EP3954638B1 - Winding device - Google Patents

Winding device Download PDF

Info

Publication number
EP3954638B1
EP3954638B1 EP21187366.6A EP21187366A EP3954638B1 EP 3954638 B1 EP3954638 B1 EP 3954638B1 EP 21187366 A EP21187366 A EP 21187366A EP 3954638 B1 EP3954638 B1 EP 3954638B1
Authority
EP
European Patent Office
Prior art keywords
winding
bobbin
linear drive
mandrel
support roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21187366.6A
Other languages
German (de)
French (fr)
Other versions
EP3954638A1 (en
Inventor
Alexander HIRTL
Roman Philipp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SSM Schaerer Schweiter Mettler AG
Original Assignee
SSM Schaerer Schweiter Mettler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SSM Schaerer Schweiter Mettler AG filed Critical SSM Schaerer Schweiter Mettler AG
Publication of EP3954638A1 publication Critical patent/EP3954638A1/en
Application granted granted Critical
Publication of EP3954638B1 publication Critical patent/EP3954638B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/40Arrangements for rotating packages
    • B65H54/42Arrangements for rotating packages in which the package, core, or former is rotated by frictional contact of its periphery with a driving surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/40Arrangements for rotating packages
    • B65H54/52Drive contact pressure control, e.g. pressing arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/40Arrangements for rotating packages
    • B65H54/54Arrangements for supporting cores or formers at winding stations; Securing cores or formers to driving members
    • B65H54/547Cantilever supporting arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H59/00Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators
    • B65H59/38Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators by regulating speed of driving mechanism of unwinding, paying-out, forwarding, winding, or depositing devices, e.g. automatically in response to variations in tension
    • B65H59/384Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators by regulating speed of driving mechanism of unwinding, paying-out, forwarding, winding, or depositing devices, e.g. automatically in response to variations in tension using electronic means
    • B65H59/385Regulating winding speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H63/00Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package
    • B65H63/08Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package responsive to delivery of a measured length of material, completion of winding of a package, or filling of a receptacle
    • B65H63/082Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package responsive to delivery of a measured length of material, completion of winding of a package, or filling of a receptacle responsive to a predetermined size or diameter of the package
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2515/00Physical entities not provided for in groups B65H2511/00 or B65H2513/00
    • B65H2515/30Forces; Stresses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the present invention relates to a device and a method for winding a thread onto a bobbin tube to form a bobbin, with a machine frame and with a control, with a support roller rotatably mounted in the machine frame for supporting the bobbin tube and with a bobbin mandrel for holding the bobbin tube, wherein the bobbin mandrel is held on a pivot lever which is rotatably mounted on a rotation axis in the machine frame.
  • Such winding devices are used in textile machines of various designs, for example end spinning machines, rewinding machines or winding machines.
  • the bobbin or bobbin sleeve is rotatably mounted between two holding arms or on a bobbin mandrel.
  • the two holding arms or the bobbin mandrel are in turn held in a common swivel arm with a swivel axis.
  • the bobbin sleeve rests on a support roller and is rotated by a drive, whereby a thread or yarn fed between the support roller and the bobbin sleeve is wound onto the bobbin sleeve and a bobbin is formed.
  • bobbin sleeves are used in cylindrical or conical shapes made of different materials, for example plastic or paper.
  • the bobbin sleeves can be designed with or without side flanges.
  • the bobbin sleeve is driven directly by a motor that rotates at least one of the sleeve holders or the bobbin mandrel, or indirectly by a friction roller arranged parallel to the bobbin sleeve.
  • the friction roller also serves as a support roller.
  • the friction roller can be designed as a so-called grooved drum.
  • the grooved drum is provided with a yarn guide which is guided in slots by the rotation of the grooved drum in such a way that the thread is moved back and forth. If the bobbin sleeve is driven directly, the traversing of the thread is provided by a separate laying unit and the bobbin sleeve is supported by a separate support roller. The thread is guided between the support roller and the bobbin sleeve. or the thread already on the bobbin tube and thus deposited on the bobbin tube.
  • Winding devices are known from the state of the art which are equipped with a swivel drive for this movement. It is also known that swivel drives can be equipped with an angle measurement, which means that a corresponding control system knows at all times which position the swivel drive is in.
  • WO 2019/007729 A1 a winding device in which the contact force is measured and regulated by moving the swivel drive. After the winding process has been completed, the finished bobbin must be lifted off the support roller or the friction roller in order to remove the bobbin from the holding arms and insert a new bobbin sleeve. This lifting of the bobbin is accomplished by swiveling the bobbin.
  • the EP3575254A1 discloses a winding device for a workstation of a textile machine with a winding roller and a bobbin that can be pressed onto the winding roller, as well as a pressing device.
  • the pressing device contains a pre-tensionable spring element for pressing the bobbin onto the winding roller.
  • the pressing device also comprises an actuating element, in particular an electric motor, which is operatively connected to the spring element and by means of which the spring element can be subjected to a predetermined pre-tension.
  • the object of the present invention is therefore to propose a device and a method for winding a thread onto a spool, which enable a simple and cost-effective construction, without having to forego high quality and uniformity of the spools.
  • a winding device for winding a thread onto a bobbin tube to form a bobbin comprises a machine frame and a control system, a support roller rotatably mounted in the machine frame for supporting the bobbin tube and a winding mandrel for holding the bobbin tube, the winding mandrel being held on a pivot lever which is rotatably mounted on a rotation axis in the machine frame.
  • the pivot lever is designed with two lever arms, with the winding mandrel for the bobbin tube being provided on a first lever arm and a linear drive for moving the pivot lever around the rotation axis on a second lever arm.
  • the linear drive is connected to the second lever arm with a push rod via an axle bolt and is pivotably held in the machine frame.
  • a force measurement is arranged between the axle bolt and the holder of the linear drive in the machine frame.
  • the design of the winding device is significantly simplified by using a winding mandrel instead of a previously common bobbin frame.
  • a single pivot lever attached to one side of the winding mandrel is sufficient to support the winding mandrel.
  • the swivel lever comprises two lever arms, with a rotation axis provided at the intersection of the two lever arms, which forms a fixed point and is fixedly connected to the machine frame.
  • the linear drive attached to the second lever arm is attached to an axle bolt via the push rod so that it can rotate. At the end of the linear drive opposite the axle bolt, there is another rotationally movable attachment to the machine frame.
  • the linear drive moves the coil mandrel towards or away from the support roller with a ratio corresponding to the two lever arms.
  • the force measurement can be arranged on either side of the linear drive.
  • the linear drive When the linear drive is operated, the winding tube is pressed onto the support roller via the swivel lever. The resulting contact force can be increased or reduced by a corresponding movement of the linear drive. Since the force measurement is provided between the stationary bracket of the linear drive and the swivel lever, the force measurement measures a force that is directly proportional to the contact force.
  • the force measurement can be carried out as a hydraulic or mechanical force measurement.
  • the force measurement is advantageously carried out as a load cell arranged between the axle bolt and the bracket of the linear drive. This enables a simple and compact design, and a load cell can also be easily coupled directly to a control system.
  • Various types of so-called force transducers can be used in load cells.
  • force transducers For example, the use of force transducers is known in which the force acts on an elastic spring body and deforms it.
  • the deformation of the spring body is converted into a change in an electrical voltage via strain gauges, whose electrical resistance changes with the strain.
  • the electrical voltage and thus the change in strain are registered via a measuring amplifier. This can be converted into a force measurement value due to the elastic properties of the spring body.
  • Bending beams, ring torsion springs or other designs are used as spring bodies.
  • Piezoceramic elements are used in another type of load cell. The directed deformation of a piezoelectric material causes microscopic dipoles to form within the elementary cells of the piezo crystal.
  • the summation of the associated electric field in all elementary cells of the crystal leads to a macroscopically measurable electrical voltage, which can be converted into a force measurement value.
  • Load cells are known from the state of the art and are now widely used in force and weight measurement.
  • a force measurement can be carried out directly via the axle bolt.
  • the axle bolt is also designed to function as a pivoting connection between the bracket and the pivot lever as a force-introducing component of a force measurement.
  • the linear drive is connected to the bracket via the load cell.
  • the load cell is designed so that it can be used as part of a bracket.
  • the load cell can also be attached to the machine frame in a rotatable manner.
  • the linear drive can be a pneumatic or electric drive. However, it is advantageous if the linear drive is an electric stepper motor with a resolution of less than 0.06 mm per step.
  • Linear drives are available in many different designs. However, in order to enable the most precise control of the force of the coil on the support roller, a linear drive with the smallest possible step size is advantageous. It has been shown that with today's winding device arrangements, a step size of less than 0.06 mm is preferable.
  • the design of the linear drive should also be selected in such a way that the pivot lever can be moved manually against the de-energized linear drive. In the event of a fault, it may be necessary to manually lift the coil from the support roller and this should be possible without mechanically decoupling the linear drive.
