement des grandeurs à l’unité centrale 302, typiquement pour fournir à l’unité centrale 302 des données ne pouvant pas être obtenues par des capteurs car le navire ne comporte pas le capteur nécessaire ou que ce dernier est endommagé. Par exemple, dans un mode de réalisation, le moyen d’acquisition permet à l’opérateur d’entrer des informations sur l’état de mer du vent et/ou l’état de la houle. The man-machine interface 310 further comprises an acquisition means 314 allowing the operator to manually supply quantities to the central unit 302, typically to provide the central unit 302 with data that cannot be obtained by sensors because the vessel does not have the necessary sensor or the sensor is damaged. For example, in one embodiment, the acquisition means allows the operator to enter information on the sea state of the wind and / or the state of the swell.
  • Le dispositif 300 comporte une base de données 316. Cette base de données 316 comporte par exemple certaines grandeurs obtenues en laboratoire ou lors de campagnes de mesures embarquées en mer. Par exemple, la base de données 316 peut comporter les données relatives au ballotement en fonction de l’excitation monomodale. En particulier, la base de données peut stocker des données représentatives des contraintes globales ou locales exercées sur la paroi de cuve, pour chaque valeur de d’amplitude, de fréquence et d’incidence de l’excitation monomodale. Ces données représentatives des contraintes exercées sur la paroi de cuve peuvent être par exemple une distribution de la pression exercée sur la paroi de cuve, à savoir la fonction Psurf .The device 300 comprises a database 316. This database 316 includes, for example, certain quantities obtained in the laboratory or during measurement campaigns carried out at sea. For example, the database 316 may include data relating to the sloshing in function. of monomodal excitation. In particular, the database can store data representative of the global or local stresses exerted on the vessel wall, for each value of amplitude, frequency and incidence of the monomodal excitation. These data representative of the stresses exerted on the vessel wall may for example be a distribution of the pressure exerted on the vessel wall, namely the P surf function. .
  • Dans un mode de réalisation, les calculs du risque d’endommagement sont également préétablis et la base de données peut stocker directement des données représentatives du risque d’endommagement pour chaque valeur de la hauteur significative, de période de pic et de direction de l’excitation monomodale.In one embodiment, the calculations of the risk of damage are also pre-established and the database can directly store data representative of the risk of damage. for each value of the significant height, peak period and direction of the monomodal excitation.
  • Le dispositif 300 comporte également une interface de communication 318 permettant à l’unité centrale 302 de communiquer avec des dispositifs distants par exemple pour obtenir des données météorologiques, des données de position du navire ou autre.The device 300 also includes a communication interface 318 allowing the central unit 302 to communicate with remote devices, for example to obtain meteorological data, ship position data or the like.
  • Selon un mode de réalisation, l’unité centrale 302 est configurée pour déterminer une donnée de navigation, par exemple un cap du navire, une vitesse, etc., en fonction de la donnée relative au ballotement et/ou au risque d’endommagement.According to one embodiment, the central unit 302 is configured to determine a navigation datum, for example a ship's heading, a speed, etc., as a function of the datum relating to the sloshing and / or the risk of damage.
  • Certains éléments représentés, notamment l’unité de centrale 302, peuvent être réalisés sous différentes formes, de manière unitaire ou distribuée, au moyen de composants matériels et/ou logiciels. Des composants matériels utilisables sont les circuits intégrés spécifiques ASIC, les réseaux logiques programmables FPGA ou les microprocesseurs. Des composants logiciels peuvent être écrits dans différents langages de programmation, par exemple C, C++, Java ou VHDL. Cette liste n’est pas exhaustiveCertain elements shown, in particular the central unit 302, can be produced in different forms, individually or distributed, by means of hardware and / or software components. Usable hardware components are ASIC-specific integrated circuits, FPGA programmable logic arrays or microprocessors. Software components can be written in different programming languages, for example C, C ++, Java or VHDL. This list is not exhaustive
  • Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.Although the invention has been described in connection with several particular embodiments, it is obvious that it is in no way limited thereto and that it includes all the technical equivalents of the means described as well as their combinations if these come within the scope of the invention.
  • L’usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n’exclut pas la présence d’autres éléments ou d’autres étapes que ceux énoncés dans une revendication. The use of the verb "to include", "to understand" or "to include" and its conjugated forms does not exclude the presence of other elements or other steps than those stated in a claim.
  • Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.In the claims, any reference sign in parentheses cannot be interpreted as a limitation of the claim.

