EP3943288A1 - Thermoplastic film and laminated glass - Google Patents

Thermoplastic film and laminated glass Download PDF

Info

Publication number
EP3943288A1
EP3943288A1 EP20773063.1A EP20773063A EP3943288A1 EP 3943288 A1 EP3943288 A1 EP 3943288A1 EP 20773063 A EP20773063 A EP 20773063A EP 3943288 A1 EP3943288 A1 EP 3943288A1
Authority
EP
European Patent Office
Prior art keywords
light
absorber
thermoplastic film
laminated glass
emitting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20773063.1A
Other languages
German (de)
French (fr)
Other versions
EP3943288A4 (en
Inventor
Kynryou CHOU
Yuusuke Oota
Daisuke Nakajima
Takanori Hamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of EP3943288A1 publication Critical patent/EP3943288A1/en
Publication of EP3943288A4 publication Critical patent/EP3943288A4/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10541Functional features of the laminated safety glass or glazing comprising a light source or a light guide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10651Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising colorants, e.g. dyes or pigments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10651Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising colorants, e.g. dyes or pigments
    • B32B17/10669Luminescent agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10678Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising UV absorbers or stabilizers, e.g. antioxidants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers

Definitions

  • the present invention relates a thermoplastic film, and a laminated glass comprising a thermoplastic film.
  • thermoplastic film obtained by interposing a thermoplastic film comprising a resin component between two glass plates and integrating them.
  • the thermoplastic film is formed in many cases with plasticized polyvinyl acetal containing a plasticizer blended in a polyvinyl acetal resin.
  • the laminated glass has widely been used as window glass of vehicles, such as an automobile, airplanes, and buildings because of its safety in that when the laminated glass is broken by receiving external impact, pieces of broken glass hardly scatter.
  • HUD head-up display
  • a thermoplastic film disposed between two sheets of glass comprises a light-emitting sheet comprising a binder resin and a light-emitting material (see, for example, PTL1).
  • a light-emitting material which is used for a light-emitting sheet a fluorescent material that emits light by being irradiated with excitation light is used in some cases.
  • Such a laminated glass comprising a light-emitting sheet when, for example, used for a windshield, enables the windshield to emit light by irradiating the windshield with excitation light, and therefore application of such laminated glass to HUD and the like has been studied.
  • PTL1 discloses: blending an ultraviolet ray absorber in a light-emitting sheet; and providing a resin layer other than a light-emitting sheet, and blending an ultraviolet ray absorber in the resin layer.
  • a windshield of an automobile or the like is irradiated with light from outside, such as sunlight and light of headlights of another automobile. Accordingly, there is a possibility that undesired emission due to such light from outside may occur to a windshield comprising a light-emitting sheet.
  • a fluorescent material contained in a light-emitting sheet emits light by light of a relatively short wavelength, such as ultraviolet rays, in many cases. For that reason, when an ultraviolet ray absorber is used as in PTL1, most of light from outside which excites a fluorescent material is absorbed by the ultraviolet ray absorber, and therefore undesired emission due to light from outside has not been problematic so much in the past.
  • an object of the present invention is to provide a thermoplastic film and a laminated glass that can prevent undesired emission by a light-emitting material even when irradiated with light of an LED light, an HID light, and the like from outside.
  • the present inventors have conducted studies on undesired emission based on light of an LED light, an HID light, and the like from outside to find that light of wavelengths of 400 to 420 nm from outside is a main factor, and by lowering the transmittance of a thermoplastic film and a laminated glass in the region, the problem can be solved, and thereby completed the following present invention.
  • thermoplastic film and a laminated glass that can prevent undesired emission by a light-emitting material even when irradiated with light of an LED light, an HID light, and the like from outside can be provided.
  • thermoplastic film of the present invention comprises a light-emitting layer, wherein the light-emitting layer comprises a thermoplastic resin and a light-emitting material that emits light by being irradiated with excitation light.
  • a transmittance in the whole region of wavelengths of 400 to 420 nm, as measured for laminated glass obtained by bonding two sheets of standard glass with the thermoplastic film of the present invention interposed therebetween, is 25% or less.
  • the thermoplastic film of the present invention can prevent undesired emission based on light from outside which is from an LED light, an HID light, and the like.
  • the principle is not uncertain, but the LED light and the HID light include light in the wavelength region much in some cases, and have high directivity, and therefore light from these light sources is easily incident on a windshield or the like as light of relatively high intensity.
  • a light-emitting material in general has an excitation wavelength of 400 to 420 nm in many cases.
  • the LED light and the HID light are used as a headlight of a bicycle, an automobile, or the like, and the HID light is typically a xenon lamp.
  • the above-described transmittance in the whole region of 400 to 420 nm is preferably 20% or less, and more preferably 16% or less.
  • the lower limit value thereof is not particularly limited, but the maximum value of the transmittance in the whole region of 400 to 420 nm is practically, for example, 0.5% or more, and is, from the viewpoint of making it easy to increase the visible light transmittance, preferably 2% or more.
  • a visible light transmittance Tv as measured for the laminated glass prepared from the thermoplastic film and the standard glass as described above, is 70% or more.
  • the visible light transmittance Tv is preferably 72% or more, more preferably 75% or more, and still more preferably 80% or more.
  • the visible light transmittance Tv With respect to the visible light transmittance Tv, the higher, the better from the viewpoint of the transparency of the thermoplastic film, but the visible light transmittance Tv is practically 99% or less, and is, from the viewpoint of making it easy to lower the transmittance at 400 to 420 nm, 97% or less.
  • the thermoplastic film of the present invention is such that when laminated glass is made as described above, the transmittance at a wavelength of 425 nm, as measured for the laminated glass, is preferably 60% or less.
  • the transmittance at a wavelength of 425 nm is preferably 50% or less, and more preferably 35% or less.
  • the transmittance at a wavelength of 425 nm is not particularly limited, but is, for example, 1% or more, preferably 7% or more, and more preferably 15% or more. By setting the transmittance at 425 nm to the lower limit value of these or more, lowering of the visible light transmittance and coloration of the thermoplastic film can be prevented.
  • the transmittance in the whole region of wavelengths of 400 to 420 nm is a specified value (for example, 25%) or less means that, as will be mentioned later in Examples, when the transmittance is measured at every 1 nm of the wavelengths, all the transmittances are (that is, the maximum value of measured values is) equal to the specified value (for example, 25%) or less.
  • the standard glass clear glass in accordance with JIS R 3211(1998) having a thickness of 2.5 mm and a visible light transmittance of 90.4% is used.
  • the above-described visible light transmittance Tv and transmittance at each wavelength can be used as indexes indicating the transmittances of the thermoplastic film.
  • the visible light transmittance Tv and the transmittance at each wavelength are measured by the methods described in Examples.
  • thermoplastic film of the present invention is such that when the laminated glass is made as described above, the luminance as observed when an HID light irradiation test is conducted for the laminated glass obtained is preferably 20 cd/m 2 or less, more preferably 18 cd/m 2 or less, and still more preferably 16 cd/m 2 or less.
  • the HID light irradiation test is conducted in such a way that when the laminated glass is irradiated with an HID light from one surface of the laminated glass, quantity of light is adjusted in such a way that luminance observed on a side of the one surface is 40 cd/m 2 , and the laminated glass is irradiated with the HID light of the same quantity of light from the other surface to observe luminance on a side of the other surface.
  • the HID light "HAL-320W" manufactured by Asahi Spectra Co., Ltd. may be used, and, for details, the HID light irradiation test is conducted by the method described in Examples.
  • the light-emitting layer comprises a thermoplastic resin and a light-emitting material, as described above.
  • the thermoplastic film comprises the light-emitting layer, and is therefore used as a light-emitting film that emits light by being irradiated with excitation light.
  • the light-emitting material which is used for the light-emitting layer for example, a lanthanoid complex, a light-emitting material having a terephthalic acid ester structure, a light-emitting material having a naphthalimide skeleton, a light-emitting material having a coumarin skeleton, a light-emitting material having a quinoline skeleton, and the like can be used.
  • the light-emitting material may be used singly, or two or more light-emitting materials may be used together.
  • the light-emitting material is preferably a lanthanoid complex, a light-emitting material having a quinoline skeleton, or a light-emitting material having a terephthalic acid ester structure, and more preferably a light-emitting material having a terephthalic acid ester structure.
  • the lanthanoid complex examples include a lanthanoid complex having a ligand containing a halogen atom.
  • the lanthanoid complex having a ligand containing a halogen atom emits light with higher emission intensity by being irradiated with a light beam.
  • Examples of the lanthanoid complex having a ligand containing a halogen atom include a lanthanoid complex having a monodentate ligand containing a halogen atom, and a lanthanoid complex having a multidentate ligand containing a halogen atom, such as a lanthanoid complex having a bidentate ligand containing a halogen atom, a lanthanoid complex having a tridentate ligand containing a halogen atom, a lanthanoid complex having a tetradentate ligand containing a halogen atom, a lanthanoid complex having a pentadentate ligand containing a halogen atom, and a lanthanoid complex having a hexadentate ligand containing a halogen atom.
  • a lanthanoid complex having a bidentate ligand containing a halogen atom, or a lanthanoid complex having a tridentate ligand containing a halogen atom can emit visible rays with high emission intensity by being irradiated with light of a wavelength of 300 to 410 nm.
  • the lanthanoid complex having a bidentate ligand containing a halogen atom, or the lanthanoid complex having a tridentate ligand containing a halogen atom is excellent in heat resistance.
  • the thermoplastic film is used as laminated glass, which will be mentioned later, the thermoplastic film is irradiated with infrared rays in sunlight, and therefore is used in a high-temperature environment in many cases, and accordingly, by using the lanthanoid complex having a bidentate ligand containing a halogen atom, or the lanthanoid complex having a tridentate ligand containing a halogen atom, deterioration of the light-emitting material can be prevented.
  • lanthanoid contains lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, or lutetium.
  • Lanthanoid is preferably neodymium, europium, or terbium, more preferably europium or terbium, and still more preferably europium because further higher emission intensity is obtained.
  • Examples of the bidentate containing a halogen atom include a ligand having a structure represented by the following general formula (1) and a ligand having a structure represented by the following general formula (2).
  • R 1 and R 3 each represent an organic group, at least one of R 1 and R 3 is an organic group containing a halogen atom, and R 2 represents a linear organic group.
  • R 1 and R 3 is preferably a hydrocarbon group, more preferably a C1-10 hydrocarbon group, still more preferably a C1-5 hydrocarbon group, and particularly preferably a C1-3 hydrocarbon group.
  • part of hydrogen atoms may be replaced by an atom other than the hydrogen atom, and a functional group.
  • Examples of the C1-3 hydrocarbon group include a methyl group, an ethyl group, and a propyl group, in which the hydrogen atoms are not substituted, and a methyl group, an ethyl group, and a propyl group in which part of the hydrogen atoms is replaced by a halogen atom.
  • a halogen atom in the methyl group, the ethyl group, and the propyl group in which part of the hydrogen atoms is replaced by a halogen atom a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom can be used.
  • the C1-3 hydrocarbon group is preferably the methyl group, the ethyl group, or the propyl group in which part of the hydrogen atoms is replaced by a halogen atom, and more preferably a trifluoromethyl group because of emitting light with high emission intensity.
  • R 2 is preferably a C1 or more alkylene group, more preferably a C1-5 alkylene group, and most preferably a methylene group of C1. Part of the hydrogen atoms in the C1 or more alkylene group may be replaced by an atom other than the hydrogen atom, and a functional group.
  • the lanthanoid complex having a ligand containing a halogen atom may have a ligand not containing a halogen atom as long as the lanthanoid complex has at least one ligand containing a halogen atom.
  • the ligand not containing a halogen atom include a ligand that is the same as the general formula (1) except that the ligand does not contain a halogen atom, and a ligand having a structure represented by any one of the following general formulas (2) to (8).
  • the hydrogen atoms may be replaced by -COOR, -SO 3 , -NO 2 , -OH, an alkyl group, -NH 2 , or the like.
  • two Ns may exist anywhere in the bipyridine skeleton.
  • two Ns exist at the 2- and the 2'-position, the 3- and the 3'-position, the 4- and the 4'-position, the 2- and the 3'-position, the 2- and the 4'-position, or the 3- and the 4'-position of the bipyridine skeleton.
  • two Ns preferably exist at the 2- and the 2'-position.
  • two Ns may exist anywhere in the bipyridine skeleton. Among others, two Ns preferably exist at the 1- and the 10-position. In the formula (4), two Ns may exist anywhere in the bipyridine skeleton. Among others, two Ns preferably exist at the 1- and the 10-position. In the formula (5), three Ns may exist anywhere in the terpyridine skeleton.
  • R 4 in the center represents a C1 or more linear organic group.
  • two R 5 s each represent a C1 or more linear organic group.
  • n represents an integer of 1 or 2.
  • Examples of the lanthanoid complex having a bidentate ligand containing a halogen atom include tris(trifluoroacetylacetone)phenanthroline europium (Eu(TFA) 3 phen), tris(trifluoroacetylacetone)diphenylphenanthroline europium (Eu(TFA) 3 dpphen), tris(hexafluoroacetylacetone)diphenylphenanthroline europium, tris(hexafluoroacetylacetone)bis(triphenylphosphine) europium, tris(trifluoroacetylacetone)2,2'-bipyridine europium, tris(hexafluoroacetylacetone)2,2'-bipyridine europium, tris(5,5,6,6,7,7,7-heptafluoro-2,4-pentanedionate)2,2'-bipyridine europium ([Eu(FPD
  • lanthanoid complex having a bidentate ligand containing a halogen atom examples include tris(trifluoroacetylacetone)phenanthroline terbium (Tb(TFA) 3 phen), tris(trifluoroacetylacetone)diphenylphenanthroline terbium (Tb(TFA) 3 dpphen), tris(hexafluoroacetylacetone)diphenylphenanthrohne terbium, tris(hexafluoroacetylacetone)bis(triphenylphosphine) terbium, tris(trifluoroacetylacetone)2,2'-bipyridine terbium, tris(hexafluoroacetylacetone)2,2'-bipyridine terbium, tris(5,5,6,6,7,7,7-heptafluoro-2,4-pentanedionate)2,2'-bipyridine terbium ter
  • halogen atom in the lanthanoid complex having a ligand containing a halogen atom a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom can be used.
  • a fluorine atom is suitable because the fluorine atom stabilizes the structure of the ligand.
  • a lanthanoid complex having a bidentate ligand containing a halogen atom or the lanthanoid complexes having a tridentate ligand containing a halogen atom
  • a lanthanoid complex having a bidentate ligand having an acetylacetone skeleton containing a halogen atom is suitable because of being excellent in initial light emission properties in particular.
  • Examples of the lanthanoid complex having a bidentate ligand having an acetylacetone skeleton containing a halogen atom include Eu(TFA) 3 phen, Eu(TFA) 3 dpphen, Eu(HFA) 3 phen, [Eu(FPD) 3 ]bpy, [Eu(TFA) 3 ]tmphen, and [Eu(FPD) 3 ]phen.
  • the structures of these lanthanoid complexes each having a bidentate ligand having an acetylacetone skeleton containing a halogen atom are shown below.
  • lanthanoid complex having a bidentate ligand having an acetylacetone skeleton containing a halogen atom examples include Tb(TFA) 3 phen, Tb(TFA) 3 dpphen, Tb(HFA) 3 phen, [Tb(FPD) 3 ]bpy, [Tb(TFA) 3 ]tmphen, and [Tb(FPD) 3 ]phen.