  • a drive for the winding mandrel is arranged on the first lever arm.
  • the additional weight of this drive which also influences the contact force of the bobbin sleeve on the support roller, can be absorbed by the corresponding movement of the linear drive.
  • This direct drive of the winding mandrel instead of an indirect drive of the bobbin with the help of the support roller enables slip-free control of the winding speed. There are also fewer losses in the form of friction and mechanical transmission, which leads to lower energy consumption of the bobbin drive.
  • a handle with a release button is provided on the second lever arm for manually releasing the winding mandrel.
  • the spool sleeve is held on the winding mandrel by spreading the winding mandrel.
  • the diameter of the winding mandrel is increased by spring force and the spool sleeve is thus clamped.
  • a corresponding release button is provided which releases the spring.
  • the handle is also used to move the spool or the spool mandrel away from or towards the support roller without the help of the linear drive. By applying a slight manual force to the swivel arm or the handle, a resistance moment of the linear drive can be overcome and the spool or the spool mandrel can also be moved manually into the desired position.
  • a stop is provided on the pivot lever, which prevents the winding mandrel from resting on the support roller if the bobbin sleeve is missing.
  • an advantageously adjustable stop is provided on the first or second lever arm of the pivot lever. The pivoting movement of the winding mandrel against the support roller until it touches it is thereby prevented. Since in a winding process the thread to be wound runs over the support roller, i.e. is guided by a surface of the support roller, it is important that the surface of the support roller is not damaged.
  • the winding device has a machine frame and a control system and a support roller and a winding mandrel that are rotatably mounted in the machine frame.
  • the bobbin rests on the support roller and the winding mandrel is held on a pivoting lever that is rotatably mounted in the machine frame.
  • the pivoting lever has a first holding arm with the winding mandrel and a second lever arm with a linear drive, the linear drive being connected to the second lever arm with a push rod via an axle bolt and being pivotably mounted in the machine frame.
  • a force measurement is arranged between the axle bolt and the holder of the linear drive in the machine frame. Before the winding process, an empty bobbin tube is pushed onto the winding mandrel. The winding mandrel is then pivoted by the linear drive via the pivot lever until the spool sleeve rests on the support roller: The force measurement measures a contact force between the support roller and the spool sleeve and the control system uses the linear drive to move the pivot lever until a predetermined contact force is reached.
  • the contact force is regulated within a predetermined range by controlling the linear drive.
  • a value is determined which, taking into account the technical conditions of the machine, is directly proportional to the contact force. In this case, it is not the contact force between the spool or spool sleeve and the support roller that is measured directly, but rather the force with which the linear drive is supported against the machine frame.
  • the weight of the swivel lever together with any existing drive of the winding mandrel and the winding mandrel itself must be taken into account in their influence on the force measurement.
  • the resulting forces acting on the force measurement change as the diameter of the spool increases due to the swivel movement of the swivel lever and an associated change in the horizontal distance between the winding mandrel and its fixed axis of rotation.
  • the winding mandrel with the empty spool sleeve is pivoted once for calibration.
  • Such calibration by pivoting the winding mandrel with the empty spool sleeve up once must be repeated each time a different spool sleeve is used.
  • the pivoting movement enables the control system to detect the forces and subsequently take them into account.
  • the force measured during the winding process is proportional to the contact force due to the leverage and taking into account the corresponding corrections based on the machine's technical conditions.
  • the force measured in this way is determined by the weight of the spool and the pressing force of the spool on the support roller, which is exerted by the pivoting lever or the linear drive assigned to it. If the diameter of the spool increases, the lever arm of the pivoting lever on the spool side is pushed away from the support roller and at the same time held in position by the opposite lever arm of the pivoting lever via the linear drive, or at least hindered in its movement.
  • the intended control compares the measured force with a target value and corrects the position of the pivot lever by a linear movement of the push rod so that the measured actual value of the force corresponds to a predetermined target size.
  • the thread is always placed on the bobbin under the same contact pressure or a contact pressure adapted to the winding cycle over the entire winding cycle. Without such a control, the thread layers on the bobbin would become increasingly dense over the winding cycle, which would have a negative effect on later unwinding in the subsequent processes of thread processing. Furthermore, the contact pressure can be reduced as the bobbin size increases, which has the advantage that the bobbin core is not compressed by the outer layers. This means that the bobbins produced are of high quality and uniformity.
  • the diameter of the spool increases continuously, which causes the swivel lever to rotate and thus also changes the load on the force measurement.
  • the control system detects this change via the force measurement and can restore the previous force ratios by moving the linear drive accordingly.
  • a predetermined spool diameter is reached, winding is switched off.
  • the current diameter of the spool is known at any time by counting the steps of the linear drive, so that before operation is resumed, a decision can be made based on the diameter whether winding should continue with the existing spool that has been started or whether it would be better to replace the spool with an empty spool sleeve.
  • the winding is stopped and the spool is lifted off the support roller by the linear drive.
  • the predetermined spool diameter can be determined in various ways. The length of the spooled thread can be determined or calculated using the winding speed and the current spool diameter can be determined from this. It is also possible to use sensors to detect the deflection of the pivot lever or the movement of the linear drive and use this to determine the spool diameter.
  • the term "reaching a predetermined spool diameter" can therefore also include the specification of a certain thread length, duration of a winding or movement of the linear drive or degree of pivoting of the pivot lever. understood.
  • the spool Once the spool has been lifted, it can be removed from the spool mandrel manually or with the help of an automatic removal machine after or while the spool mandrel tensioning device has been released manually or automatically. In the lifted state, the final weight of the finished spool can be determined by measuring the force.
  • the swivel lever is moved by the linear drive until the bobbin tube rests on the support roller and a predetermined contact force is reached.
  • a winding machine or a rewinding machine is equipped with a device as described above, which makes the machine itself easy to operate and inexpensive to manufacture.
  • FIG 1 shows a schematic plan view and Figure 2 a schematic side view in direction X of the Figure 1 an embodiment of a winding device 1.
  • the winding device 1 comprises a winding mandrel 7 which is rotatably mounted on a pivot lever 8.
  • the winding mandrel 7 is set in rotation by a drive 17 which is also held on the pivot lever 8.
  • An alternative to this type of drive would be an indirect drive of the winding mandrel 7 via a support roller 3.
  • a bobbin sleeve 5 is held in a rotationally fixed manner on the winding mandrel 7 with the aid of a tensioning device (not shown).
  • the tensioning device of the winding mandrel 7 can be released via a release button 19 which is attached to a handle 18 on the pivot lever 8 when a full bobbin 2 or the bobbin sleeve 5 has to be changed.
  • the pivot lever 8 is held stationary in a rotation axis 9 on the machine frame 6.
  • the pivot lever 8 consists of a first lever arm 10 and a second Lever arm 11.
  • the winding mandrel 7 with its drive 17 is attached to the first lever arm 10.
  • a linear drive 12 is attached to the second lever arm 11 via an axle bolt 13.
  • the linear drive 12 is connected to the axle bolt 13 via a push rod 16 and is rotatably attached to the machine frame 6 on the side opposite the axle bolt 13 with a bracket 14. A force measurement 15 is inserted between the bracket 14 and the linear drive 12.
  • the support roller 3 is arranged parallel to the spool axis of the spool mandrel 7, on which the spool sleeve 5 comes to rest due to the pivoting movement 25 of the pivoting lever 8 about the axis of rotation 9.
  • the support roller 3 is rotatably mounted in the machine frame 6 by corresponding supports 27.
  • a thread 4 applied to the spool sleeve 5 is wound onto the spool sleeve 5 and a spool 2 is formed.
  • the support roller 3 is set in rotation in the corresponding direction of rotation 24 via the support of the spool 2 on the support roller 3.
  • the thread 4 is moved back and forth along the spool axis of the spool sleeve 5 using a traversing mechanism 22.
  • a traversing mechanism 22 With the help of this direction of movement of the traversing mechanism 22, different types of windings or spools 2 can be produced on the spool sleeve 5.
  • the spool 2 increases in diameter 28, whereby the spool mandrel 7 and thus the first lever arm 10 of the support roller 3 are pivoted away from the support roller 3 about the axis of rotation 9 due to the contact with the support roller 3.
  • the thread 4 is clamped between the spool sleeve 5 or the thread 4 already wound on the spool sleeve 5 and the support roller 3, so that a tight winding is produced on the spool sleeve 5.
  • a clamping force or contact force 20 applied in this process constantly increases due to the weight of the growing spool 2 during a winding process.
  • the swivel arm is moved by the linear drive 12. 11 is moved about the axis of rotation 9 with a linear movement 26 and in this way the coil 2 is lifted off the support roller 3 via the second lever arm 11.
  • This lifting is only carried out to such an extent that a predetermined clamping force remains between the coil 2 and the support roller 3.
  • the force measurement 15 and the linear drive 15 are connected to a controller 21.
  • the force measured by the force measurement 15 is directly proportional to the contact force 20 between the coil 2 and the support roller 3.
  • the controller 21 can therefore set the linear drive 15 in motion according to a predetermined contact force 20 and regulate the contact force 20 to a constant value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Winding Filamentary Materials (AREA)
  • Replacing, Conveying, And Pick-Finding For Filamentary Materials (AREA)