Claims (11)

  1. Procédé (200) de détermination du ballotement d’un chargement liquide d’un navire (1), ledit procédé (200) comprenant :
    une étape (206) de détermination d’une excitation monomodale en fonction d’une excitation multimodale à laquelle est soumis ledit navire, l’excitation multimodale comprenant un état de la houle et un état de mer du vent, dans lequel l’état de la houle comprend une direction de la houle et l’état de mer du vent comprend une direction de mer du vent, et dans lequel l’excitation monomodale présente une direction totale équivalente à l’une parmi la direction de la houle et la direction de mer du vent la plus proche d’une direction perpendiculaire à l’axe longitudinal du navire,
    une étape (208) de détermination d’une donnée relative au ballotement dudit chargement en fonction de l’excitation monomodale, dans lequel la donnée relative au ballotement est déterminée en fonction de l’excitation monomodale par consultation d’une base de données préalablement établie, ladite base de données comportant des données relatives au ballotement exprimant le ballotement en fonction de l’excitation monomodale, dans lequel les données relatives au ballotement sont déterminées par des mesures expérimentales, et
    une étape (210) de détermination d’une probabilité d’endommagement d’une cuve (2) du navire (1) comprenant la totalité ou une partie du chargement en fonction de la donnée relative au ballotement et d’un niveau de remplissage de ladite cuve,
    dans lequel la probabilité d’endommagement est relative à une densité de probabilité de rencontrer une pression sur une surface interne de la cuve supérieure à une résistance interne de la cuve en fonction de la donnée relative au ballotement et du niveau de remplissage de la cuve.
    A method (200) of determining the sloshing of a liquid cargo of a ship (1), said method (200) comprising:
    a step (206) of determining a monomodal excitation as a function of a multimodal excitation to which said ship is subjected, the multimodal excitation comprising a wave state and a sea state of the wind, in which the state of the swell comprises a swell direction and the sea state of the wind comprises a sea direction of the wind, and in which the single-mode excitation has a total direction equivalent to one of the direction of the swell and the direction of wind sea closest to a direction perpendicular to the longitudinal axis of the ship,
    a step (208) for determining a datum relating to the sloshing of said load as a function of the monomodal excitation, in which the datum relating to the sloshing is determined as a function of the monomodal excitation by consulting a previously established database , said database comprising sloshing data expressing sloshing as a function of single-mode excitation, wherein the sloshing data is determined by experimental measurements, and
    a step (210) of determining a probability of damage to a tank (2) of the ship (1) comprising all or part of the load as a function of the data relating to the sloshing and a filling level of said tank,
    wherein the probability of damage is relative to a probability density of encountering a pressure on an internal surface of the tank greater than an internal resistance of the tank as a function of the data relating to the sloshing and the filling level of the tank.
  2. Procédé (200) selon la revendication 1, dans lequel l’état de la houle comprend une hauteur significative de la houle et/ou une période de pic de la houle et/ou une direction de la houle par rapport à un axe longitudinal du navire. A method (200) according to claim 1, wherein the swell condition comprises a significant swell height and / or peak swell period and / or swell direction relative to a longitudinal axis of the vessel .
  3. Procédé (200) selon l’une quelconque des revendications 1 à 2, dans lequel l’état de mer du vent comprend une hauteur significative de mer du vent et/ou une période de pic de mer du vent et/ou une direction de mer du vent par rapport un axe longitudinal.A method (200) according to any of claims 1 to 2, wherein the wind sea state comprises a significant wind sea height and / or a peak sea wind period and / or a sea direction. wind relative to a longitudinal axis.
  4. Procédé (200) selon l’une quelconque des revendications 1 à 3, dans lequel l’état de la houle comprend une hauteur significative la houle et l’état de mer du vent comprend une hauteur significative de mer du vent, et
    dans lequel l’excitation monomodale présente une hauteur significative totale égale à une moyenne quadratique de ladite hauteur significative la houle et de ladite hauteur significative de mer du vent.
    A method (200) according to any of claims 1 to 3, wherein the swell state comprises a significant swell height and the wind sea state comprises a significant wind sea height, and