  • the lanthanoid complex having a ligand containing a halogen atom is preferably in the form of particles. Being in the form of particles makes it easier to disperse the lanthanoid complex having a ligand containing a halogen atom finely in the light-emitting layer.
  • a preferred lower limit of the average particle diameter of the lanthanoid complex is 0.01 ⁇ m
  • a preferred upper limit is 10 ⁇ m
  • a more preferred lower limit is 0.03 ⁇ m
  • a more preferred upper limit is 1 ⁇ m.
  • the lanthanoid complex is dispersed in methanol (refractive index of solvent: 1.3292, viscosity of solvent: 0.59 mPa ⁇ s) at a concentration of about 0.1% by mass, and is then dispersed uniformly by applying an ultrasonic wave, and the measurement is performed using a laser diffraction/scattering particle size distribution measurement apparatus (manufactured by HORIBA, Ltd.) at a liquid temperature of 25°C.
  • the average particle diameter is defined as a primary particle diameter (d50) where the cumulative volume is 50%.
  • the light-emitting material having a terephthalic acid ester structure emits light by being irradiated with excitation light.
  • Examples of the light-emitting material having a terephthalic acid ester structure include a compound having a structure represented by the following general formula (9) and a compound having a structure represented by the following general formula (10). These may be used singly, or two or more of these may be used.
  • R 6 represents an organic group, and x is 1, 2, 3, or 4.
  • x is preferably 1 or 2, and x is more preferably 2 because the visible light transmittance Tv of the thermoplastic film increases further.
  • the compound more preferably has a hydroxy group at the 2-position or the 5-position of the benzene ring, and still more preferably has a hydroxy group at the 2-position and the 5-position of the benzene ring.
  • the organic group of R 6 is preferably a hydrocarbon group, more preferably a C1-10 hydrocarbon group, still more preferably a C1-5 hydrocarbon group, and particularly preferably a C1-3 hydrocarbon group.
  • the hydrocarbon group is preferably an alkyl group.
  • Examples of the compound having a structure represented by the general formula (9) include diethyl-2,5-dihydroxyterephthalate and dimethyl-2,5-dihydroxyterephthalate.
  • the compound having a structure represented by the general formula (9) is preferably diethyl-2,5-dihydroxylterephthalate.
  • R 7 represents an organic group
  • R 8 and R 9 each represent a hydrogen atom or an organic group
  • y is 1, 2, 3, or 4.
  • the organic group of R 7 is preferably a hydrocarbon group, more preferably a C1-10 hydrocarbon group, still more preferably a C1-5 hydrocarbon group, and particularly preferably a C1-3 hydrocarbon group.
  • the hydrocarbon group is preferably an alkyl group.
  • the organic group of R 8 and R 9 is, for example, a C1-10 hydrocarbon group, and the organic group is preferably a C1-5 hydrocarbon group, and more preferably a C1-3 hydrocarbon group, and the hydrocarbon group is preferably an alkyl group.
  • each of R 8 and R 9 is preferably a hydrogen atom.
  • y is preferably 1 or 2, and still more preferably 2.
  • the compound more preferably has NR 8 R 9 at the 2-position or the 5-position of the benzene ring, and still more preferably has NR 8 R 9 at the 2-position and the 5-position of the benzene ring.
  • the compound having a structure represented by the general formula (10) is preferably diethyl-2,5-diaminoterephthalate.
  • the light-emitting material having a naphthalimide skeleton include 4-bromo-1,8-naphtalimide, 4-amino-1,8-naphthalimide, 4-methoxy-N-methylnaphthalic acid imide, naphthalimide, 4-aminonaphthalimide, N-methyl-4-aminonaphthalimide, N-ethyl-4-aminonaphthalimide, N-propyl-4-aminonaphthalimide, N-n-butyl-4-aminonaphthalimide, 4-acetylaminonaphthalimide, N-methyl-4-acetylaminonaphthalimide, N-ethyl-4-acetylaminonaphthalimide, N-propyl-4-acetylaminonaphthalimide, N-n-butyl-4-acetylaminonaphthalimide, N-methyl-4-methoxynaphthalimide, N-ethyl-4-meth
  • Examples of the light-emitting material having a coumarin skeleton include a derivative having an electron donating substituent at the 7-position of the coumarin ring. More specific examples thereof include: coumarin-based coloring matter, such as 3-(2'-benzothiazolyl)-7-diethylaminocoumarin (coumarin 6), 3-(2'-benzoimidazolyl)-7-N,N-diethylaminocoumarin (coumarin 7), and 3-(2'-N-methylbenzoimidazolyl)-7-N,N-diethylaminocoumarin (coumarin 30), which are derivatives having an amino group at the 7-position of the coumarin ring, and 2,3,5,6-1H,4H-tetrahydro-8-trifluoromethylquinolizine(9,9a,1-gh)coumarin (coumarin 153); coumarin coloring matter-based dyes, such as Basic Yellow 51; and 7-hydroxycoumarin, 3-cyano-7-hydroxycoumarin, and 7-
  • the light-emitting material having a quinoline skeleton include 2-(3-oxoindolin -1-ylidene)methylquinoline.
  • a light-emitting material having an excitation wavelength within a range of 400 to 420 nm may be used as the light-emitting material.
  • the excitation wavelength of the light-emitting material is within the range, undesired emission due to light from outside can adequately be suppressed by lowering the transmittance of the thermoplastic film in 400 to 420 nm. That the excitation wavelength exists within a range of 400 to 420 nm means that the light-emitting material is excited by light in a range of wavelengths of 400 to 420 nm, but the maximum excitation wavelength does not have to exist in a range of 400 to 420 nm.
  • the light-emitting layer comprises a light-emitting material and emits light by excitation light
  • the excitation wavelength of the light-emitting material is, for example, 250 to 500 nm, preferably 260 to 450 nm, and more preferably 280 to 430 nm.
  • the maximum excitation wavelength exists within these ranges, undesired emission due to light from outside can effectively be prevented by lowering the transmittance at a wavelengths of 400 to 420 nm, as described above.
  • the maximum excitation wavelength is a wavelength of excitation light, where when the thermoplastic sheet is irradiated vertically with the excitation light, the intensity of fluorescence detected under a condition of the maximum emission wavelength is the maximum.
  • the content of the light-emitting material in the light-emitting layer is preferably 8 parts by mass or less, more preferably 5 part by mass or less, still more preferably 1.5 parts by mass or less, and further still more preferably 0.8 parts by mass or less based on 100 parts by mass of the thermoplastic resin. Setting the content to the upper limit value of these or less improves the transparency of the thermoplastic film, making it easy to increase the visible light transmittance Tv.
  • the content of the light-emitting material in the light-emitting layer is preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, still more preferably 0.2 parts by mass or more, and further still more preferably 0.3 parts by mass or more based on 100 parts by mass of the thermoplastic resin. Setting the content of the light-emitting material to the lower limit value of these or more enables a desired image and the like to be displayed with good visibility by irradiation with excitation light.
  • the transmittance of the light-emitting layer at a wavelength of 420 nm is not particularly limited, and is, for example, 10 to 70%, but is preferably 15 to 50%, and more preferably 20 to 40%.
  • the transmittance of the light-emitting layer at a wavelength of 430 nm is usually higher than the transmittance at a wavelength of 420 nm, and is preferably 40 to 85%, and more preferably 50 to 80%.
  • the light-emitting layer of the present invention comprises a thermoplastic resin.
  • the light-emitting layer comprises a thermoplastic resin
  • the light-emitting layer easily acts as a bonding layer, making the bondability to another layer, such as a glass plate, good.
  • the thermoplastic resin is a matrix component in the light-emitting layer, and the above-described light-emitting material is dispersed or dissolved in the thermoplastic resin.
  • thermoplastic resin examples include, but not particularly limited to, a polyvinyl acetal resin, an ethylene-vinyl acetate copolymer resin, an ionomer resin, a polyurethane resin, and a thermoplastic elastomer. Using these resins makes it easy to secure the bondability to a glass plate.
  • the thermoplastic resin may be used singly, or two or more thermoplastic resins may be used together.
  • the thermoplastic resin is preferably at least one selected from the group consisting of a polyvinyl acetal resin and an ethylene-vinyl acetate copolymer resin, and the thermoplastic resin is more preferably a polyvinyl acetal resin in that the polyvinyl acetal resin, particularly when used together with a plasticizer, exhibits excellent bondability to glass.
  • the polyvinyl acetal resin is obtained by acetalizing polyvinyl alcohol with an aldehyde.
  • Polyvinyl alcohol is obtained by, for example, saponifying a polyvinyl ester, such as polyvinyl acetate.
  • the polyvinyl acetal resin may be used singly, or two or more polyvinyl acetal resins may be used together.
  • the aldehyde which is used for acetalization is not particularly limited, but a C1-10 aldehyde is suitably used, more preferably a C2-6 aldehyde, and still more preferably a C4 aldehyde.
  • Examples of the C1-10 aldehyde include, but not particularly limited to, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethylbutyraldehyde, n-hexyl aldehyde, n-octyl aldehyde, n-nonyl aldehyde, n-decyl aldehyde, formaldehyde, acetaldehyde, and benzaldehyde.
  • n-butyraldehyde, n-hexyl aldehyde, and n-valeraldehyde are preferable, and more preferably n-butyraldehyde.
  • These aldehydes may be used singly, or two or more of these aldehydes may be used together.
  • polyvinyl alcohol having a degree of saponification of 80 to 99.8 mol% is generally used.
  • the average degree of polymerization of the polyvinyl alcohol is preferably 500 or more, and is preferably 4000 or less in order to adjust the average degree of polymerization of the polyvinyl acetal resin within a desired range.
  • the average degree of polymerization of the polyvinyl alcohol is more preferably 1000 or more, and is more preferably 3600 or less.
  • the average degree of polymerization of the polyvinyl alcohol is determined by a method in accordance with JIS K6726 "Testing methods for polyvinyl alcohol.”
  • the number of carbon atoms of the acetal group contained in the polyvinyl acetal resin is not particularly limited, but is preferably 1 to 10, more preferably 2 to 6, and still more preferably 4.
  • the acetal group is particularly preferably a butyral group, and accordingly the polyvinyl acetal resin is preferably a polyvinyl butyral resin.
  • the degree of acetalization of the polyvinyl acetal resin is preferably 40 mol% or more, and is preferably 85 mol% or less.
  • the degree of acetalization is more preferably 60 mol% or more, and is more preferably 75 mol% or less.
  • the degree of acetalization means a degree of butyralization.
  • the amount of the hydroxy group in the polyvinyl acetal resin is preferably 15 mol% or more, and is preferably 35 mol% or less. Setting the amount of the hydroxy group to 15 mol% or more easily makes the bondability to a glass plate or the like good, which easily makes the penetration resistance or the like of laminated glass good. When the polyvinyl acetal resin is used, for example, for laminated glass, setting the amount of the hydroxy group to 35 mol% or less prevents the laminated glass from being too hard.
  • the amount of the hydroxy group in the polyvinyl acetal resin is more preferably 20 mol% or more, and is more preferably 33 mol% or less.
  • the degree of acetylation (the amount of the acetyl group) of the polyvinyl acetal resin is preferably 0.1 mol% or more, and is preferably 20 mol% or less. Setting the degree of acetylation to the lower limit value or more easily makes the compatibility with a plasticizer or the like good. Setting the degree of acetylation to the upper limit value or less enhances the humidity resistance of the light-emitting layer. From these viewpoints, the degree of acetylation is more preferably 0.3 mol% or more, and still more preferably 0.5 mol% or more, and is more preferably 10 mol% or less, and still more preferably 5 mol% or less.
  • the amount of the hydroxy group, the degree of acetalization (the degree of butyralization), and the degree of acetylation can be calculated from the results of measurement by methods in accordance with JIS K6728 "Testing methods for polyvinyl butyral.”
  • the average degree of polymerization of the polyvinyl acetal resin is preferably 500 or more, and is preferably 4000 or less. Setting the average degree of polymerization to 500 or more makes the penetration resistance of laminated glass good. Setting the average degree of polymerization to 4000 or less makes it easy to shape laminated glass.
  • the degree of polymerization is more preferably 1000 or more, and is more preferably 3600 or less.
  • the average degree of polymerization of the polyvinyl acetal resin is the same as the average degree of polymerization of polyvinyl alcohol, which is a raw material, and can be determined by the average degree of polymerization of the polyvinyl alcohol.
  • the ethylene-vinyl acetate copolymer resin may be a non-crosslinked ethylene-vinyl acetate copolymer resin or a high-temperature-crosslinked ethylene-vinyl acetate copolymer resin.
  • a resin of an ethylene-vinyl acetate-modified product such as a saponified product of an ethylene-vinyl acetate copolymer and a hydrolysate of ethylene-vinyl acetate, can also be used.
  • the vinyl acetate content of the ethylene-vinyl acetate copolymer resin is preferably 10% by mass or more and 50% by mass or less, and more preferably 20 mass or more and 40% by mass or less. Setting the vinyl acetate content to the lower limit value of these or more enhances the bondability to glass, and easily makes the penetration resistance of laminated glass good when the ethylene-vinyl acetate copolymer resin is used for laminated glass. Setting the vinyl acetate content to the upper limit value of these or less enhances the breaking strength of the light-emitting layer, making the impact resistance of laminated glass good.
  • the ionomer resin is not particularly limited, and various ionomer resins can be used. Specific examples thereof include an ethylene-based ionomer, a styrene-based ionomer, a perfluorocarbon-based ionomer, a telechelic ionomer, and a polyurethane ionomer. Among these, an ethylene-based ionomer is preferable in terms of making the mechanical strength, the durability, the transparency, and the like of laminated glass, which will be mentioned later, good, and in terms of having excellent bondability to glass.
  • an ionomer of an ethylene/unsaturated carboxylic acid copolymer is suitably used because of having excellent transparency and toughness.
  • the ethylene/unsaturated carboxylic acid copolymer is a copolymer having at least a constitutional unit derived from ethylene and a constitutional unit derived from an unsaturated carboxylic acid, and may have a constitutional unit derived from an additional monomer.
  • Examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, and maleic acid, and acrylic acid and methacrylic acid are preferable, and methacrylic acid is particularly preferable.
  • Examples of the additional monomer include an acrylic acid ester, a methacrylic acid ester, and 1-butene.
  • the ethylene/unsaturated carboxylic acid copolymer preferably has 75 to 99 mol% of the constitutional unit derived from ethylene, and preferably has 1 to 25 mol% of the constitutional unit derived from an unsaturated carboxylic acid when the amount of all the constitutional units of the copolymer is assumed to be 100 mol%.
  • the ionomer of the ethylene/unsaturated carboxylic acid copolymer is an ionomer resin obtained by neutralizing or crosslinking at least part of the carboxyl groups of the ethylene/unsaturated carboxylic acid copolymer with a metal ion, and the degree of neutralization of the carboxyl groups is usually 1 to 90%, and preferably 5 to 85%.
  • Examples of the ion source in the ionomer resin include alkali metals, such as lithium, sodium, potassium, rubidium, and cesium, and polyvalent metals, such as magnesium, calcium, and zinc, and sodium and zinc are preferable.
  • alkali metals such as lithium, sodium, potassium, rubidium, and cesium
  • polyvalent metals such as magnesium, calcium, and zinc, and sodium and zinc are preferable.
  • the method for producing the ionomer resin is not particularly limited, and the ionomer resin can be produced by a conventionally known production method.