Description

Die vorliegende Erfindung betrifft eine Vorrichtung und ein Verfahren zum Aufspulen eines Fadens auf eine Spulenhülse zur Bildung einer Spule, mit einem Maschinengestell und mit einer Steuerung , mit einer im Maschinegestell drehbar gelagerten Stützwalze zur Auflage der Spulenhülse und mit einem Spuldorn zur Halterung der Spulenhülse, wobei der Spuldorn an einem Schwenkhebel gehalten ist, welcher auf einer Drehachse im Maschinengestell drehbar gelagert ist.The present invention relates to a device and a method for winding a thread onto a bobbin tube to form a bobbin, with a machine frame and with a control, with a support roller rotatably mounted in the machine frame for supporting the bobbin tube and with a bobbin mandrel for holding the bobbin tube, wherein the bobbin mandrel is held on a pivot lever which is rotatably mounted on a rotation axis in the machine frame.

Derartige Spulvorrichtungen werden in Textilmaschinen verschiedener Bauart eingesetzt, beispielsweise Endspinnmaschinen, Umspulmaschinen oder Spulmaschinen. Dabei sind die Spule, respektive die Spulenhülse, zwischen zwei Haltearmen oder auf einem Spuldorn drehbar gelagert. Die beiden Haltearme respektive der Spuldorn wiederum sind ihrerseits in einem gemeinsamen Schwenkarm mit einer Schwenkachse gehalten. Zu Beginn eines Spulvorganges (einer sogenannten Spulreise) liegt die Spulenhülse auf einer Stützwalze auf und wird über einen Antrieb in Drehung versetzt, wodurch ein zwischen die Stützwalze und die Spulenhülse zugeführter Faden oder ein Garn auf die Spulenhülse aufgewickelt und eine Spule gebildet wird. Zum Einsatz kommen verschiedenste Arten von Spulhülsen in zylindrischer oder konischer Form aus unterschiedlichen Materialien, beispielsweise Kunststoff oder Papier. Die Spulhülsen können mit oder ohne seitliche Flansche ausgeführt sein. Der Faden wird während der Aufwicklung mit einer Changierung entlang einer Längsachse der Spulenhülse hin und her bewegt, wodurch verschiedenartige Wicklungen in Aufbau und Form gebildet werden. Der Antrieb der Spulenhülse erfolgt direkt über einen Motor der zumindest eine der Hülsenaufnahmen oder den Spulendorn in Drehung versetzt oder indirekt über eine parallel zur Spulenhülse angeordnete Reibwalze. Die Reibwalze dient dabei gleichzeitig als Stützwalze. Die Reibwalze kann dabei als sogenannte Nutentrommel ausgeführt sein. Die Nutentrommel ist mit einem Garnführer versehen welcher in Schlitzen durch die Drehung der Nutentrommel derart geführt wird, dass der Faden hin und her bewegt wird. Bei einem direkten Antrieb der Spulenhülse ist die Changierung des Fadens durch eine separate Verlegeeinheit und eine Abstützung der Spulenhülse über eine separate Stützwalze vorzusehen. Der Faden wird dabei zwischen der Stützwalze und der Spulenhülse respektive dem sich bereits auf der Spulenhülse befindlichen Faden geklemmt und dadurch auf der Spulenhülse abgelegt.Such winding devices are used in textile machines of various designs, for example end spinning machines, rewinding machines or winding machines. The bobbin or bobbin sleeve is rotatably mounted between two holding arms or on a bobbin mandrel. The two holding arms or the bobbin mandrel are in turn held in a common swivel arm with a swivel axis. At the start of a winding process (a so-called winding cycle), the bobbin sleeve rests on a support roller and is rotated by a drive, whereby a thread or yarn fed between the support roller and the bobbin sleeve is wound onto the bobbin sleeve and a bobbin is formed. Various types of bobbin sleeves are used in cylindrical or conical shapes made of different materials, for example plastic or paper. The bobbin sleeves can be designed with or without side flanges. During winding, the thread is moved back and forth along a longitudinal axis of the bobbin sleeve with a traversing motion, which creates windings of different construction and shape. The bobbin sleeve is driven directly by a motor that rotates at least one of the sleeve holders or the bobbin mandrel, or indirectly by a friction roller arranged parallel to the bobbin sleeve. The friction roller also serves as a support roller. The friction roller can be designed as a so-called grooved drum. The grooved drum is provided with a yarn guide which is guided in slots by the rotation of the grooved drum in such a way that the thread is moved back and forth. If the bobbin sleeve is driven directly, the traversing of the thread is provided by a separate laying unit and the bobbin sleeve is supported by a separate support roller. The thread is guided between the support roller and the bobbin sleeve. or the thread already on the bobbin tube and thus deposited on the bobbin tube.

Durch den Spulvorgang nimmt ein Durchmesser der entstehenden Spule durch den auf die Spulenhülse aufgewickelten Faden stetig zu. In der Folge vergrössert sich der Abstand zwischen der Stützwalze und der Längsachse der Spulenhülse. Aus dem Stand der Technik sind Spulvorrichtungen bekannt welche für diese Bewegung mit einem Schwenkantrieb ausgerüstet sind. Ebenfalls bekannt ist, dass Schwenkantriebe mit einer Winkelmessung ausgerüstet sein können wodurch eine entsprechende Steuerung jederzeit weiss in welcher Stellung sich der Schwenkantrieb befindet.During the winding process, the diameter of the resulting spool increases steadily due to the thread wound onto the spool tube. As a result, the distance between the support roller and the longitudinal axis of the spool tube increases. Winding devices are known from the state of the art which are equipped with a swivel drive for this movement. It is also known that swivel drives can be equipped with an angle measurement, which means that a corresponding control system knows at all times which position the swivel drive is in.

Durch den Spulvorgang nimmt jedoch auch das Eigengewicht der auf der Stützwalze oder Reibwalze aufliegenden Spule zu. Dadurch steigt die auf eine Oberfläche der Spule wirkende Aufliegekraft. Damit diese Aufliegekraft nicht zu gross wird, ist es aus dem Stand der Technik bekannt, beispielsweise der EP 1 820 764 A2 , Gegengewichte einzusetzen, welche die Aufliegekräfte annähernd auf einem konstanten Niveau halten.However, the winding process also increases the weight of the bobbin resting on the support roller or friction roller. This increases the contact force acting on the surface of the bobbin. In order to prevent this contact force from becoming too great, it is known from the state of the art, for example, to EP 1 820 764 A2 to use counterweights which keep the contact forces at an approximately constant level.

Ebenfalls offenbart die WO 2019/007729 A1 eine Spulvorrichtung bei welcher die Aufliegekraft gemessen und durch Bewegen des Schwenkantriebs geregelt wird. Nach Beenden des Spulvorganges muss die fertige Spule von der Stützwalze oder der Reibwalze abgehoben werden um die Spule aus den Haltearmen entnehmen und eine neue Spulenhülse einsetzen zu können. Dieses Abheben der Spule wird durch einen Schwenkvorgang der Spule bewerkstelligt.Also revealed is the WO 2019/007729 A1 a winding device in which the contact force is measured and regulated by moving the swivel drive. After the winding process has been completed, the finished bobbin must be lifted off the support roller or the friction roller in order to remove the bobbin from the holding arms and insert a new bobbin sleeve. This lifting of the bobbin is accomplished by swiveling the bobbin.

Die EP3575254A1 offenbart eine Spulvorrichtung für eine Arbeitsstelle einer Textilmaschine mit einer Spulwalze und einer an die Spulwalze anpressbaren Spule sowie eine Anpressvorrichtung. Die Anpressvorrichtung beinhaltet zum Anpressen der Spule an die Spulwalze ein vorspannbares Federelement. Weiterhin umfasst die Anpressvorrichtung ein Stellelement, insbesondere einen Elektromotor, welches mit dem Federelement in einer Wirkverbindung steht und mittels welchem das Federelement mit einer vorgegebenen Vorspannung beaufschlagbar ist.The EP3575254A1 discloses a winding device for a workstation of a textile machine with a winding roller and a bobbin that can be pressed onto the winding roller, as well as a pressing device. The pressing device contains a pre-tensionable spring element for pressing the bobbin onto the winding roller. The pressing device also comprises an actuating element, in particular an electric motor, which is operatively connected to the spring element and by means of which the spring element can be subjected to a predetermined pre-tension.

Nachteilig an den bekannten Ausführungen der Spulvorrichtungen ist, dass eine aufwändige Konstruktion und Antriebstechnik für die Bewegung der Spule zur Beibehaltung der Aufliegekräfte verwendet werden muss.The disadvantage of the known designs of the winding devices is that a complex construction and drive technology must be used to move the coil in order to maintain the contact forces.

Aufgabe der vorliegenden Erfindung ist es somit, eine Vorrichtung und ein Verfahren zum Aufspulen eines Fadens auf eine Spule vorzuschlagen, welche eine einfache und kostengünstige Konstruktion ermöglichen, wobei auf eine hohe Qualität und Gleichmässigkeit der Spulen nicht verzichtet werden muss.The object of the present invention is therefore to propose a device and a method for winding a thread onto a spool, which enable a simple and cost-effective construction, without having to forego high quality and uniformity of the spools.

Die Aufgabe wird gelöst durch eine Vorrichtung sowie ein Verfahren mit den Merkmalen der unabhängigen Patentansprüche.The problem is solved by a device and a method having the features of the independent patent claims.

