EP3947233B1 - Status monitoring of a load carrier - Google Patents

Status monitoring of a load carrier Download PDF

Info

Publication number
EP3947233B1
EP3947233B1 EP20710179.1A EP20710179A EP3947233B1 EP 3947233 B1 EP3947233 B1 EP 3947233B1 EP 20710179 A EP20710179 A EP 20710179A EP 3947233 B1 EP3947233 B1 EP 3947233B1
Authority
EP
European Patent Office
Prior art keywords
markings
segment
strain
load
segments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20710179.1A
Other languages
German (de)
French (fr)
Other versions
EP3947233A1 (en
Inventor
Florian Dold
Volker Zapf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Publication of EP3947233A1 publication Critical patent/EP3947233A1/en
Application granted granted Critical
Publication of EP3947233B1 publication Critical patent/EP3947233B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/12Checking, lubricating, or cleaning means for ropes, cables or guides
    • B66B7/1207Checking means
    • B66B7/1215Checking means specially adapted for ropes or cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators
    • B66B3/002Indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/12Checking, lubricating, or cleaning means for ropes, cables or guides
    • B66B7/1207Checking means
    • B66B7/1215Checking means specially adapted for ropes or cables
    • B66B7/1238Checking means specially adapted for ropes or cables by optical techniques

Definitions

  • the invention relates to a method for monitoring the physical condition of a suspension element, a device for carrying out the method and an elevator system with this device.
  • Elevators or elevator systems have an elevator car for accommodating people and/or objects, as well as a drive with a traction sheave and usually a suspension element.
  • the suspension element is connected to the elevator car and guided over the traction sheave so that the drive can move the elevator car.
  • the suspension element is also connected to a counterweight.
  • different suspension element guidance variants are possible.
  • power transmission options are available, such as those known from cable pulls.
  • an elevator installation can also have a plurality of suspension elements guided parallel to one another.
  • a suspension means of the aforementioned type can be a load-bearing tension member or rope made from steel wire strands, aramid fibers or carbon fibers, which optionally has a plastic sheathing.
  • a suspension belt which is usually made of polyurethane and has load-bearing tension members made of steel wire strands, aramid fiber bundles and/or carbon fiber bundles in its interior.
  • the suspension element is guided via the traction sheave and possibly via deflection pulleys, not every length section of the suspension element is exposed to the same loads, so that the individual length sections show different signs of wear after a certain period of operation.
  • the wear and tear that limits the service life is the reduction in the load-bearing cross-section as a result of wire or fiber breaks in the load-bearing tension members of the suspension element.
  • the US2003/0111298A1 monitoring of the suspension element in the elevator system is divided into segments by markings.
  • the markings can be detected by a detection device so that a change in length of the individual segments can be measured.
  • the changes in length of the individual segments are then compared with a limit value. As soon as one of the segments has reached the limit value, the suspension element must be replaced.
  • the point in time at which the suspension element is replaced often also referred to as the discard condition, is no longer made dependent on the operating hours, but on the actual condition of the elevator suspension element.
  • the proposed method is based on the description of the US2003/0111298A1 However, it assumes that the change in length must always be determined for the same load, for example when traveling with an empty elevator car. Such empty runs provided for measurement purposes restrict the availability of the elevator system.
  • the measured change in length also includes a setting of the wire strands or fiber bundles, which has no influence on the load-bearing capacity of the suspension element. The proposed solution can lead to the suspension element being replaced too early because of the harmless settling effects contained in the measurement result.
  • the object of the present invention is therefore to determine the discard state even more precisely from the state of the suspension element without restricting availability.
  • the suspension element has markings along its length, which can be detected by a detection device.
  • the markings can be found on the Surface of the support means are applied, for example, by color printing or by thermal processes such as laser baking.
  • the markings can be in the form of dots, horizontal lines, matrix codes, barcodes and the like.
  • the markings can also be of a different nature, such as, for example, RFID tags arranged inside the suspension element and the like.
  • the detection device is matched to the marking used and can be a laser scanner, an RFID reader, a camera and the like.
  • the expansion difference of the suspension element is monitored segment by segment.
  • the strain difference is determined by using a signal processing unit to determine a first strain at a first load and a second strain at a second load from a distance between two selected markings detected by the detection direction, and from the two strains one determines the elastic behavior of the elongation difference representing segments is calculated.
  • a load measuring device is available, by means of which the load acting on the suspension element between the two selected markings can be measured.
  • the use of the difference in elongation as a criterion for determining the discard condition is based on the knowledge that, in addition to the setting effects, an additional change in length occurs when individual wire strands or fibers are broken or subjected to wear and the load-bearing cross-section of the suspension element is reduced. This reduction leads to a change in the elastic behavior of the suspension element segment, in that it becomes more elastic or "softer". In other words, the difference in elongation of a segment that has wire strand breaks or fiber breaks changes or increases. It can be seen here that the most important criterion for determining the discard condition is used by means of the proposed method, namely the reduction of the load-bearing cross-section of the suspension element. Since the measurements to determine the difference in strain can be carried out independently of a specified load by recording the acting load, the determination of the difference in strain is possible at any time and thus during the normal operation possible.
  • the calculated strain difference can then be compared to a strain difference limit. If the elongation difference of a segment is equal to or greater than the elongation difference limit value, the signal processing unit preferably sends an alarm signal to a control unit of the elevator system and/or to an output unit, for example to fix the elevator system and/or to indicate that the suspension element needs to be replaced.
  • a cross-section loss of the load-bearing cross-section can be calculated from the difference in expansion and compared with a limit value for the maximum permissible cross-section loss, or a loss of load at break can be calculated from the difference in expansion and compared with a limit value for the maximum permissible loss of load at break.
  • the signal processing unit can, for example, by extrapolating older, determined elongation difference, cross-sectional loss, or breaking load loss values and the The remaining service life of the lifting gear in use can be calculated from the currently determined values. Using this remaining service life, the replacement of the suspension element can be planned in the sense of a forward-looking maintenance plan for both the operator and the maintenance company.
  • the strain differences of the individual segments can be compared with one another and a hierarchy of the segments can be created with regard to their strain difference.
  • the segments can be selected analogously to this hierarchy, so that the expansion difference of segments with an already increased expansion difference is determined more frequently and compared with the expansion difference limit value than of segments with an unchanged expansion difference.
  • a random algorithm can be present, according to which segments with previously unchanged or slightly changed elongation difference and their elongation differences are selected at random be determined.
  • the markings are arranged on the suspension element, they can also be subject to signs of wear. In order to continue to enable a trouble-free determination of the strain difference, there can be a detectability criterion with regard to the detectability of the markings. If a marking does not meet this detectability criterion and is therefore difficult or impossible to read, the next readable marking can be selected by the detection device or the signal processing unit.
  • a strain difference in the new condition of each segment can be measured and stored when the suspension element is put into operation by measuring several strains of the segment at different loads in the new condition and storing it as the force/strain curve reflecting the strain difference in the new condition.
  • the elongation difference of the individual segments can then be compared periodically with the respective associated elongation difference of the force/elongation curve in the new state.
  • the cross-section loss of the load-bearing cross-section of this segment can also be calculated from the change in the expansion difference of a segment and the result can be transmitted to an output unit.
  • a device which has at least one suspension element divided into segments by means of markings, a load measuring device, a signal processing unit and a detection device for detecting the markings.
  • the load measuring device can be configured very differently.
  • it can contain a load cell, which is arranged in the suspension element.
  • the load cell is not arranged in the suspension element, but rather is part of a suspension element end attachment point, at which one of the suspension element ends of the suspension element is attached either to the car, to the counterweight or to part of a structure, this structure logically being the Contains elevator system with the to-monitored support means.
  • the signal processing unit is set up to monitor the difference in stretching of the suspension element in segments by measuring, from a distance between two selected markings detected by the detection direction, a first stretching at a first measured load acting on the suspension element by the load measuring device and a second stretching at a second measured load acting on the suspension element by the load measuring device is determined and an expansion difference representing the elastic behavior is calculated from the two expansions.
  • the signal processing unit has appropriate hardware with a processor and memory units as well as suitable software in which, among other things, the formulas listed in the description of the figures are also implemented.
  • a segment and accordingly two markings can be selected by the signal processing unit according to predetermined criteria. This selection can be transmitted to the detection device, which then detects the distance between the two selected markings.
  • An optical system is preferably used here and the length of the segments is selected such that at least two markings can be detected simultaneously.
  • the difference in detection time between the two selected markings and the speed or the speed profile of the suspension element relative to the detection device can also be recorded and calculated in order to determine the correct distance between the two markings or the elongation of the segment.
  • each marking advantageously has an identifier that can be clearly distinguished from the other markings.
  • the two selected markings are preferably arranged one after the other on the suspension element and delimit the segment whose expansion difference is to be calculated.
  • the device described above can be a fixed, permanently present part of an elevator system. It is also conceivable, however, for the aforementioned device to be installed only temporarily in an elevator system in order to be able to more precisely estimate the imminent end of service life and to be able to better plan the upcoming replacement. Of course, an existing system can also be retrofitted with the device described.
  • the elevator system comprises an updated digital double data set which contains the physical components of the elevator system in digital form as interconnected and interacting component model data sets with characterizing properties.
  • the signal processing unit is set up to exchange data with the updated digital double data record.
  • the data transmitted from the signal processing unit to the updated digital double dataset can include the expansion differences of segments, which can be transferred as characterizing properties to assigned virtual segments of a suspension element of the updated digital double dataset that is mapped as a digital component model dataset.
  • the corresponding previous characterizing properties or strain difference values of the virtual segments are replaced and the updated digital double data record is thereby updated.
  • the updated digital double data set provides an excellent virtual simulation environment, since it contains all contains and depicts relevant characterizing properties of the physical components of the elevator system. For example, additional loads such as suspension element vibrations due to the changed stiffness can be simulated and their effects on the other components can be examined, so that, for example, the increased expansion difference of the segment or the correspondingly reduced load-bearing cross-section does not directly determine the discard point, but the changing vibration behavior of the suspension element and its effects, for example, on the ride comfort and other components of the elevator system such as the guide rails, the guide shoes of the elevator car and the like.
  • the simulation results obtained in this way can then be evaluated in the signal processing unit using appropriately programmed logic; if necessary, an alarm signal can be generated by the signal processing unit and transmitted to a control unit of the elevator installation and/or an output unit.
  • the output unit can have various configurations. For example, it can have display means such as loudspeakers or screens.
  • the simulation results can be processed by the output unit with further data from the updated digital double data set and displayed on a screen as a three-dimensional virtual representation.
  • Such a representation can also be dynamic, which means that in the virtual representation of the elevator system, three-dimensionally represented component model data sets can be moved analogously to the physical elevator system and behave dynamically according to their physical equivalents.
  • figure 1 shows schematically an elevator system 1, which is arranged in an elevator shaft 3 of a building 5.
  • the elevator system 1 connects several floors 7, 9 of the building 5 in the vertical direction and is used to transport people and/or objects.
  • the elevator installation 1 has an elevator car 11 , a drive 13 with a traction sheave 15 and a counterweight 17 . Furthermore, a device 21 according to the invention is arranged in the elevator installation 1 , which comprises a suspension element 23 divided into segments S by means of markings 25 , a detection device 29 , a signal processing unit 31 and a load measuring device 33 .
  • wire ropes, aramid ropes, carbon fiber ropes or belts with tension members are used as suspension elements 23 .
  • Steel strands, aramid fiber bundles or carbon fiber bundles surrounded by a polyurethane cover can be arranged inside the belt as tension members.
  • the markings 25 shown are arranged along the length of the support means 23 and are shown as small projections. In order not to impair driving comfort, the markings 25 are preferably not designed to protrude, but applied to the surface of the suspension element 23, for example by color printing or by thermal processes such as laser baking processes. Openings or indentations arranged transversely to the longitudinal extension in the suspension element 23 could also serve as markings.
  • the markings 25 can be in the form of points, horizontal lines, matrix codes, barcodes and the like. However, the markings 25 can also be of a different nature, such as, for example, RFID tags arranged inside the suspension element and the like.
  • the detection device 29 is matched to the markings 25 used and can be a laser scanner, an RFID reader, a camera and the like, so that the markings 25 can be detected without any problems. Like in the figure 1 shown, several markings 25 can be detected simultaneously by the detection device 29 . This has the decisive advantage that at least the distance between two adjacently arranged markings 25 and thus the segment length L of the segment S defined by the detectable markings 25 can be determined directly from the recording made by the detection device 29 and not the speed of the at the detection device 29 passing suspension means 23 must be detected in order to calculate the segment length L of the segment S between the two markings 25 by means of the speed and the detection time.
  • the suspension element guidance variant shown shows a suspension element 23 whose both ends are connected to the structure 5 via suspension element end connections 35 and which is guided over the traction sheave 15 and over deflection rollers 19 of the counterweight 17 and the elevator car 11 . From this it can be clearly seen which alternating bending loads the suspension element 23 is exposed to during the operation of the elevator installation 1 .
  • the suspension element 23 is subjected to high tensile forces by the elevator car 11 and the counterweight 17 . Since the elevator car 11 and the counterweight 17 are accelerated in both vertical directions and braked again, the tractive force is additionally superimposed by a rising tractive force.
  • the tensile force or load acting on the suspension element 23 can be measured using the load measuring device 33, which is arranged on both suspension element end connections 35 in the present exemplary embodiment.
  • the load measuring device 33 and the detection device 29 are with the Signal processing unit 31 via the signal lines 37, 39 shown with a dot-dash line.
  • the state of the suspension element 23 can be monitored with an elevator installation 1 which has a corresponding device 21 .
  • the values calculated here for the difference in elongation, the loss of cross-section or the loss of breaking load can then be compared with a corresponding limit value. If these calculated values of a segment S are equal to or greater than the corresponding limit value, the signal processing unit 31 can send an alarm signal via a signal line 43 to a control unit 45 of the elevator installation 1 and/or wired or wirelessly to an output unit 47 in order to trigger further actions , such as fixing the elevator installation 1 and/or indicating that the suspension element 23 needs to be replaced.
  • FIGS. 2A to 2C 12 show a possible embodiment of the same section of a suspension element 23 divided into segments S 1 , S 2 , S n by means of markings 25A, 25B, 25C in different stages.
  • Each of the markings 25A, 25B, 25C is a matrix code printed on the material of the suspension element 23, which has a clear, distinguishable identification, which is why the reference numbers of the markings 25A, 25B, 25C shown have been supplemented alphanumerically.
  • the markings 25A, 25B, 25C delimit the segments S 1 , S 2 , S n , the segment boundaries 41 being defined by the lower edges of the markings 25A, 25B, 25C in the present exemplary embodiment.
  • the middle, the upper edge, a specific centering point of each marking 25A, 25B, 25C or other clearly identifiable properties of the marking 25A, 25B, 25C could also be used to define the segment boundary 41.
  • the two markings 25A, 25B, 25C selected to define a segment S 1 , S 2 , S n are preferably arranged one after the other on the suspension element 23 and delimit the segment S 1 , S 2 , S n , its expansion difference ⁇ (please refer figure 3 ) is to be calculated.
  • these are the segment S 1 with the segment length L 1 and the segment S 2 with the segment length L 2 .
  • a marking 25A, 25B, 25C can no longer be detected by the detection device 29 due to signs of wear on the surface of the suspension element.
  • the illegible mark 25A, 25B, 25C can be skipped and the next mark 25A, 25B, 25C selected.
  • the middle of the three markings 25B shown is illegible for the detection device 29, so that it is skipped and another marking 25B arranged on the suspension element 23 is present between the two selected markings 25A, 25C, which delimit the segment S 3 .
  • this newly defined segment S 3 has the segment length L 3 .
  • the segment length L 3 of the segment S 3 must, as mentioned above, be calculated from the detection time of the two markings 25A, 25C and the speed of the suspension element 23 .
  • FIG Figure 2A a section of the suspension element 23 in a brand new, unloaded state, so that the segments S 1 , S 2 have the segment lengths L 1 , L 2 created by the imprinting of the markings 25A, 25B, 25C.
  • the Figure 2B shows the same section as the Figure 2A likewise in new condition, but for example under the load F N , which corresponds, for example, to the maximum permissible load or maximum permissible loading of the elevator car 11 .
  • the suspension element 23 is stretched, so that the segment S 1 has the segment length L 1 + ⁇ NS1 and the segment S 2 has the segment length L 2 + ⁇ NS2 .
  • the Figure 2C shows the same section as the Figure 2B under the same load F N , but after the suspension element 23 has been used for a long time, when it has reached the end of its service life or has reached the point of discard.
  • the segment length L 1 +R+ ⁇ ABS1 of the first segment S 1 has increased at least by the setting effects R for the same load F N .
  • the settling effects R of segment S 1 alone do not lead to discard, since these are essentially caused by the irreversible alignment of the tension members under load and/or by irreversible or permanent elongations as a result of rolling effects on the deflection rollers and the load-bearing cross-section of suspension element 23 as a result is not significantly reduced.
  • the proportion of length of elongation at discard ⁇ ABS1 can also differ from the proportion of length of elongation in new condition ⁇ NS1 . However, this can only be determined if the pure length component of the setting effects R were known. However, this cannot be determined in isolation from the elongation.
  • the segment S 2 also has setting effects R, so that it has the segment length L 2 +R+ ⁇ NS2AB . Because the two segments like that Figure 2A shows, originally had about the same segment lengths L 1 , L 2 and as the Figure 2B shows that each segment S 1 , Sz also has a comparable strain ⁇ NS1 , ⁇ NS2 and thus a comparable strain difference ⁇ , the segment lengths L 1 , L 2 in the Figure 2C also be about the same length. However, this is not the case since segment S 2 is significantly longer than segment S 1 . This difference is due to a reduction in the strain difference ⁇ in this segment S2.
  • figure 3 shows a diagram with the force-strain curves D NEW , D AB and D S1 on which the invention is based.
  • the first force-strain curve D represents NEW the elongation difference ⁇ NEW of a segment S 1 , S 2 , S n when new and the second force-elongation curve D AB the elongation difference ⁇ AB of a segment S 1 , S 2 , S n when the discard state is reached.
  • the ordinate of the diagram shows the elongation ⁇ of a segment S 1 , S 2 , S n as a percentage of the original segment length L 1 , L 2 , L n and the abscissa shows that in segment S 1 , S 2 , S n or on the suspension element 23 applied load F applied.
  • the diagram shown clearly shows that the setting effects R have no influence on the monitoring of the state of the suspension element 23 .
  • the setting effects R are a pure offset between the two force-strain curves D NEW , D AB .
  • the elongation difference ⁇ of the suspension element 23 is monitored in segments.
  • cross-sectional loss ⁇ A or breaking load loss ⁇ F break can be compared with defined limit values for the maximum permissible cross-sectional loss ⁇ A limit or the maximum permissible breaking load loss ⁇ F break limit . When these limit values are reached, discard maturity is reached.
  • FIG 3 is also shown with a dot-dash line the example of a force-strain curve D S1 , which shows the difference in strain ⁇ S1 of the segment S 1 after several hours of operation.
  • the setting effects R S1 which have not yet progressed that far, can also be seen for this specific segment S 1 .
  • the difference in elongation ⁇ S1 of the segment S 1 does not differ from the difference in elongation in the new condition ⁇ NEW despite the number of hours of operation, and the suspension element 23 is therefore not yet discardable in relation to this segment S 1 reached.
  • the setting effects R S1 of segment S 1 were equal to the setting effects R, the suspension element 23 would not yet be ready for discard in relation to this segment S 1 due to the lack of difference in the expansion differences ⁇ S1 , ⁇ NEW .
  • the use of the expansion difference ⁇ as a criterion for determining the discard condition is based on the knowledge that, in addition to the setting effects R, an additional change in length occurs if individual wire strands or fibers of the load-bearing cross-section of a suspension element 23 are broken and the load-bearing cross-section of the suspension element 23 is reduced as a result .
  • This reduction leads to a changed elastic behavior of the segment S 1 , S 2 , S n , which has been weakened by fractures and wear and tear, in that it becomes more extensible or «softer».
  • the difference in elongation ⁇ of a segment S 1 , S 2 , S n that has wire strand breaks or fiber breaks changes or increases.
  • the proposed method uses the most important criterion for determining the discard condition, namely the reduction of the load-bearing cross-section of the suspension element 23. Since the measurements for determining the strain difference ⁇ are independent of the detection of the acting load F 1 , F 2 a fixed load F 1 , F 2 can take place, the determination of the expansion difference ⁇ is possible at any time and thus during normal operation of the elevator installation 1 .
  • the two loads F 1 , F z should logically be different and the measurements should preferably be carried out with the elevator car 11 traveling in the same direction.
  • the figure 1 illustrated load measuring device 33 is provided.
  • the remaining service life of the suspension element 23 in use can be calculated in the signal processing unit 31, for example by extrapolating older, determined elongation difference values ⁇ and the most recent elongation difference values ⁇ be calculated. Using this remaining service life, plan the replacement of the suspension element 23 in the sense of a forward-looking maintenance plan both for the operator and for the maintenance company.
  • a strain difference in the new condition ⁇ NEW of each segment S 1 , S 2 , S n can be measured and stored when the suspension element 23 is put into operation by measuring several strains of the segment S 1 , S 2 , S n in the new condition at different loads F 1 , F 2 is measured and stored as the force/strain curve representing the strain difference in the new state ⁇ NEW .
  • the expansion difference of the individual segments S 1 , S 2 , S n can then be compared periodically with the respective associated expansion difference in the new state ⁇ NEW .
  • figure 4 shows the elevator system 1 in more detail in a three-dimensional view figure 1 with a device 21 according to the invention.
  • the elevator system 1 of figure 4 there are clearly three support means 23A, 23B, 23C arranged parallel to one another, which belong to the device 21. Due to different setting effects, dynamic load differences, friction and the like, not all three suspension elements 23A, 23B, 23C are loaded equally, that is, they are subjected to the same load.
  • each of the three suspension elements 23A, 23B, 23C is assigned a load measuring device 33A, 33B, 33C, which also belongs to the device 21.
  • the detection device 29 provided for the device 21 can detect the markings (not shown) of all three suspension elements 23A, 23B, 23C.
  • a particularly precise monitoring of the state of the suspension element can be achieved if the elevator system 1 includes an updated digital double data set 101 that contains the physical components of the elevator system 1 in digital form as interconnected and interacting component model data sets with characterizing properties.
  • the signal processing unit 31 of the device 21, as represented by the double arrow 161 is set up to to exchange data 131 with the updated digital double record 101 .
  • the updated digital double data record 101 that maps the elevator installation 1 is referred to below as ADDD 101 for better legibility.
  • the ADDD 101 is a virtual image that is as comprehensive as possible and tracks the current physical state of the elevator system 1 and therefore represents a virtual elevator system assigned to the elevator system 1.
  • the ADDD 101 is not just a virtual shell model of the elevator system 1, which is approximately its dimensions, but each individual physical component from the elevator car 11, the shaft doors 49, the counterweight 17 to the last screw with as many characterizing properties of these components as possible is also in digitized form in the ADDD 101 as a component model data set of the elevator car 111, as a component model data set of the shaft doors 149, as a component model data set of the counterweight 117, etc. and are shown.
  • interfaces of the elevator system 1 such as the elevator shaft 3 belonging to the structure 5 can be mapped as a component model data record 103 in the ADDD 101 .
  • the characterizing properties of their physical counterparts of the elevator system 1 contained in the component model data sets 111, 149, 117 can be geometric dimensions of the components such as a length, a width, a height, a cross section, radii, roundings, etc.
  • the surface properties of the components such as roughness, textures, coatings, colors, reflectivities, etc. are also part of the characterizing properties.
  • material values such as the modulus of elasticity, the reverse bending strength value, the hardness, the notched impact strength value, the tensile strength value, etc. can also be stored as characterizing properties of the respective component. These are not theoretical properties (target data), such as can be found on a production drawing, but characterizing properties actually determined on the physical component (actual data).
  • Information relevant to assembly such as the tightening torque actually applied to a screw and thus its pretensioning force, is preferably assigned to the respective component.
  • strain differences ⁇ S1 , ⁇ S2 , ⁇ Sn of the individual segments S 1 , S 2 , S n these can be transmitted from the signal processing unit 31 to the ADDD 101 .
  • the newly determined expansion differences ⁇ S1 , ⁇ S2 , ⁇ sn of the individual suspension elements 23A, 23B, 23C replace the previously existing expansion differences ⁇ S1 , ⁇ S2 , ⁇ Sn of the component model data records, which are also divided into segments S 1 , S 2 , S n of the support means 123A, 123B, 123C in order to update the ADDD 101 continuously.
  • the data 131 transmitted from the signal processing unit 31 to the ADDD 101 can include the strain differences ⁇ S1 , ⁇ S2 , ⁇ Sn of segments S 1 , S 2 , S n , which as characterizing properties refer to associated virtual segments S 1 , S 2 , S n of a support means 123A, 123B, 123C of ADDD 101 mapped as a digital component model data record.
  • the measured lengths L 1 , L 2 , Ln of the segments S 1 , S 2 , S n can also be transmitted, so that the component model data records of the suspension elements 123A, 123B, 123C also have the effective lengths of their physical counterparts.
  • the ADDD 101 is not tied to a specific storage location or processing location. It can be stored, for example, in the signal processing unit 31 of the device, but also in the control unit 45, in a computer 121 or in a network with a number of computer systems.
  • ADDD 101 can be implemented in a computer network that stores and processes data in the form of a data cloud 50 (cloud).
  • the computer network can have a memory, or as shown symbolically, memory resources 151 in the data cloud 50, in which the data of the ADDD 101 (symbolically shown with broken lines as a three-dimensional image of the physical passenger transport system 1) can be stored, for example electronically or magnetic form. This means that the ADDD 101 can be stored in any memory location.
  • the ADDD 101 can be used to carry out static and dynamic simulations to determine the discard period or remaining service life t AB .
  • the ADDD 101 provides an excellent virtual simulation platform, as it contains and maps all relevant characterizing properties of the physical components.
  • the simulations can, for example, in the data cloud 50, but also by temporary
  • the ADDD 101 is stored and processed in the signal processing unit 31 .
  • the simulation results 159 obtained in this way can then be transmitted to an output unit, in the present example the screen 122 of a portable computer 121, as shown by the arrow 163.
  • alarm signals 155 can also be generated and transmitted to the output unit 122, in particular, of course, when the calculations and/or simulations have shown that the suspension element 23A, 23B, 23C has reached its discard state.
  • the output unit does not necessarily have to be a screen 122, but can also be a loudspeaker and the like, for example.
  • the alarm signal 155 can, for example, also be forwarded to the control unit 45 of the physical elevator installation 1 and the like and processed there, triggering corresponding actions.