  • the ionomer resin when an ionomer of an ethylene/unsaturated carboxylic acid copolymer is used as the ionomer resin, radical copolymerization is performed on, for example, ethylene and an unsaturated carboxylic acid at a high temperature and a high pressure to produce an ethylene/unsaturated carboxylic acid copolymer.
  • the ionomer of the ethylene/unsaturated carboxylic acid copolymer can be produced by reacting the ethylene/unsaturated carboxylic acid copolymer and a metal compound containing the above-described ion source.
  • the polyurethane resin examples include a polyurethane obtained by reacting an isocyanate compound and a diol compound, and a polyurethane obtained by reacting an isocyanate compound, a diol compound, and further, a chain extender, such as a polyamine.
  • the polyurethane resin may be a polyurethane resin containing a sulfur atom. In that case, part or the whole of the diol may be selected from the group consisting of a polythiol and a sulfur-containing polyol.
  • the polyurethane resin can make the bondability to organic glass good. Therefore, the polyurethane resin is suitably used when the glass plate is organic glass.
  • thermoplastic elastomer examples include a styrene-based thermoplastic elastomer and an aliphatic polyolefin.
  • the styrene-based thermoplastic elastomer is not particularly limited, and a known styrene-based thermoplastic elastomer can be used.
  • the styrene-based thermoplastic elastomer generally has a polymer block of a styrene monomer, which is a hard segment, and a polymer block of a conjugated diene compound or a hydrogenated block thereof, which is a soft segment.
  • styrene-based thermoplastic elastomer examples include a styrene-isoprene diblock copolymer, a styrene-butadiene diblock copolymer, a styrene-isoprene-styrene triblock copolymer, a styrene-butadiene/isoprene-styrene triblock copolymer, a styrene-butadiene-styrene triblock copolymer, and hydrogenated products thereof.
  • the aliphatic polyolefin may be a saturated aliphatic polyolefin, or may be an unsaturated aliphatic polyolefin.
  • the aliphatic polyolefin may be a polyolefin obtained by using a chain olefin as a monomer, or may be a polyolefin obtained by using a cyclic olefin as a monomer. From the viewpoint of enhancing the storage stability or the like of the light-emitting layer effectively, the aliphatic polyolefin is preferably a saturated aliphatic polyolefin.
  • Examples of the material for the aliphatic polyolefin include ethylene, propylene, 1-butene, trans-2-butene, cis-2-butene, 1-pentene, trans-2-pentene, cis-2-pentene, 1-hexene, trans-2-hexene, cis-2-hexene, trans-3-hexene, cis-3-hexene, 1-heptene, trans-2-heptene, cis-2-heptene, trans-3-heptene, cis-3-heptene, 1-octene, trans-2-octene, cis-2-octene, trans-3-octene, cis-3-octene, trans-4-octene, cis-4-octene, cis-4-octene, 1-nonene, trans-2-nonene, cis-2-nonene, trans-3-nonene, cis
  • the light-emitting layer of the present invention may further comprise a plasticizer.
  • the light-emitting layer when comprising a plasticizer, is made more flexible, and as a result, the flexibility of the thermoplastic film and laminated glass can be improved, and the penetration resistance of the laminated glass is also improved. Further, the light-emitting layer can also exhibit high bondability to a glass plate.
  • the plasticizer is particularly effective when contained in the light-emitting layer in the case where a polyvinyl acetal resin is used as the thermoplastic resin.
  • plasticizer examples include organic ester plasticizers, such as a monobasic organic acid ester and a polybasic organic acid ester, and phosphorus plasticizers, such as an organic phosphorus plasticizer and an organic phosphite plasticizer. Among others, an organic ester plasticizer is preferable.
  • Examples of the monobasic organic acid ester include an ester of a glycol and a monobasic organic acid.
  • examples of the glycol include a polyalkylene glycol in which each alkylene unit has 2 to 4 carbon atoms, and preferably 2 or 3 carbon atoms, and the number of repeating alkylene units is 2 to 10, and preferably 2 to 4.
  • the glycol may be a monoalkylene glycol having 2 to 4 carbon atoms, and preferably 2 or 3 carbon atoms, and having a number of repeating units of 1.
  • glycol examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, and butylene glycol.
  • Examples of the monobasic organic acid include a C3-10 organic acid, and specific examples thereof include butyric acid, isobutyric acid, caproic acid, 2-ethyl butyric acid, 2-ethylpentanoic acid, heptylic acid, n-octylic acid, 2-ethylhexylic acid, n-nonylic acid, and decylic acid.
  • the monobasic organic acid examples include triethylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylhexanoate, triethylene glycol dicaprylate, triethylene glycol di-n-octanoate, triethylene glycol di-n-heptanoate, tetraethylene glycol di-n-heptanoate, tetraethylene glycol di-2-ethylhexanoate, diethylene glycol di-2-ethylbutyrate, diethylene glycol di-2-ethylhexanoate, dipropylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylpentanoate, tetraethylene glycol di-2-ethylbutyrate, diethylene glycol dicaprylate, triethylene glycol di-n-heptanoate, tetraethylene glycol di-n-heptanoate, triethylene glycol di-2-ethylbutyrate
  • polybasic organic acid ester examples include an ester compound of a C4-12 dibasic organic acid, such as adipic acid, sebacic acid, or azelaic acid, and a C4-10 alcohol.
  • the C4-10 alcohol may be linear, may have a branched structure, or may have a cyclic structure.
  • polybasic organic acid ester examples include dibutyl sebacate, dioctyl azelate, dihexyl adipate, dioctyl adipate, hexyl cyclohexyl adipate, diisononyl adipate, heptyl nonyl adipate, dibutylcarbitol adipate, and a mixed ester of adipic acid.
  • the polybasic organic acid ester may be an oil-modified sebacic alkyd or the like.
  • the mixed ester of adipic acid include an adipic acid ester prepared from two or more alcohols selected from the group consisting of C4-9 alkyl alcohols and C4-9 cyclic alcohols.
  • organic phosphorus plasticizer examples include phosphoric acid esters, such as tributoxy ethyl phosphate, isodecyl phenyl phosphate, and triisopropyl phosphate.
  • the plasticizer may be used singly, or two or more plasticizers may be used together.
  • the plasticizer is preferably an ester of a glycol and a monobasic organic acid among those described above, and triethylene glycol-di-2-ethylhexanoate (3GO) is particularly suitably used.
  • the content of the plasticizer in the light-emitting layer is not particularly limited, but is preferably 20 parts by mass or more, and is preferably 80 parts by mass or less based on 100 parts by mass of the thermoplastic resin. Setting the content of the plasticizer to 20 parts by mass or more makes laminated glass moderately flexible, making the penetration resistance and the like good. By setting the content of the plasticizer to 80 parts by mass or less, separation of the plasticizer from the light-emitting layer is prevented.
  • the content of the plasticizer is more preferably 30 parts by mass or more, and still more preferably 35 parts by mass or more, and is more preferably 70 parts by mass or less, and still more preferably 63 parts by mass or less.
  • thermoplastic resin, or the thermoplastic resin and the plasticizer are the main components in the light-emitting layer, and the total amount of the thermoplastic resin and the plasticizer is usually 70% by mass or more, preferably 80% by mass or more, and still more preferably 90% by mass or more and less than 100% by mass based on the total amount of the light-emitting layer.
  • the thickness of the light-emitting layer is preferably 0.05 to 1.5 mm, more preferably 0.1 to 1 mm, and still more preferably 0.2 to 0.8 mm. Setting the thickness of the light-emitting layer to 0.05 mm or more enables the light-emitting layer to exhibit sufficient emission performance. In addition, the penetration resistance of laminated glass is made good. Setting the thickness of the light-emitting layer to 1.5 mm or less prevents lowering of the transparency of the light-emitting layer.
  • the thermoplastic film of the present invention preferably comprises a visible light absorber.
  • the visible light absorber is a compound which absorbs light in a wavelength region of at least 400 to 420 nm.
  • a compound having relatively high heat resistance may be used in order to prevent deterioration in the production process and the use environment thereof.
  • the visible light absorber may be a compound which absorbs light in a wavelength region of at least 400 to 420 nm, but does not necessarily have a maximum absorption wavelength peak at 400 to 420 nm.
  • the maximum absorption peak of the visible light absorber exists in, for example, 360 nm or more and 780 nm or less so that certain quantity of light in a wavelength region of 400 to 420 nm can be absorbed.
  • the maximum absorption wavelength peak of the visible light absorber may exist in a wavelength region of 400 to 420 nm, or in the vicinity of the wavelength region, and specifically, the maximum absorption wavelength peak of the visible light absorber is at preferably 375 nm or more and 430 nm or less, more preferably at 380 nm or more and 430 nm or less, and still more preferably at 390 nm or more and 425 nm or less.
  • the maximum absorption wavelength peak of the visible light absorber, and an ultraviolet ray absorber can be measured by the following method.
  • a chloroform solution is obtained by mixing 0.0002 to 0.002 parts by mass of the compound to be measured based on 100 parts by mass of chloroform.
  • the obtained chloroform solution is put in a quartz cell for a spectrophotometer, having an optical path length of 1.0 cm.
  • the transmittance from 300 to 2500 nm is measured using an automatic recording spectrophotometer ("U4100" manufactured by Hitachi, Ltd.) to determine a maximum absorption wavelength peak.
  • a maximum absorption wavelength peak refers to a wavelength where the transmittance shows a minimum value, and a plurality of such wavelengths exists in some cases, and in those cases, the maximum absorption wavelength peak refers to a wavelength where the minimum value is the smallest.
  • the visible light absorber examples include an indole-based compound, a benzotriazole-based compound, a cyanoacrylate-based compound, a benzophenone-based compound, and a triazine-based compound.
  • the visible light absorber is preferably an indole-based compound, a benzotriazole-based compound, a cyanoacrylate-based compound, or a benzophenone-based compound, and is more preferably an indole based compound.
  • the indole-based compound is a compound having an indole skeleton and being capable of absorbing light in a wavelength region of at least 400 to 420 nm.
  • Preferred examples of the indole-based compound include a compound represented by the following general formula (12).
  • R 21 represents a C1-3 alkyl group
  • R 22 represents a hydrogen atom, a C1-10 alkyl group, or a C7-10 aralkyl group.
  • Each of the alkyl groups of R 21 and R 22 may be an alkyl group having a linear structure, or may be an alkyl group having a branched structure.
  • R 21 in the formula (12) include a methyl group, an ethyl group, an isopropyl group, and a n-propyl group, among others, R 21 is preferably a methyl group, an ethyl group, or an isopropyl group, and from the viewpoint of light resistance, R 21 is more preferably a methyl group or an ethyl group.
  • R 22 in the formula (12) is preferably a C1-10 alkyl group, and more preferably a C1-8 alkyl group.
  • the C1-10 alkyl group include a methyl group, an ethyl group, an isopropyl group, a n-propyl group, an isobutyl group, a n-butyl group, a pentyl group, a hexyl group, a 2-ethylhexyl group, and a n-octyl group.
  • Examples of the C7-10 aralkyl group include a benzyl group, a phenylethyl group, a phenylpropyl group, and a phenylbutyl group.
  • the indole-based compound is not particularly limited, but the maximum absorption wavelength peak is, for example, at 380 to 400 nm, and preferably 385 to 395 nm.
  • indole-based compound a commercially available product can also be used, and examples of the commercially available product include "UA-3911” manufactured by ORIENT CHEMICAL INDUSTRIES CO., LTD.
  • the benzotriazole-based compound which is used as the visible light absorber examples include a benzotriazole-based compound having a heterocyclic group which is bonded to the 5- and the 6-position of the benzotriazole skeleton, and forms a 5-membered ring or a 6-membered ring with the phenyl ring.
  • a benzotriazole-based compound generally absorbs light in the ultraviolet ray region, and when a heterocyclic group is further formed, the absorption wavelength thereby shifts to the longer wavelength side. Therefore, the benzotriazole-based compound having the above-described structure can absorb light in a wavelength region of 400 to 420 nm.
  • the maximum absorption wavelength peak can be positioned in a wavelength region of 400 to 420 nm, or in the vicinity of the wavelength region, as described above.
  • Example of the atom which forms a heterocyclic group include a nitrogen atom, an oxygen atom, and a sulfur atom.
  • Two or more polycyclic skeletons in which a heterocyclic ring is bonded to a benzotriazole skeleton may be bonded to each other through a crosslinking group.
  • the benzotriazole-based compound the absorption wavelength of which shifts to the longer wavelength side as described above, is described in, for example, International Publication WO 2008/000646 .
  • benzotriazole-based compound a commercially available product can also be used, and examples of the commercially available product include "Tinuvin 970" manufactured by BASF Japan, Ltd.
  • Examples of the cyanoacrylate-based compound which is used as the visible light absorber include a cyanoacrylate-based compound having a basic skeleton of 2-cyano-3,3-diphenylacrylate to which an electron withdrawing group is bonded as a substituent on the benzene ring.
  • Examples of the electron withdrawing group include a halogen group and an ester group.
  • the electron withdrawing group may be a heterocyclic group which forms a 5-membered ring, a 6-membered ring, or the like with the benzene ring, or may be a heterocyclic group which forms a polycyclic ring with the benzene ring.
  • a compound having a 2-cyano-3,3-diphenylacrylate skeleton absorbs ultraviolet rays, and when an electron withdrawing group is bonded as described above, the absorption wavelength region thereby shifts to the longer wavelength side, so that the compound can absorb light in the wavelength region of 400 to 420 nm.
  • the benzophenone-based compound which is used as the visible light absorber examples include a benzophenone-based compound having a benzophenone skeleton to which an electron withdrawing group is bonded as a substituent on the benzene ring.
  • the electron withdrawing group examples include a halogen group and an ester group, and the electron withdrawing group may be a heterocyclic group which forms a 5-membered ring, a 6-membered ring, or the like with the benzene ring, or may be a heterocyclic group which forms a polycyclic ring with the benzene ring.
  • a compound having a benzophenone skeleton absorbs ultraviolet rays, and when an electron withdrawing group is bonded as described above, the absorption wavelength region thereby shifts to the longer wavelength side, so that the compound can absorb light in a wavelength region of 400 to 420 nm.
  • triazine-based compound which is used as the visible light absorber a compound having a triazine skeleton can be used, and, for example, 2,4,6-tris(2-hydroxy-4-hexyloxy-3-methylphenyl)-1,3,5-triazine and the like can be used.
  • a commercially available product can also be used, and examples of the commercially available product include "ADK STAB LA-F70" manufactured by ADEKA Corporation.
  • Examples of another preferred embodiment of the visible light absorber include a visible light absorber comprising at least one or more selected from the group consisting of dyes and pigments. Using such a visible light absorber can prevent undesired emission by the light-emitting material even when the thermoplastic film is irradiated with light of an LED light, an HID light, and the like from outside. In addition, by using a dye or a pigment, the light shieldability can be secured, and privacy protectability and the like can be enhanced.
  • the dye examples include, but not particularly limited to, yellow dyes, such as an anthraquinone dye, a quinoline dye, an isoquinoline dye, a monoazo dye, a disazo dye, a quinophthalone dye, a perylene dye, a triphenylmethane dye, and a methine dye, a phthalocyanine compound, a naphthalocyanine compound, and an anthracyanine compound.
  • yellow dyes such as an anthraquinone dye, a quinoline dye, an isoquinoline dye, a monoazo dye, a disazo dye, a quinophthalone dye, a perylene dye, a triphenylmethane dye, and a methine dye, a phthalocyanine compound, a naphthalocyanine compound, and an anthracyanine compound.