Vorgeschlagen wird eine Spulvorrichtung zum Aufspulen eines Fadens auf eine Spulenhülse zur Bildung einer Spule. Die Spulvorrichtung umfasst ein Maschinengestell und eine Steuerung, eine im Maschinegestell drehbar gelagerte Stützwalze zur Auflage der Spulenhülse und einen Spuldorn zur Halterung der Spulenhülse, wobei der Spuldorn an einem Schwenkhebel gehalten ist, welcher auf einer Drehachse im Maschinengestell drehbar gelagert ist. Der Schwenkhebel ist mit zwei Hebelarmen ausgebildet, wobei an einem ersten Hebelarm der Spuldorn für die Spulenhülse und an einem zweiten Hebelarm ein Linearantrieb zur Bewegung des Schwenkhebels um die Drehachse vorgesehen ist. Der Linearantrieb ist mit einer Schubstange über einen Achsbolzen mit dem zweiten Hebelarm verbunden und im Maschinengestell schwenkbar gehalten. Zwischen dem Achsbolzen und der Halterung des Linearantriebs im Maschinengestell ist eine Kraftmessung angeordnet. Durch die Verwendung eines Spuldornes anstelle eines bisher üblichen Spulenrahmens wird die Konstruktion der Spulvorrichtung wesentlich vereinfacht. Zur Lagerung des Spuldorns genügt ein einziger einseitig am Spuldorn befestigter Schwenkhebel. Der Schwenkhebel umfasst zwei Hebelarme, wobei im Schnittpunkt der beiden Hebelarme eine Drehachse vorgesehen ist, welche einen Festpunkt bildet und ortsfest mit dem Maschinengestell verbunden ist. Der am zweiten Hebelarm angebrachte Linearantrieb ist über die Schubstange drehbeweglich mit einem Achsbolzen befestigt. Am dem Achsbolzen gegenüberliegenden Ende des Linearantriebs besteht eine weitere drehbewegliche Befestigung mit dem Maschinengestell. Durch den Linearantrieb wird mit einer den beiden Hebelarmen entsprechenden Übersetzung der Spulendorn zur Stützwalze hin oder von dieser weg bewegt.A winding device for winding a thread onto a bobbin tube to form a bobbin is proposed. The winding device comprises a machine frame and a control system, a support roller rotatably mounted in the machine frame for supporting the bobbin tube and a winding mandrel for holding the bobbin tube, the winding mandrel being held on a pivot lever which is rotatably mounted on a rotation axis in the machine frame. The pivot lever is designed with two lever arms, with the winding mandrel for the bobbin tube being provided on a first lever arm and a linear drive for moving the pivot lever around the rotation axis on a second lever arm. The linear drive is connected to the second lever arm with a push rod via an axle bolt and is pivotably held in the machine frame. A force measurement is arranged between the axle bolt and the holder of the linear drive in the machine frame. The design of the winding device is significantly simplified by using a winding mandrel instead of a previously common bobbin frame. A single pivot lever attached to one side of the winding mandrel is sufficient to support the winding mandrel. The swivel lever comprises two lever arms, with a rotation axis provided at the intersection of the two lever arms, which forms a fixed point and is fixedly connected to the machine frame. The linear drive attached to the second lever arm is attached to an axle bolt via the push rod so that it can rotate. At the end of the linear drive opposite the axle bolt, there is another rotationally movable attachment to the machine frame. The linear drive moves the coil mandrel towards or away from the support roller with a ratio corresponding to the two lever arms.

Die Anordnung der Kraftmessung ist beidseitig des Linearantriebs möglich. Bei Betätigung des Linearantriebs wird über den Schwenkhebel die Spulhülse auf die Stützwalze gepresst. Die dabei entstehende Aufliegekraft kann durch eine entsprechende Bewegung des Linearantriebs vergrössert oder vermindert werden. Da die Kraftmessung zwischen der ortsfesten Halterung des Linearantriebs und dem Schwenkhebel vorgesehen ist, wird mit der Kraftmessung eine zur Aufliegekraft direkt proportionale Kraft gemessen. Die Kraftmessung kann als hydraulische oder mechanische Kraftmessung ausgeführt sein. Vorteilhafterweise ist die Kraftmessung als eine zwischen dem Achsbolzen und der Halterung des Linearantriebs angeordnete Kraftmessdose ausgeführt. Dies ermöglicht eine einfache und kompakte Bauweise, auch ist eine Kraftmessdose auf einfache Art direkt mit einer Steuerung koppelbar. In Kraftmessdosen können verschiedene Bauarten von sogenannten Kraftaufnehmern zur Anwendung kommen. Beispielsweise ist die Verwendung von Kraftaufnehmern bekannt, bei welchen die Kraft auf einen elastischen Federkörper einwirkt und diesen verformt. Die Verformung des Federkörpers wird über Dehnungsmessstreifen, deren elektrischer Widerstand sich mit der Dehnung ändert, in die Änderung einer elektrischen Spannung umgewandelt. Über einen Messverstärker werden die elektrische Spannung und damit die Dehnungsänderung registriert. Diese kann aufgrund der elastischen Eigenschaften des Federkörpers in einen Kraftmesswert umgerechnet werden. Als Federkörper werden Biegebalken, Ringtorsionsfedern oder andere Bauformen eingesetzt. In einer weiteren Bauart von Wägezellen werden Piezokeramikelemente eingesetzt. Dabei bilden sich durch die gerichtete Verformung eines piezoelektrischen Materials mikroskopische Dipole innerhalb der Elementarzellen des Piezokristalls. Die Aufsummierung über das damit verbundene elektrische Feld in allen Elementarzellen des Kristalls führt zu einer makroskopisch messbaren elektrischen Spannung, welche in einen Kraftmesswert umgerechnet werden kann. Kraftmessdosen sind aus dem Stand der Technik bekannt und finden heute weite Verbreitung in der Kraft- und Gewichtsmessung. Alternativ zur Anordnung der Kraftmessung zwischen dem Achsbolzen und der Halterung des Linearantriebs kann eine Kraftmessung direkt über den Achsbolzen erfolgen. Dabei ist der Achsbolzen gleichzeitig zur Funktion einer schwenkbaren Verbindung zwischen der Halterung und dem Schwenkhebel als krafteinleitendes Bauteil einer Kraftmessung ausgeführt.The force measurement can be arranged on either side of the linear drive. When the linear drive is operated, the winding tube is pressed onto the support roller via the swivel lever. The resulting contact force can be increased or reduced by a corresponding movement of the linear drive. Since the force measurement is provided between the stationary bracket of the linear drive and the swivel lever, the force measurement measures a force that is directly proportional to the contact force. The force measurement can be carried out as a hydraulic or mechanical force measurement. The force measurement is advantageously carried out as a load cell arranged between the axle bolt and the bracket of the linear drive. This enables a simple and compact design, and a load cell can also be easily coupled directly to a control system. Various types of so-called force transducers can be used in load cells. For example, the use of force transducers is known in which the force acts on an elastic spring body and deforms it. The deformation of the spring body is converted into a change in an electrical voltage via strain gauges, whose electrical resistance changes with the strain. The electrical voltage and thus the change in strain are registered via a measuring amplifier. This can be converted into a force measurement value due to the elastic properties of the spring body. Bending beams, ring torsion springs or other designs are used as spring bodies. Piezoceramic elements are used in another type of load cell. The directed deformation of a piezoelectric material causes microscopic dipoles to form within the elementary cells of the piezo crystal. The summation of the associated electric field in all elementary cells of the crystal leads to a macroscopically measurable electrical voltage, which can be converted into a force measurement value. Load cells are known from the state of the art and are now widely used in force and weight measurement. As an alternative to arranging the force measurement between the axle bolt and the bracket of the linear drive, a force measurement can be carried out directly via the axle bolt. The axle bolt is also designed to function as a pivoting connection between the bracket and the pivot lever as a force-introducing component of a force measurement.

Bevorzugterweise und um eine weitere Vereinfachung der Konstruktion zu erreichen Ist der Linearantrieb über die Kraftmessdose mit der Halterung verbunden. Dabei ist die Kraftmessdose in ihrer Konstruktion dafür vorgesehen, dass sie als Bestandteil einer Halterung Verwendung finden kann. Auch kann in einer weitergehenden Ausführung die Kraftmessdose drehbeweglich am Maschinenrahmen befestigt werden.Preferably, and in order to further simplify the design, the linear drive is connected to the bracket via the load cell. The load cell is designed so that it can be used as part of a bracket. In a more advanced version, the load cell can also be attached to the machine frame in a rotatable manner.

Der Linearantrieb kann als pneumatischer oder elektrischer Antrieb vorgesehen sein. Es ist jedoch von Vorteil, wenn der Linearantrieb ein elektrischer Schrittmotor ist mit einer Auflösung von weniger als 0.06 mm pro Schritt. Linearantriebe sind in vielfältiger Ausführung bekannt. Um jedoch eine möglichst genaue Regelung der Aufliegekraft der Spule auf der Stützwalze zu ermöglichen ist ein Linearantrieb mit möglichst geringer Schrittweite von Vorteil. Es hat sich gezeigt, dass bei heutigen Anordnungen der Spulvorrichtungen eine Schrittweite von weniger als 0,06 mm zu bevorzugen ist. Auch ist die Bauart des Linearantriebs derart zu wählen, dass eine manuelle Bewegung des Schwenkhebels gegen den stromlosen Linearantrieb möglich ist. Im Störungsfall kann eine manuelles Abheben der Spule von der Stützwalze notwendig sein und sollte ohne mechanische Entkoppelung des Linearantriebs erfolgen können.The linear drive can be a pneumatic or electric drive. However, it is advantageous if the linear drive is an electric stepper motor with a resolution of less than 0.06 mm per step. Linear drives are available in many different designs. However, in order to enable the most precise control of the force of the coil on the support roller, a linear drive with the smallest possible step size is advantageous. It has been shown that with today's winding device arrangements, a step size of less than 0.06 mm is preferable. The design of the linear drive should also be selected in such a way that the pivot lever can be moved manually against the de-energized linear drive. In the event of a fault, it may be necessary to manually lift the coil from the support roller and this should be possible without mechanically decoupling the linear drive.