    wherein the single-mode excitation has a total significant height equal to a root mean square of said significant swell height and said significant wind sea height.
  5. Procédé selon l’une quelconque des revendications 1 à 4, dans lequel l’état de la houle comprend une période de pic de la houle et l’état de mer du vent comprend une période de pic de mer du vent, et
    dans lequel l’excitation monomodale présente une période de pic totale égale à l’une parmi la période de pic de la houle et la période de pic de mer du vent sélectionnée en tant que la période engendrant le ballotement du chargement le plus sévère.
    A method according to any of claims 1 to 4, wherein the swell state comprises a peak swell period and the wind sea state comprises a peak wind period, and
    wherein the single-mode excitation has a total peak period equal to one of the peak swell period and the peak sea period of the wind selected as the period causing the most severe load sloshing.
  6. Procédé selon la revendication 5, comprenant une étape pour sélectionner la période de pic totale parmi la période de pic de la houle et la période de pic de mer du vent par :
    une première consultation de base de données pour déterminer un premier ballotement engendré par la période de pic de la houle ,
    une deuxième consultation de base de données pour déterminer un deuxième ballotement engendré par la période de pic de mer de vent et,
    une détermination du ballotement le plus sévère parmi le premier ballotement et le deuxième ballotement.
    A method according to claim 5, comprising a step of selecting the total peak period from among the peak swell period and the peak sea period of the wind by:
    a first database consultation to determine a first sloshing caused by the peak period of the swell,
    a second database consultation to determine a second sloshing caused by the period of peak sea winds and,
    a determination of the most severe toss of the first toss and second toss.
  7. Procédé selon l’une quelconque des revendications 1 à 6, comportant en outre une étape consistant à détecter que le navire est soumis à une excitation significativement multimodale.A method according to any of claims 1 to 6, further comprising a step of detecting that the vessel is subjected to significantly multimodal excitation.
  8. Procédé selon la revendication 7, dans lequel une excitation significativement multimodale est détectée lorsque :
    la hauteur significative de la houle et de la hauteur significative de mer du vent sont non nulles, et
    une différence entre la direction de la houle et de la direction de mer du vent est supérieure à 15°, et
    la hauteur significative de la houle et la hauteur significative de mer du vent sont inférieures à 85% d’une moyenne quadratique de la hauteur significative de la houle et de la hauteur significative de mer du vent.
    A method according to claim 7, wherein a significantly multimodal excitation is detected when:
    the significant height of the swell and the significant height of the sea of the wind are not zero, and
    a difference between the wave direction and the wind sea direction is greater than 15 °, and
    the significant swell height and the significant sea height of the wind are less than 85% of a root mean square of the significant swell height and the significant sea height of the wind.
  9. Procédé selon l’une quelconque des revendications 1 à 8, comprenant une étape d’émission d’un signal sonore ou visuel pour un opérateur du navire lorsque la donnée relative au ballotement est supérieure à un seuil prédéterminé.Method according to any one of claims 1 to 8, comprising a step of issuing an audible or visual signal for an operator of the vessel when the data relating to the sloshing is greater than a predetermined threshold.
  10. Dispositif (300) de détermination du ballotement d’un chargement liquide d’un navire, ledit dispositif comprenant un processeur (302) configuré pour mettre en œuvre le procédé (200) selon l’une quelconque des revendications 1 à 9.A device (300) for determining the sloshing of a liquid cargo of a ship, said device comprising a processor (302) configured to perform the method (200) according to any one of claims 1 to 9.
  11. Navire (1) comprenant un dispositif (300) selon la revendication 10.Ship (1) comprising a device (300) according to claim 10.
EP20723138.2A 2019-05-09 2020-05-07 Method and device for determining sloshing Active EP3966101B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1904837A FR3095802B1 (en) 2019-05-09 2019-05-09 Method and device for determining sloshing
PCT/EP2020/062678 WO2020225353A1 (en) 2019-05-09 2020-05-07 Method and device for determining sloshing