  • yellow dyes such as an anthraquinone dye, a quinoline dye, an isoquinoline dye
  • the yellow dye is preferably a perylene dye
  • the phthalocyanine compound is preferably a phthalocyanine compound containing a vanadium atom or a copper atom, and more preferably a phthalocyanine compound having a copper atom.
  • An anthraquinone dye is also preferable.
  • black pigments such as titanium black, carbon black, and aniline black, and the like can be used, and among others, carbon black is preferable.
  • the pigment is preferably used together with the above-described dye, and particularly from the viewpoint of preventing undesired emission by the light-emitting material even when the thermoplastic film is irradiated with light of an LED light, an HID light, and the like from outside, a phthalocyanine compound, a perylene dye, and a black pigment, such as carbon black, are preferably used together, or an anthraquinone dye and a black pigment, such as carbon black, are preferably used together.
  • the visible light absorber may be contained in the light-emitting layer, but preferably, an additional layer other than the light-emitting layer is provided, and the visible light absorber is contained in the additional layer (hereinafter, also referred to as "absorber-containing layer").
  • the absorber-containing layer may be laminated directly or through another layer on the light-emitting layer, and the thermoplastic film may have a multi-layered structure.
  • the thermoplastic film comprises the absorber-containing layer, and is used for window glass, such as a windshield for an automobile
  • the light-emitting layer may be disposed on the indoor side (that is, as for an automobile, the inner side of the car), and the absorber-containing layer may be disposed on the outdoor side (that is, as for an automobile, the outer side of the car).
  • the absorber-containing layer is disposed on the outdoor side, when light from outside is incident on the thermoplastic film, the light from outside is incident on the light-emitting layer through the absorber-containing layer.
  • thermoplastic film For that reason, light of wavelengths of 400 to 420 nm is absorbed sufficiently by the visible light absorber in the absorber-containing layer, and therefore undesired emission in the light-emitting layer is suppressed even when light of an LED light, an HID light, and the like from outside is incident on the thermoplastic film.
  • thermoplastic film when the thermoplastic film is irradiated with excitation light from an excitation light source on the indoor side, the excitation light from the excitation light source is incident on the light-emitting layer without being absorbed by the visible light absorber by providing the absorber-containing layer comprising a visible light absorber. Therefore, even when the thermoplastic film comprises a visible light absorber, the emission of the light-emitting layer by excitation light is not inhibited by the visible light absorber.
  • the transmittance of the absorber-containing layer is preferably lower than the transmittance of the light-emitting layer over the whole region of wavelengths of 420 to 430 nm. That the transmittance is lower over the whole region of wavelengths of 420 to 430 nm means that when the transmittances of the absorber-containing layer and the light-emitting layer are measured every 1 nm of the wavelengths in 420 to 430 nm, and the transmittances at each wavelength are compared, the transmittance of the absorber-containing layer is lower than the transmittance of the light-emitting layer in all the wavelengths.
  • the transmittance of the absorber-containing layer at a wavelength of 420 nm is not particularly limited, and is, for example, 5 to 65%, but is more preferably 8 to 40%, and still more preferably 10 to 35%.
  • the transmittance of the absorber-containing layer at a wavelength of 430 nm is usually higher than the transmittance at a wavelength of 420 nm, and is preferably 35 to 80%, and more preferably 40 to 70%.
  • the absorber-containing layer preferably comprises a thermoplastic resin in addition to the visible light absorber.
  • the absorber-containing layer easily bonds to the light-emitting layer, and a barrier layer, which will be mentioned later, making it easy to shape the thermoplastic film.
  • the bondability of the thermoplastic film to a glass plate is easily enhanced.
  • the visible light absorber, and an ultraviolet ray absorber, which will be mentioned later may be dispersed or dissolved in the thermoplastic resin.
  • the thermoplastic resin may be used singly, or two or more thermoplastic resins may be used together.
  • the thermoplastic resin is preferably at least one selected from the group consisting of a polyvinyl acetal resin and an ethylene-vinyl acetate copolymer resin, and the thermoplastic resin is more preferably a polyvinyl acetal resin in that the polyvinyl acetal resin, particularly when used together with a plasticizer, exhibits excellent bondability to glass.
  • the absorber-containing layer comprises a thermoplastic resin
  • the same types of resins may be used, or different types of resins may be used as the thermoplastic resin in the light-emitting layer and the thermoplastic resin in the absorber-containing layer, but the same types of resins are preferably used.
  • the thermoplastic resin in the light-emitting layer is a polyvinyl acetal resin
  • the thermoplastic resin in the absorber-containing layer is preferably a polyvinyl acetal resin, too.
  • thermoplastic resin in the light-emitting layer is an ethylene-vinyl acetate copolymer resin
  • thermoplastic resin in the absorber-containing layer is preferably an ethylene-vinyl acetate copolymer resin, too.
  • the absorber-containing layer when comprising a thermoplastic resin, may further comprise a plasticizer.
  • the absorber-containing layer when comprising a plasticizer, is made to be more flexible, and, when used, for example, for laminated glass, makes the laminated glass flexible. Further, the absorber-containing layer can exhibit enhanced bondability to a glass plate.
  • the absorber-containing layer is particularly effective when comprising a plasticizer in the case where a polyvinyl acetal resin is used as the thermoplastic resin.
  • plasticizer examples include organic ester plasticizers, such as a monobasic organic acid ester and a polybasic organic acid ester, and phosphorus plasticizers, such as an organic phosphorus plasticizer and an organic phosphite plasticizer.
  • organic ester plasticizers such as a monobasic organic acid ester and a polybasic organic acid ester
  • phosphorus plasticizers such as an organic phosphorus plasticizer and an organic phosphite plasticizer.
  • the plasticizer are as described above. Among these, an organic ester plasticizer is preferable, and triethylene glycol-di-2-ethylhexanoate (3GO) is particularly suitably used.
  • the plasticizer may be used singly, or two or more plasticizers may be used together.
  • the content of the plasticizer in the absorber-containing layer is not particularly limited, but a preferred lower limit is 30 parts by mass, and a preferred upper limit is 70 parts by mass based on 100 parts by mass of the thermoplastic resin. Setting the content of the plasticizer to 30 parts by mass or more makes laminated glass moderately flexible, making handlability and the like good. By setting the content of the plasticizer to 70 parts by mass or less, separation of the plasticizer from the absorber-containing layer is prevented. A more preferred lower limit of the content of the plasticizer is 35 parts by mass, and a more preferred upper limit of the content of the plasticizer is 63 parts by mass.
  • the absorber-containing layer may be such that the thermoplastic resin, or the thermoplastic resin and the plasticizer are the main components, and the total amount of the thermoplastic resin and the plasticizer is usually 70% by mass or more, preferably 80% by mass or more, and still more preferably 90% by mass or more based on the total amount of the absorber-containing layer.
  • the content of the visible light absorber in the absorber-containing layer is not particularly limited as long as the transmittance is 25% or less over the whole region of 400 to 420 nm, but is preferably 0.0005 parts by mass or more, more preferably 0.001 parts by mass or more, and still more preferably 0.002 parts by mass or more based on 100 parts by mass of the thermoplastic resin.
  • the content of the visible light absorber in the absorber-containing layer is, for example, 1.8 parts by mass or less, preferably 0.5 parts by mass or less, more preferably 0.3 parts by mass or less, still more preferably 0.1 parts by mass or less, and further still more preferably 0.01 parts by mass or less.
  • the absorber-containing layer is a layer substantially free of a light-emitting material.
  • the absorber-containing layer is substantially free of a light-emitting material, thereby it is made easier to prevent undesired emission due to light from outside.
  • Being substantially free of a light-emitting material means not blending a light-emitting material intentionally in the absorber-containing layer, and there is a possibility that a light-emitting material is unavoidably contained in the absorber-containing layer.
  • a barrier layer which will be mentioned later, is not provided, a light-emitting material migrates into the absorber-containing layer from the light-emitting layer in some cases.
  • a light-emitting material is unavoidably mixed in the production process.
  • the content of the light-emitting material in the absorber-containing layer is sufficiently smaller than the content of the light-emitting material in the light-emitting layer.
  • the content of the light-emitting material based on 100 parts by mass of the thermoplastic resin in the absorber-containing layer is sufficiently smaller than the content of the light-emitting material based on 100 parts by mass of the thermoplastic resin in the light-emitting layer, and may be, for example, less than 1/2, and preferably less than 1/10.
  • the thermoplastic film of the present invention preferably comprises an ultraviolet ray absorber.
  • the ultraviolet ray absorber may be contained in the light-emitting layer, or may be contained in the absorber-containing layer, but is preferably contained at least in the absorber-containing layer, and is more preferably contained in both of the light-emitting layer and the absorber-containing layer. That is, the absorber-containing layer preferably comprises an ultraviolet ray absorber in addition to the above-described visible light absorber.
  • the absorber-containing layer comprises an ultraviolet ray absorber in addition to the visible light absorber, thereby incidence of not only the above-described visible light in a wavelength region of 400 to 420 nm but also ultraviolet rays on the light-emitting layer can effectively be prevented. For that reason, light in a short wavelength region, included in light of an LED light, an HID light, and the like from outside is absorbed further by the absorber-containing layer, and therefore undesired emission by the light-emitting material can more adequately be prevented.
  • the light-emitting layer and the absorber-containing layer comprise an ultraviolet ray absorber
  • deterioration of the light-emitting layer and the absorber-containing layer by light due to sunlight or the like can also be prevented.
  • the thermoplastic film for example, for window glass
  • transmission of ultraviolet rays into the indoor side (the inner side of a car) through the window glass can be prevented.
  • the ultraviolet ray absorber is a compound having a maximum absorption wavelength peak in a wavelength region of 300 nm or more and less than 360 nm, preferably 330 nm or more and less than 360 nm, and more preferably 345 nm or more and 358 nm or less.
  • the ultraviolet ray absorber for example, a compound having a malonic acid ester skeleton, a compound having an oxalic anilide skeleton, a compound having a benzotriazole skeleton, a compound having a benzophenone skeleton, a compound having a triazine skeleton, a compound having a benzoate skeleton, and a compound having a hindered amine skeleton can be used.
  • a compound having a benzotriazole skeleton (benzotriazole-based compound) is preferable.
  • Preferred specific examples of the benzotriazole-based compound include a compound represented by the following general formula (13).
  • the compound represented by the following formula (13) is preferably contained in the light-emitting layer or the absorber-containing layer, or both of these, but is more preferably contained in both of the light-emitting layer and the absorber-containing layer.
  • R 31 represents a hydrogen atom, a C1-8 alkyl group, or a C4-20 alkoxycarbonylalkyl group
  • R 32 represents a hydrogen atom or a C1-8 alkyl group
  • X is a chlorine atom or a hydrogen atom.
  • the alkyl groups of R 31 and R 32 may each be an alkyl group having a linear structure, or an alkyl group having a branched structure.
  • the alkoxycarbonylalkyl group may be an alkoxycarbonylalkyl group having a linear structure, or an alkoxycarbonylalkyl group having a branched structure.
  • R 31 and R 32 include a hydrogen atom, a methyl group, an ethyl group, a n-propyl group, an iso-propyl group, a n-butyl group, a tert-butyl group, a pentyl group, a hexyl group, and an octyl group.
  • R 31 examples include a methoxycarbonylpropyl group, an octyloxycarbonylpropyl group.
  • R 31 is preferably a hydrogen atom or an alkyl group, and is particularly preferably a hydrogen atom, a methyl group, a tert-butyl group, a pentyl group, or an octyl group.
  • R 31 and R 32 may be the same or different.
  • Specific examples of the compound represented by the formula (13) include 2-(3-t-butyl-5-methyl-2-hydroxyphenyl)-5-chlorobenzotriazole, 2-(3,5-di-t-butyl-2-hydroxyphenyl)-5-chlorobenzotriazole, octyl 3-[3-tert-butyl-5-(5-chloro-2H-benzotriazol-2-yl)-4-hydroxyphenyl]propionate, methyl 3-(5-chloro-2H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenylpropionate, and 2-(3,5-di-tert-amyl-2-hydroxyphenyl)benzotriazole.
  • the content of the ultraviolet ray absorber in the light-emitting layer is, for example, 0.01 mass or more, preferably 0.05 parts by mass or more, and more preferably 0.1 parts by mass or more based on 100 parts by mass of the thermoplastic resin.
  • the content of the ultraviolet ray absorber in the light-emitting layer is, for example, 1.5 parts by mass or less, preferably 0.7 parts by mass or less, and more preferably 0.35 parts by mass or less based on 100 parts by mass of the thermoplastic resin.
  • the content of the ultraviolet ray absorber in the absorber-containing layer is, for example, 0.1 mass or more, preferably more than 0.2 mass, more preferably 0.4 parts by mass or more, and still more preferably 0.6 parts by mass or more based on 100 parts by mass of the thermoplastic resin.
  • the content of the ultraviolet ray absorber in the absorber-containing layer is preferably 2.0 parts by mass or less, more preferably 1.5 parts by mass or less, and still more preferably 1.2 parts by mass or less based on 100 parts by mass of the thermoplastic resin.
  • the content of the ultraviolet ray absorber in the absorber-containing layer is preferably 2.0 parts by mass or less, more preferably 1.5 parts by mass or less, and still more preferably 1.2 parts by mass or less based on 100 parts by mass of the thermoplastic resin.
  • the content of the ultraviolet ray absorber based on 100 parts by mass of the thermoplastic resin in the absorber-containing layer is preferably larger than the content of the ultraviolet ray absorber based on 100 parts by mass of the thermoplastic resin in the light-emitting layer.
  • the difference in the content based on 100 parts by mass of the thermoplastic resin is, for example, 0.1 parts by mass or more, preferably 0.3 parts by mass or more, and more preferably 0.5 parts by mass or more.
  • coloring matter other than the light-emitting material may be blended in the thermoplastic film.
  • the coloring matter may be contained in the absorber-containing layer or the light-emitting layer, or both of these, but is preferably contained in the absorber-containing layer.
  • the absorber-containing layer comprises a visible light absorber
  • coloration thereby occurs in the absorber-containing layer in some cases, but by allowing coloring matter to be contained, the color of the absorber-containing layer can be changed into a desired color.
  • the coloring matter is not particularly limited, and may be any of pigments, dyes, and the likes, or may be any coloring matter of blue coloring matter, red coloring matter, yellow coloring matter, green coloring matter, and the like.
  • the thermoplastic film may comprise additives such as an infrared ray absorber, an antioxidant, a light stabilizer, an adhesive strength modifier, a fluorescent brightener, a crystal nucleating agent, and a dispersant.
  • the light-emitting layer may comprise one or more selected from the group consisting of these.
  • the absorber-containing layer as well as the light-emitting layer may comprise one or more selected from the group consisting of these.
  • the infrared ray absorber is not particularly limited as long as it has performance of shielding infrared rays, but, for example, tin-doped indium oxide particle is suitable.
  • the absorber-containing layer when comprising an infrared ray absorber, can exhibit high heat shieldability.
  • antioxidants include, but not particularly limited to, 2,2-bis[[[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionyl]oxy]methyl]propane-1,3-diol, 1,3-bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], 4,4'-thiobis(6-tert-butyl-3-methylphenol), 4,4'-dimethyl-6,6'-di(tert-butyl)[2,2'-methylenebis(phenol)], 2,6-di-t-butyl-p-cresol, and 4,4'-butylidenebis-(6-t-butyl-3-methylphenol).
  • crystal nucleating agent examples include, but not particularly limited to, dibenzylidene sorbitol, dibenzylidene xylitol, dibenzylidene dulcitol, dibenzylidene mannitol, and calixarene.