Description

Die Erfindung betrifft ein Verfahren zur Überwachung des physischen Zustandes eines Tragmittels, eine Vorrichtung zur Durchführung des Verfahrens sowie eine Aufzugsanlage mit dieser Vorrichtung.The invention relates to a method for monitoring the physical condition of a suspension element, a device for carrying out the method and an elevator system with this device.

Aufzüge beziehungsweise Aufzugsanlagen weisen eine Aufzugkabine zur Aufnahme von Personen und/oder Gegenständen, sowie einen Antrieb mit einer Treibscheibe und üblicherweise ein Tragmittel auf. Das Tragmittel ist mit der Aufzugkabine verbunden und über die Treibscheibe geführt, so dass der Antrieb die Aufzugkabine bewegen kann. Je nach Ausgestaltung der Aufzugsanlage ist das Tragmittel zudem mit einem Gegengewicht verbunden. Ferner sind verschiedene Tragmittelführungsvarianten möglich. Je nach Tragmittelführungsvariante sind Kraftübersetzungsmöglichkeiten vorhanden, wie sie beispielsweise von Seilzügen bekannt sind. Zudem kann eine Aufzugsanlage auch mehrere zueinander parallel geführte Tragmittel aufweisen.Elevators or elevator systems have an elevator car for accommodating people and/or objects, as well as a drive with a traction sheave and usually a suspension element. The suspension element is connected to the elevator car and guided over the traction sheave so that the drive can move the elevator car. Depending on the configuration of the elevator system, the suspension element is also connected to a counterweight. Furthermore, different suspension element guidance variants are possible. Depending on the variant of the suspension element, power transmission options are available, such as those known from cable pulls. In addition, an elevator installation can also have a plurality of suspension elements guided parallel to one another.

Das kritischste Bauteil einer Aufzugsanlage ist das Tragmittel. Kritisch deshalb, weil es einerseits personentragend ist und andererseits funktionsbedingt höchsten Belastungen wie hohen, schwellenden Zugkräften und Biegewechseln ausgesetzt wird. Ein Tragmittel der vorgenannten Art kann ein aus Stahldrahtlitzen, Aramidfasern oder Kohlefasern gefertigter lasttragender Zugträger beziehungsweise gefertigtes Seil sein, das gegebenenfalls eine Kunststoffummantelung aufweist. Es kann aber auch ein Aufzugsriemen sein, der üblicherweise aus Polyurethan gefertigt ist und in seinem Inneren lasttragende Zugträger aufweist, die aus Stahldrahtlitzen, Aramidfaserbündel und/oder Kohlefaserbündel gefertigt sind.The most critical component of an elevator system is the suspension element. It is critical because on the one hand it carries people and on the other hand it is functionally exposed to the highest loads such as high, swelling tensile forces and bending cycles. A suspension means of the aforementioned type can be a load-bearing tension member or rope made from steel wire strands, aramid fibers or carbon fibers, which optionally has a plastic sheathing. However, it can also be an elevator belt, which is usually made of polyurethane and has load-bearing tension members made of steel wire strands, aramid fiber bundles and/or carbon fiber bundles in its interior.

Aufgrund der Tragmittelführung über die Treibscheibe und gegebenenfalls über Umlenkrollen ist nicht jeder Längenabschnitt des Tragmittels den gleichen Belastungen ausgesetzt, so dass die einzelnen Längenabschnitte nach einer gewissen Betriebsdauer unterschiedliche Verschleisserscheinungen zeigen. Die die Lebensdauer limitierende Verschleisserscheinung ist hierbei die Abnahme des tragenden Querschnitts infolge von Draht- oder Faserbrüchen der lasttragenden Zugträger des Tragmittels.Because the suspension element is guided via the traction sheave and possibly via deflection pulleys, not every length section of the suspension element is exposed to the same loads, so that the individual length sections show different signs of wear after a certain period of operation. The wear and tear that limits the service life is the reduction in the load-bearing cross-section as a result of wire or fiber breaks in the load-bearing tension members of the suspension element.

Aufgrund dieser Verschleisserscheinungen muss das Tragmittel periodisch ausgetauscht werden, wobei logischerweise dessen am stärksten beschädigter Längenabschnitt massgebend ist. Üblicherweise wurden bisher die Anzahl Biegewechsel des Tragmittels als Mass des Verschleisses herangezogen, ohne den tatsächlichen Zustand des Tragmittels zu berücksichtigen. Dieser Austausch ist sehr teuer, weshalb seitens der Betreiber ein hohes Interesse besteht, das Tragmittel möglichst lange zu nutzen, ohne aber einen Tragmittelbruch während des Betriebes zu riskieren.Due to these signs of wear, the suspension element has to be replaced periodically , whereby logically its most severely damaged section of length is decisive. Up to now, the number of bending cycles of the suspension element has usually been used as a measure of wear without taking into account the actual condition of the suspension element. This exchange is very expensive, which is why the operator is very interested in using the suspension element for as long as possible without risking the suspension element breaking during operation.