In einer Bevorzugten Ausführung ist ein Antrieb des Spuldorns auf dem ersten Hebelarm angeordnet. Das zusätzliche Gewicht dieses Antriebs, welches ebenfalls die Aufliegekraft der Spulenhülse auf der Stützwalze beeinflusst kann durch die entsprechende Bewegung des Linearantriebs aufgefangen werden. Durch diesen Direktantrieb des Spuldorns anstelle eines indirekten Antriebs der Spule mit Hilfe der der Stützwalze ist eine schlupffreie Regelung der Spulgeschwindigkeit möglich. Auch entstehen weniger Verluste in Form von Reibung und mechanischer Übertragung, was zu einem geringeren Energieverbrauch des Spulenantriebs führt.In a preferred embodiment, a drive for the winding mandrel is arranged on the first lever arm. The additional weight of this drive, which also influences the contact force of the bobbin sleeve on the support roller, can be absorbed by the corresponding movement of the linear drive. This direct drive of the winding mandrel instead of an indirect drive of the bobbin with the help of the support roller enables slip-free control of the winding speed. There are also fewer losses in the form of friction and mechanical transmission, which leads to lower energy consumption of the bobbin drive.

Vorteilhafterweise Ist am zweiten Hebelarm ein Handgriff mit einem Auslöseknopf zum manuellen Entspannen des Spuldorns vorgesehen. Die Spulenhülse wird auf dem Spuldorn durch eine Spreizung des Spuldorns gehalten. Durch Federkraft wird ein Durchmesser des Spuldorns vergrössert und damit die Spulenhülse geklemmt. Um nun bei einem Austausch einer vollen Spule durch eine neue Spulenhülse die volle Spule nicht gegen diese Federkraft vom Spuldorn abziehen respektive die neue Spulenhülse gegen die Federkraft auf den Spuldorn aufschieben zu müssen, ist ein entsprechender Auslöseknopf vorgesehen, welcher die Feder entspannt. Solange der Auslöseknopf gedrückt ist, kann die Spule vom Spuldorn ohne Widerstand abgezogen werden. Ebenfalls denkbar ist, dass bei einem ersten Drücken des Auslöseknopfes die Feder entspannt und bei einem zweiten Drücken des Auslöseknopfes die Feder wieder gespannt respektive frei gegeben wird. Des Weiteren dient der Handgriff auch dazu, die Spule respektive den Spulendorn manuell ohne Hilfe des Linearantriebes von der Stützwalze weg oder zu der Stützwalze hin zu bewegen. Durch eine leichte manuelle Krafteinwirkung auf den Schwenkarm oder den Handgriff kann ein Widerstandsmoment des Linearantriebs überwunden und die Spule respektive der Spuldorn auch manuell in die gewünschte Stellung gebracht werden.Advantageously, a handle with a release button is provided on the second lever arm for manually releasing the winding mandrel. The spool sleeve is held on the winding mandrel by spreading the winding mandrel. The diameter of the winding mandrel is increased by spring force and the spool sleeve is thus clamped. In order to avoid having to pull the full spool off the winding mandrel against the spring force when replacing a full spool with a new spool sleeve or to push the new spool sleeve onto the winding mandrel against the spring force, a corresponding release button is provided which releases the spring. As long as the release button is pressed, the spool can be pulled off the winding mandrel without resistance. It is also conceivable that the spring is released when the release button is pressed for the first time and that the spring is re-tensioned or released when the release button is pressed for the second time. is released. Furthermore, the handle is also used to move the spool or the spool mandrel away from or towards the support roller without the help of the linear drive. By applying a slight manual force to the swivel arm or the handle, a resistance moment of the linear drive can be overcome and the spool or the spool mandrel can also be moved manually into the desired position.

Bevorzugterweise ist am Schwenkhebel ein Anschlag vorgesehen, welcher eine Auflage des Spuldorns auf der Stützwalze bei fehlender Spulenhülse verhindert. Abhängig von der Anordnung des Schwenkhebels ist am ersten oder am zweiten Hebelarm des Schwenkhebels ein vorteilhafterweise verstellbarer Anschlag vorgesehen. Die Schwenkbewegung des Spuldorns gegen die Stützwalze bis zu deren Berührung wird dadurch verhindert. Da in einem Spulvorgang der aufzuspulende Faden über die Stützwalze läuft, also von einer Oberfläche der Stützwalze geführt wird, ist es von Bedeutung, dass die Oberfläche der Stützwalze keine Beschädigungen aufweist.Preferably, a stop is provided on the pivot lever, which prevents the winding mandrel from resting on the support roller if the bobbin sleeve is missing. Depending on the arrangement of the pivot lever, an advantageously adjustable stop is provided on the first or second lever arm of the pivot lever. The pivoting movement of the winding mandrel against the support roller until it touches it is thereby prevented. Since in a winding process the thread to be wound runs over the support roller, i.e. is guided by a surface of the support roller, it is important that the surface of the support roller is not damaged.

Weiter wird ein Verfahren vorgeschlagen zum Aufspulen eines Fadens auf eine Spulenhülse zu einer Spule mit einer Spulvorrichtung gemäss obiger Beschreibung. Die Spulvorrichtung weist ein Maschinengestell und eine Steuerung und eine im Maschinegestell drehbar gelagerte Stützwalze und einen Spuldorn auf. Die Spule liegt während des Spulvorganges auf der Stützwalze auf und der Spuldorn wird auf einem im Maschinengestell drehbar gelagerten Schwenkhebel gehalten. Der Schwenkhebel weist einen ersten Haltearm mit dem Spuldorn und einen zweiten Hebelarm mit einem Linearantrieb auf, wobei der Linearantrieb mit einer Schubstange über einen Achsbolzen mit dem zweiten Hebelarm verbunden und im Maschinengestell schwenkbar gehalten ist. Zwischen dem Achsbolzen und der Halterung des Linearantriebs im Maschinengestell ist eine Kraftmessung angeordnet. Vor dem Spulvorgang wird eine leere Spulenhülse auf den Spuldorn aufgeschoben. Anschliessend wird der Spuldorn durch den Linearantrieb über den Schwenkhebel soweit verschwenkt bis die Spulenhülse auf der Stützwalze aufliegt: Mit der Kraftmessung wird eine Aufliegekraft zwischen der Stützwalze und der Spulenhülse gemessen und durch die Steuerung wird mit dem Linearantrieb der Schwenkhebel soweit bewegt bis eine vorgegebene Aufliegekraft erreicht wird. Vorteilhafterweise wird während einer Spulreise die Aufliegekraft in einem vorbestimmten Bereich durch die Ansteuerung des Linearantriebs geregelt.A method is also proposed for winding a thread onto a bobbin tube to form a bobbin using a winding device as described above. The winding device has a machine frame and a control system and a support roller and a winding mandrel that are rotatably mounted in the machine frame. During the winding process, the bobbin rests on the support roller and the winding mandrel is held on a pivoting lever that is rotatably mounted in the machine frame. The pivoting lever has a first holding arm with the winding mandrel and a second lever arm with a linear drive, the linear drive being connected to the second lever arm with a push rod via an axle bolt and being pivotably mounted in the machine frame. A force measurement is arranged between the axle bolt and the holder of the linear drive in the machine frame. Before the winding process, an empty bobbin tube is pushed onto the winding mandrel. The winding mandrel is then pivoted by the linear drive via the pivot lever until the spool sleeve rests on the support roller: The force measurement measures a contact force between the support roller and the spool sleeve and the control system uses the linear drive to move the pivot lever until a predetermined contact force is reached. Advantageously During a winding cycle, the contact force is regulated within a predetermined range by controlling the linear drive.

Mit Hilfe der Kraftmessung wird eine Grösse festgestellt, welche unter Berücksichtigung der maschinentechnischen Gegebenheiten direkt proportional zur Aufliegekraft ist. Dabei wird nicht die Aufliegekraft zwischen der Spule respektive Spulenhülse und der Stützwalze direkt gemessen, sondern die Kraft mit welcher sich der Linearantrieb gegen das Maschinengestell stützt. Dabei ist ein Eigengewicht vom Schwenkhebel zusammen mit einem allfällig vorhandenen Antrieb des Spuldorns sowie des Spuldorns selbst in ihrem Einfluss auf die Kraftmessung zu berücksichtigen. Die daraus auf die Kraftmessung wirkenden Kräfte verändern sich bei zunehmendem Durchmesser der Spule durch die Schwenkbewegung des Schwenkhebels und einer damit einhergehenden Veränderung einer horizontalen Distanz zwischen dem Spuldorn und dessen ortsfest angebrachten Drehachse.With the help of the force measurement, a value is determined which, taking into account the technical conditions of the machine, is directly proportional to the contact force. In this case, it is not the contact force between the spool or spool sleeve and the support roller that is measured directly, but rather the force with which the linear drive is supported against the machine frame. The weight of the swivel lever together with any existing drive of the winding mandrel and the winding mandrel itself must be taken into account in their influence on the force measurement. The resulting forces acting on the force measurement change as the diameter of the spool increases due to the swivel movement of the swivel lever and an associated change in the horizontal distance between the winding mandrel and its fixed axis of rotation.