  • the crystal nucleating agent is suitably used when an ethylene-vinyl acetate copolymer resin is used as the thermoplastic resin.
  • the adhesive strength modifier for example, various magnesium salts or potassium salts, and the like are used.
  • the absorber-containing layer comprises a visible light absorber, but the absorber-containing layer does not have to comprise the above-described visible light absorber.
  • the absorber-containing layer may comprise the above-described ultraviolet ray absorber, and the transmittance in 400 to 420 nm may be lowered by the ultraviolet ray absorber.
  • the content of the ultraviolet ray absorber in the absorber-containing layer in the case where the absorber-containing layer does not contain a visible light absorber may be made relatively large, and is 0.35 parts by mass or more, preferably 0.4 parts by mass or more, and more preferably 0.7 parts by mass or more based on 100 parts by mass of the thermoplastic resin.
  • the content of the ultraviolet ray absorber in the absorber-containing layer in that case is preferably 2.0 parts by mass or less, more preferably 1.5 parts by mass or less, and still more preferably 1.2 parts by mass or less.
  • the thermoplastic film may further comprise a barrier layer between the light-emitting layer and the absorber-containing layer.
  • the barrier layer is a layer for preventing diffusion of the light-emitting material, and specifically prevents migration of the light-emitting material blended in the light-emitting layer into the absorber-containing layer. For that reason, the light-emitting material stays in the light-emitting layer, and the ultraviolet ray absorber and the visible light absorber stay in the absorber-containing layer even after a long period of use, and therefore undesired emission due to light from outside can be suppressed.
  • the barrier layer may be constituted by a resin layer.
  • the resin which forms the resin layer include polyvinyl acetal resins, such as a polyvinyl butyral resin, polyester resins, such as polyethylene terephthalate, and acrylic resins.
  • acrylic resin an acrylic polymer comprising a constitutional unit derived from a hydroxy group-containing (meth)acrylate is preferable, and specifically polyhydroxypropyl methacrylate (HPMA resin), polyhydroxyethyl methacrylate (HEMA resin), and the like are preferable.
  • HPMA resin polyhydroxypropyl methacrylate
  • HEMA resin polyhydroxyethyl methacrylate
  • polyethylene terephthalate polyhydroxypropyl methacrylate, polyhydroxyethyl methacrylate are preferable, and among others, polyethylene terephthalate (PET) is preferable.
  • PET polyethylene terephthalate
  • Polyethylene terephthalate may be modified PET, and, for example, cyclohexanedimethylene-modified PET (PETG) is preferable.
  • the resin which is used for the barrier layer may be used singly, or two or more such resins may be used together.
  • the barrier layer may be composed of the resin only, but an additive may be blended in the barrier layer as long as the function of the barrier layer is not inhibited.
  • the additive include an antioxidant, a light stabilizer, a fluorescent brightener, and a crystal nucleating agent. The details on these are as described above.
  • the barrier layer is preferably substantially free of a plasticizer.
  • the barrier layer does not comprise a plasticizer, diffusion of the light-emitting material and the like can thereby be prevented.
  • the barrier layer is preferably substantially free of a plasticizer.
  • substantially free of a plasticizer means that a plasticizer may be contained in an amount not impairing the function of the barrier layer, or a plasticizer mixed therein, for example, unintentionally and unavoidably may be contained.
  • the content of the plasticizer in the barrier layer may be, for example, less than 2 parts by mass, and is preferably less than 1 part by mass, more preferably less than 0.5 parts by mass, and most preferably 0 parts by mass based on 100 parts by mass of the thermoplastic resin.
  • the thickness of the barrier layer is preferably 15 to 300 ⁇ m. By setting the thickness of the barrier layer to 15 ⁇ m or more, the barrier ability is made good, and diffusion of the light-emitting material and the like can be prevented. By setting the thickness of the barrier layer to 300 ⁇ m or less, the flexibility of the thermoplastic film can be secured. From the viewpoint of barrier performance, the thickness of the barrier layer is more preferably 10 ⁇ m or more, and still more preferably 25 ⁇ m or more. From the viewpoint of flexibility of the thermoplastic film, the thickness of the barrier layer is more preferably 200 ⁇ m or less, and still more preferably 150 ⁇ m or less.
  • thermoplastic film 10 may be composed of a light-emitting layer 11 singly (see Fig. 1 ), but preferably comprises the light-emitting layer 11 and an absorber-containing layer 12, as shown in Figs. 2 and 3 .
  • the thermoplastic film 10 comprises the light-emitting layer 11 and the absorber-containing layer 12 laminated on the light-emitting layer 11 as shown in Fig. 2 , and may be composed of these two layers, but may comprise another layer, and, for example, a barrier layer 13 may be provided between the light-emitting layer 11 and the absorber-containing layer 12, as shown in Fig. 3 .
  • the thermoplastic film 10 is used for window glass, and preferably window glass for an automobile, such as a windshield, as will be mentioned later, and one surface 10A is disposed on the indoor side (as for an automobile, the inner side of the car), and the other surface 10B is disposed on the outdoor side (as for an automobile, the outer side of the car).
  • the thermoplastic film 10 is irradiated with excitation light from an excitation light source to allow the light-emitting layer 11 to emit light, and the excitation light from the excitation light source is incident from the indoor side, that is, from the one surface 10A of the thermoplastic film 10.
  • the emission of the light-emitting layer 11 is generally observed from the side of the one surface 10A (that is, the indoor side).
  • the thermoplastic film 10 comprises the light-emitting layer 11 and the absorber-containing layer 12, as shown in Figs. 2 and 3 , the light-emitting layer 11 may be disposed on the side of the one surface 10A (that is, the indoor side), and the absorber-containing layer 12 may be disposed on the side of the other surface 10B (that is, the outdoor side). Due to such constitution, part of light from outside (such as light of wavelengths of 400 to 420 nm) is absorbed by the absorber-containing layer 12, and undesired emission of the light-emitting layer 12 due to light from outside can be prevented, as described above.
  • part of light from outside such as light of wavelengths of 400 to 420 nm
  • the excitation light from the excitation light source is incident on the light-emitting layer 11 without being absorbed by the absorber-containing layer 12, and therefore lowering of the emission intensity of the light-emitting layer 11 can be prevented even when the absorber-containing layer 12 is provided.
  • Respective components (such as the light-emitting material, the visible light absorber, and the ultraviolet ray absorber) contained in the light-emitting layer 11 and the absorber-containing layer 12 are usually dispersed in a uniform manner in each layer, but may be unevenly distributed.
  • the content rate of the light-emitting material may be adjusted in such a way as to be larger in the region on the side of the one surface 10A of the light-emitting layer 11 than in the region on the side of the other surface 10B, or, for example, may be adjusted in such a way that the content rate changes gradually.
  • the content rate of the visible light absorber may be adjusted in such a way as to be larger in the region on the side of the other surface 10B of the light-emitting layer 11 than in the region on the side of the one surface 10A, or, for example, may be adjusted in such a way that the content rate changes gradually.
  • the content rate of the ultraviolet ray absorber may also be adjusted in such a way as to be larger in the region on the side of the other surface 10B of the light-emitting layer 11 than in the region on the side of the one surface 10A, or, for example, may be adjusted in such a way that the content rate changes gradually.
  • thermoplastic film in another aspect of the present invention is a thermoplastic film comprising a light-emitting layer, wherein the light-emitting layer comprises a thermoplastic resin, and a light-emitting material that emits light by being irradiated with excitation light, and the thermoplastic film further comprises a visible light absorber having a maximum absorption wavelength peak in a wavelength region of 360 nm or more and 780 nm or less.
  • thermoplastic film having such constitution the transmittance in the whole region of 400 to 420 nm can be lowered, and even when light from outside which is from an LED light and an HID light is incident on the thermoplastic film, the light-emitting material is not excited sufficiently, so that undesired emission can be suppressed.
  • the thermoplastic film in the aspect preferably further comprises an ultraviolet ray absorber having a maximum absorption wavelength peak in a wavelength region of 300 nm or more and less than 360 nm.
  • an ultraviolet ray absorber having a maximum absorption wavelength peak in a wavelength region of 300 nm or more and less than 360 nm.
  • thermoplastic film comprises an ultraviolet ray absorber
  • thereby deterioration by light due to sunlight or the like can be prevented
  • the thermoplastic film is used, for example, for window glass, transmission of ultraviolet rays into the indoor side (the inner side of a car) through the window glass can also be prevented.
  • thermoplastic film in one aspect of the present invention Details on the constitution of the thermoplastic film in one aspect of the present invention are as described above, and therefore the description is omitted.
  • thermoplastic film of the present invention may be used by being laminated on a glass plate, and may be used by being laminated on, for example, one glass plate, but is preferably used as an interlayer film for laminated glass.
  • the interlayer film for laminated glass is disposed between two glass plates, and is used for bonding the two glass plates, as will be mentioned later.
  • Laminated glass of the present invention comprises a first glass plate, a second glass plate, and a thermoplastic film disposed between the first glass plate and the second glass plate.
  • the first glass plate and the second glass plate are bonded with the thermoplastic film. That is, the thermoplastic film is used as the interlayer film for laminated glass.
  • the laminated glass of the present invention comprises a light-emitting material that emits light by irradiation with excitation light, and has a visible light transmittance Tv of 70% or more and a transmittance in the whole region of wavelengths of 400 to 420 nm of 25% or less.
  • Tv visible light transmittance
  • Tv visible light transmittance
  • undesired emission based on light from outside which is from an LED light, an HID light, and the like can be prevented by lowering the transmittance in the whole region of 400 to 420 nm.
  • the transmittance of the laminated glass in the whole region of 400 to 420 nm is, as mentioned in the above-described Thermoplastic Film of the present invention, preferably 20% or less, and more preferably 16% or less.
  • the maximum value of the transmittance of the laminated glass in the whole region of 400 to 420 nm is practically, for example, 0.5% or more, and is, from the viewpoint of making it easy to increase the visible light transmittance, preferably 2% or more.
  • the laminated glass of the present invention has a visible light transmittance Tv of 70% or more.
  • the visible light transmittance Tv of the laminated glass is preferably 72% or more, more preferably 75% or more, and still more preferably 80% or more.
  • the visible light transmittance Tv of the laminated glass With respect to the visible light transmittance Tv of the laminated glass, the higher, the better from the viewpoint of the transparency, but the visible light transmittance Tv of the laminated glass is practically 99% or less, and is, from the viewpoint of lowering the transmittance in 400 to 420 nm, 97% or less.
  • the laminated glass of the present invention preferably has, as described in Thermoplastic Film, a transmittance at a wavelength of 425 nm of 60% or less, more preferably 50% or less, and still more preferably 35% or less.
  • the transmittance of the laminated glass at a wavelength of 425 nm is not particularly limited, but is, for example, 1% or more, preferably 7% or more, and more preferably 15% or more.
  • the laminated glass of the present invention preferably has a luminance, as measured when the HID light irradiation test is conducted for the laminated glass, of 20 cd/m 2 or less, more preferably 18 cd/m 2 or less, and still more preferably 16 cd/m 2 or less.
  • the HID light irradiation test is as described above, and, for details, the HID light irradiation test is conducted by the method described in Examples.
  • the glass plate which is used in the laminated glass may be any of inorganic glass and organic glass, but is preferably inorganic glass.
  • the inorganic glass include, but not particularly limited to, clear glass, float plate glass, polished plate glass, figured glass, meshed plate glass, wired plate glass, and green glass.
  • organic glass generally called resin glass is used, and examples thereof include, but not particularly limited to, organic glass formed from a resin such as polycarbonate, an acrylic resin, an acrylic copolymer resin, or a polyester.
  • the two glass plates may be constituted by the same types of materials, or may be constituted by different materials from each other.
  • one and the other may be organic glass and inorganic glass, respectively, but both of the two glass plates are preferably inorganic glass or organic glass.
  • each glass plate is not particularly limited, but is, for example, about 0.1 to 15 mm, and preferably 0.5 to 5 mm.
  • the thicknesses of respective glass plates may be the same as or different from each other, but are preferably the same.
  • thermoplastic film of the present invention may be used as the thermoplastic film disposed between the first glass plate and the second glass plate. That is, the thermoplastic film such that when laminated glass is prepared using the thermoplastic film and the standard glass, the laminated glass has a visible light transmittance Tv of 70% or more and a transmittance in the whole region of wavelengths of 400 to 420 nm of 25% or less may be used.
  • the thermoplastic film comprising a visible light absorber having a maximum absorption wavelength peak in a wavelength region of 360 nm or more and 780 nm or less may be used.
  • thermoplastic film 10 of the present invention When the above-described thermoplastic film 10 of the present invention is used for the laminated glass 20 of the present invention, the first and the second glass plates 21, 22 may be bonded with the thermoplastic film 10 interposed therebetween, as shown in Figs. 1 to 3 .
  • the first glass plate 21 is bonded to the one surface 10A of the thermoplastic film 10, and is thereby disposed on the indoor side (as for an automobile, the inner side of the car), and the second glass plate 22 is bonded to the other surface 10B, and is thereby disposed on the outdoor side (as for an automobile, the outer side of the car).
  • thermoplastic film which is used for the laminated glass of the present invention is not limited to the above-described thermoplastic film of the present invention, and may have some other constitution.
  • the thermoplastic film may be a film such that the film comprises the above-described light-emitting layer comprising a thermoplastic resin and a light-emitting material, but when laminated glass is prepared using the standard glass, the transmittance in the whole region of wavelengths of 400 to 420 nm is not 25% or less, and the film does not comprise the above-described visible light absorber.
  • the thermoplastic film may be composed of the light-emitting layer singly, but an additional layer may further be laminated in an appropriate manner.
  • a thermoplastic resin layer may be used as the additional layer.
  • the thermoplastic resin layer is a layer not comprising the above-described light-emitting material and visible light absorber, but comprising a thermoplastic resin, and, if necessary, may comprise an ultraviolet ray absorber and other additives.
  • the thermoplastic resin layer may have the constitution as described in light-emitting layer, except that the thermoplastic resin layer does not comprise a light-emitting material, and the specific contents thereof are as described above. The same applies to those mentioned simply as "the thermoplastic resin layer" in the following description.
  • thermoplastic film which is used for the laminated glass of the present invention may be a thermoplastic film not comprising a light-emitting layer but comprising an absorber-containing layer.
  • thermoplastic film may be composed of the absorber-containing layer singly, but an additional layer may further be laminated.
  • additional layer the thermoplastic resin layer may be used.
  • thermoplastic film which is used for the laminated glass of the present invention does not have to comprise both of the light-emitting layer and the absorber-containing layer, and in such a case, the thermoplastic film may be constituted by the thermoplastic resin layer.
  • the laminated glass may comprise at least any one of the light-emitting layer and the absorber-containing layer as an additional member other than the thermoplastic film.
  • the laminate glass can thereby be allowed to emit light even when the thermoplastic film does not comprise a light-emitting layer.
  • the transmittance can thereby be lowered to 25% or less over the whole region of wavelengths of 400 to 420 nm even when the transmittance at wavelengths of 400 to 420 nm cannot be lowered by the thermoplastic film.
  • the light-emitting layer and the absorber-containing layer each provided as the additional member may each be, for example, a coat formed on any one of the surfaces of the first and the second glass plates.
  • the light-emitting layer constituted by a coat is, for example, a coat comprising a binder component comprising a thermosetting resin, a thermoplastic resin, or the like, and a light-emitting material.
  • a light-emitting layer can be formed by coating a glass plate with a paint comprising a binder component and a light-emitting material, and, if necessary, conducting drying, curing, and the like.