Um diesem Bedürfnis zu entsprechen, schlägt die US2003/0111298A1 eine Überwachung des Tragmittels in der Aufzugsanlage vor. Hierzu ist das Tragmittel durch Markierungen in Segmente unterteilt. Die Markierungen können durch eine Erfassungseinrichtung erfasst werden, so dass eine Längenänderung der einzelnen Segmente gemessen werden kann. Die Längenänderungen der einzelnen Segmente werden dann mit einem Grenzwert verglichen. Sobald eines der Segmente den Grenzwert erreicht hat, muss das Tragmittel ersetzt werden. Mittels dieser Überwachung wird der Zeitpunkt des Tragmittelaustauschs, oft auch als Ablegereife bezeichnet, nicht mehr von den Betriebsstunden abhängig gemacht, sondern vom tatsächlichen Zustand des Aufzugtragmittels.To meet this need, the US2003/0111298A1 monitoring of the suspension element in the elevator system. For this purpose, the suspension element is divided into segments by markings. The markings can be detected by a detection device so that a change in length of the individual segments can be measured. The changes in length of the individual segments are then compared with a limit value. As soon as one of the segments has reached the limit value, the suspension element must be replaced. By means of this monitoring, the point in time at which the suspension element is replaced, often also referred to as the discard condition, is no longer made dependent on the operating hours, but on the actual condition of the elevator suspension element.

Das vorgeschlagene Verfahren setzt gemäss der Beschreibung der US2003/0111298A1 aber voraus, dass immer bei derselben Last, beispielsweise bei einer Fahrt mit der leeren Aufzugkabine, die Längenänderung bestimmt werden muss. Solche zu Messzwecken vorgesehene Leerfahrten schränken die Verfügbarkeit der Aufzugsanlage ein. Zudem beinhaltet die gemessene Längenänderung auch ein Setzen der Drahtlitzen oder Faserbündel, welches auf die Tragfähigkeit des Tragmittels keinen Einfluss hat. Die vorgeschlagene Lösung kann aufgrund der an sich unbedenklichen Setzeffekte, die im Messresultat enthalten sind, zu einem zu frühen Austausch des Tragmittels führen.The proposed method is based on the description of the US2003/0111298A1 However, it assumes that the change in length must always be determined for the same load, for example when traveling with an empty elevator car. Such empty runs provided for measurement purposes restrict the availability of the elevator system. In addition, the measured change in length also includes a setting of the wire strands or fiber bundles, which has no influence on the load-bearing capacity of the suspension element. The proposed solution can lead to the suspension element being replaced too early because of the harmless settling effects contained in the measurement result.

Aufgabe der vorliegenden Erfindung ist somit, die Ablegereife ohne Einschränkung der Verfügbarkeit noch präziser aus dem Zustand des Tragmittels zu bestimmen.The object of the present invention is therefore to determine the discard state even more precisely from the state of the suspension element without restricting availability.

Diese Aufgabe wird gelöst durch ein Verfahren zur Überwachung des physischen Zustandes eines Tragmittels, welches mit einer Aufzugkabine verbunden ist und diese bewegen kann. Das Tragmittel weist seiner Länge entlang Markierungen auf, die mittels einer Erfassungseinrichtung erfasst werden können. Die Markierungen können auf der Oberfläche des Tragmittels beispielsweise durch einen Farbdruck oder durch thermische Verfahren wie Laser-Einbrennverfahren aufgebracht werden. Die Markierungen können hierbei insbesondere als Punkte, horizontale Linien, Matrixcodes, Barcodes und dergleichen mehr ausgestaltet sein. Die Markierungen können aber auch anderer Natur sein wie beispielsweise im Innern des Tragmittels angeordnete RFID-Tags und dergleichen mehr. Dem entsprechend ist die Erfassungseinrichtung auf die verwendete Markierung abgestimmt und kann ein Laserscanner, ein RFID-Lesegerät, eine Kamera und dergleichen mehr sein.This object is achieved by a method for monitoring the physical condition of a suspension element that is connected to an elevator car and can move it. The suspension element has markings along its length, which can be detected by a detection device. The markings can be found on the Surface of the support means are applied, for example, by color printing or by thermal processes such as laser baking. In this case, the markings can be in the form of dots, horizontal lines, matrix codes, barcodes and the like. However, the markings can also be of a different nature, such as, for example, RFID tags arranged inside the suspension element and the like. Accordingly, the detection device is matched to the marking used and can be a laser scanner, an RFID reader, a camera and the like.

Damit Setzeffekte keinen Einfluss auf die Zustandsermittlung haben, wird erfindungsgemäss anstelle der reinen Längenänderung beziehungsweise Dehnung, segmentweise die Dehnungsdifferenz des Tragmittels überwacht. Die Ermittlung der Dehnungsdifferenz erfolgt dadurch, dass mittels einer Signalverarbeitungseinheit aus einem Abstand zwischen zwei ausgewählten, von der Erfassungsrichtung erfassten Markierungen eine erste Dehnung bei einer ersten Last und eine zweite Dehnung bei einer zweiten Last ermittelt wird und aus den beiden Dehnungen eine das elastische Verhalten der Segmente repräsentierende Dehnungsdifferenz errechnet wird. Um die bei den Dehnungsmessungen wirkenden Lasten zu erfassen, ist eine Lastmesseinrichtung vorhanden, mittels der die am Tragmittel zwischen den zwei ausgewählten Markierungen wirkende Last gemessen werden kann.So that settlement effects do not have any influence on the state determination, according to the invention, instead of the pure change in length or expansion, the expansion difference of the suspension element is monitored segment by segment. The strain difference is determined by using a signal processing unit to determine a first strain at a first load and a second strain at a second load from a distance between two selected markings detected by the detection direction, and from the two strains one determines the elastic behavior of the elongation difference representing segments is calculated. In order to record the loads acting during the strain measurements, a load measuring device is available, by means of which the load acting on the suspension element between the two selected markings can be measured.

Dem Heranziehen der Dehnungsdifferenz als Kriterium zur Bestimmung der Ablegereife steht die Erkenntnis zugrunde, dass zu den Setzeffekten eine zusätzliche Längenänderung dann entsteht, wenn einzelne Drahtlitzen oder Fasern gebrochen oder Verschleiss unterworfen sind und der tragende Querschnitt des Tragmittels reduziert ist. Diese Reduzierung führt zu einem veränderten elastischen Verhalten des Tragmittelsegments, indem es dehnbarer beziehungsweise «weicher» wird. Mit anderen Worten verändert beziehungsweise erhöht sich die Dehnungsdifferenz eines Segmentes, welches Drahtlitzenbrüche oder Faserbrüche aufweist. Hierbei ist ersichtlich, dass mittels des vorgeschlagenen Verfahrens das wichtigste Kriterium zur Bestimmung der Ablegereife herangezogen wird, nämlich die Verringerung des tragenden Querschnitts des Tragmittels. Da durch die Erfassung der wirkenden Last die Messungen zur Ermittlung der Dehnungsdifferenz unabhängig von einer festgelegten Last erfolgen können, ist die Bestimmung der Dehnungsdifferenz zu jedem Zeitpunkt und damit während des normalen Betriebes möglich.The use of the difference in elongation as a criterion for determining the discard condition is based on the knowledge that, in addition to the setting effects, an additional change in length occurs when individual wire strands or fibers are broken or subjected to wear and the load-bearing cross-section of the suspension element is reduced. This reduction leads to a change in the elastic behavior of the suspension element segment, in that it becomes more elastic or "softer". In other words, the difference in elongation of a segment that has wire strand breaks or fiber breaks changes or increases. It can be seen here that the most important criterion for determining the discard condition is used by means of the proposed method, namely the reduction of the load-bearing cross-section of the suspension element. Since the measurements to determine the difference in strain can be carried out independently of a specified load by recording the acting load, the determination of the difference in strain is possible at any time and thus during the normal operation possible.

Die errechnete Dehnungsdifferenz kann hernach mit einem Dehnungsdifferenz-Grenzwert verglichen werden. Wenn die Dehnungsdifferenz eines Segmentes gleich oder grösser als der Dehnungsdifferenz-Grenzwert ist, sendet die Signalverarbeitungseinheit vorzugsweise ein Alarmsignal an eine Steuerungseinheit der Aufzugsanlage und/oder an eine Ausgabeeinheit, um beispielsweise die Aufzugsanlage festzusetzen und/oder den erforderlichen Austausch des Tragmittels anzuzeigen.The calculated strain difference can then be compared to a strain difference limit. If the elongation difference of a segment is equal to or greater than the elongation difference limit value, the signal processing unit preferably sends an alarm signal to a control unit of the elevator system and/or to an output unit, for example to fix the elevator system and/or to indicate that the suspension element needs to be replaced.

Alternativ oder ergänzend kann aus der Dehnungsdifferenz ein Querschnittverlust des tragenden Querschnitts berechnet und dieser mit einem Grenzwert für den maximal zulässigen Querschnittverlust verglichen werden oder aus der Dehnungsdifferenz ein Bruchlastverlust berechnet und dieser mit einem Grenzwert für den maximal zulässigen Bruchlastverlust verglichen werden.Alternatively or in addition, a cross-section loss of the load-bearing cross-section can be calculated from the difference in expansion and compared with a limit value for the maximum permissible cross-section loss, or a loss of load at break can be calculated from the difference in expansion and compared with a limit value for the maximum permissible loss of load at break.

Wenn die errechnete Dehnungsdifferenz oder der errechnete Querschnittverlust oder der errechnete Bruchlastverlust eines Segmentes unterhalb des Dehnungsdifferenz-, Querschnittverlust-, oder Bruchlastverlust-Grenzwertes liegt, kann in der Signalverarbeitungseinheit beispielsweise mittels Extrapolation älterer, ermittelter Dehnungsdifferenz-, Querschnittverlust-, oder Bruchlastverlust-Werte und den aktuell ermittelten Werten die Restlebensdauer des im Einsatz befindlichen Tragmittels berechnet werden. Mittels dieser Restlebensdauer lässt sich der Austausch des Tragmittels im Sinne einer vorausschauenden Wartungsplanung sowohl für den Betreiber als auch für die Wartungsfirma planen.If the calculated elongation difference or the calculated cross-sectional loss or the calculated breaking load loss of a segment is below the elongation difference, cross-sectional loss or breaking load loss limit value, the signal processing unit can, for example, by extrapolating older, determined elongation difference, cross-sectional loss, or breaking load loss values and the The remaining service life of the lifting gear in use can be calculated from the currently determined values. Using this remaining service life, the replacement of the suspension element can be planned in the sense of a forward-looking maintenance plan for both the operator and the maintenance company.

Um die aus den Messungen und Berechnungen sich ergebenden Datenmengen zu reduzieren, können die Dehnungsdifferenzen der einzelnen Segmente miteinander verglichen und eine Hierarchie der Segmente bezüglich ihrer Dehnungsdifferenz erstellt werden. Analog dieser Hierarchie kann eine Auswahl der Segmente erfolgen, so dass die Dehnungsdifferenz von Segmenten mit bereits erhöhter Dehnungsdifferenz häufiger ermittelt und mit dem Dehnungsdifferenz-Grenzwert verglichen werden, als von Segmenten mit unveränderter Dehnungsdifferenz. Ferner kann ein Zufallsalgorithmus vorhanden sein, nach welchem zufallsweise Segmente mit bis anhin unveränderter oder leicht veränderter Dehnungsdifferenz ausgewählt und deren Dehnungsdifferenzen ermittelt werden.In order to reduce the amount of data resulting from the measurements and calculations, the strain differences of the individual segments can be compared with one another and a hierarchy of the segments can be created with regard to their strain difference. The segments can be selected analogously to this hierarchy, so that the expansion difference of segments with an already increased expansion difference is determined more frequently and compared with the expansion difference limit value than of segments with an unchanged expansion difference. Furthermore, a random algorithm can be present, according to which segments with previously unchanged or slightly changed elongation difference and their elongation differences are selected at random be determined.

Da die Markierungen auf dem Tragmittel angeordnet sind, können sie ebenfalls Verschleisserscheinungen unterworfen sein. Um eine störungsfreie Bestimmung der Dehnungsdifferenz weiterhin zu ermöglichen, kann ein Erfassbarkeit-Kriterium hinsichtlich der Erfassbarkeit der Markierungen vorhanden sein. Sofern eine Markierung diesem Erfassbarkeit-Kriterium nicht genügt und daher nicht oder schlecht lesbar ist, kann von der Erfassungseinrichtung oder der Signalverarbeitungseinheit die nächste lesbare Markierung gewählt werden.Since the markings are arranged on the suspension element, they can also be subject to signs of wear. In order to continue to enable a trouble-free determination of the strain difference, there can be a detectability criterion with regard to the detectability of the markings. If a marking does not meet this detectability criterion and is therefore difficult or impossible to read, the next readable marking can be selected by the detection device or the signal processing unit.

Um die Veränderung der Steifigkeit präziser beurteilen zu können, ist es vorteilhaft, wenn nicht auf einen Standardwert des Herstellers zurückgegriffen wird, sondern das tatsächlich eingesetzte Tragmittel in seinem Neuzustand analysiert wird. Hierzu kann bei der Inbetriebnahme des Tragmittels eine Dehnungsdifferenz im Neuzustand jedes Segments gemessen und abgespeichert werden, indem im Neuzustand mehrere Dehnungen des Segmentes bei unterschiedlichen Lasten gemessen werden und als die Dehnungsdifferenz im Neuzustand wiedergebende Kraft/Dehnungskurve abgespeichert wird. Während des Betriebes können dann periodisch die Dehnungsdifferenz der einzelnen Segmente mit der jeweils zugeordneten Dehnungsdifferenz der Kraft/Dehnungskurve im Neuzustand verglichen werden.In order to be able to assess the change in stiffness more precisely, it is advantageous not to use a standard value from the manufacturer, but instead to analyze the suspension element actually used in its new condition. For this purpose, a strain difference in the new condition of each segment can be measured and stored when the suspension element is put into operation by measuring several strains of the segment at different loads in the new condition and storing it as the force/strain curve reflecting the strain difference in the new condition. During operation, the elongation difference of the individual segments can then be compared periodically with the respective associated elongation difference of the force/elongation curve in the new state.

Aus der Änderung der Dehnungsdifferenz eines Segments lässt sich auch der Querschnittsverlust des tragenden Querschnitts dieses Segments berechnet und das Resultat an eine Ausgabeeinheit übermitteln.The cross-section loss of the load-bearing cross-section of this segment can also be calculated from the change in the expansion difference of a segment and the result can be transmitted to an output unit.

Zur Durchführung des Verfahrens ist eine Vorrichtung erforderlich, wobei diese zumindest ein mittels Markierungen in Segmente unterteiltes Tragmittel, eine Lastmesseinrichtung, eine Signalverarbeitungseinheit und eine Erfassungseinrichtung zur Erfassung der Markierungen aufweist. Die Lastmesseinrichtung kann sehr unterschiedlich ausgestaltet sein. Sie kann beispielsweise eine Kraftmesszelle beinhalten, welche im Tragmittel angeordnet ist. Vorzugsweise ist die Kraftmesszelle jedoch nicht im Tragmittel angeordnet, sondern Teil einer Tragmittelendbefestigungsstelle, an der eines der Tragmittelenden des Tragmittels entweder an der Kabine, am Gegengewicht oder an einem Teil eines Bauwerkes befestigt ist, wobei dieses Bauwerk logischerweise die Aufzugsanlage mit dem zu überwachenden Tragmittel enthält.To carry out the method, a device is required, which has at least one suspension element divided into segments by means of markings, a load measuring device, a signal processing unit and a detection device for detecting the markings. The load measuring device can be configured very differently. For example, it can contain a load cell, which is arranged in the suspension element. Preferably, however, the load cell is not arranged in the suspension element, but rather is part of a suspension element end attachment point, at which one of the suspension element ends of the suspension element is attached either to the car, to the counterweight or to part of a structure, this structure logically being the Contains elevator system with the to-monitored support means.