Vorteilhaft ist darum wenn nach Aufschieben der Spulenhülse auf den Spuldorn der Spuldorns mit leerer Spulenhülse zur Kalibrierung einmalig verschwenkt wird. Eine derartige Kalibrierung durch ein einmaliges Hochschwenken des Spuldorns mit leerer Spulenhülse ist jeweils zu wiederholen, wenn eine andere Spulenhülse zum Einsatz kommt. Durch die Schwenkbewegung kann die Steuerung die Kräfte erkennen und in der Folge berücksichtigen. Die während des Spulvorganges gemessene Kraft ist jedoch aufgrund der Hebelwirkung und unter Berücksichtigung der entsprechenden Korrekturen aufgrund der maschinentechnischen Gegebenheiten proportional zur Aufliegekraft. Die derart gemessene Kraft wird bestimmt durch das Gewicht der Spule und die Anpresskraft der Spule auf die Stützwalze welche durch den Schwenkhebel respektive dem diesem zugeordneten Linearantrieb ausgeübt wird. Bei einer Zunahme des Durchmessers der Spule wird der Hebelarm des Schwenkhebel auf der Spulenseite von der Stützwalze weggedrückt und gleichzeitig vom entgegengesetzten Hebelarm des Schwenkhebels durch den Linearantrieb in seiner Stellung festgehalten oder zumindest in seiner Bewegung behindert. Die vorgesehene Regelung vergleicht die gemessene Kraft mit einer Soll-Grösse und korrigiert durch eine lineare Bewegung der Schubstange die Stellung des Schwenkhebels soweit, dass die gemessene Ist-Grösse der Kraft einer vorgegebenen Soll-Grösse entspricht. Damit kann erreicht werden, dass über eine gesamte Spulreise der Faden immer unter demselben Anpressdruck oder einem der Spulreise angepassten Anpressdruck auf die Spule aufgelegt wird. Ohne eine derartige Regelung würden sich über die Spulreise immer stärker verdichtete Fadenlagen auf der Spule ergeben, was sich negativ auf ein späteres Abspulverhalten in den Folgeprozessen der Fadenverarbeitung auswirkt. Weiter kann dadurch der Anpressdruck mit zunehmender Spulgrösse verringert werden, was den Vorteil hat, dass der Spulenkern nicht durch die äusseren Lagen zusammen gedrückt wird. Damit kann eine hohe Qualität und Gleichmässigkeit der hergestellten Spulen erreicht werden.It is therefore advantageous if, after sliding the spool sleeve onto the winding mandrel, the winding mandrel with the empty spool sleeve is pivoted once for calibration. Such calibration by pivoting the winding mandrel with the empty spool sleeve up once must be repeated each time a different spool sleeve is used. The pivoting movement enables the control system to detect the forces and subsequently take them into account. However, the force measured during the winding process is proportional to the contact force due to the leverage and taking into account the corresponding corrections based on the machine's technical conditions. The force measured in this way is determined by the weight of the spool and the pressing force of the spool on the support roller, which is exerted by the pivoting lever or the linear drive assigned to it. If the diameter of the spool increases, the lever arm of the pivoting lever on the spool side is pushed away from the support roller and at the same time held in position by the opposite lever arm of the pivoting lever via the linear drive, or at least hindered in its movement. The intended control compares the measured force with a target value and corrects the position of the pivot lever by a linear movement of the push rod so that the measured actual value of the force corresponds to a predetermined target size. This means that the thread is always placed on the bobbin under the same contact pressure or a contact pressure adapted to the winding cycle over the entire winding cycle. Without such a control, the thread layers on the bobbin would become increasingly dense over the winding cycle, which would have a negative effect on later unwinding in the subsequent processes of thread processing. Furthermore, the contact pressure can be reduced as the bobbin size increases, which has the advantage that the bobbin core is not compressed by the outer layers. This means that the bobbins produced are of high quality and uniformity.

Durch den auf die Spule auflaufenden Faden erhöht sich kontinuierlich der Durchmesser der Spule, was zu einer Drehbewegung des Schwenkhebels und damit auch zu einer Änderung der Belastung der Kraftmessung führt. Die Steuerung stellt über die Kraftmessung diese Änderung fest und kann durch eine entsprechende Bewegung des Linearantriebs die vorherigen Kräfteverhältnisse wieder herstellen. Bei Erreichen eines vorbestimmten Spulendurchmessers wird die Spulung ausgeschaltet. Zusätzlich ist der aktuelle Durchmesser der Spule im Falle einer Störung des Spulbetriebes jederzeit durch die Zählung der Schritte des Linearantriebs bekannt, sodass vor der Wiederaufnahme des Betriebes aufgrund des Durchmessers entschieden werden kann ob die Spulung mit der vorhandenen angefangenen Spule weitergefahren wird oder ein Wechsel der Spule durch eine leere Spulenhülse vorteilhaft ist.As the thread runs onto the spool, the diameter of the spool increases continuously, which causes the swivel lever to rotate and thus also changes the load on the force measurement. The control system detects this change via the force measurement and can restore the previous force ratios by moving the linear drive accordingly. When a predetermined spool diameter is reached, winding is switched off. In addition, in the event of a disruption to the winding operation, the current diameter of the spool is known at any time by counting the steps of the linear drive, so that before operation is resumed, a decision can be made based on the diameter whether winding should continue with the existing spool that has been started or whether it would be better to replace the spool with an empty spool sleeve.

Bevorzugterweise wird bei Erreichen eines vorgegebenen Spulendurchmessers die Spulung gestoppt und die Spule durch den Linearantrieb von der Stützwalze abgehoben. Der vorgegebene Spulendurchmesser kann auf verschiedene Arten festgestellt werden. Es kann über die Spulgeschwindigkeit die Länge des aufgespulten Fadens festgestellt respektive berechnet und damit auf den aktuellen Spulendurchmesser geschlossen werden. Weiter ist es auch möglich die Auslenkung des Schwenkhebels oder die Bewegung des Linearantriebs sensorisch zu erfassen und daraus auf den Spulendurchmesser zu schliessen. Unter dem Begriff Erreichen eines vorgegebenen Spulendurchmessers kann somit auch die Vorgabe einer bestimmten Fadenlänge, Dauer einer Spulung oder Bewegung des Linearantriebs respektive Schwenkgrad des Schwenkhebels verstanden werden. Ist die Spule abgehoben kann diese manuell oder mit Hilfe eines Entnahmeautomaten vom Spulendorn abgenommen werden nachdem respektive während die Spannvorrichtung des Spuldorns manuell oder automatisch gelöst wurde. Im angehobenen Zustand kann ein Endgewicht der fertigen Spule über die Kraftmessung festgestellt werden.Preferably, when a predetermined spool diameter is reached, the winding is stopped and the spool is lifted off the support roller by the linear drive. The predetermined spool diameter can be determined in various ways. The length of the spooled thread can be determined or calculated using the winding speed and the current spool diameter can be determined from this. It is also possible to use sensors to detect the deflection of the pivot lever or the movement of the linear drive and use this to determine the spool diameter. The term "reaching a predetermined spool diameter" can therefore also include the specification of a certain thread length, duration of a winding or movement of the linear drive or degree of pivoting of the pivot lever. understood. Once the spool has been lifted, it can be removed from the spool mandrel manually or with the help of an automatic removal machine after or while the spool mandrel tensioning device has been released manually or automatically. In the lifted state, the final weight of the finished spool can be determined by measuring the force.

Nach dem Aufschieben einer leeren Spulenhülse auf den Spuldorn und dessen Verspannung wird der Schwenkhebel durch den Linearantrieb solange bewegt bis die Spulenhülse auf der Stützwalze aufliegt und eine vorgegebene Aufliegekraft erreicht ist.After an empty bobbin tube has been pushed onto the bobbin mandrel and its clamping, the swivel lever is moved by the linear drive until the bobbin tube rests on the support roller and a predetermined contact force is reached.

Bevorzugterweise ist eine Spulmaschine respektive eine Umspulmaschine mit einer Vorrichtung nach obiger Beschreibung ausgerüstet, was die Maschine selbst einfach in der Bedienung und kostengünstig in der Herstellung macht.Preferably, a winding machine or a rewinding machine is equipped with a device as described above, which makes the machine itself easy to operate and inexpensive to manufacture.

Weitere Vorteile der Erfindung sind im nachfolgenden Ausführungsbeispiel beschrieben. Es zeigen:

Figur 1
eine schematische Draufsicht einer Ausführungsform einer Spulvorrichtung nach der Erfindung und
Figur 2
eine schematische Seitenansicht der Spulvorrichtung in Richtung X nach Figur 1.
Further advantages of the invention are described in the following embodiment. They show:
Figure 1
a schematic plan view of an embodiment of a winding device according to the invention and
Figure 2
a schematic side view of the winding device in direction X according to Figure 1.