  • an additive such as an ultraviolet ray absorber, may be contained in the paint.
  • the content, the type, and the like of the light-emitting material may appropriately be adjusted in such a way that the laminated glass and the light-emitting layer have the above-described optical properties (such as, for example, the transmittance and the maximum excitation wavelength).
  • the absorber-containing layer constituted by a coat is a coat comprising a binder component comprising a thermosetting resin, a thermoplastic resin, or the like, and at least one absorber of the visible light absorber and the ultraviolet ray absorber.
  • Such an absorber-containing layer can be formed by coating a glass plate with a paint comprising a binder component and an absorber, and, if necessary, conducting drying, curing, and the like. If necessary, an additive other than the absorber may be contained in the paint.
  • the contents, the types, and the like of the visible light absorber and the ultraviolet ray absorber which are used may appropriately be adjusted in such a way that the laminated glass and the absorber-containing layer have the above-described optical properties (such as, for example, the transmittance).
  • the laminated glass may comprise both of the light-emitting layer and the absorber-containing layer as a whole.
  • one of the light-emitting layer and the absorber-containing layer may be a coat formed on any one of the surfaces of the first and the second glass plates, and the other may be contained in the thermoplastic film (the interlayer layer for laminated glass).
  • the light-emitting layer may be disposed on the indoor side (as for an automobile, the inner side of the car) with respect to the absorber-containing layer.
  • thermoplastic film 30 when a thermoplastic film 30 comprises the light-emitting layer 11, the absorber-containing layer 12 may be a coat formed on any one of surfaces 22A, 22B of the second glass plate 22.
  • Figs. 4 and 5 show an aspect such that the thermoplastic film 30 is composed of the light-emitting layer 11 singly, but a layer other than the light-emitting layer 11 may be provided.
  • a layer may be, for example, the thermoplastic resin layer.
  • thermoplastic film 30 when the thermoplastic film 30 comprises the absorber-containing layer 12, the light-emitting layer 11 may be a coat formed on any one of surfaces 21A, 21B of the first glass plate 21.
  • Figs. 6 and 7 show an aspect such that the thermoplastic film 30 is composed of the absorber-containing layer 12 singly, but a layer other than the absorber-containing layer 12 may be provided. Such a layer may be, for example, the above-described thermoplastic resin layer.
  • thermoplastic film 30 contains neither the light-emitting layer 11 nor the absorber-containing layer 12
  • the light-emitting layer 11 may be formed on any one of surfaces 21A, 21B of the first glass plate 21
  • the absorber-containing layer 12 may be formed on any one of the surfaces 22A, 22B of the second glass plate 22.
  • the first glass plate 21 is disposed on the indoor side (as for an automobile, the inner side of the car), and the second glass plate 22 is disposed on the outdoor side (as for an automobile, the outer side of the car).
  • the laminated glass of the present invention comprises both of the light-emitting layer and the absorber-containing layer, and the absorber-containing layer is disposed on the outdoor side, thereby light of 400 to 420 nm included in light from outside can effectively be absorbed by the absorber-containing layer, and it is made easy to prevent undesired emission in the light-emitting layer due to light from outside.
  • the light-emitting layer emits light with high emission efficiency by the excitation light.
  • the laminated glass of the present invention is used as, for example, window glass, and more specifically may be used for window glass of various vehicles, such as an automobile, a train, a ship, and an airplane, and various buildings, such as an office building, an apartment, a single house, a hall, and a gymnasium, and the like.
  • the window glass is disposed at, for example, external surfaces of various buildings, and external surfaces of various vehicles, and light from outside may be incident from the outdoor side toward the indoor side through the window glass.
  • the laminated glass is preferably used for window glass of a vehicle, and particularly for window glass for an automobile.
  • the laminated glass can thereby display various images by the emission from the light-emitting layer.
  • Light from outside more specifically light from a headlight, such as an LED light and an HID light, is incident on window glass for a vehicle, particularly window glass for an automobile in some cases, but even when such light from outside is incident on the laminated glass of the present invention, undesired emission by the light-emitting layer can be prevented.
  • a headlight such as an LED light and an HID light
  • the window glass for an automobile may be any of a windshield, rear glass, side glass, and roof glass, but is preferably used for a windshield.
  • the laminated glass comprising a light-emitting layer is used for a windshield, the laminated glass can suitably be used for a HUD application.
  • the present invention also provides an image display system comprising the above-described laminated glass and a light source.
  • the laminated glass may be window glass, the first glass plate is disposed on the indoor side (as for an automobile, the inner side of the car), and the second glass plate is disposed on the outdoor side (as for an automobile, the outer side of the car).
  • the light source is not particularly limited as long as it emits excitation light capable of exciting the light-emitting material contained in the laminated glass, and a laser light source, an LED light source, a xenon lamp, or the like is used.
  • the light source may be disposed indoors (as for an automobile, inside the car), and the first glass plate may thereby be irradiated with excitation light from the light source.
  • the laminated glass is irradiated with excitation light from the light source, the light-emitting material in the laminated glass emits light, and an image is displayed in the laminated glass.
  • the image display system of the present invention can suitably be used as HUD of an automobile.
  • the light-emitting layer may be formed with, for example, a thermoplastic resin composition comprising materials that constitute the light-emitting layer, such as a thermoplastic resin, a light-emitting material, and a plasticizer, an ultraviolet ray absorber, and other additives, which are added as necessary.
  • the absorber-containing layer may be formed with, for example, a thermoplastic resin composition comprising materials that constitute the absorber-containing layer, such as a thermoplastic resin, at least any absorber of a visible light absorber and an ultraviolet ray absorber, and a plasticizer, and other additives, which are added as necessary.
  • the light-emitting layer and the absorber-containing layer may be prepared by subjecting the thermoplastic resin compositions obtained by kneading the materials that constitute respective layers to extrusion shaping, press molding, or the like.
  • thermoplastic film of the present invention is composed of, for example, the light-emitting layer singly, the light-emitting layer prepared in the manner as described above may be used as the thermoplastic film.
  • the thermoplastic film of the present invention comprises a multi-layered structure of two layers or more, the thermoplastic film can be produced by laminating respective layers (for example, the light-emitting layer, the barrier layer, and the absorber-containing layer) that constitute the thermoplastic film, and then conducting thermocompression bonding or the like.
  • the laminated glass can also be produced in a similar manner, and can be produced by laminating respective layers that constitute the thermoplastic film between two glass plates, and then conducting thermocompression bonding or the like.
  • the coat may be formed on the surface of the glass plate in advance before the thermoplastic film is bonded to the glass plate.
  • the transmittances of the light-emitting layer and the absorber-containing layer in 420 to 430 nm were measured in accordance with JIS R 3211(1998) using a spectrophotometer ("U-4100" manufactured by Hitachi High-Tech Corporation). Table 1 describes the transmittances of respective layers at wavelengths of 420 and 430 nm.
  • Table 1 also describes whether or not the transmittance of the absorber-containing layer is lower than the transmittance of the light-emitting layer over the whole region of wavelengths of 420 to 430 nm in the row of "Absorber-containing layer ⁇ light-emitting layer.”
  • "Absorber-containing layer ⁇ light-emitting layer” is denoted as "YES” in Table 1, or as "NO” otherwise.
  • the transmittance of laminated glass at every 1 nm of wavelengths from 400 to 425 nm was measured in accordance with JIS R 3211(1998) using a spectrophotometer ("U-4100" manufactured by Hitachi High-Tech Corporation).
  • Table 1 shows the transmittances of the laminated glass at 400, 420, and 425 nm, and the maximum value of the transmittance in 400 to 420 nm.
  • the visible light transmittance Tv of the laminated glass was determined by measuring the visible light transmittance of the laminated glass at wavelengths of 380 to 780 nm using a spectrophotometer ("U-4100" manufactured by Hitachi High-Tech Corporation) in accordance with JIS R 3211(1998).
  • the resultant laminated glass was irradiated from the side of the light-emitting layer (that is, the first glass plate) at an angle of 90° with an HID light (a xenon lamp, trade name "HAL-320W,” manufactured by Asahi Spectra Co., Ltd.) from a position 30 cm away from the laminated glass.
  • HID light a xenon lamp, trade name "HAL-320W,” manufactured by Asahi Spectra Co., Ltd.
  • the luminance of emission was measured using a luminance meter ("SR-3AR" manufactured by TOPCON TECHNOHOUSE CORPORATION), which was disposed at an angle of 45° with respect to the surface of the first glass plate and at a position where the distance from the surface of the first glass plate was 35 cm, to adjust the quantity of light of the HID light in such a way that the luminance of emission was 40 cd/m 2 .
  • SR-3AR manufactured by TOPCON TECHNOHOUSE CORPORATION
  • the laminated glass was irradiated from the side of the absorber-containing layer (that is, the second glass plate) at an angle of 90° with the HID light with the above-described quantity of light of the HID light.
  • the luminance of emission was measured from an angle of 45° with respect to the surface of the second glass plate using the luminance meter, and the luminance value (Cd) is described in the row of "Absorber-containing layer side.”
  • Lower luminance means that the light-emitting layer emits light more efficiently, and undesired emission due to the HID light is smaller. Evaluation was conducted according to the following evaluation criteria using the obtained luminance value.
  • the polyvinyl butyral resin, the plasticizer, the light-emitting material, and the ultraviolet ray absorber were mixed according to combination shown in Table 1, and a resultant thermoplastic resin composition was extrusion-molded with a twin-screw anisotropic extruder to prepare a light-emitting layer having a thickness of 780 ⁇ m.
  • the maximum excitation wavelength of the light-emitting layer was 385 nm.
  • the polyvinyl butyral resin, the plasticizer, and the ultraviolet ray absorber were mixed according to combination shown in Table 1, and a resultant thermoplastic resin composition was extrusion-molded with a twin-screw anisotropic extruder to prepare a light-emitting layer having a thickness of 780 ⁇ m.
  • the resultant light-emitting layer and absorber-containing layer were retained under a constant temperature and humidity condition of 23°C and a relative humidity of 28% for 4 hours. Thereafter, two transparent clear glass plates (50 mm in length x 50 mm in width x 2.5 mm in thickness, visible light transmittance 90.4%, in accordance with JIS R 3211(1998)) were prepared, and on one of the clear glass plates, the light-emitting layer, the absorber-containing layer, and the other clear glass plate were stacked in the mentioned order, thereby making a laminated body.
  • the resultant laminated body was transferred into a rubber bag, the rubber bag was connected to a suction depressurization system to heat the rubber bag at an outside air heating temperature and simultaneously retain the rubber bag under a reduced pressure of -600 mmHg (absolute pressure 160 mmHg) for 10 minutes in such a way that the temperature (preliminary compression-bonding temperature) of the laminated body reached 60°C, and thereafter the pressure was returned to the atmospheric pressure to conduct temporary compression bonding.
  • the laminated glass comprised layer constitution of first glass plate/light-emitting layer/absorber-containing layer/second glass plate.
  • a barrier layer was provided between the light-emitting layer and the absorber-containing layer. Specifically, when the laminated glass was prepared, on one of the clear glass plates, the light-emitting layer, the barrier layer, the absorber-containing layer and the other clear glass plate were stacked in the mentioned order to make a laminated body in such a way that the resultant laminated glass had the layer constitution of first glass plate/light-emitting layer/barrier layer/absorber-containing layer/second glass plate. In addition, the combination of the absorber-containing layer was changed as shown in Table 1. Example 2 was carried out in the same manner as Example 1, excluding those described above.
  • Examples 3 to 7 were carried out in the same manner as Example 2, except that the combinations in the light-emitting layer and the absorber-containing layer were changed as shown in Table 1.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

A thermoplastic film (10) is a thermoplastic film comprising a light-emitting layer (11), wherein the light-emitting layer (11) comprises a thermoplastic resin and a light-emitting material that emits light by being irradiated with excitation light, and a visible light transmittance Tv is 70% or more and a transmittance in the whole region of wavelengths of 400 to 420 nm is 25% or less, as measured for laminated glass obtained by bonding two sheets of clear glass in accordance with JIS R 3211(1998) with the thermoplastic film interposed therebetween.

Description

    Technical Field
  • The present invention relates a thermoplastic film, and a laminated glass comprising a thermoplastic film.
  • Background Art
  • In the past, a laminated glass obtained by interposing a thermoplastic film comprising a resin component between two glass plates and integrating them has widely been known. The thermoplastic film is formed in many cases with plasticized polyvinyl acetal containing a plasticizer blended in a polyvinyl acetal resin. The laminated glass has widely been used as window glass of vehicles, such as an automobile, airplanes, and buildings because of its safety in that when the laminated glass is broken by receiving external impact, pieces of broken glass hardly scatter.
  • To a windshield of an automobile or the like, a head-up display (HUD) that displays information necessary for driving, or the like in the same visual field as the windshield is applied in some cases. HUD which allows a driver to visually recognize light from a projector provided in an instrument panel or the like by reflecting the light at a windshield comprising laminated glass and the like has widely been known.
  • Further, as disclosed in, for example, PTL1, it is known that, in a laminated glass, a thermoplastic film disposed between two sheets of glass comprises a light-emitting sheet comprising a binder resin and a light-emitting material (see, for example, PTL1). As a light-emitting material which is used for a light-emitting sheet, a fluorescent material that emits light by being irradiated with excitation light is used in some cases. Such a laminated glass comprising a light-emitting sheet, when, for example, used for a windshield, enables the windshield to emit light by irradiating the windshield with excitation light, and therefore application of such laminated glass to HUD and the like has been studied.
  • It is known that a light-emitting material is generally deteriorated by ultraviolet rays included in sunlight. Therefore, PTL1 discloses: blending an ultraviolet ray absorber in a light-emitting sheet; and providing a resin layer other than a light-emitting sheet, and blending an ultraviolet ray absorber in the resin layer.
  • Citation List Patent Literature
  • PTL1: JP 2014-024312 A
  • Summary of Invention Technical Problem
  • A windshield of an automobile or the like is irradiated with light from outside, such as sunlight and light of headlights of another automobile. Accordingly, there is a possibility that undesired emission due to such light from outside may occur to a windshield comprising a light-emitting sheet. On the other hand, a fluorescent material contained in a light-emitting sheet emits light by light of a relatively short wavelength, such as ultraviolet rays, in many cases. For that reason, when an ultraviolet ray absorber is used as in PTL1, most of light from outside which excites a fluorescent material is absorbed by the ultraviolet ray absorber, and therefore undesired emission due to light from outside has not been problematic so much in the past.
  • In the past, a halogen light has been the main stream of headlights, but in recent years, an LED (Light Emitting Diode) light and an HID (High Intensity. Discharge) light, and the like have been introduced. However, it has been found that when a conventional windshield comprising a light-emitting sheet is irradiated with light from outside which is from an LED light, an HID light, and the like, a problem occurs that a light-emitting material is excited strongly, and undesired emission cannot be suppressed sufficiently.
  • Accordingly, an object of the present invention is to provide a thermoplastic film and a laminated glass that can prevent undesired emission by a light-emitting material even when irradiated with light of an LED light, an HID light, and the like from outside.
  • Solution to Problem
  • The present inventors have conducted studies on undesired emission based on light of an LED light, an HID light, and the like from outside to find that light of wavelengths of 400 to 420 nm from outside is a main factor, and by lowering the transmittance of a thermoplastic film and a laminated glass in the region, the problem can be solved, and thereby completed the following present invention.