Die Signalverarbeitungseinheit ist dazu eingerichtet, segmentweise die Dehnungsdifferenz des Tragmittels zu überwachen, indem diese aus einem Abstand zwischen zwei ausgewählten, von der Erfassungsrichtung erfassten Markierungen eine erste Dehnung bei einer ersten, von der Lastmesseinrichtung am Tragmittel wirkenden, gemessenen Last und eine zweite Dehnung bei einer zweiten, von der Lastmesseinrichtung am Tragmittel wirkenden, gemessenen Last ermittelt und aus den beiden Dehnungen eine das elastische Verhalten repräsentierende Dehnungsdifferenz errechnet. Hierzu verfügt die Signalverarbeitungseinheit um eine entsprechende Hardware mir Prozessor und Speichereinheiten sowie über eine geeignete Software, in der unter anderem auch die in der Figurenbeschreibung aufgeführten Formeln implementiert sind.The signal processing unit is set up to monitor the difference in stretching of the suspension element in segments by measuring, from a distance between two selected markings detected by the detection direction, a first stretching at a first measured load acting on the suspension element by the load measuring device and a second stretching at a second measured load acting on the suspension element by the load measuring device is determined and an expansion difference representing the elastic behavior is calculated from the two expansions. For this purpose, the signal processing unit has appropriate hardware with a processor and memory units as well as suitable software in which, among other things, the formulas listed in the description of the figures are also implemented.

Je nach programmierten Verfahrensabläufen in der Software, sind durch die Signalverarbeitungseinheit ein Segment und dementsprechend zwei Markierungen nach vorgegebenen Kriterien auswählbar. Diese Auswahl kann an die Erfassungseinrichtung übermittelt werden, welche hernach den Abstand zwischen den beiden ausgewählten Markierungen erfasst. Vorzugsweise wird hierbei ein optisches System verwendet und die Länge der Segmente so gewählt, dass zumindest zwei Markierungen gleichzeitig erfasst werden können. Zur Bestimmung der Dehnung eines Segmentes kann gegebenenfalls auch die Erfassungszeit-Differenz der beiden ausgewählten Markierungen sowie die Geschwindigkeit beziehungsweise das Geschwindigkeitsprofil des Tragmittels relativ zur Erfassungseinrichtung erfasst und verrechnet werden, um den korrekten Abstand zwischen den beiden Markierungen beziehungsweise die Dehnung des Segmentes zu bestimmen.Depending on the procedural sequences programmed in the software, a segment and accordingly two markings can be selected by the signal processing unit according to predetermined criteria. This selection can be transmitted to the detection device, which then detects the distance between the two selected markings. An optical system is preferably used here and the length of the segments is selected such that at least two markings can be detected simultaneously. To determine the elongation of a segment, the difference in detection time between the two selected markings and the speed or the speed profile of the suspension element relative to the detection device can also be recorded and calculated in order to determine the correct distance between the two markings or the elongation of the segment.

Um die gravierendsten Verschleissstellen eindeutig lokalisieren zu können, weist vorteilhafterweise jede Markierung eine, von den anderen Markierungen eindeutig unterscheidbare Kennzeichnung auf.In order to be able to unambiguously localize the most serious wear points, each marking advantageously has an identifier that can be clearly distinguished from the other markings.

Um die Erfassung zu erleichtern, sind die zwei ausgewählten Markierungen vorzugsweise aufeinander folgend am Tragmittel angeordnet und begrenzen das Segment, dessen Dehnungsdifferenz errechnet werden soll.In order to facilitate detection, the two selected markings are preferably arranged one after the other on the suspension element and delimit the segment whose expansion difference is to be calculated.

Es ist aber auch möglich, dass zwischen den beiden ausgewählten Markierungen die das Segment begrenzen, weitere am Tragmittel angeordnete Markierungen vorhanden sind. Sofern diese beiden ausgewählten Markierungen nicht mehr gleichzeitig durch die Erfassungseinrichtung erfasst werden können, muss die Länge des Segments wie weiter oben erwähnt, aus der Erfassungszeit und der Geschwindigkeit errechnet werden.However, it is also possible for further markings arranged on the suspension element to be present between the two selected markings which delimit the segment. If these two selected markings can no longer be detected simultaneously by the detection device, the length of the segment must be calculated from the detection time and the speed, as mentioned above.

Die vorangehend beschriebene Vorrichtung kann fester, dauerhaft vorhandener Bestandteil einer Aufzugsanlage sein. Es ist jedoch auch denkbar, dass die vorgenannte Vorrichtung nur temporär in einer Aufzugsanlage installiert wird, um das sich abzeichnende Lebensdauerende präziser abschätzen und den anstehenden Austausch besser planen zu können. Selbstverständlich kann eine bestehende Anlage auch mit der beschriebenen Vorrichtung nachgerüstet werden.The device described above can be a fixed, permanently present part of an elevator system. It is also conceivable, however, for the aforementioned device to be installed only temporarily in an elevator system in order to be able to more precisely estimate the imminent end of service life and to be able to better plan the upcoming replacement. Of course, an existing system can also be retrofitted with the device described.

Eine besonders präzise Überwachung lässt sich dann erreichen, wenn die Aufzugsanlage einen Aktualisierter-Digitaler-Doppelgänger-Datensatz umfasst, der die physischen Komponenten der Aufzugsanlage in digitaler Form als miteinander verbundene und interagierende Bauteilmodell-Datensätze mit charakterisierenden Eigenschaften beinhaltet. Hierbei ist die Signalverarbeitungseinheit dazu eingerichtet, mit dem Aktualisierter-Digitaler-Doppelgänger-Datensatz Daten auszutauschen.A particularly precise monitoring can then be achieved if the elevator system comprises an updated digital double data set which contains the physical components of the elevator system in digital form as interconnected and interacting component model data sets with characterizing properties. In this case, the signal processing unit is set up to exchange data with the updated digital double data record.

Die von der Signalverarbeitungseinheit an den Aktualisierter-Digitaler-Doppelgänger-Datensatz übermittelten Daten können die Dehnungsdifferenzen von Segmenten umfassen, welche als charakterisierende Eigenschaften auf zugeordnete virtuelle Segmente eines als digitaler Bauteilmodell-Datensatz abgebildetes Tragmittel des Aktualisierter-Digitaler-Doppelgänger-Datensatzes übertragen werden können. Hierbei werden die entsprechenden, bisherigen charakterisierenden Eigenschaften beziehungsweise Dehnungsdifferenzwerte der virtuellen Segmente ersetzt und dadurch der Aktualisierter-Digitaler-Doppelgänger-Datensatz aktualisiert.The data transmitted from the signal processing unit to the updated digital double dataset can include the expansion differences of segments, which can be transferred as characterizing properties to assigned virtual segments of a suspension element of the updated digital double dataset that is mapped as a digital component model dataset. In this case, the corresponding previous characterizing properties or strain difference values of the virtual segments are replaced and the updated digital double data record is thereby updated.

Mittels des Aktualisierter-Digitaler-Doppelgänger-Datensatzes können statische und dynamische Simulationen zur Ermittlung der Ablegereife beziehungsweise zur Restlebensdauer durchgeführt werden. Der Aktualisierter-Digitaler-Doppelgänger-Datensatz liefert hierbei eine hervorragende virtuelle Simulationsumgebung, da er alle relevanten charakterisierenden Eigenschaften der physischen Bauteile der Aufzugsanlage enthält und abbildet. So können beispielsweise Zusatzbelastungen wie Tragmittelschwingungen aufgrund der veränderten Steifigkeiten simuliert und deren Auswirkungen auf die anderen Bauteile untersucht werden, so dass beispielsweise nicht unmittelbar die erhöhte Dehnungsdifferenz des Segmentes, beziehungsweise der entsprechend reduzierte tragende Querschnitt die Ablegereife bestimmt, sondern das sich verändernde Schwingungsverhalten des Tragmittels und dessen Auswirkungen beispielsweise auf den Fahrkomfort und andere Bauteile der Aufzugsanlage wie die Führungsschienen, die Führungsschuhe der Aufzugkabine und dergleichen mehr. Die so gewonnenen Simulationsresultate können anschliessend in der Signalverarbeitungseinheit durch entsprechend programmierte Logik bewertet werden, gegebenenfalls kann durch die Signalverarbeitungseinheit ein Alarmsignal generiert und an eine Steuerungseinheit der Aufzugsanlage und/oder eine Ausgabeeinheit übermittelt werden. Die Ausgabeeinheit kann verschiedene Ausgestaltungen aufweisen. Sie kann beispielsweise Anzeigemittel wie Lautsprecher oder Bildschirme aufweisen. Des Weiteren können die Simulationsresultate mit weiteren Daten des Aktualisierter-Digitaler-Doppelgänger-Datensatzes von der Ausgabeeinheit aufbereitet und als dreidimensionale virtuelle Darstellung auf einen Bildschirm dargestellt werden. Eine derartige Darstellung kann auch dynamisch sein, das heisst, dass sich in der virtuellen Darstellung der Aufzugsanlage analog zur physischen Aufzugsanlage dreidimensional dargestellte Bauteilmodell-Datensätze bewegen lassen und sich dynamisch ihren physischen Äquivalenten entsprechend, verhalten.Using the updated digital double data set, static and dynamic simulations can be carried out to determine the discard state or the remaining service life. Here, the updated digital double data set provides an excellent virtual simulation environment, since it contains all contains and depicts relevant characterizing properties of the physical components of the elevator system. For example, additional loads such as suspension element vibrations due to the changed stiffness can be simulated and their effects on the other components can be examined, so that, for example, the increased expansion difference of the segment or the correspondingly reduced load-bearing cross-section does not directly determine the discard point, but the changing vibration behavior of the suspension element and its effects, for example, on the ride comfort and other components of the elevator system such as the guide rails, the guide shoes of the elevator car and the like. The simulation results obtained in this way can then be evaluated in the signal processing unit using appropriately programmed logic; if necessary, an alarm signal can be generated by the signal processing unit and transmitted to a control unit of the elevator installation and/or an output unit. The output unit can have various configurations. For example, it can have display means such as loudspeakers or screens. Furthermore, the simulation results can be processed by the output unit with further data from the updated digital double data set and displayed on a screen as a three-dimensional virtual representation. Such a representation can also be dynamic, which means that in the virtual representation of the elevator system, three-dimensionally represented component model data sets can be moved analogously to the physical elevator system and behave dynamically according to their physical equivalents.

Nachfolgend werden Ausführungsformen der Erfindung unter Bezugnahme auf die beigefügten Zeichnungen beschrieben, wobei weder die Zeichnungen noch die Beschreibung als die Erfindung einschränkend auszulegen sind. Es zeigen:

Figur 1:
schematisch eine Aufzugsanlage mit einer erfindungsgemäßen Vorrichtung, welche ein mittels Markierungen in Segmente unterteiltes Tragmittel, eine Erfassungseinrichtung zur Erfassung der Markierungen sowie eine Lastmesseinrichtung aufweist;
Figur 2A bis 2C:
in einer möglichen Ausgestaltung ein Abschnitt eines mittels Markierungen in Segmente unterteiltes Tragmittel, wobei die Figuren verschiedene Stadien desselben Abschnitts zeigen;
Figur 3:
ein Diagramm mit den der Erfindung zugrunde liegenden Kraft-Dehnungskurven, wobei die erste Kurve die Dehnungsdifferenz eines Segmentes im Neuzustand und die zweite Kurve die Dehnungsdifferenz desselben Segmentes bei Erreichen der Ablegereife repräsentiert;
Figur 4:
in dreidimensionaler, detaillierterer Ansicht die Aufzugsanlage der Figur 1 mit einer erfindungsgemäßen Vorrichtung sowie ein die physische Personentransportanlage abbildender Aktualisierter-Digitaler-Doppelgänger-Datensatz (ADDD), der in einer Datenwolke (Cloud) gespeichert ist und mit welchem die Signalverarbeitungseinheit Daten austauschen kann.
Embodiments of the invention are described below with reference to the accompanying drawings, neither the drawings nor the description being to be construed as limiting the invention. Show it:
Figure 1:
schematically shows an elevator system with a device according to the invention, which has a suspension element divided into segments by means of markings, a detection device for detecting the markings and a load measuring device;
Figure 2A to 2C:
In one possible embodiment, a section of a suspension element divided into segments by means of markings, the figures show different stages of the same section;
Figure 3:
a diagram with the force-elongation curves on which the invention is based, the first curve representing the difference in elongation of a segment when it is new and the second curve representing the difference in elongation of the same segment when it reaches the point of discard;
Figure 4:
in a three-dimensional, more detailed view of the elevator system figure 1 with a device according to the invention and an updated digital double data record (ADDD) that maps the physical passenger transport system and that is stored in a data cloud (cloud) and with which the signal processing unit can exchange data.

Figur 1 zeigt schematisch eine Aufzugsanlage 1, die in einem Aufzugschacht 3 eines Bauwerkes 5 angeordnet ist. Die Aufzugsanlage 1 verbindet mehrere Stockwerke 7, 9 des Bauwerkes 5 in vertikaler Richtung und dient der Beförderung von Personen und/oder Gegenständen. figure 1 shows schematically an elevator system 1, which is arranged in an elevator shaft 3 of a building 5. The elevator system 1 connects several floors 7, 9 of the building 5 in the vertical direction and is used to transport people and/or objects.

Die Aufzugsanlage 1 weist eine Aufzugkabine 11, einen Antrieb 13 mit einer Treibscheibe 15 und ein Gegengewicht 17 auf. Ferner ist in der Aufzugsanlage 1 eine erfindungsgemässe Vorrichtung 21 angeordnet, welche ein mittels Markierungen 25 in Segmente S unterteiltes Tragmittel 23, eine Erfassungseinrichtung 29, eine Signalverarbeitungseinheit 31 sowie eine Lastmesseinrichtung 33 umfasst.The elevator installation 1 has an elevator car 11 , a drive 13 with a traction sheave 15 and a counterweight 17 . Furthermore, a device 21 according to the invention is arranged in the elevator installation 1 , which comprises a suspension element 23 divided into segments S by means of markings 25 , a detection device 29 , a signal processing unit 31 and a load measuring device 33 .

Als Tragmittel 23 werden je nach Aufzugsanlagentyp Drahtseile, Aramidseile, Kohlefaserseile oder Riemen mit Zugträgern verwendet. Als Zugträger können Stahllitzen, Aramidfaserbündel oder Kohlefaserbündel von einer Polyurethanhülle umschlossen, im Innern des Riemens angeordnet sein.Depending on the type of elevator installation, wire ropes, aramid ropes, carbon fiber ropes or belts with tension members are used as suspension elements 23 . Steel strands, aramid fiber bundles or carbon fiber bundles surrounded by a polyurethane cover can be arranged inside the belt as tension members.

Die in der Figur 1 gezeigten Markierungen 25 sind entlang der Länge des Tragmittels 23 angeordnet und als kleine Vorsprünge dargestellt. Um den Fahrkomfort nicht zu beeinträchtigen, sind die Markierungen 25 vorzugsweise nicht vorstehend ausgebildet, sondern auf der Oberfläche des Tragmittels 23 beispielsweise durch einen Farbdruck oder durch thermische Verfahren wie Laser-Einbrennverfahren aufgebracht. Auch quer zur Längserstreckung im Tragmittel 23 angeordnete Durchbrüche oder Vertiefungen könnten als Markierungen dienen. Die Markierungen 25 können hierbei als Punkte, horizontale Linien, Matrixcodes, Barcodes und dergleichen mehr ausgestaltet sein. Die Markierungen 25 können aber auch anderer Natur sein wie beispielsweise im Innern des Tragmittels angeordnete RFID-Tags und dergleichen mehr.The one in the figure 1 The markings 25 shown are arranged along the length of the support means 23 and are shown as small projections. In order not to impair driving comfort, the markings 25 are preferably not designed to protrude, but applied to the surface of the suspension element 23, for example by color printing or by thermal processes such as laser baking processes. Openings or indentations arranged transversely to the longitudinal extension in the suspension element 23 could also serve as markings. The markings 25 can be in the form of points, horizontal lines, matrix codes, barcodes and the like. However, the markings 25 can also be of a different nature, such as, for example, RFID tags arranged inside the suspension element and the like.