Figur 1 zeigt eine schematische Draufsicht und Figur 2 eine schematische Seitenansicht in Richtung X der Figur 1 einer Ausführungsform einer Spulvorrichtung 1. Die Spulvorrichtung 1 umfasst einen Spuldorn 7 welcher an einem Schwenkhebel 8 drehbar gelagert ist. In der gezeigten Ausführungsform wird der Spuldorn 7 von einem ebenfalls am Schwenkhebel 8 gehaltenen Antrieb 17 in Drehung versetzt. Alternativ zu dieser Antriebsform wäre ein indirekter Antrieb des Spuldorns 7 über eine Stützwalze 3. Auf dem Spuldorn 7 wird mit Hilfe einer Spannvorrichtung (nicht gezeigt) eine Spulenhülse 5 drehfest gehalten. Über einen Auslöseknopf 19 welcher an einem Handgriff 18 am Schwenkhebel 8 angebracht ist, kann die Spannvorrichtung des Spuldorns 7 gelöst werden, wenn eine volle Spule 2 respektive die Spulenhülse 5 gewechselt werden muss. Der Schwenkhebel 8 ist in einer Drehachse 9 am Maschinengestellt 6 ortsfest gehalten. Der Schwenkhebel 8 besteht aus einem ersten Hebelarm 10 und einem zweiten Hebelarm 11. Am ersten Hebelarm 10 ist der Spuldorn 7 mit seinem Antrieb 17 befestigt. Am zweiten Hebelarm 11 ist über einen Achsbolzen 13 ein Linearantrieb 12 befestigt. Durch die Verbindung des Linearantriebs 12 mit dem Schwenkhebel 8 über den Achsbolzen 13 an einem äusseren Ende des zweiten Hebelarms 11 wird bei einer Bewegung des Linearantriebs 12 der Schwenkhebel 8 um die Drehachse 9 gedreht, was zur Folge hat, dass der Spuldorn 7 in seinem Abstand zur Stützwalze 3 verändert wird. Der Linearantrieb 12 ist über eine Schubstange 16 mit dem Achsbolzen 13 verbunden und auf der dem Achsbolzen 13 gegenüberliegenden Seite mit einer Halterung 14 am Maschinengestell 6 drehbar befestigt. Zwischen der Halterung 14 und dem Linearantrieb 12 ist eine Kraftmessung 15 eingefügt. Figure 1 shows a schematic plan view and Figure 2 a schematic side view in direction X of the Figure 1 an embodiment of a winding device 1. The winding device 1 comprises a winding mandrel 7 which is rotatably mounted on a pivot lever 8. In the embodiment shown, the winding mandrel 7 is set in rotation by a drive 17 which is also held on the pivot lever 8. An alternative to this type of drive would be an indirect drive of the winding mandrel 7 via a support roller 3. A bobbin sleeve 5 is held in a rotationally fixed manner on the winding mandrel 7 with the aid of a tensioning device (not shown). The tensioning device of the winding mandrel 7 can be released via a release button 19 which is attached to a handle 18 on the pivot lever 8 when a full bobbin 2 or the bobbin sleeve 5 has to be changed. The pivot lever 8 is held stationary in a rotation axis 9 on the machine frame 6. The pivot lever 8 consists of a first lever arm 10 and a second Lever arm 11. The winding mandrel 7 with its drive 17 is attached to the first lever arm 10. A linear drive 12 is attached to the second lever arm 11 via an axle bolt 13. By connecting the linear drive 12 to the pivot lever 8 via the axle bolt 13 at an outer end of the second lever arm 11, when the linear drive 12 moves, the pivot lever 8 is rotated about the axis of rotation 9, which results in the distance of the winding mandrel 7 from the support roller 3 being changed. The linear drive 12 is connected to the axle bolt 13 via a push rod 16 and is rotatably attached to the machine frame 6 on the side opposite the axle bolt 13 with a bracket 14. A force measurement 15 is inserted between the bracket 14 and the linear drive 12.

Parallel zur Spulenachse des Spuldorns 7 ist die Stützwalze 3 angeordnet, auf welcher die Spulenhülse 5 aufgrund der Schwenkbewegung 25 des Schwenkhebels 8 um die Drehachse 9 zur Anlage kommt. Die Stützwalze 3 ist durch entsprechende Supporte 27 drehbar im Maschinengestell 6 befestigt. Durch die Rotation der Spulenhülse 5 in einer entsprechenden Drehrichtung 23 wird ein an die Spulenhülse 5 angelegter Faden 4 auf die Spulenhülse 5 aufgewickelt und eine Spule 2 ausgebildet. Dabei wird über die Auflage der Spule 2 auf der Stützwalze 3 auch die Stützwalze 3 in eine Drehung in der entsprechenden Drehrichtung 24 versetzt. Während dieses Aufwickelvorganges, der sogenannten Spulreise, wird mit einer Changierung 22 der Faden 4 entlang der Spulenachse der Spulenhülse 5 hin und her bewegt. Mit Hilfe dieser Bewegungsrichtung der Changierung 22 können auf der Spulenhülse 5 verschiedenartige Wicklungen respektive Spulen 2 erzeugt werden. Durch die Bildung einer Wicklung auf der Spulenhülse 5 nimmt die Spule 2 im Durchmesser 28 zu, wodurch aufgrund der Anlage auf der Stützwalze 3 der Spuldorn 7 und damit der erste Hebelarm 10 von der Stützwalze 3 um die Drehachse 9 von der Stützwalze 3 weg geschwenkt wird. Während des Aufwickelvorganges wird der Faden 4 zwischen der Spulenhülse 5 respektive dem auf der Spulenhülse 5 bereits aufgewickelten Faden 4 und der Stützwalze 3 geklemmt, sodass sich eine eng anliegende Wicklung auf der Spulenhülse 5 ergibt. Eine dabei aufgebrachte Klemmkraft respektive Aufliegekraft 20 nimmt durch das Eigengewicht der grösser werdenden Spule 2 während eines Aufwickelvorganges ständig zu. Um eine konstante Klemmkraft gewährleisten zu können wird durch den Linearantrieb 12 der Schwenkarm 11 um die Drehachse 9 mit einer Linearbewegung 26 bewegt und dadurch über den zweiten Hebelarm 11 die Spule 2 von der Stützwalze 3 abgehoben. Dieses Abheben wird jedoch nur soweit ausgeführt dass eine vorbestimmte Klemmkraft zwischen der Spule 2 und der Stützwalze 3 bestehen bleibt. Als Reaktion auf die Klemmkraft und das Anheben der Spule 2 durch den Linearantrieb 12 ergibt sich eine Veränderung der an die Kraftmessung 15 anliegenden Kraft. Die Kraftmessung 15 wie auch der Linearantrieb 15 sind mit einer Steuerung 21 verbunden. Die mir Kraftmessung 15 gemessene Kraft ist direkt proportional zur Aufliegekraft 20 zwischen der Spule 2 und der Stützwalze 3. Damit kann durch die Steuerung 21 der Linearantrieb 15 entsprechend einer vorgegebenen Aufliegekraft 20 in Bewegung versetzt werden und die Aufliegekraft 20 auf einen konstanten Wert geregelt werden.The support roller 3 is arranged parallel to the spool axis of the spool mandrel 7, on which the spool sleeve 5 comes to rest due to the pivoting movement 25 of the pivoting lever 8 about the axis of rotation 9. The support roller 3 is rotatably mounted in the machine frame 6 by corresponding supports 27. By rotating the spool sleeve 5 in a corresponding direction of rotation 23, a thread 4 applied to the spool sleeve 5 is wound onto the spool sleeve 5 and a spool 2 is formed. In the process, the support roller 3 is set in rotation in the corresponding direction of rotation 24 via the support of the spool 2 on the support roller 3. During this winding process, the so-called winding cycle, the thread 4 is moved back and forth along the spool axis of the spool sleeve 5 using a traversing mechanism 22. With the help of this direction of movement of the traversing mechanism 22, different types of windings or spools 2 can be produced on the spool sleeve 5. By forming a winding on the spool sleeve 5, the spool 2 increases in diameter 28, whereby the spool mandrel 7 and thus the first lever arm 10 of the support roller 3 are pivoted away from the support roller 3 about the axis of rotation 9 due to the contact with the support roller 3. During the winding process, the thread 4 is clamped between the spool sleeve 5 or the thread 4 already wound on the spool sleeve 5 and the support roller 3, so that a tight winding is produced on the spool sleeve 5. A clamping force or contact force 20 applied in this process constantly increases due to the weight of the growing spool 2 during a winding process. In order to be able to guarantee a constant clamping force, the swivel arm is moved by the linear drive 12. 11 is moved about the axis of rotation 9 with a linear movement 26 and in this way the coil 2 is lifted off the support roller 3 via the second lever arm 11. This lifting is only carried out to such an extent that a predetermined clamping force remains between the coil 2 and the support roller 3. In response to the clamping force and the lifting of the coil 2 by the linear drive 12, there is a change in the force applied to the force measurement 15. The force measurement 15 and the linear drive 15 are connected to a controller 21. The force measured by the force measurement 15 is directly proportional to the contact force 20 between the coil 2 and the support roller 3. The controller 21 can therefore set the linear drive 15 in motion according to a predetermined contact force 20 and regulate the contact force 20 to a constant value.

Die vorliegende Erfindung ist nicht auf die dargestellten und beschriebenen Ausführungsbeispiele beschränkt. Abwandlungen im Rahmen der Patentansprüche sind ebenso möglich, ohne dabei den Schutzbereich der nachstehenden Ansprüche zu verlassen.The present invention is not limited to the embodiments shown and described. Modifications within the scope of the patent claims are also possible without departing from the scope of the following claims.

BezugszeichenlisteList of reference symbols

11
SpulvorrichtungWinding device
22
SpuleKitchen sink
33
StützwalzeSupport roller
44
Fadenthread
55
SpulenhülseCoil sleeve
66
MaschinengestellMachine frame
77
SpuldornSpool mandrel
88th
SchwenkhebelSwivel lever
99
DrehachseRotation axis
1010
Erster HebelarmFirst lever arm
1111
Zweiter HebelarmSecond lever arm
1212
Linearantrieblinear actuator
1313
AchsbolzenAxle bolt
1414
Halterungbracket
1515
KraftmessungForce measurement
1616
SchubstangePush rod
1717
Antriebdrive
1818
HandgriffHandle
1919
AuslöseknopfShutter button
2020
AufliegekraftContact force
2121
Steuerungsteering
2222
ChangierungChange
2323
Drehrichtung SpuleCoil rotation direction
2424
Drehrichtung StützwalzeDirection of rotation of support roller
2525
SchwenkbewegungSwivel movement
2626
LinearbewegungLinear movement
2727
Support StützwalzeSupport roller
2828
SpulendurchmesserCoil diameter

Claims (12)