Publications (2)

Publication Number Publication Date
EP3966101A1 true EP3966101A1 (en) 2022-03-16
EP3966101B1 EP3966101B1 (en) 2022-12-14

Family

ID=69104469

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20723138.2A Active EP3966101B1 (en) 2019-05-09 2020-05-07 Method and device for determining sloshing

Country Status (9)

Country Link
US (1) US11987327B2 (en)
EP (1) EP3966101B1 (en)
CN (1) CN113795422B (en)
AU (1) AU2020269409A1 (en)
BR (1) BR112021022113A2 (en)
ES (1) ES2939288T3 (en)
FR (1) FR3095802B1 (en)
SG (1) SG11202112068UA (en)
WO (1) WO2020225353A1 (en)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2691520B1 (en) 1992-05-20 1994-09-02 Technigaz Ste Nle Prefabricated structure for forming watertight and thermally insulating walls for containment of a fluid at very low temperature.
FR2877638B1 (en) 2004-11-10 2007-01-19 Gaz Transp Et Technigaz Soc Pa THERMALLY INSULATED AND THERMALLY INSULATED TANK WITH COMPRESSION-RESISTANT CALORIFIC ELEMENTS
WO2010059307A1 (en) * 2008-11-21 2010-05-27 Exxonmobil Upstream Research Company Liquid impact pressure control methods and systems
KR101010989B1 (en) * 2008-12-12 2011-01-26 삼성중공업 주식회사 Monitoring and controlling method of sloshing to liquid cargo in ship
FR2945511B1 (en) * 2009-05-14 2011-07-22 Saipem Sa VESSEL OR FLOATING SUPPORT EQUIPPED WITH A DEVICE FOR DETECTING THE MOVEMENTS OF LIQUID CARENES
US8643509B1 (en) 2011-01-31 2014-02-04 The Boeing Company Methods and systems for providing sloshing alerts and advisories
KR101836904B1 (en) * 2011-10-24 2018-03-12 대우조선해양 주식회사 Cargo containment having sloshing load absorbing function and method the same
FR2996520B1 (en) 2012-10-09 2014-10-24 Gaztransp Et Technigaz SEALED AND THERMALLY INSULATING TANK COMPRISING A METALIC MEMBRANE WOUNDED ACCORDING TO ORTHOGONAL PLATES
KR20140086194A (en) * 2012-12-28 2014-07-08 대우조선해양 주식회사 Method For Reducing Sloshing
KR20150044546A (en) * 2013-10-17 2015-04-27 현대중공업 주식회사 System and method for Monitoring sloshing of liquid cargo in ship
CN104266819A (en) * 2014-09-03 2015-01-07 河海大学 Device for simulating liquid sloshing generated under random wave action and wave generation method thereof
KR102419702B1 (en) 2014-12-30 2022-07-12 센트로 퍼 그리 스투디 디 테크니카 나바레 에스.피.에이. Ship's hull structural monitoring system integrated with navigation decision support system
CN106383940A (en) * 2016-09-08 2017-02-08 大连理工大学 Method for calculating dangerous rocking condition of LNG independent C-type cabin for ship
CN106529087B (en) * 2016-12-07 2019-05-14 中国海洋石油集团有限公司 The prediction technique of liquid sloshing degree in a kind of carrier fluid hull cabin
CN108216496A (en) * 2017-12-01 2018-06-29 浙江海洋大学 The dual system of marine hydraulic hold swings device and its oscillation method processed

Also Published As

Publication number Publication date
CN113795422A (en) 2021-12-14
FR3095802A1 (en) 2020-11-13
BR112021022113A2 (en) 2022-01-04
US20220204141A1 (en) 2022-06-30
SG11202112068UA (en) 2021-11-29
US11987327B2 (en) 2024-05-21
WO2020225353A1 (en) 2020-11-12
FR3095802B1 (en) 2023-03-24
AU2020269409A1 (en) 2021-11-18
EP3966101B1 (en) 2022-12-14
CN113795422B (en) 2024-06-11
ES2939288T3 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
EP3803190B1 (en) Method for controlling the filling levels of tanks
EP4153474A1 (en) Estimation of a tank sloshing response using a statistical model trained by machine learning
WO2020225353A1 (en) Method and device for determining sloshing
EP3881149A1 (en) Maintenance management method for a ship
WO2020128273A1 (en) Method for detecting a leak in a sealed and thermally insulating tank
EP4160079B1 (en) Method and system for calculating a transition parameter of a liquefied gas storage medium.
WO2022263267A1 (en) Method and device for estimating the probability of damage caused by the sloshing of a liquid load during an operation of transferring said liquid load between two floating structures
WO2022180109A1 (en) Monitoring and predicting the operation of a pump arranged in a tank for transporting a liquid product on board a vessel
EP3479006A1 (en) Method and system for the real-time calculation of the amount of energy transported in a non-refrigerated, pressurised, liquefied natural gas tank
FR3042268A1 (en) SYSTEM AND METHOD FOR DETERMINING THE FLUID LEVEL IN A RESERVOIR
WO2015118230A1 (en) Detection of water in a tensioning buoy
EP4098539B1 (en) Vessel for transporting or using a cold fluid
OA17837A (en) Water detection in a tensioning buoy
BE566499A (en)

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211015

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20220801

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020006942

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1537535

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230115

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20221214

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221214

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2939288

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20230400414

Country of ref document: GR

Effective date: 20230410

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1537535

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230414

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230426

Year of fee payment: 4

Ref country code: FR

Payment date: 20230523

Year of fee payment: 4

Ref country code: ES

Payment date: 20230607

Year of fee payment: 4

Ref country code: DE

Payment date: 20230510

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230414

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20230420

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602020006942

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

26N No opposition filed

Effective date: 20230915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230507

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531