Die Erfassungseinrichtung 29 ist auf die verwendeten Markierungen 25 abgestimmt und kann ein Laserscanner, ein RFID-Lesegerät, eine Kamera und dergleichen mehr sein, so dass die Markierungen 25 problemlos erfasst werden können. Wie in der Figur 1 dargestellt, sind mehrere Markierungen 25 gleichzeitig durch die Erfassungseinrichtung 29 erfassbar. Dies hat den entscheidenden Vorteil, dass zumindest die Distanz zweier benachbart angeordneter Markierungen 25 und somit die Segmentlänge L des durch die erfassbaren Markierungen 25 definierten Segments S direkt aus der durch die Erfassungseinrichtung 29 gemachten Aufnahme ermittelt werden kann und nicht noch die Geschwindigkeit des an der Erfassungseinrichtung 29 vorbeiziehenden Tragmittels 23 erfasst werden muss, um mittels der Geschwindigkeit und der Erfassungszeit die Segmentlänge L des Segmentes S zwischen beiden Markierungen 25 zu berechnen.The detection device 29 is matched to the markings 25 used and can be a laser scanner, an RFID reader, a camera and the like, so that the markings 25 can be detected without any problems. Like in the figure 1 shown, several markings 25 can be detected simultaneously by the detection device 29 . This has the decisive advantage that at least the distance between two adjacently arranged markings 25 and thus the segment length L of the segment S defined by the detectable markings 25 can be determined directly from the recording made by the detection device 29 and not the speed of the at the detection device 29 passing suspension means 23 must be detected in order to calculate the segment length L of the segment S between the two markings 25 by means of the speed and the detection time.

Die in der Figur 1 dargestellte Tragmittelführungsvariante zeigt ein Tragmittel 23, dessen beide Enden über Tragmittelendverbindungen 35 mit dem Bauwerk 5 verbunden sind und das über die Treibscheibe 15 sowie über Umlenkrollen 19 des Gegengewichtes 17 und der Aufzugkabine 11 geführt wird. Hieraus lässt sich klar erkennen, welchen Biegewechselbelastungen das Tragmittel 23 während des Betriebes der Aufzugsanlage 1 ausgesetzt ist. Zudem wird das Tragmittel 23 durch die Aufzugkabine 11 und das Gegengewicht 17 mit hohen Zugkräften belastet. Da die Aufzugkabine 11 sowie das Gegengewicht 17 in beiden vertikalen Richtungen beschleunigt und wieder gebremst werden, überlagert sich der Zugkraft zusätzlich eine schwellende Zugkraft. Die am Tragmittel 23 wirkende Zugkraft beziehungsweise Last kann mittels der Lastmesseinrichtung 33 gemessen werden, die im vorliegenden Ausführungsbeispiel an beiden Tragmittelendverbindungen 35 angeordnet ist.The one in the figure 1 The suspension element guidance variant shown shows a suspension element 23 whose both ends are connected to the structure 5 via suspension element end connections 35 and which is guided over the traction sheave 15 and over deflection rollers 19 of the counterweight 17 and the elevator car 11 . From this it can be clearly seen which alternating bending loads the suspension element 23 is exposed to during the operation of the elevator installation 1 . In addition, the suspension element 23 is subjected to high tensile forces by the elevator car 11 and the counterweight 17 . Since the elevator car 11 and the counterweight 17 are accelerated in both vertical directions and braked again, the tractive force is additionally superimposed by a rising tractive force. The tensile force or load acting on the suspension element 23 can be measured using the load measuring device 33, which is arranged on both suspension element end connections 35 in the present exemplary embodiment.

Die Lastmesseinrichtung 33 sowie die Erfassungseinrichtung 29 sind mit der Signalverarbeitungseinheit 31 über die mit strichpunktierter Linie dargestellten Signalleitungen 37, 39 verbunden.The load measuring device 33 and the detection device 29 are with the Signal processing unit 31 via the signal lines 37, 39 shown with a dot-dash line.

Wie weiter unten anhand der Figuren 2A bis 2C und der Figur 3 ausführlich erklärt ist, kann mit einer Aufzugsanlage 1 die eine entsprechende Vorrichtung 21 aufweist, der Zustand des Tragmittels 23 überwacht werden. Die hierbei errechneten Werte für die Dehnungsdifferenz, den Querschnittsverlust oder den Bruchlastverlust kann hernach mit einem entsprechenden Grenzwert verglichen werden. Wenn diese errechneten Werte eines Segmentes S gleich oder grösser als der entsprechende Grenzwert ist, kann die Signalverarbeitungseinheit 31 über eine Signalleitung 43 ein Alarmsignal an eine Steuerungseinheit 45 der Aufzugsanlage 1 und/oder drahtgebunden oder kabellos an eine Ausgabeeinheit 47 senden, um weitere Aktionen zu triggern, wie beispielsweise die Aufzugsanlage 1 festzusetzen und/oder den erforderlichen Austausch des Tragmittels 23 anzuzeigen.As below using the Figures 2A to 2C and the figure 3 is explained in detail, the state of the suspension element 23 can be monitored with an elevator installation 1 which has a corresponding device 21 . The values calculated here for the difference in elongation, the loss of cross-section or the loss of breaking load can then be compared with a corresponding limit value. If these calculated values of a segment S are equal to or greater than the corresponding limit value, the signal processing unit 31 can send an alarm signal via a signal line 43 to a control unit 45 of the elevator installation 1 and/or wired or wirelessly to an output unit 47 in order to trigger further actions , such as fixing the elevator installation 1 and/or indicating that the suspension element 23 needs to be replaced.

Die Figuren 2A bis 2C zeigen in einer möglichen Ausgestaltung denselben Abschnitt eines mittels Markierungen 25A, 25B, 25C in Segmente S1, S2, Sn unterteiltes Tragmittel 23 in verschiedenen Stadien. Jede der Markierungen 25A, 25B, 25C ist ein auf das Material des Tragmittels 23 aufgedruckter Matrixcode, der eine eindeutige, unterscheidbare Kennzeichnung aufweist, weshalb die Bezugszeichen der dargestellten Markierungen 25A, 25B, 25C alphanummerisch ergänzt wurden.The Figures 2A to 2C 12 show a possible embodiment of the same section of a suspension element 23 divided into segments S 1 , S 2 , S n by means of markings 25A, 25B, 25C in different stages. Each of the markings 25A, 25B, 25C is a matrix code printed on the material of the suspension element 23, which has a clear, distinguishable identification, which is why the reference numbers of the markings 25A, 25B, 25C shown have been supplemented alphanumerically.

Wie in der Figur 2A angegeben, begrenzen die Markierungen 25A, 25B, 25C die Segmente S1, S2, Sn wobei im vorliegenden Ausführungsbeispiel die Segmentgrenzen 41 durch die Unterkanten der Markierungen 25A, 25B, 25C definiert sind. Selbstverständlich könnte auch die Mitte, die Oberkante, ein bestimmter Zentrierungspunkt jeder Markierung 25A, 25B, 25C oder andere eindeutig identifizierbare Eigenschaften der Markierung 25A, 25B, 25C zur Definierung der Segmentgrenze 41 herangezogen werden.Like in the Figure 2A specified, the markings 25A, 25B, 25C delimit the segments S 1 , S 2 , S n , the segment boundaries 41 being defined by the lower edges of the markings 25A, 25B, 25C in the present exemplary embodiment. Of course, the middle, the upper edge, a specific centering point of each marking 25A, 25B, 25C or other clearly identifiable properties of the marking 25A, 25B, 25C could also be used to define the segment boundary 41.

Um die Erfassung zu erleichtern, sind die zwei zur Definierung eines Segmentes S1, S2, Sn ausgewählten Markierungen 25A, 25B, 25C vorzugsweise aufeinander folgend am Tragmittel 23 angeordnet und begrenzen das Segment S1, S2, Sn dessen Dehnungsdifferenz Δε (siehe Figur 3) errechnet werden soll. Im vorliegenden Beispiel sind das das Segment S1 mit der Segmentlänge L1 und das Segment S2 mit der Segmentlänge L2.To facilitate detection, the two markings 25A, 25B, 25C selected to define a segment S 1 , S 2 , S n are preferably arranged one after the other on the suspension element 23 and delimit the segment S 1 , S 2 , S n , its expansion difference Δε (please refer figure 3 ) is to be calculated. In the present example, these are the segment S 1 with the segment length L 1 and the segment S 2 with the segment length L 2 .

Logischerweise sind nicht nur die beiden Segmente S1, S2 mit ihren Segmentlängen L1, L2 vorhanden, sondern vorzugsweise das gesamte Tragmittel 23 in Segmente Sn mit vergleichbarer Segmentlänge Ln unterteilt, wie dies in der Figur 1 angedeutet ist.Logically, not only are the two segments S 1 , S 2 with their segment lengths L 1 , L 2 present, but preferably the entire suspension element 23 is divided into segments S n with a comparable segment length L n , as is shown in FIG figure 1 is indicated.

Es ist aber auch möglich, dass eine Markierung 25A, 25B, 25C aufgrund von Verschleisserscheinungen der Tragmitteloberfläche nicht mehr durch die Erfassungseinrichtung 29 erfassbar ist. In diesem Falle kann die unleserliche Markierung 25A, 25B, 25C übersprungen und die nächste Markierung 25A, 25B, 25C ausgewählt werden. Im vorliegenden Beispiel ist die mittlere der drei dargestellten Markierungen 25B für die Erfassungseinrichtung 29 unleserlich, so dass diese übersprungen wird und zwischen den beiden ausgewählten Markierungen 25A, 25C, die das Segment S3 begrenzen, eine weitere am Tragmittel 23 angeordnete Markierung 25B vorhanden ist. Dadurch weist dieses neu definierte Segment S3 die Segmentlänge L3 auf. Sofern diese beiden ausgewählten Markierungen 25A, 25C nicht mehr gleichzeitig durch die Erfassungseinrichtung 29 erfasst werden können, muss die Segmentlänge L3 des Segments S3 wie weiter oben erwähnt, aus der Erfassungszeit der beiden Markierungen 25A, 25C und der Geschwindigkeit des Tragmittels 23 errechnet werden.However, it is also possible that a marking 25A, 25B, 25C can no longer be detected by the detection device 29 due to signs of wear on the surface of the suspension element. In this case, the illegible mark 25A, 25B, 25C can be skipped and the next mark 25A, 25B, 25C selected. In the present example, the middle of the three markings 25B shown is illegible for the detection device 29, so that it is skipped and another marking 25B arranged on the suspension element 23 is present between the two selected markings 25A, 25C, which delimit the segment S 3 . As a result, this newly defined segment S 3 has the segment length L 3 . If these two selected markings 25A, 25C can no longer be detected simultaneously by the detection device 29, the segment length L 3 of the segment S 3 must, as mentioned above, be calculated from the detection time of the two markings 25A, 25C and the speed of the suspension element 23 .

Um verschiedene Einflüsse auf das Tragmittel 23 besser darstellen zu können, zeigt die Figur 2A einen Abschnitt des Tragmittels 23 in fabrikneuem, unbelasteten Zustand, so dass die Segmente S1, S2 die durch das Aufdrucken der Markierungen 25A, 25B, 25C geschaffenen Segmentlängen L1, L2 aufweisen.In order to be able to show different influences on the suspension element 23 better, FIG Figure 2A a section of the suspension element 23 in a brand new, unloaded state, so that the segments S 1 , S 2 have the segment lengths L 1 , L 2 created by the imprinting of the markings 25A, 25B, 25C.

Die Figur 2B zeigt denselben Abschnitt wie die Figur 2A ebenfalls im Neuzustand, jedoch beispielhaft unter der Last FN, die beispielsweise der maximal zulässigen Last beziehungsweise maximal zulässigen Beladung der Aufzugkabine 11 entspricht. Hierbei wird das Tragmittel 23 gedehnt, so dass das Segment S1 die Segmentlänge L1+ εNS1 und das Segment S2 die Segmentlänge L2+ εNS2 aufweist.The Figure 2B shows the same section as the Figure 2A likewise in new condition, but for example under the load F N , which corresponds, for example, to the maximum permissible load or maximum permissible loading of the elevator car 11 . Here, the suspension element 23 is stretched, so that the segment S 1 has the segment length L 1 + ε NS1 and the segment S 2 has the segment length L 2 + ε NS2 .

Die Figur 2C zeigt denselben Abschnitt wie die Figur 2B unter derselben Last FN, jedoch nach langem Gebrauch des Tragmittels 23, wenn dieses sein Lebensdauerende beziehungsweise die Ablegereife erreicht hat. Wie im Vergleich zur Figur 2B klar ersichtlich ist, hat bei gleicher Last FN die Segmentlänge L1 + R + εABS1 des ersten Segmentes S1 zumindest um die Setzeffekte R zugenommen. Die Setzeffekte R des Segmentes S 1 alleine führen noch nicht zur Ablegereife, da diese im Wesentlichen durch das irreversible Ausrichten der Zugträger unter Last und/oder durch irreversible beziehungsweise permanente Verlängerungen infolge von Walzeffekten an den Umlenkrollen verursacht werden und der tragende Querschnitt des Tragmittels 23 dadurch nicht wesentlich reduziert wird.The Figure 2C shows the same section as the Figure 2B under the same load F N , but after the suspension element 23 has been used for a long time, when it has reached the end of its service life or has reached the point of discard. How compared to Figure 2B clear As can be seen, the segment length L 1 +R+ε ABS1 of the first segment S 1 has increased at least by the setting effects R for the same load F N . The settling effects R of segment S 1 alone do not lead to discard, since these are essentially caused by the irreversible alignment of the tension members under load and/or by irreversible or permanent elongations as a result of rolling effects on the deflection rollers and the load-bearing cross-section of suspension element 23 as a result is not significantly reduced.

Wie die Indizes verraten, kann sich auch der Längenanteil der Dehnung bei Ablegereife εABS1 zum Längenanteil der Dehnung bei Neuzustand εNS1 unterscheiden. Dies ist jedoch nur feststellbar, wenn der reine Längenanteil der Setzeffekte R bekannt wäre. Ein solcher kann aber nicht isoliert von der Dehnung ermittelt werden.As the indices reveal, the proportion of length of elongation at discard ε ABS1 can also differ from the proportion of length of elongation in new condition ε NS1 . However, this can only be determined if the pure length component of the setting effects R were known. However, this cannot be determined in isolation from the elongation.

Auch das Segment S2 weist Setzeffekte R auf, so dass dieses die Segmentlänge L2 + R + εNS2AB aufweist. Da die beiden Segmente wie die Figur 2A zeigt, ursprünglich etwa die gleichen Segmentlängen L1, L2 hatten und wie die Figur 2B zeigt, jedes Segment S1, Sz auch eine vergleichbare Dehnung εNS1, εNS2 und damit eine vergleichbare Dehnungsdifferenz ΔΣ, müssten die Segmentlängen L1, L2 in der Figur 2C auch etwa gleich lang sein. Dies ist jedoch nicht der Fall, da das Segment S2 deutlich länger ist als das Segment S1. Dieser Unterschied ist auf eine Verringerung der Dehnungsdifferenz Δε in diesem Segment S2 zurückzuführen. Diese Veränderung korreliert direkt mit einer Verringerung des tragenden Querschnitts des Tragmittels 23, da durch diese Verringerung das Segment S2 «weicher» wird und sich bei gleicher Last FN mehr dehnen lässt. Durch die erfindungsgemässe Ermittlung der Dehnungsdifferenz Δε während des Betriebes der Aufzugsanlage 1 für jedes Segment S1, S2, Sn, lässt sich die vorangehend aufgezeigte Problematik bezüglich der Setzeffekte R umgehen.The segment S 2 also has setting effects R, so that it has the segment length L 2 +R+ε NS2AB . Because the two segments like that Figure 2A shows, originally had about the same segment lengths L 1 , L 2 and as the Figure 2B shows that each segment S 1 , Sz also has a comparable strain ε NS1 , ε NS2 and thus a comparable strain difference ΔΣ, the segment lengths L 1 , L 2 in the Figure 2C also be about the same length. However, this is not the case since segment S 2 is significantly longer than segment S 1 . This difference is due to a reduction in the strain difference Δε in this segment S2. This change correlates directly with a reduction in the load-bearing cross section of the suspension element 23, since this reduction makes segment S2 "softer" and allows it to stretch more with the same load F N . By determining the expansion difference Δε during the operation of the elevator system 1 for each segment S 1 , S 2 , S n according to the invention, the problems relating to the setting effects R shown above can be avoided.