    1. [1] A thermoplastic film comprising a light-emitting layer, wherein
      the light-emitting layer comprises:
      • a thermoplastic resin; and
      • a light-emitting material that emits light by being irradiated with excitation light, and
      • a visible light transmittance Tv is 70% or more and a transmittance in the whole region of wavelengths of 400 to 420 nm is 25% or less, as measured for laminated glass obtained by bonding two sheets of clear glass in accordance with JIS R 3211(1998) having a thickness of 2.5 mm with the thermoplastic film interposed therebetween.
    2. [2] The thermoplastic film according to [1], wherein a transmittance at a wavelength of 425 nm, as measured for the laminated glass, is 60% or less.
    3. [3] The thermoplastic film according to [1] or [2], comprising a visible light absorber.
    4. [4] The thermoplastic film according to [3], wherein the visible light absorber comprises at least one selected from the group consisting of an indole-based compound, a benzotriazole-based compound, a cyanoacrylate-based compound, a benzophenone-based compound, and a triazine-based compound.
    5. [5] The thermoplastic film according to [3] or [4], wherein the visible light absorber has a maximum absorption wavelength peak in a wavelength region of 360 nm or more and 780 nm or less.
    6. [6] The thermoplastic film according to any one of [3] to [5], further comprising an absorber-containing layer being a layer different from the light-emitting layer and comprising the visible light absorber.
    7. [7] The thermoplastic film according to any one of [1] to [6], further comprising an ultraviolet ray absorber.
    8. [8] The thermoplastic film according to [7], wherein the ultraviolet ray absorber has a maximum absorption wavelength peak in a wavelength region of 300 nm or more and less than 360 nm.
    9. [9] The thermoplastic film according to [7] or [8], wherein the ultraviolet ray absorber is contained in the absorber-containing layer.
    10. [10] The thermoplastic film according to any one of [6] to [9], further comprising a barrier layer between the light-emitting layer and the absorber-containing layer.
    11. [11] The thermoplastic film according to any one of [6] to [10], wherein transmittance of the absorber-containing layer is lower than transmittance of the light-emitting layer over the whole region of wavelengths of 420 to 430 nm.
    12. [12] A thermoplastic film comprising a light-emitting layer, wherein
      • the light-emitting layer comprises:
        • a thermoplastic resin; and
        • a light-emitting material that emits light by being irradiated with excitation light, and
        • the thermoplastic film further comprises a visible light absorber having a maximum absorption wavelength peak in a wavelength region of 360 nm or more and 780 nm or less.
    13. [13] The thermoplastic film according to [12], further comprising an ultraviolet ray absorber having a maximum absorption wavelength peak in a wavelength region of 300 nm or more and less than 360 nm.
    14. [14] The thermoplastic film according to any one of [1] to [13], wherein a luminance as observed in the following HID light irradiation test for laminated glass obtained by bonding two sheets of clear glass in accordance with JIS R 3211(1998) having a thickness of 2.5 mm with the thermoplastic film interposed therebetween is 20 cd/m2 or less;
      HID light irradiation test: when the laminated glass is irradiated with an HID light from one surface of the laminated glass, quantity of light is adjusted in such a way that a luminance observed on a side of the one surface is 40 cd/m2, and the laminated glass is irradiated with the HID light of the same quantity of light from the other surface to observe a luminance on a side of the other surface.
    15. [15] The thermoplastic film according to any one of [1] to [14], being an interlayer film for laminated glass.
    16. [16] A laminated glass comprising: the interlayer film for laminated glass according to [15]; and two glass plates, wherein the interlayer film for laminated glass is disposed between the two glass plates.
    17. [17] A laminated glass comprising:
      • a first glass plate;
      • a second glass plate; and
      • a thermoplastic film disposed between the first glass plate and the second glass plate, wherein
      • the laminated glass comprises a light-emitting material that emits light by irradiation with excitation light, and
      • has a visible light transmittance Tv of 70% or more and a transmittance in the whole region of wavelengths of 400 to 420 nm of 25% or less.
    18. [18] The laminated glass according to [16] to [17], wherein a luminance observed for the laminated glass in the following HID light irradiation test is 20 cd/m2 or less;
      HID light irradiation test: when the laminated glass is irradiated with an HID light from one surface of the laminated glass, quantity of light is adjusted in such a way that a luminance observed on a side of the one surface is 40 cd/m2, and the laminated glass is irradiated with the HID light of the same quantity of light from the other surface to observe a luminance on a side of the other surface.
    19. [19] An image display system comprising:
      • the laminated glass according to any one of [16] to [18]; and
      • a light source.
    Advantageous Effects of Invention
  • According to the present invention, a thermoplastic film and a laminated glass that can prevent undesired emission by a light-emitting material even when irradiated with light of an LED light, an HID light, and the like from outside can be provided.
  • Brief Description of Drawings
    • [Fig. 1] Fig. 1 is a sectional view showing a thermoplastic film of one embodiment of the present invention, and a laminated glass comprising the thermoplastic film.
    • [Fig. 2] Fig. 2 is a sectional view showing a thermoplastic film of one embodiment of the present invention, and a laminated glass comprising the thermoplastic film.
    • [Fig. 3] Fig. 3 is a sectional view showing a thermoplastic film of one embodiment of the present invention, and a laminated glass comprising the thermoplastic film.
    • [Fig. 4] Fig. 4 is a sectional view showing a laminated glass of one embodiment of the present invention.
    • [Fig. 5] Fig. 5 is a sectional view showing a laminated glass of one embodiment of the present invention.
    • [Fig. 6] Fig. 6 is a sectional view showing a laminated glass of one embodiment of the present invention.
    • [Fig. 7] Fig. 7 is a sectional view showing a laminated glass of one embodiment of the present invention.
    Description of Embodiments [Thermoplastic Film]
  • Hereinafter, the present invention will be described in detail.
  • A thermoplastic film of the present invention comprises a light-emitting layer, wherein the light-emitting layer comprises a thermoplastic resin and a light-emitting material that emits light by being irradiated with excitation light. In the present invention, a transmittance in the whole region of wavelengths of 400 to 420 nm, as measured for laminated glass obtained by bonding two sheets of standard glass with the thermoplastic film of the present invention interposed therebetween, is 25% or less.
  • By lowering the above-described transmittance in the whole region of 400 to 420 nm, the thermoplastic film of the present invention can prevent undesired emission based on light from outside which is from an LED light, an HID light, and the like. The principle is not uncertain, but the LED light and the HID light include light in the wavelength region much in some cases, and have high directivity, and therefore light from these light sources is easily incident on a windshield or the like as light of relatively high intensity. On the other hand, a light-emitting material in general has an excitation wavelength of 400 to 420 nm in many cases. Therefore, it is considered that by lowering the transmittance in the whole region of 400 to 420 nm, the light-emitting material is not excited sufficiently, so that undesired emission can be suppressed even when light from outside which is from an LED light and an HID light is incident.
  • The LED light and the HID light are used as a headlight of a bicycle, an automobile, or the like, and the HID light is typically a xenon lamp.
  • On the other hand, when a wavelength region where the transmittance is larger than 25% exists in 400 to 420 nm, the light-emitting material is excited by light from outside which is from an LED light and an HID light, undesired emission may occur in some cases. From the viewpoint of reducing undesired emission as much as possible, the above-described transmittance in the whole region of 400 to 420 nm is preferably 20% or less, and more preferably 16% or less.
  • With respect to the transmittance in the whole region of 400 to 420 nm, the smaller, the better in order to reduce undesired emission as much as possible, and the lower limit value thereof is not particularly limited, but the maximum value of the transmittance in the whole region of 400 to 420 nm is practically, for example, 0.5% or more, and is, from the viewpoint of making it easy to increase the visible light transmittance, preferably 2% or more.
  • Further, in the present invention, a visible light transmittance Tv, as measured for the laminated glass prepared from the thermoplastic film and the standard glass as described above, is 70% or more. When the visible light transmittance Tv is less than 70%, it is difficult to secure the transparency at a certain level, and it is difficult to use the laminated glass, for example, for a windshield of an automobile, or the like. To secure the transparency and enable the laminated glass to be used suitably for window glass, such as a windshield, the visible light transmittance Tv is preferably 72% or more, more preferably 75% or more, and still more preferably 80% or more.
  • With respect to the visible light transmittance Tv, the higher, the better from the viewpoint of the transparency of the thermoplastic film, but the visible light transmittance Tv is practically 99% or less, and is, from the viewpoint of making it easy to lower the transmittance at 400 to 420 nm, 97% or less.
  • The thermoplastic film of the present invention is such that when laminated glass is made as described above, the transmittance at a wavelength of 425 nm, as measured for the laminated glass, is preferably 60% or less. By setting the transmittance at a wavelength of 425 nm to 60% or less, undesired emission due to light of an LED light, an HID light, and the like from outside can effectively be prevented. From the viewpoint of preventing undesired emission more effectively, the transmittance at a wavelength of 425 nm is preferably 50% or less, and more preferably 35% or less.
  • The transmittance at a wavelength of 425 nm is not particularly limited, but is, for example, 1% or more, preferably 7% or more, and more preferably 15% or more. By setting the transmittance at 425 nm to the lower limit value of these or more, lowering of the visible light transmittance and coloration of the thermoplastic film can be prevented.
  • In the present invention, that the transmittance in the whole region of wavelengths of 400 to 420 nm is a specified value (for example, 25%) or less means that, as will be mentioned later in Examples, when the transmittance is measured at every 1 nm of the wavelengths, all the transmittances are (that is, the maximum value of measured values is) equal to the specified value (for example, 25%) or less.
  • As the standard glass, clear glass in accordance with JIS R 3211(1998) having a thickness of 2.5 mm and a visible light transmittance of 90.4% is used. By using the glass having a high transmittance as the standard glass, the above-described visible light transmittance Tv and transmittance at each wavelength can be used as indexes indicating the transmittances of the thermoplastic film. The visible light transmittance Tv and the transmittance at each wavelength are measured by the methods described in Examples.
  • From the viewpoint of preventing undesired emission more effectively, the thermoplastic film of the present invention is such that when the laminated glass is made as described above, the luminance as observed when an HID light irradiation test is conducted for the laminated glass obtained is preferably 20 cd/m2 or less, more preferably 18 cd/m2 or less, and still more preferably 16 cd/m2 or less.
  • The HID light irradiation test is conducted in such a way that when the laminated glass is irradiated with an HID light from one surface of the laminated glass, quantity of light is adjusted in such a way that luminance observed on a side of the one surface is 40 cd/m2, and the laminated glass is irradiated with the HID light of the same quantity of light from the other surface to observe luminance on a side of the other surface. As the HID light, "HAL-320W" manufactured by Asahi Spectra Co., Ltd. may be used, and, for details, the HID light irradiation test is conducted by the method described in Examples.
  • [Light-emitting Layer]
  • The light-emitting layer comprises a thermoplastic resin and a light-emitting material, as described above. The thermoplastic film comprises the light-emitting layer, and is therefore used as a light-emitting film that emits light by being irradiated with excitation light.
  • (Light-emitting Material)
  • As the light-emitting material which is used for the light-emitting layer, for example, a lanthanoid complex, a light-emitting material having a terephthalic acid ester structure, a light-emitting material having a naphthalimide skeleton, a light-emitting material having a coumarin skeleton, a light-emitting material having a quinoline skeleton, and the like can be used. The light-emitting material may be used singly, or two or more light-emitting materials may be used together. By combining a plurality of light-emitting materials each having a different emission wavelength, not only a monochromatic image but also an image in which various colors are combined can be displayed.
  • Among those described above, the light-emitting material is preferably a lanthanoid complex, a light-emitting material having a quinoline skeleton, or a light-emitting material having a terephthalic acid ester structure, and more preferably a light-emitting material having a terephthalic acid ester structure.
  • Examples of the lanthanoid complex include a lanthanoid complex having a ligand containing a halogen atom. Among the lanthanoid complexes, the lanthanoid complex having a ligand containing a halogen atom emits light with higher emission intensity by being irradiated with a light beam. Examples of the lanthanoid complex having a ligand containing a halogen atom include a lanthanoid complex having a monodentate ligand containing a halogen atom, and a lanthanoid complex having a multidentate ligand containing a halogen atom, such as a lanthanoid complex having a bidentate ligand containing a halogen atom, a lanthanoid complex having a tridentate ligand containing a halogen atom, a lanthanoid complex having a tetradentate ligand containing a halogen atom, a lanthanoid complex having a pentadentate ligand containing a halogen atom, and a lanthanoid complex having a hexadentate ligand containing a halogen atom.
  • Among others, a lanthanoid complex having a bidentate ligand containing a halogen atom, or a lanthanoid complex having a tridentate ligand containing a halogen atom can emit visible rays with high emission intensity by being irradiated with light of a wavelength of 300 to 410 nm.
  • On top of that, the lanthanoid complex having a bidentate ligand containing a halogen atom, or the lanthanoid complex having a tridentate ligand containing a halogen atom is excellent in heat resistance. When the thermoplastic film is used as laminated glass, which will be mentioned later, the thermoplastic film is irradiated with infrared rays in sunlight, and therefore is used in a high-temperature environment in many cases, and accordingly, by using the lanthanoid complex having a bidentate ligand containing a halogen atom, or the lanthanoid complex having a tridentate ligand containing a halogen atom, deterioration of the light-emitting material can be prevented.
  • In the present specification, lanthanoid contains lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, or lutetium. Lanthanoid is preferably neodymium, europium, or terbium, more preferably europium or terbium, and still more preferably europium because further higher emission intensity is obtained.
  • Examples of the bidentate containing a halogen atom include a ligand having a structure represented by the following general formula (1) and a ligand having a structure represented by the following general formula (2).
    Figure imgb0001
  • In the general formula (1), R1 and R3 each represent an organic group, at least one of R1 and R3 is an organic group containing a halogen atom, and R2 represents a linear organic group. Each of R1 and R3 is preferably a hydrocarbon group, more preferably a C1-10 hydrocarbon group, still more preferably a C1-5 hydrocarbon group, and particularly preferably a C1-3 hydrocarbon group. In the hydrocarbon groups, part of hydrogen atoms may be replaced by an atom other than the hydrogen atom, and a functional group. Examples of the C1-3 hydrocarbon group include a methyl group, an ethyl group, and a propyl group, in which the hydrogen atoms are not substituted, and a methyl group, an ethyl group, and a propyl group in which part of the hydrogen atoms is replaced by a halogen atom. As the halogen atom in the methyl group, the ethyl group, and the propyl group in which part of the hydrogen atoms is replaced by a halogen atom, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom can be used. The C1-3 hydrocarbon group is preferably the methyl group, the ethyl group, or the propyl group in which part of the hydrogen atoms is replaced by a halogen atom, and more preferably a trifluoromethyl group because of emitting light with high emission intensity.
  • R2 is preferably a C1 or more alkylene group, more preferably a C1-5 alkylene group, and most preferably a methylene group of C1. Part of the hydrogen atoms in the C1 or more alkylene group may be replaced by an atom other than the hydrogen atom, and a functional group.
  • The lanthanoid complex having a ligand containing a halogen atom may have a ligand not containing a halogen atom as long as the lanthanoid complex has at least one ligand containing a halogen atom. Examples of the ligand not containing a halogen atom include a ligand that is the same as the general formula (1) except that the ligand does not contain a halogen atom, and a ligand having a structure represented by any one of the following general formulas (2) to (8). In the ligand having a structure represented by any one of the following general formulas (2) to (8), part of or all of the hydrogen atoms may be replaced by -COOR, -SO3, -NO2, -OH, an alkyl group, -NH2, or the like.