  1. Winding device (1) for winding a thread (4) onto a bobbin tube (5) for forming a bobbin (2), comprising a machine frame (6) and a controller (21), a support roller (3) rotatably mounted in the machine frame (6) for supporting the bobbin tube (5) or the bobbin (2), and a winding mandrel (7) for holding the bobbin tube (5), wherein the winding mandrel (7) is held on the pivot lever (8) which is rotatably mounted on a rotary axis (9) in the machine frame (6), wherein the pivot lever (8) is designed with two lever arms (10, 11), wherein the bobbin mandrel (7) for the bobbin tube (5) is provided on a first lever arm (10) and a linear drive (12) for moving the pivot lever (8) about the rotary axis (9) is provided on a second lever arm (11), the linear drive (12) being connected to the second lever arm (11) using a push rod (16) via an axle bolt (13) and held in the machine frame (6) so as to be pivotable, and in that a force measurement device (15) is arranged between the axle bolt (13) and the holder (14) of the linear drive (12) in the machine frame (6).
  2. Winding device (1) according to claim 1, characterized in that the force measurement device (15) is designed as a load cell arranged between the axle bolt (13) and the holder (14) of the linear drive (12).
  3. Winding device (1) according to claim 2, characterized in that the linear drive (12) is connected to the holder (14) via the load cell.
  4. Winding device (1) according to any of claims 1 to 3, characterized in that the linear drive (12) is a stepping motor with a resolution of less than 0.06 mm per step.
  5. Winding device (1) according to any of claims 1 to 4, characterized in that a drive (17) for the winding mandrel (7) is arranged on the first lever arm (10).
  6. Winding device (1) according to any of claims 1 to 5, characterized in that a handle (18) having a release button (19) for manually releasing the winding mandrel (7) is provided on the second lever arm (11).
  7. Winding device (1) according to claim 6, characterized in that a stop is provided on the pivot lever (8) which prevents the winding mandrel (7) from abutting against the support roller (3) if the bobbin tube (5) is missing.
  8. Method for winding a thread (4) onto a bobbin tube (5) for forming a bobbin (2) using a winding device (1), wherein the winding device (1) has a machine frame (6) and a controller (21) and a support roller (3) rotatably mounted in the machine frame (6), and a winding mandrel (7), wherein the bobbin (2) abuts against the support roller (3) during the winding process and wherein the winding mandrel (7) is held on a pivot lever (8) which is rotatably mounted in the machine frame (6), wherein the pivot lever (8) has a first holding arm (10) having the winding mandrel (7) and a second lever arm (11) having a linear drive (12), wherein the linear drive (12) is connected to the second lever arm (11) using a push rod (16) via an axle bolt (13) and is held in the machine frame (6) so as to be pivotable, and wherein a force measurement device (15) is arranged between the axle bolt (13) and the holder (14) of the linear drive (12) in the machine frame (6), comprising the method steps:
    a) before the winding process, an empty bobbin tube (5) is pushed onto the winding mandrel (7);
    b) the winding mandrel (7) is pivoted by the linear drive (12) via the pivot lever (8) until the bobbin tube (5) abuts against the support roller (3);
    c) an abutment force (20) between the support roller (3) and the bobbin tube (5) is measured using the force measurement device (15);
    d) the pivot lever (8) is moved by the controller (21) using the linear drive (12) until a specified abutment force (20) is reached.
  9. Method according to claim 8, characterized in that, after the bobbin tube (5) has been pushed onto the winding mandrel (7), the winding mandrel (7) with the empty bobbin tube (5) is pivoted once for calibration.
  10. Method according to either claim 8 or claim 9, characterized in that, during a winding cycle, the abutment force (20) is regulated in a predetermined range by controlling the linear drive (12).
  11. Method according to any of claims 8 to 10, characterized in that, when a specified bobbin diameter (28) is reached, winding is stopped, and the bobbin (2) is lifted off the support roller (3) by means of the linear drive (12).
  12. Winding machine comprising at least one winding device according to any of claims 1 to 7.
EP21187366.6A 2020-08-13 2021-07-23 Winding device Active EP3954638B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH01015/20A CH717739A1 (en) 2020-08-13 2020-08-13 spooling device.

Publications (2)

Publication Number Publication Date
EP3954638A1 EP3954638A1 (en) 2022-02-16
EP3954638B1 true EP3954638B1 (en) 2024-04-24

Family

ID=77042802

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21187366.6A Active EP3954638B1 (en) 2020-08-13 2021-07-23 Winding device

Country Status (5)

Country Link
US (1) US20220048724A1 (en)
EP (1) EP3954638B1 (en)
CN (1) CN114074860A (en)
BR (1) BR102021015082A2 (en)
CH (1) CH717739A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023131112A (en) * 2022-03-08 2023-09-21 Tmtマシナリー株式会社 Winding device, winding facility, and textile machine

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE948493C (en) * 1954-07-21 1956-08-30 Neumag Gmbh Spool holder for winding machines
LU42775A1 (en) * 1962-11-28 1964-05-28
DE2351311A1 (en) * 1973-10-12 1975-04-24 Zinser Textilmaschinen Gmbh Bobbin doffing device for a yarn winding mechanism - is driven by piston of double acting pneumatic ram
DE2327164C3 (en) * 1973-05-28 1979-10-31 Zinser Textilmaschinen Gmbh, 7333 Ebersbach Swiveling bobbin holder
DE2513981A1 (en) * 1975-03-29 1976-10-07 Schlafhorst & Co W METHOD AND DEVICE FOR CONTROLLING AND / OR REGULATING THE THREAD TENSION WHEN WINDING A TEXTILE SPOOL
JPS6040378A (en) * 1983-08-12 1985-03-02 Toray Eng Co Ltd Yarn taking-up apparatus
JPS61155147A (en) * 1984-09-17 1986-07-14 Kataoka Kikai Seisakusho:Kk Automatic control device for wind-up pressure
EP0371912A1 (en) * 1988-11-28 1990-06-06 Maschinenfabrik Rieter Ag Device for monitoring applied force
ES2050766T3 (en) * 1988-12-22 1994-06-01 Barmag Barmer Maschf WINDING MACHINE.
JP3907026B2 (en) * 1998-06-19 2007-04-18 津田駒工業株式会社 Press roll device
ITMI20060288A1 (en) 2006-02-16 2007-08-17 Savio Macchine Tessili Spa PROVISION AND PROCEDURE FOR ADJUSTING THE CONTACT PRESSURE OF A ROCK IN THE WINDING
JP2012144323A (en) * 2011-01-11 2012-08-02 Tmt Machinery Inc Spun yarn winding device and spun yarn winding facility
DE102012023975B4 (en) * 2012-12-07 2024-02-15 Saurer Spinning Solutions Gmbh & Co. Kg Winding device for a workstation of a textile machine producing cross-wound bobbins
EP3634037B1 (en) 2017-06-29 2022-05-25 Huawei Technologies Co., Ltd. Communication method, wearable device, server and system
DE102017211467B3 (en) * 2017-07-05 2018-07-12 SSM Schärer Schweiter Mettler AG Winding device with support roller and contact pressure control device and thread processing machine
DE102018112796A1 (en) * 2018-05-29 2019-12-05 Maschinenfabrik Rieter Ag Method for pressing a bobbin on a winding roller and removal device
CH715345A1 (en) * 2018-09-18 2020-03-31 Ssm Schaerer Schweiter Mettler Ag Method of pivoting a bobbin in a winding device, and winding device.

Also Published As

Publication number Publication date
EP3954638A1 (en) 2022-02-16
US20220048724A1 (en) 2022-02-17
CN114074860A (en) 2022-02-22
CH717739A1 (en) 2022-02-15
BR102021015082A2 (en) 2022-02-22

Similar Documents

Publication Publication Date Title
EP3626658B1 (en) Method and device for pivoting a coil in a winding device
DE4131667C2 (en) Device for removing thread remnants
EP1765705B1 (en) Creel loading and relieving device for a winding device of a textile machine producing crosswound bobbins
EP0026335A1 (en) Control device on apparatuses for winding webs of material on rolls and method of winding pressure-sensitive webs of material on rolls
EP0546150B1 (en) Spooling assembly with a device for controlling the contact pressure between the spool and its drive roller
WO1993014475A1 (en) Cassette for a stack of sheets and process for adjusting the pressure on a stack of sheets in the cassette
EP2557061A2 (en) Winding machine and method for controlling the same
DE9310332U1 (en) Device for the automatic winding of a thread reserve
CH694370A5 (en) Winder.
EP3954638B1 (en) Winding device
DE2518646A1 (en) DEVICE FOR CONTROLLING THE CONTACT PRESSURE OF A TEXTILE REEL ON A SUPPORTING OR DRIVE ROLLER
WO2021224750A1 (en) Method and device for weighing a spool in a spool winder
DE102006054980B4 (en) Dishwasher
EP3575254A1 (en) Method for affixing a coil to a coil roller and draw-off device
EP0593951A2 (en) Spinning device
CH648809A5 (en) DEVICE FOR PRODUCING A THREAD RESERVE.
DE1952726C3 (en) Winding device
EP1110897A2 (en) Winding machine
WO1992001099A1 (en) Thread storage and feed device
DE102010046692B4 (en) Dummy winder for winding a web to a dock
DE19644592B4 (en) Device for transferring a thread continuously supplied to a suction to a rotating empty tube
DE10060237A1 (en) Bobbin winder, for cross wound bobbins, has controlled torques at the bobbin frame to allow for the increasing bobbin diameter during a winding cycle, and set the bobbin position during a break in winding
CH719451A1 (en) Swivel drive for a winding device.
CH631413A5 (en) DEVICE FOR REWINDING TEXTILE THREADS.
DE3123282C1 (en) Device for picking up a thread from a bobbin and transferring it to a working organ

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: B65H 63/08 20060101ALI20220114BHEP

Ipc: B65H 54/52 20060101AFI20220114BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220812

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231215

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021003442

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D