Bezüglich der Bezugszeichen L1, L2, R, εNS1 εNS2AB ist anzumerken, dass diese gemäss üblicher Bedeutung unterschiedliche Einheiten aufweisen würden. Die in den Figuren 2A bis 2B gewählte Addierung soll lediglich auf die auf verschiedenen Ursachen basierenden Anteile der Längenänderung hinweisen.With regard to the reference symbols L 1 , L 2 , R, ε NS1 ε NS2AB it should be noted that these would have different units according to the usual meaning. The in the Figures 2A to 2B The selected addition is only intended to indicate the parts of the length change based on various causes.

Figur 3 zeigt ein Diagramm mit den der Erfindung zugrunde liegenden Kraft-Dehnungskurven DNEU, DAB und DS1. Die erste Kraft-Dehnungskurve DNEU repräsentiert die Dehnungsdifferenz ΔεNEU eines Segmentes S1, S2, Sn im Neuzustand und die zweite Kraft-Dehnungskurve DAB die Dehnungsdifferenz ΔεAB eines Segmentes S1, S2, Sn bei Erreichen der Ablegereife. In der Ordinate des Diagramms ist die Dehnung Σ eines Segmentes S1, S2, Sn in Prozent zur ursprünglichen Segmentlänge L1, L2, Ln und in der Abszisse die im Segment S1, S2, Sn beziehungsweise am Tragmittel 23 wirkende Last F aufgetragen. figure 3 shows a diagram with the force-strain curves D NEW , D AB and D S1 on which the invention is based. The first force-strain curve D represents NEW the elongation difference Δε NEW of a segment S 1 , S 2 , S n when new and the second force-elongation curve D AB the elongation difference Δε AB of a segment S 1 , S 2 , S n when the discard state is reached. The ordinate of the diagram shows the elongation Σ of a segment S 1 , S 2 , S n as a percentage of the original segment length L 1 , L 2 , L n and the abscissa shows that in segment S 1 , S 2 , S n or on the suspension element 23 applied load F applied.

Aus dem dargestellten Diagramm ist klar ersichtlich, dass die Setzeffekte R keinen Einfluss auf die Überwachung des Zustandes des Tragmittels 23 haben. Die Setzeffekte R sind ein reiner Offset zwischen den beiden Kraft-Dehnungskurven DNEU, DAB. Erfindungsgemäss wird anstelle der reinen Dehnung ε, segmentweise die Dehnungsdifferenz Δε des Tragmittels 23 überwacht. Die Ermittlung der Dehnungsdifferenz Δε erfolgt dadurch, dass mittels der in der Figur 1 gezeigten Signalverarbeitungseinheit 31 aus einem Abstand beziehungsweise der Segmentlänge L1, L2, Ln zwischen zwei ausgewählten, von der Erfassungsrichtung 29 erfassten Markierungen 25 eine erste Dehnung ε1 bei einer ersten Last F1 und eine zweite Dehnung ε2 bei einer zweiten Last F2 ermittelt wird und aus den beiden Dehnungen ε1, ε2 eine das elastische Verhalten repräsentierende Dehnungsdifferenz Δε nach folgender allgemeiner Formel errechnet wird: Dehnungsdifferenz Δ ε = ε 2 ε 1

Figure imgb0001
The diagram shown clearly shows that the setting effects R have no influence on the monitoring of the state of the suspension element 23 . The setting effects R are a pure offset between the two force-strain curves D NEW , D AB . According to the invention, instead of the pure elongation ε, the elongation difference Δε of the suspension element 23 is monitored in segments. The determination of the strain difference Δε is done in that by means of in the figure 1 shown signal processing unit 31 determines a first strain ε 1 for a first load F1 and a second strain ε 2 for a second load F2 from a distance or the segment length L 1 , L 2 , L n between two selected markings 25 detected by the detection direction 29 and from the two strains ε 1 , ε 2 a strain difference Δε representing the elastic behavior is calculated according to the following general formula: strain differential Δ e = e 2 e 1
Figure imgb0001

Für die im Diagramm dargestellten Fälle «Neuzustand» und «Ablegereife» gilt:

  • Dehnungsdifferenz im Neuzustand: ΔεNEU = εNEU2 - εNEU1
  • Dehnungsdifferenz bei ablegereife: ΔεAB = εAB2 - εAB1
wobei die Formelzeichen sind:
  • εNEU1 = Dehnung Neuzustand bei Last F1
  • εNEU2 = Dehnung Neuzustand bei Last F2
  • εAB1 = Dehnung Ablegereife bei Last F1
  • εAB2 = Dehnung Ablegereife bei Last F2
The following applies to the "new condition" and "discard condition" cases shown in the diagram:
  • Elongation difference in new condition: Δε NEW = ε NEW2 - ε NEW1
  • Elongation difference when ready for discard: Δε AB = ε AB2 - ε AB1
where the symbols are:
  • ε NEW1 = elongation when new at load F 1
  • ε NEW2 = elongation when new at load F 2
  • ε AB1 = elongation discard at load F 1
  • ε AB2 = elongation discard at load F 2

Mit den ermittelten Dehnungsdifferenzen ΔεNEU, ΔεAB kann auch der Querschnittverlust ΔA des tragenden Querschnitts des Tragmittels 23 im entsprechenden Segment S1, S2, Sn errechnet werden: Querschnittverlust Δ A = F 2 F 1 E Δ ε NEU F 2 F 1 E Δ ε AB

Figure imgb0002
wobei die Formelzeichen sind:

  • F1= erste Last
  • F2 = zweite Last, welche grösser ist als die erste Last F1
  • E = Elastizitätsmodul des tragenden Querschnitts
  • ΔεNEU = Dehnungsdifferenz im Neuzustand
  • ΔεAB Dehnungsdifferenz bei Ablegereife
The cross-section loss ΔA of the load-bearing cross-section of the suspension element 23 in the corresponding segment S 1 , S 2 , S n can also be calculated using the determined expansion differences Δε NEW , Δε AB : cross section loss Δ A = f 2 f 1 E Δ e NEW f 2 f 1 E Δ ε AWAY
Figure imgb0002
where the symbols are:
  • F 1 = first load
  • F 2 = second load, which is greater than the first load F 1
  • E = Young's modulus of the supporting section
  • Δε NEW = elongation difference in new condition
  • Δε AB Elongation difference at discard point

Auch der Bruchlastverlust in diesem Segment S1, S2, Sn ist berechenbar: Bruchlastverlust Δ F Bruch = ANEU ΔA ANEU F Bruch NEU

Figure imgb0003
wobei die Formelzeichen sind:

  • FBruch NEU = Bruchlast des Tragmittels im Neuzustand
  • ANEU = Querschnittfläche des tragenden Querschnitts des Tragmittels im Neuzustand
  • ΔA = Querschnittverlust
The breaking load loss in this segment S 1 , S 2 , S n can also be calculated: breaking load loss Δ f fracture = ANEW ΔA ANEW f fracture NEW
Figure imgb0003
where the symbols are:
  • F Fracture NEW = breaking load of the suspension element when new
  • A NEW = Cross-sectional area of the load-bearing cross-section of the suspension element when new
  • ΔA = loss of area

Aus den vorangehenden Erläuterungen ist erkennbar, dass der Querschnittverlust ΔA oder Bruchlastverlust ΔF Bruch mit festgelegten Grenzwerten für den maximal zulässigen Querschnittverlust ΔA Grenz beziehungsweise den maximal zulässigen Bruchlastverlust ΔFBruch Grenz verglichen werden können. Beim Erreichen dieser Grenzwerte ist auch die Ablegereife erreicht.From the above explanations it can be seen that the cross-sectional loss ΔA or breaking load loss ΔF break can be compared with defined limit values for the maximum permissible cross-sectional loss ΔA limit or the maximum permissible breaking load loss ΔF break limit . When these limit values are reached, discard maturity is reached.

In Figur 3 ist zudem mit strichpunktierter Linie das Beispiel einer Kraft-Dehnungskurve DS1 dargestellt, die die Dehnungsdifferenz ΔεS1 des Segmentes S1 nach etlichen Betriebsstunden zeigt. Ersichtlich für dieses spezifische Segment S1 sind auch die Setzeffekte RS1, welche noch nicht so weit fortgeschritten sind. Wie der parallele Verlauf der Kraft-Dehnungskurve DS1 des durch den Betrieb bereits belasteten Segments S1 zur Kraft-Dehnungskurve im Neuzustand DNEU klar erkennen lässt, unterscheidet sich die Dehnungsdifferenz ΔεS1 des Segmentes S1 trotz der erfolgten Betriebsstunden nicht von der Dehnungsdifferenz im Neuzustand ΔεNEU und das Tragmittel 23 hat in Bezug auf dieses Segment S1 somit die Ablegereife noch nicht erreicht. Selbst wenn die Setzeffekte RS1 des Segmentes S1 gleich den Setzeffekten R wären, wäre aufgrund des fehlenden Unterschiedes der Dehnungsdifferenzen ΔεS1, ΔεNEU die Ablegereife des Tragmittels 23 in Bezug auf dieses Segment S1 noch nicht erreicht.In figure 3 is also shown with a dot-dash line the example of a force-strain curve D S1 , which shows the difference in strain Δε S1 of the segment S 1 after several hours of operation. The setting effects R S1 , which have not yet progressed that far, can also be seen for this specific segment S 1 . Like the parallel progression of the force-strain curve D S1 of the segment S 1 already loaded by the operation Force-elongation curve in the new condition D NEW can be clearly seen, the difference in elongation Δε S1 of the segment S 1 does not differ from the difference in elongation in the new condition Δε NEW despite the number of hours of operation, and the suspension element 23 is therefore not yet discardable in relation to this segment S 1 reached. Even if the setting effects R S1 of segment S 1 were equal to the setting effects R, the suspension element 23 would not yet be ready for discard in relation to this segment S 1 due to the lack of difference in the expansion differences Δε S1 , Δε NEW .

Dem Heranziehen der Dehnungsdifferenz Δε als Kriterium zur Bestimmung der Ablegereife steht die Erkenntnis zugrunde, dass zu den Setzeffekten R eine zusätzliche Längenänderung dann entsteht, wenn einzelne Drahtlitzen oder Fasern des tragenden Querschnitts eines Tragmittels 23 gebrochen sind und dadurch der tragende Querschnitt des Tragmittels 23 reduziert ist. Diese Reduzierung führt zu einem veränderten elastischen Verhalten des durch Brüche und Verschleiss geschwächten Segments S1, S2, Sn, indem es dehnbarer beziehungsweise «weicher» wird. Mit anderen Worten verändert beziehungsweise erhöht sich die Dehnungsdifferenz Δε eines Segmentes S1, S2, Sn, welches Drahtlitzenbrüche oder Faserbrüche aufweist. Hierbei ist ersichtlich, dass mittels des vorgeschlagenen Verfahrens das wichtigste Kriterium zur Bestimmung der Ablegereife herangezogen wird, nämlich die Verringerung des tragenden Querschnitts des Tragmittels 23. Da durch die Erfassung der wirkenden Last F1, F2 die Messungen zur Ermittlung der Dehnungsdifferenz Δε unabhängig von einer festgelegten Last F1, F2 erfolgen können, ist die Bestimmung der Dehnungsdifferenz Δε zu jedem Zeitpunkt und damit während des normalen Betriebes der Aufzugsanlage 1 möglich. Dabei sollten logischerweise die beiden Lasten F1, F z unterschiedlich sein und die Messungen vorzugsweise bei gleicher Fahrtrichtung der Aufzugkabine 11 erfolgen. Um die bei den Dehnungsmessungen am Tragmittel 23 zwischen den zwei ausgewählten Markierungen 25 wirkenden Lasten F1, F2 zu erfassen, ist die in der Figur 1 dargestellte Lastmesseinrichtung 33 vorgesehen.The use of the expansion difference Δε as a criterion for determining the discard condition is based on the knowledge that, in addition to the setting effects R, an additional change in length occurs if individual wire strands or fibers of the load-bearing cross-section of a suspension element 23 are broken and the load-bearing cross-section of the suspension element 23 is reduced as a result . This reduction leads to a changed elastic behavior of the segment S 1 , S 2 , S n , which has been weakened by fractures and wear and tear, in that it becomes more extensible or «softer». In other words, the difference in elongation Δε of a segment S 1 , S 2 , S n that has wire strand breaks or fiber breaks changes or increases. It can be seen that the proposed method uses the most important criterion for determining the discard condition, namely the reduction of the load-bearing cross-section of the suspension element 23. Since the measurements for determining the strain difference Δε are independent of the detection of the acting load F 1 , F 2 a fixed load F 1 , F 2 can take place, the determination of the expansion difference Δε is possible at any time and thus during normal operation of the elevator installation 1 . The two loads F 1 , F z should logically be different and the measurements should preferably be carried out with the elevator car 11 traveling in the same direction. In order to record the loads F 1 , F 2 acting on the suspension element 23 between the two selected markings 25 during the strain measurements, the figure 1 illustrated load measuring device 33 is provided.

Wenn die errechnete Dehnungsdifferenz Δε eines Segmentes S1, S2, Sn unterhalb des Dehnungsdifferenz-Grenzwertes ΔεGrenz liegt, kann in der Signalverarbeitungseinheit 31 beispielsweise mittels Extrapolation älterer, ermittelter Dehnungsdifferenzwerte Δε und den aktuellsten Dehnungsdifferenzwerten Δε die Restlebensdauer des im Einsatz befindlichen Tragmittels 23 berechnet werden. Mittels dieser Restlebensdauer lässt sich der Austausch des Tragmittels 23 im Sinne einer vorausschauenden Wartungsplanung sowohl für den Betreiber als auch für die Wartungsfirma planen.If the calculated elongation difference Δε of a segment S 1 , S 2 , S n is below the elongation difference limit value Δε limit , the remaining service life of the suspension element 23 in use can be calculated in the signal processing unit 31, for example by extrapolating older, determined elongation difference values Δε and the most recent elongation difference values Δε be calculated. Using this remaining service life, plan the replacement of the suspension element 23 in the sense of a forward-looking maintenance plan both for the operator and for the maintenance company.

Um die Veränderung der Dehnungsdifferenz Δε präziser beurteilen zu können, ist es vorteilhaft, wenn nicht auf einen Standardwert des Herstellers zurückgegriffen wird, sondern das tatsächlich eingesetzte Tragmittel 23 in seinem Neuzustand analysiert wird. Hierzu kann bei der Inbetriebnahme des Tragmittels 23 eine Dehnungsdifferenz im Neuzustand ΔεNEU jedes Segments S1, S2, Sn gemessen und abgespeichert werden, indem im Neuzustand mehrere Dehnungen des Segmentes S1, S2, Sn bei unterschiedlichen Lasten F1, F2 gemessen und als die Dehnungsdifferenz im Neuzustand ΔεNEU repräsentierende Kraft/Dehnungskurve abgespeichert wird. Während des Betriebes können dann periodisch die Dehnungsdifferenz der einzelnen Segmente S1, S2, Sn mit der jeweils zugeordneten Dehnungsdifferenz im Neuzustand ΔεNEU verglichen werden.In order to be able to assess the change in the difference in elongation Δε more precisely, it is advantageous if the suspension element 23 actually used is analyzed in its new state rather than resorting to a standard value from the manufacturer. For this purpose, a strain difference in the new condition Δε NEW of each segment S 1 , S 2 , S n can be measured and stored when the suspension element 23 is put into operation by measuring several strains of the segment S 1 , S 2 , S n in the new condition at different loads F 1 , F 2 is measured and stored as the force/strain curve representing the strain difference in the new state Δε NEW . During operation, the expansion difference of the individual segments S 1 , S 2 , S n can then be compared periodically with the respective associated expansion difference in the new state Δε NEW .

Figur 4 zeigt detaillierter in dreidimensionaler Ansicht die Aufzugsanlage 1 der Figur 1 mit einer erfindungsgemäßen Vorrichtung 21. Im Unterschied zur sehr schematisch dargestellten Figur 1, sind in der Aufzugsanlage 1 der Figur 4 deutlich drei parallel zueinander angeordnete Tragmittel 23A, 23B, 23C vorhanden, die zur Vorrichtung 21 gehören. Aufgrund unterschiedlicher Setzeffekte, dynamischer Belastungsunterschiede, Reibungen und dergleichen mehr, sind nicht alle drei Tragmittel 23A, 23B, 23C gleich belastet, das heisst, mit derselben Last beaufschlagt. Um dies zu berücksichtigen und die Dehnungsdifferenzen Δε der Segmente S1, S2, Sn (siehe Figuren 2A bis 2C) jedes einzelnen Tragmittels 23A, 23B, 23C im Einzelnen möglichst präzise zu ermitteln, ist jedem der drei Tragmittel 23A, 23B, 23C je eine Lastmesseinrichtung 33A, 33B, 33C zugeordnet, welche ebenfalls zur Vorrichtung 21 gehören. Die vorgesehene Erfassungseinrichtung 29 der Vorrichtung 21 kann die nicht dargestellten Markierungen aller drei Tragmittel 23A, 23B, 23C erfassen. figure 4 shows the elevator system 1 in more detail in a three-dimensional view figure 1 with a device 21 according to the invention. In contrast to the one shown very schematically figure 1 , are in the elevator system 1 of figure 4 there are clearly three support means 23A, 23B, 23C arranged parallel to one another, which belong to the device 21. Due to different setting effects, dynamic load differences, friction and the like, not all three suspension elements 23A, 23B, 23C are loaded equally, that is, they are subjected to the same load. In order to take this into account and the strain differences Δε of the segments S 1 , S 2 , S n (see Figures 2A to 2C ) of each individual suspension element 23A, 23B, 23C as precisely as possible, each of the three suspension elements 23A, 23B, 23C is assigned a load measuring device 33A, 33B, 33C, which also belongs to the device 21. The detection device 29 provided for the device 21 can detect the markings (not shown) of all three suspension elements 23A, 23B, 23C.

Eine besonders präzise Überwachung des Tragmittelzustandes lässt sich dann erreichen, wenn die Aufzugsanlage 1 einen Aktualisierter-Digitaler-Doppelgänger-Datensatz 101 umfasst, der die physischen Komponenten der Aufzugsanlage 1 in digitaler Form als miteinander verbundene und interagierende Bauteilmodell-Datensätze mit charakterisierenden Eigenschaften beinhaltet. Hierbei ist die Signalverarbeitungseinheit 31 der Vorrichtung 21 wie durch den Doppelpfeil 161 dargestellt, dazu eingerichtet, mit dem Aktualisierter-Digitaler-Doppelgänger-Datensatz 101 Daten 131 auszutauschen. Der die Aufzugsanlage 1 abbildende Aktualisierter-Digitaler-Doppelgänger-Datensatz 101 wird der besseren Lesbarkeit wegen, nachfolgend abgekürzt als ADDD 101 bezeichnet.A particularly precise monitoring of the state of the suspension element can be achieved if the elevator system 1 includes an updated digital double data set 101 that contains the physical components of the elevator system 1 in digital form as interconnected and interacting component model data sets with characterizing properties. Here, the signal processing unit 31 of the device 21, as represented by the double arrow 161, is set up to to exchange data 131 with the updated digital double record 101 . The updated digital double data record 101 that maps the elevator installation 1 is referred to below as ADDD 101 for better legibility.

Der ADDD 101 ist ein möglichst umfassendes, dem aktuellen physischen Zustand der Aufzugsanlage 1 nachgeführtes virtuelles Abbild und stellt daher eine der Aufzugsanlage 1 zugeordnete, virtuelle Aufzugsanlage dar. Das bedeutet, dass der ADDD 101 nicht nur ein virtuelles Hüllenmodell der Aufzugsanlage 1 ist, das in etwa dessen Abmaße repräsentiert, sondern es ist jedes einzelne physische Bauteil von der Aufzugkabine 11, den Schachttüren 49, dem Gegengewicht 17 bis zur letzten Schraube mit möglichst allen charakterisierenden Eigenschaften dieser Bauteile auch in digitalisierter Form im ADDD 101 als Bauteilmodell-Datensatz der Aufzugkabine 111, als Bauteilmodell-Datensatz der Schachttüren 149, als Bauteilmodell-Datensatz des Gegengewichtes 117, etc. vorhanden und abgebildet. Ebenso können Schnittstellen der Aufzugsanlage 1 wie beispielsweise der zum Bauwerk 5 gehörende Aufzugschacht 3 als Bauteilmodell-Datensatz 103 im ADDD 101 abgebildet sein.The ADDD 101 is a virtual image that is as comprehensive as possible and tracks the current physical state of the elevator system 1 and therefore represents a virtual elevator system assigned to the elevator system 1. This means that the ADDD 101 is not just a virtual shell model of the elevator system 1, which is approximately its dimensions, but each individual physical component from the elevator car 11, the shaft doors 49, the counterweight 17 to the last screw with as many characterizing properties of these components as possible is also in digitized form in the ADDD 101 as a component model data set of the elevator car 111, as a component model data set of the shaft doors 149, as a component model data set of the counterweight 117, etc. and are shown. Likewise, interfaces of the elevator system 1 such as the elevator shaft 3 belonging to the structure 5 can be mapped as a component model data record 103 in the ADDD 101 .

Die in den Bauteilmodell-Datensätzen 111, 149, 117 enthaltenen, charakterisierende Eigenschaften ihrer physischen Pendants der Aufzugsanlage 1 können geometrische Abmessungen der Bauteile wie beispielsweise eine Länge, eine Breite, eine Höhe, ein Querschnitt, Radien, Verrundungen, etc. sein. Auch die Oberflächenbeschaffenheit der Bauteile wie beispielsweise Rauigkeiten, Texturen, Beschichtungen, Farben, Reflektivitäten, etc. gehören zu den charakterisierenden Eigenschaften. Ferner können auch Materialwerte wie beispielsweise das Elastizitätsmodul, der Biegewechselfestigkeitswert, die Härte, der Kerbschlagzähigkeitswert, der Zugfestigkeitswert, etc. als charakterisierende Eigenschaften des jeweiligen Bauteils hinterlegt sein. Es handelt sich hierbei nicht um theoretische Eigenschaften (Soll-Daten), wie sie beispielsweise auf einer Fertigungszeichnung zu finden sind, sondern um tatsächlich am physischen Bauteil ermittelte charakterisierende Eigenschaften (Ist-Daten). Auch montagerelevante Angaben wie beispielsweise das tatsächlich aufgebrachte Anzugsdrehmoment einer Schraube und damit deren Vorspannkraft sind vorzugsweise dem jeweiligen Bauteil zugeordnet.The characterizing properties of their physical counterparts of the elevator system 1 contained in the component model data sets 111, 149, 117 can be geometric dimensions of the components such as a length, a width, a height, a cross section, radii, roundings, etc. The surface properties of the components such as roughness, textures, coatings, colors, reflectivities, etc. are also part of the characterizing properties. Furthermore, material values such as the modulus of elasticity, the reverse bending strength value, the hardness, the notched impact strength value, the tensile strength value, etc. can also be stored as characterizing properties of the respective component. These are not theoretical properties (target data), such as can be found on a production drawing, but characterizing properties actually determined on the physical component (actual data). Information relevant to assembly, such as the tightening torque actually applied to a screw and thus its pretensioning force, is preferably assigned to the respective component.

Bei jeder Ermittlung von Dehnungsdifferenzen ΔεS1, ΔεS2, ΔεSn der einzelnen Segmente S1, S2, Sn können diese von der Signalverarbeitungseinheit 31 an den ADDD 101 übermittelt werden. Hierbei ersetzen die neu ermittelten Dehnungsdifferenzen ΔεS1, ΔεS2, ΔΣsn der einzelnen Tragmittel 23A, 23B, 23C, die bisher vorhandenen Dehnungsdifferenzen ΔεS1, ΔεS2, ΔεSn der ebenfalls in Segmente S1, S2, Sn unterteilten Bauteilmodell-Datensätze der Tragmittel 123A, 123B, 123C, um damit den ADDD 101 kontinuierlich zu aktualisieren.With each determination of strain differences Δε S1 , Δε S2 , Δε Sn of the individual segments S 1 , S 2 , S n these can be transmitted from the signal processing unit 31 to the ADDD 101 . The newly determined expansion differences Δε S1 , Δε S2 , ΔΣsn of the individual suspension elements 23A, 23B, 23C replace the previously existing expansion differences Δε S1 , Δε S2 , Δε Sn of the component model data records, which are also divided into segments S 1 , S 2 , S n of the support means 123A, 123B, 123C in order to update the ADDD 101 continuously.

Mit anderen Worten können die von der Signalverarbeitungseinheit 31 an den ADDD 101 übermittelten Daten 131 die Dehnungsdifferenzen ΔεS1, ΔΣS2, ΔεSn von Segmenten S1, S2, Sn umfassen, welche als charakterisierende Eigenschaften auf zugeordnete virtuelle Segmente S1, S2, Sn eines als digitaler Bauteilmodell-Datensatz abgebildeten Tragmittels 123A, 123B, 123C des ADDD 101 übertragen werden. Logischerweise können auch die gemessenen Längen L1, L2, Ln der Segmente S1, S2, Sn übertragen werden, so dass die Bauteilmodell-Datensätze der Tragmittel 123A, 123B, 123C auch die effektiven Längen ihrer physischen Pendants aufweisen.In other words, the data 131 transmitted from the signal processing unit 31 to the ADDD 101 can include the strain differences Δε S1 , ΔΣ S2 , Δε Sn of segments S 1 , S 2 , S n , which as characterizing properties refer to associated virtual segments S 1 , S 2 , S n of a support means 123A, 123B, 123C of ADDD 101 mapped as a digital component model data record. Logically, the measured lengths L 1 , L 2 , Ln of the segments S 1 , S 2 , S n can also be transmitted, so that the component model data records of the suspension elements 123A, 123B, 123C also have the effective lengths of their physical counterparts.

Der ADDD 101 ist nicht an einen spezifischen Speicherort oder Verarbeitungsort gebunden. Er kann beispielsweise in der Signalverarbeitungseinheit 31 der Vorrichtung gespeichert sein, aber auch in der Steuerungseinheit 45, in einem Computer 121 oder in einem Netzwerk mit mehreren Computersystemen. Insbesondere kann wie dargestellt, der ADDD 101 in einem Computernetzwerk implementiert sein, welches Daten in Form einer Datenwolke 50 (Cloud) speichert und verarbeitet. Das Computernetzwerk kann hierfür über einen Speicher, oder wie symbolisch dargestellt, über Speicherressourcen 151 in der Datenwolke 50 verfügen, in dem die Daten des ADDD 101 (symbolisch mit unterbrochenen Linien als dreidimensionales Abbild der physischen Personentransportanlage 1 dargestellt) gespeichert werden können, beispielsweise in elektronischer oder magnetischer Form. Das bedeutet, dass der ADDD 101 an einem beliebigen Speicherort abgespeichert sein kann.The ADDD 101 is not tied to a specific storage location or processing location. It can be stored, for example, in the signal processing unit 31 of the device, but also in the control unit 45, in a computer 121 or in a network with a number of computer systems. In particular, as shown, ADDD 101 can be implemented in a computer network that stores and processes data in the form of a data cloud 50 (cloud). For this purpose, the computer network can have a memory, or as shown symbolically, memory resources 151 in the data cloud 50, in which the data of the ADDD 101 (symbolically shown with broken lines as a three-dimensional image of the physical passenger transport system 1) can be stored, for example electronically or magnetic form. This means that the ADDD 101 can be stored in any memory location.

Mittels des ADDD 101 können statische und dynamische Simulationen zur Ermittlung der Ablegereife beziehungsweise Restlebensdauer tAB durchgeführt werden. Der ADDD 101 liefert hierbei eine hervorragende virtuelle Simulationsplattform, da er alle relevanten charakterisierenden Eigenschaften der physischen Bauteile enthält und abbildet. Die Simulationen können beispielsweise in der Datenwolke 50, aber auch durch temporäres Einspeichern und verarbeiten des ADDD 101 in der Signalverarbeitungseinheit 31 durchgeführt werden. So können Zusatzbelastungen wie Tragmittelschwingungen aufgrund der veränderten Dehnungsdifferenzen ΔεS1, ΔεS2, ΔεSn und/oder durch die veränderte Länge des Tragmittels 23A, 23B, 23C simuliert und deren Auswirkungen auf die anderen Bauteile untersucht werden, so dass beispielsweise nicht unmittelbar die erhöhte Dehnungsdifferenz ΔεS1, ΔεS2, ΔεSn des Segmentes S1, S2, Sn beziehungsweise der entsprechend reduzierte tragende Querschnitt die Ablegereife bestimmt, sondern das sich verändernde Schwingungsverhalten des Tragmittels 23A, 23B, 23C und dessen Auswirkungen beispielsweise auf den Fahrkomfort und die Bauteile der Aufzugsanlage 1 wie die Führungsschienen 55, die Führungsschuhe der Aufzugkabine 11 und dergleichen mehr. Durch simulierte Interpolation unter Verwendung vorangehend ermittelter Dehnungsdifferenzen ΔεS1, ΔεS2, ΔεSn die chronologisch abgespeichert wurden, lässt sich zudem die verbleibende Zeit bis zur Ablegereife, auch als Restlebensdauer tAB bezeichnet, berechnen.The ADDD 101 can be used to carry out static and dynamic simulations to determine the discard period or remaining service life t AB . The ADDD 101 provides an excellent virtual simulation platform, as it contains and maps all relevant characterizing properties of the physical components. The simulations can, for example, in the data cloud 50, but also by temporary The ADDD 101 is stored and processed in the signal processing unit 31 . In this way, additional loads such as suspension element vibrations due to the changed expansion differences Δε S1 , Δε S2 , Δε Sn and/or due to the changed length of the suspension element 23A, 23B, 23C can be simulated and their effects on the other components examined, so that, for example, the increased expansion difference is not immediately apparent Δε S1 , Δε S2 , Δε Sn of segment S 1 , S 2 , S n or the correspondingly reduced load-bearing cross-section determines the discard condition, but the changing vibration behavior of the suspension element 23A, 23B, 23C and its effects, for example on the ride comfort and the components of the elevator installation 1 such as the guide rails 55, the guide shoes of the elevator car 11 and the like. Simulated interpolation using previously determined expansion differences Δε S1 , Δε S2 , Δε Sn which were stored chronologically allows the time remaining until discard, also referred to as remaining service life t AB , to be calculated.

Die so gewonnenen Simulationsresultate 159 können wie durch den Pfeil 163 dargestellt, anschliessend an eine Ausgabeeinheit, im vorliegenden Beispiel der Bildschirm 122 eines portablen Computers 121 übermittelt werden. Ferner können auch Alarmsignale 155 generiert und an die Ausgabeeinheit 122 übermittelt werden, insbesondere natürlich dann, wenn die Berechnungen und/oder Simulationen ergeben haben, dass das Tragmittel 23A, 23B, 23C seine Ablegereife erreicht hat. Die Ausgabeeinheit muss hierbei nicht zwingend ein Bildschirm 122 sein, sondern kann zum Beispiel auch ein Lautsprecher und dergleichen mehr sein. Das Alarmsignal 155 kann beispielsweise auch an die Steuerungseinheit 45 der physischen Aufzugsanlage 1 und dergleichen mehr weitergeleitet und dort entsprechende Aktionen auslösend, verarbeitet werden.The simulation results 159 obtained in this way can then be transmitted to an output unit, in the present example the screen 122 of a portable computer 121, as shown by the arrow 163. Furthermore, alarm signals 155 can also be generated and transmitted to the output unit 122, in particular, of course, when the calculations and/or simulations have shown that the suspension element 23A, 23B, 23C has reached its discard state. In this case, the output unit does not necessarily have to be a screen 122, but can also be a loudspeaker and the like, for example. The alarm signal 155 can, for example, also be forwarded to the control unit 45 of the physical elevator installation 1 and the like and processed there, triggering corresponding actions.

Des Weiteren können wie durch den Pfeil 157 symbolisch dargestellt, die Simulationsresultate mit weiteren Daten des ADDD 101 aufbereitet und als dreidimensionale virtuelle Darstellung 128 auf dem Bildschirm 122 dargestellt werden. Eine derartige virtuelle Darstellung 128 kann auch dynamisch sein, das heisst, dass sich in der virtuellen Darstellung 128 der Aufzugsanlage durch die Daten des ADDD 101 wie bei der physischen Aufzugsanlage 1 alle mit Freiheitsgraden versehenen, dreidimensional dargestellten Bauteilmodell-Datensätze 111, 117, 149 bewegen lassen und sich dynamisch ihren physischen Äquivalenten entsprechend, verhalten.Furthermore, as symbolically represented by the arrow 157 , the simulation results can be processed with further data from the ADDD 101 and represented as a three-dimensional virtual representation 128 on the screen 122 . Such a virtual representation 128 can also be dynamic, which means that in the virtual representation 128 of the elevator system, all three-dimensionally represented component model data sets 111, 117, 149, which are provided with degrees of freedom, move through the data of the ADDD 101 as in the physical elevator system 1 and behave dynamically according to their physical equivalents.

Obwohl die Figuren 1 bis 4 unterschiedliche Aspekte der vorliegenden Erfindung betreffen und diese am Beispiel einer Aufzugsanlage 1 mit einer sogenannten 2:1 Tragmittelführungsvariante ausführlich beschrieben wurden, ist es offensichtlich, dass die beschriebenen Verfahrensschritte und eine entsprechende Vorrichtung gleichermaßen auch für Aufzugsanlagen 1 mit anderen Tragmittelführungsvarianten wie 1: 1, 3:1, etc. Anwendung finden. Zudem wird die Signalverarbeitungseinheit 31 in den Figuren 1 und 4 als in sich abgeschlossene Einheit aus Hardware und Software dargestellt. Die Signalverarbeitungseinheit 31 kann jedoch auch von der physischen Aufzugsanlage 1 getrennt, beispielsweise auf dem portablen Computer 121 oder in der Datenwolke 50 verwirklicht sein.Although the Figures 1 to 4 relate to different aspects of the present invention and these have been described in detail using the example of an elevator system 1 with a so-called 2:1 suspension element guidance variant, it is obvious that the method steps described and a corresponding device can also be used for elevator systems 1 with other suspension element guidance variants such as 1: 1, 3 :1, etc. apply. In addition, the signal processing unit 31 in the figures 1 and 4 presented as a self-contained unit of hardware and software. However, the signal processing unit 31 can also be implemented separately from the physical elevator installation 1 , for example on the portable computer 121 or in the data cloud 50 .

Abschließend ist darauf hinzuweisen, dass Begriffe wie "aufweisend", "umfassend", etc. keine anderen Elemente oder Schritte ausschließen und Begriffe wie "eine" oder "ein" keine Vielzahl ausschließen. Ferner sei darauf hingewiesen, dass Merkmale oder Schritte, die mit Verweis auf eines der obigen Ausführungsbeispiele beschrieben worden sind, auch in Kombination mit anderen Merkmalen oder Schritten anderer oben beschriebener Ausführungsbeispiele verwendet werden können. Bezugszeichen in den Ansprüchen sind nicht als Einschränkung anzusehen.Finally, it should be noted that terms such as "comprising," "comprising," etc. do not exclude other elements or steps, and terms such as "a" or "an" do not exclude a plurality. Furthermore, it should be pointed out that features or steps that have been described with reference to one of the above exemplary embodiments can also be used in combination with other features or steps of other exemplary embodiments described above. Any reference signs in the claims should not be construed as limiting.

Claims (14)

  1. Method for monitoring the physical state of a suspension means (23, 23A, 23B, 23C) which is connected to an elevator car (11) and can move the same, the suspension means (23, 23A, 23B, 23C) comprising markings (25, 25A, 25B, 25C) along its length which divide the suspension means (23, 23A, 23B, 23C) into segments (S1, S2, Sn) and which markings (25, 25A, 25B, 25C) can be detected by means of a detection device (29), characterized in that a strain difference (Δε) of the suspension means (23, 23A, 23B, 23C) is monitored segment by segment, by a first strain (ε1) at a first load (F1) and a second strain (ε2) at a second load (F2) being determined by means of a signal processing unit (31) from a distance between two selected markings (25, 25A, 25B, 25C) detected by the detection device (29) and a strain difference (Δε) representing the elastic behavior of the segment (S1, S2, Sn) being calculated from the two strains (ε1, ε2), wherein the load (F1, F2) acting on the suspension means (23, 23A, 23B, 23C) between the two selected markings (25, 25A, 25B, 25C) can be measured by means of a load measuring device (33, 33A, 33B, 33C).
  2. Method according to claim 1, wherein the calculated strain difference (Δε) is compared with a strain difference limit value (ΔεGrenz), or a cross-sectional loss (ΔA) is calculated from the strain difference (Δε) and this is compared with a limit value for the maximum permissible cross-sectional loss (ΔAGrenz) or a breaking load loss (ΔFBruch) is calculated from the strain difference (Δε) and this is compared with a limit value for the maximum permissible breaking load loss (ΔFBruch Grenz).
  3. Method according to claim 2, wherein the strain difference (Δε) of the individual segments (S1, S2, Sn) are compared with one another, a hierarchy of the segments (S1, S2, Sn) is created with regard to the strain difference (Δε) thereof and the segments (S1, S2, Sn) are selected analogously to this hierarchy, such that the strain difference (Δε) of segments (S1, S2, Sn) having an already increased strain difference (Δε) are determined more frequently than that of segments (S1, S2, Sn) having an unchanged strain difference (Δε).
  4. Method according to any of claims 1 to 3, wherein a detectability criterion with regard to the detectability of the markings (25, 25A, 25B, 25C) is present and if a marking (25, 25A, 25B, 25C) does not meet this detectability criterion and is therefore not readable or difficult to read, the next readable marking (25, 25A, 25B, 25C) is selected.
  5. Method according to any of claims 1 to 4, wherein when the suspension means (23, 23A, 23B, 23C) is put into operation, a strain difference in the new state (ΔεNEU) of each segment (S1, S2, Sn) is measured and stored, and during operation, the strain difference (Δε) of the individual segments (S1, S2, Sn) is periodically compared with the respectively assigned strain difference in the new state (ΔεNEU).
  6. Apparatus (21) for carrying out the method according to any of claims 1 to 5, the apparatus (21) having at least one suspension means (23, 23A, 23B, 23C) divided into segments (S1, S2, Sn) by means of markings (25, 25A, 25B, 25C), a load measuring device (33, 33A, 33B, 33C), a signal processing unit (31) and a detection device (29) for detecting the markings (25, 25A, 25B, 25C), characterized in that the signal processing unit (31) is designed to monitor the strain difference (Δε) of the suspension means (23, 23A, 23B, 23C) segment by segment, by said signal processing unit determining a first strain (ε1) at a first measured load (F1), acting on the suspension means (23, 23A, 23B, 23C) from the load measuring device (33, 33A, 33B, 33C), and a second strain (ε2) at a second measured load (Fz), acting on the suspension means (23, 23A, 23B, 23C) from the load measuring device (33, 33A, 33B, 33C), from a distance between two selected markings (25, 25A, 25B, 25C) detected by the detection device (29) and a strain difference (Δε) representing the elastic behavior of the segment (S1, S2, Sn) being calculated from the two strains (ε1, ε2).
  7. Apparatus (21) according to claim 6, wherein a segment (S1, S2, Sn) and correspondingly two markings (25, 25A, 25B, 25C) can be selected according to predetermined criteria by the signal processing unit (31) and the selection can be transmitted to the detection device (29).
  8. Apparatus (21) according to either claim 6 or claim 7, wherein each marking (25, 25A, 25B, 25C) has an identification which is clearly distinguishable from the other markings (25, 25A, 25B, 25C).
  9. Apparatus (21) according to any of claims 6 to 8, wherein the two selected markings (25, 25A, 25B, 25C) are arranged successively on the suspension means (23, 23A, 23B, 23C) and delimit the segment (S1, S2, Sn), of which the strain difference (Δε) is to be calculated.
  10. Apparatus (21) according to any of claims 6 to 8, wherein the two selected markings (25, 25A, 25B, 25C) delimit the segment (S1, S2, Sn), of which the strain difference (Δε) is to be calculated and wherein further markings (25, 25A, 25B, 25C) arranged on the suspension means (23, 23A, 23B, 23C) are present between the two selected markings (25, 25A, 25B, 25C).
  11. Elevator system (1) comprising an apparatus (21) according to any of claims 7 to 10.
  12. Elevator system (1) according to claim 11, wherein it comprises an updated digital twin data record (101) which contains the physical components (11, 17, 49) of the elevator installation (1) in digital form as component model data records (111, 117, 149) having characterizing properties, wherein the signal processing unit (31) is configured to exchange data with the updated digital twin data record (101).
  13. Elevator system (1) according to claim 12, wherein the data transmitted by the signal processing unit (31) include the strain differences (Δε) of segments (S1, S2, Sn) which, as characterizing properties, can be transferred to assigned virtual segments of a suspension means (123, 123A, 123B, 123C) of the updated digital twin data record (101) depicted as a digital component model data record and replace the corresponding, previous characterizing properties of the segments (S1, S2, Sn).
  14. Elevator system (1) according to claim 13, wherein the updated digital twin data record (101) can carry out static and dynamic simulations for determining the point of discard or remaining service life (tAB) and the simulation results can be transmitted to a control unit (45) of the elevator system (1) and/or to an output unit (122).
EP20710179.1A 2019-03-29 2020-03-16 Status monitoring of a load carrier Active EP3947233B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19166107 2019-03-29
PCT/EP2020/057075 WO2020200727A1 (en) 2019-03-29 2020-03-16 Ascertaining the state of a suspension means

Publications (2)

Publication Number Publication Date
EP3947233A1 EP3947233A1 (en) 2022-02-09
EP3947233B1 true EP3947233B1 (en) 2023-02-15

Family

ID=66041169

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20710179.1A Active EP3947233B1 (en) 2019-03-29 2020-03-16 Status monitoring of a load carrier

Country Status (6)

Country Link
US (1) US20220185628A1 (en)
EP (1) EP3947233B1 (en)
KR (1) KR20210145730A (en)
CN (1) CN113544074B (en)
ES (1) ES2939731T3 (en)
WO (1) WO2020200727A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4313828A1 (en) 2021-03-23 2024-02-07 KONE Corporation Method and system for using digital twins for determining need for maintenance of an elevator
US11932515B2 (en) * 2021-04-05 2024-03-19 Otis Elevator Company Elevator tension member monitor
DE102022118101A1 (en) 2022-07-20 2024-01-25 Tk Elevator Innovation And Operations Gmbh Elevator system and method for detecting error conditions

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3230213A1 (en) * 1982-08-13 1984-02-23 Bayerische Bühnenbau GmbH, 8480 Weiden MEASURING AND CONTROL DEVICE FOR LOADS ATTACHED TO ROPES, ESPECIALLY FOR THEATER POINTS
JP3759692B2 (en) * 2000-09-01 2006-03-29 三菱電機ビルテクノサービス株式会社 Elevator balance cable monitoring device
US7117981B2 (en) * 2001-12-19 2006-10-10 Otis Elevator Company Load bearing member for use in an elevator system having external markings for indicating a condition of the assembly
FI20040303A (en) * 2004-02-26 2005-08-27 Kone Corp Escalator, ramp or staircase
JP5865037B2 (en) * 2011-11-28 2016-02-17 株式会社日立製作所 Elevator operation management system
EP2900583A4 (en) * 2012-11-16 2016-06-29 Kone Corp Elevator, and improvement for reducing elongation of the roping or belting of the elevator in a loading situation of the car of the elevator, and the use of pretensioning for bracing the roping or belting of the elevator
JP2015037997A (en) * 2013-07-31 2015-02-26 東芝エレベータ株式会社 Rope deterioration diagnostic method and elevator device
EP2894119B1 (en) * 2014-01-08 2016-04-06 KONE Corporation Rope for an elevator, elevator and method
JP6184617B2 (en) * 2015-08-26 2017-08-23 三菱電機株式会社 Rope deterioration detection device, elevator device equipped with rope deterioration detection device, and rope deterioration detection method
WO2017195352A1 (en) * 2016-05-13 2017-11-16 三菱電機株式会社 Elevator rope and device for detecting twisted state of rope
US20180105393A1 (en) * 2016-10-19 2018-04-19 Otis Elevator Company Automatic marking system

Also Published As

Publication number Publication date
US20220185628A1 (en) 2022-06-16
CN113544074A (en) 2021-10-22
EP3947233A1 (en) 2022-02-09
ES2939731T3 (en) 2023-04-26
CN113544074B (en) 2022-10-18
WO2020200727A1 (en) 2020-10-08
KR20210145730A (en) 2021-12-02

Similar Documents

Publication Publication Date Title
EP3947233B1 (en) Status monitoring of a load carrier
EP2592035B1 (en) Method and device for determining the state of wear of a load carrier of an elevator
DE3911391C5 (en) Method and device for checking the driving ability
EP0391174B2 (en) Arrangement and method to detect physical parameters of an elevator
EP3426587B1 (en) Supporting means for an elevator installation, with multiple sensors arranged along the supporting means
DE10297558T5 (en) Lifting straps with external markings
EP0315043A2 (en) Method for measuring roll-force in rolling mills
DE60214769T2 (en) ARTIFICIAL FIBER COMPONENT WITH FERROMAGNITIC ELEMENT THAT INDICATES A LOCAL TREATMENT
EP4065499B1 (en) Method for determining a wear state of components of a suspension means arrangement of an elevator system
DE4217587C2 (en) Plant diagnostic procedures
DE112017006769T5 (en) ROPE AND SUCH A LIFT USING ELEVATOR
DE112016003550T5 (en) BREAK DETECTION DEVICE
EP3774630B1 (en) Method and device for monitoring the parameters of a loadbearing assembly in a lift system
EP3328702A1 (en) Method and system for analysing the wear behaviour of brake linings
EP2956348B1 (en) Monitoring of coupling elements of a vehicle
WO2020151892A1 (en) Belt conveyor and drum for a belt conveyor
DE102019200049A1 (en) A SUSPENSION ASSEMBLY
CH692242A5 (en) Wear plates for equipment and / or machinery of scrap, bulky waste or Abfallaufbereitungl.
DE3822466A1 (en) Method of checking the position and movement of transport equipment moved by rope
DE102017202589A1 (en) Method and device for determining the driving capability of a conveyor system via a torque measurement
DE102017113720A1 (en) Method for lubricating a linear guide
EP3628631B1 (en) Method for detecting state of carriers
EP3724116A1 (en) Method and device for checking an elongate suspension means for lifts, and suspension means of this type
WO2024083463A1 (en) Method for ascertaining the wear state, in particular in order to predict the remaining service life and/or the remaining operating duration, of at least one running strand of a device which uses the at least one running strand for its intended use, device, and computer program product
DE102021000498A1 (en) Method for determining the coefficient of friction in a saddle bearing for ropes

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210802

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INVENTIO AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221012

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020002523

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1548156

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230315

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2939731

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230323

Year of fee payment: 4

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230215

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230615

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230515

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230215

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230215

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230215

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230331

Year of fee payment: 4

Ref country code: ES

Payment date: 20230424

Year of fee payment: 4

Ref country code: CH

Payment date: 20230402

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230215

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230215

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230615

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230516

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230215

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230215

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230215

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230215

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020002523

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230215

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230215

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20231116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230215

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230215

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240328

Year of fee payment: 5

Ref country code: GB

Payment date: 20240319

Year of fee payment: 5

Ref country code: GB

Payment date: 20240319

Year of fee payment: 4