    Figure imgb0002
    In the formula (2), two Ns may exist anywhere in the bipyridine skeleton. For example, two Ns exist at the 2- and the 2'-position, the 3- and the 3'-position, the 4- and the 4'-position, the 2- and the 3'-position, the 2- and the 4'-position, or the 3- and the 4'-position of the bipyridine skeleton. Among others, two Ns preferably exist at the 2- and the 2'-position.
    Figure imgb0003
    In the formula (3), two Ns may exist anywhere in the bipyridine skeleton. Among others, two Ns preferably exist at the 1- and the 10-position.
    Figure imgb0004
    In the formula (4), two Ns may exist anywhere in the bipyridine skeleton. Among others, two Ns preferably exist at the 1- and the 10-position.
    Figure imgb0005
    In the formula (5), three Ns may exist anywhere in the terpyridine skeleton.
  • H2N-R4-NH2 (6)
  • In the formula (6), R4 in the center represents a C1 or more linear organic group.
    Figure imgb0006
    In the formula (7), two R5s each represent a C1 or more linear organic group.
    Figure imgb0007
  • In the formula (8), n represents an integer of 1 or 2.
  • Examples of the lanthanoid complex having a bidentate ligand containing a halogen atom include tris(trifluoroacetylacetone)phenanthroline europium (Eu(TFA)3phen), tris(trifluoroacetylacetone)diphenylphenanthroline europium (Eu(TFA)3dpphen), tris(hexafluoroacetylacetone)diphenylphenanthroline europium, tris(hexafluoroacetylacetone)bis(triphenylphosphine) europium, tris(trifluoroacetylacetone)2,2'-bipyridine europium, tris(hexafluoroacetylacetone)2,2'-bipyridine europium, tris(5,5,6,6,7,7,7-heptafluoro-2,4-pentanedionate)2,2'-bipyridine europium ([Eu(FPD)3]bpy), tris(trifluoroacetylacetone)3,4,7,8-tetramethyl-1,10-phenanthroline europium ([Eu(TFA)3]tmphen), tris(5,5,6,6,7,7,7-heptafluoro-2,4-pentanedionate)phenanthroline europium ([Eu(FPD)3]phen), terpyridine trifluoroacetylacetone europium, and terpyridine hexafluoroacetylacetone europium.
  • Other examples of the lanthanoid complex having a bidentate ligand containing a halogen atom include tris(trifluoroacetylacetone)phenanthroline terbium (Tb(TFA)3phen), tris(trifluoroacetylacetone)diphenylphenanthroline terbium (Tb(TFA)3dpphen), tris(hexafluoroacetylacetone)diphenylphenanthrohne terbium, tris(hexafluoroacetylacetone)bis(triphenylphosphine) terbium, tris(trifluoroacetylacetone)2,2'-bipyridine terbium, tris(hexafluoroacetylacetone)2,2'-bipyridine terbium, tris(5,5,6,6,7,7,7-heptafluoro-2,4-pentanedionate)2,2'-bipyridine terbium ([Tb(FPD)3]bpy), tris(trifluoroacetylacetone)3,4,7,8-tetramethyl-1,10-phenanthroline terbium ([Tb(TFA)3]tmphen), tris(5,5,6,6,7,7,7-heptafluoro-2,4-pentanedionate)phenanthroline terbium ([Tb(FPD)3]phen), terpyridine trifluoroacetylacetone terbium, and terpyridine hexafluoroacetylacetone terbium.
  • As the halogen atom in the lanthanoid complex having a ligand containing a halogen atom, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom can be used. Among others, a fluorine atom is suitable because the fluorine atom stabilizes the structure of the ligand.
  • Among the lanthanoid complexes having a bidentate ligand containing a halogen atom, or the lanthanoid complexes having a tridentate ligand containing a halogen atom, a lanthanoid complex having a bidentate ligand having an acetylacetone skeleton containing a halogen atom is suitable because of being excellent in initial light emission properties in particular.
  • Examples of the lanthanoid complex having a bidentate ligand having an acetylacetone skeleton containing a halogen atom include Eu(TFA)3phen, Eu(TFA)3dpphen, Eu(HFA)3phen, [Eu(FPD)3]bpy, [Eu(TFA)3]tmphen, and [Eu(FPD)3]phen. The structures of these lanthanoid complexes each having a bidentate ligand having an acetylacetone skeleton containing a halogen atom are shown below.
    Figure imgb0008
    Figure imgb0009
    Figure imgb0010
    Figure imgb0011
  • Other examples of the lanthanoid complex having a bidentate ligand having an acetylacetone skeleton containing a halogen atom include Tb(TFA)3phen, Tb(TFA)3dpphen, Tb(HFA)3phen, [Tb(FPD)3]bpy, [Tb(TFA)3]tmphen, and [Tb(FPD)3]phen.
  • The lanthanoid complex having a ligand containing a halogen atom is preferably in the form of particles. Being in the form of particles makes it easier to disperse the lanthanoid complex having a ligand containing a halogen atom finely in the light-emitting layer.
  • When the lanthanoid complex having a ligand containing a halogen atom is in the form of particles, a preferred lower limit of the average particle diameter of the lanthanoid complex is 0.01 µm, a preferred upper limit is 10 µm, a more preferred lower limit is 0.03 µm, and a more preferred upper limit is 1 µm.
  • <Method of Measuring Average Particle Diameter>
  • The lanthanoid complex is dispersed in methanol (refractive index of solvent: 1.3292, viscosity of solvent: 0.59 mPa·s) at a concentration of about 0.1% by mass, and is then dispersed uniformly by applying an ultrasonic wave, and the measurement is performed using a laser diffraction/scattering particle size distribution measurement apparatus (manufactured by HORIBA, Ltd.) at a liquid temperature of 25°C. The average particle diameter is defined as a primary particle diameter (d50) where the cumulative volume is 50%.
  • The light-emitting material having a terephthalic acid ester structure emits light by being irradiated with excitation light. Examples of the light-emitting material having a terephthalic acid ester structure include a compound having a structure represented by the following general formula (9) and a compound having a structure represented by the following general formula (10). These may be used singly, or two or more of these may be used.
    Figure imgb0012
    Figure imgb0013
  • In the general formula (9), R6 represents an organic group, and x is 1, 2, 3, or 4.
  • x is preferably 1 or 2, and x is more preferably 2 because the visible light transmittance Tv of the thermoplastic film increases further. In addition, the compound more preferably has a hydroxy group at the 2-position or the 5-position of the benzene ring, and still more preferably has a hydroxy group at the 2-position and the 5-position of the benzene ring.
  • The organic group of R6 is preferably a hydrocarbon group, more preferably a C1-10 hydrocarbon group, still more preferably a C1-5 hydrocarbon group, and particularly preferably a C1-3 hydrocarbon group. When the number of carbon atoms of the hydrocarbon group is 10 or less, the light-emitting material having a terephthalic acid ester structure can easily be dispersed in the light-emitting layer. The hydrocarbon group is preferably an alkyl group.
  • Examples of the compound having a structure represented by the general formula (9) include diethyl-2,5-dihydroxyterephthalate and dimethyl-2,5-dihydroxyterephthalate. Among others, the compound having a structure represented by the general formula (9) is preferably diethyl-2,5-dihydroxylterephthalate.
  • In the general formula (10), R7 represents an organic group, R8 and R9 each represent a hydrogen atom or an organic group, and y is 1, 2, 3, or 4.
  • The organic group of R7 is preferably a hydrocarbon group, more preferably a C1-10 hydrocarbon group, still more preferably a C1-5 hydrocarbon group, and particularly preferably a C1-3 hydrocarbon group. When the number of carbon atoms of the hydrocarbon groups is equal to or less than the upper limit, the light-emitting material having a terephthalic acid ester structure can easily be dispersed in the light-emitting layer. The hydrocarbon group is preferably an alkyl group.
  • In the general formula (10), the organic group of R8 and R9 is, for example, a C1-10 hydrocarbon group, and the organic group is preferably a C1-5 hydrocarbon group, and more preferably a C1-3 hydrocarbon group, and the hydrocarbon group is preferably an alkyl group. In addition, each of R8 and R9 is preferably a hydrogen atom. y is preferably 1 or 2, and still more preferably 2. Further, the compound more preferably has NR8R9 at the 2-position or the 5-position of the benzene ring, and still more preferably has NR8R9 at the 2-position and the 5-position of the benzene ring.
  • The compound having a structure represented by the general formula (10) is preferably diethyl-2,5-diaminoterephthalate.
  • Specific examples of the light-emitting material having a naphthalimide skeleton include 4-bromo-1,8-naphtalimide, 4-amino-1,8-naphthalimide, 4-methoxy-N-methylnaphthalic acid imide, naphthalimide, 4-aminonaphthalimide, N-methyl-4-aminonaphthalimide, N-ethyl-4-aminonaphthalimide, N-propyl-4-aminonaphthalimide, N-n-butyl-4-aminonaphthalimide, 4-acetylaminonaphthalimide, N-methyl-4-acetylaminonaphthalimide, N-ethyl-4-acetylaminonaphthalimide, N-propyl-4-acetylaminonaphthalimide, N-n-butyl-4-acetylaminonaphthalimide, N-methyl-4-methoxynaphthalimide, N-ethyl-4-methoxynaphthalimide, N-propyl-4-methoxynaphthalimide, N-n-butyl-4-methoxynaphthalimide, N-methyl-4-ethoxynaphthalimide, N-ethyl-4-ethoxynaphthalimide, N-propyl-4-ethoxynaphthalimide, N-n-butyl-4-ethoxynaphthalimide, Lumogen F Violet 570 (trade name, manufactured by BASF Japan Ltd.), and Lumogen F Blue 650 (trade name, manufactured by BASF Japan Ltd.).
  • Examples of the light-emitting material having a coumarin skeleton include a derivative having an electron donating substituent at the 7-position of the coumarin ring. More specific examples thereof include: coumarin-based coloring matter, such as 3-(2'-benzothiazolyl)-7-diethylaminocoumarin (coumarin 6), 3-(2'-benzoimidazolyl)-7-N,N-diethylaminocoumarin (coumarin 7), and 3-(2'-N-methylbenzoimidazolyl)-7-N,N-diethylaminocoumarin (coumarin 30), which are derivatives having an amino group at the 7-position of the coumarin ring, and 2,3,5,6-1H,4H-tetrahydro-8-trifluoromethylquinolizine(9,9a,1-gh)coumarin (coumarin 153); coumarin coloring matter-based dyes, such as Basic Yellow 51; and 7-hydroxycoumarin, 3-cyano-7-hydroxycoumarin, and 7-hydroxy-4-methylcoumarin, which have a hydroxy group at the 7-position of the coumarin ring, 7-diethylamino-4-methylcoumarin, 7-dimethylaminocyclopenta[c]-coumarin, 1,2,4,5,3H,6H,10H-tetrahydro-8-methyl[1]benzopyrano[9,9a,1-gH]quinolizin-10-one, 7-amino-4-trifluoromethylcoumarin, 1,2,4,5,3H,6H,10H-tetrahydro-9-cyano[1]benzopyrano[9,9a,1-gH]quinolizin-10-one, 1,2,4,5,3H,6H,10H-tetrahydro-9-carbo-t-butoxy[1]benzopyrano[9,9a,1-gH]quinolizin-10-one, 7-ethylamino-6-methyl-4-trifluoromethylcoumarin, 1,2,4,5,3H,6H,10H-tetrahydro-9-carboethoxy[1]benzopyrano[9,9a,1-gH]quinolizin-10-one, 7-diethylamino-3-(1-methylbenzimidazolyl)coumarin, 7-dimethylamino-4-trifluoromethylcoumarin, 1,2,4,5,3H,6H, 10H-tetrahydro-9-carboxy[1]bezopyrano[9,9a,1-gH]quinolizin-10-one, 1,2,4,5,3H,6H,10H-tetrahydro-9-acetyl[1]benzopyrano[9,9a,1-gH]quinolizin-10-one, 3-(2-benzimidazolyl)-7-N,N-diethylaminocoumarin, 1,2,4,5,3H,6H,10H-tetrahydro-8-trifluoromethyl[1]benzopyrano[9,9a,1-gH]quinolizin-10-one, 3-(2-benzothiazolyl)-7-diethylaminocoumarin, 7-diethylaminocoumarin, 7-diethylamino-4-trifluoromethylcoumarin, 2,3,6,7-tetrahydro-9-(trifluoromethyl)-1H,5H,11H-[1]benzopyrano[6,7,8-ij]quinolizin-11-one, 7-amino-4-methylcoumarin, and 4,6-dimethyl-7-ethylaminocoumarin.
  • Specific examples of the light-emitting material having a quinoline skeleton include 2-(3-oxoindolin -1-ylidene)methylquinoline.
  • In the present invention, a light-emitting material having an excitation wavelength within a range of 400 to 420 nm may be used as the light-emitting material. When the excitation wavelength of the light-emitting material is within the range, undesired emission due to light from outside can adequately be suppressed by lowering the transmittance of the thermoplastic film in 400 to 420 nm. That the excitation wavelength exists within a range of 400 to 420 nm means that the light-emitting material is excited by light in a range of wavelengths of 400 to 420 nm, but the maximum excitation wavelength does not have to exist in a range of 400 to 420 nm.
  • The light-emitting layer comprises a light-emitting material and emits light by excitation light, and the excitation wavelength of the light-emitting material is, for example, 250 to 500 nm, preferably 260 to 450 nm, and more preferably 280 to 430 nm. When the maximum excitation wavelength exists within these ranges, undesired emission due to light from outside can effectively be prevented by lowering the transmittance at a wavelengths of 400 to 420 nm, as described above.
  • The maximum excitation wavelength is a wavelength of excitation light, where when the thermoplastic sheet is irradiated vertically with the excitation light, the intensity of fluorescence detected under a condition of the maximum emission wavelength is the maximum.
  • The content of the light-emitting material in the light-emitting layer is preferably 8 parts by mass or less, more preferably 5 part by mass or less, still more preferably 1.5 parts by mass or less, and further still more preferably 0.8 parts by mass or less based on 100 parts by mass of the thermoplastic resin. Setting the content to the upper limit value of these or less improves the transparency of the thermoplastic film, making it easy to increase the visible light transmittance Tv.
  • The content of the light-emitting material in the light-emitting layer is preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, still more preferably 0.2 parts by mass or more, and further still more preferably 0.3 parts by mass or more based on 100 parts by mass of the thermoplastic resin. Setting the content of the light-emitting material to the lower limit value of these or more enables a desired image and the like to be displayed with good visibility by irradiation with excitation light.
  • The transmittance of the light-emitting layer at a wavelength of 420 nm is not particularly limited, and is, for example, 10 to 70%, but is preferably 15 to 50%, and more preferably 20 to 40%. The transmittance of the light-emitting layer at a wavelength of 430 nm is usually higher than the transmittance at a wavelength of 420 nm, and is preferably 40 to 85%, and more preferably 50 to 80%. By setting the transmittances of the light-emitting layers at wavelengths of 420 nm and 430 nm to the ranges, it is made easy to prevent undesired emission due to light from outside without lowering the emission intensity of the light-emitting layer so much. In addition, the visible light transmittance is improved, and coloration is made unlikely to occur.
  • [Thermoplastic Resin]
  • The light-emitting layer of the present invention comprises a thermoplastic resin. When the light-emitting layer comprises a thermoplastic resin, the light-emitting layer easily acts as a bonding layer, making the bondability to another layer, such as a glass plate, good. The thermoplastic resin is a matrix component in the light-emitting layer, and the above-described light-emitting material is dispersed or dissolved in the thermoplastic resin.
  • Examples of the thermoplastic resin include, but not particularly limited to, a polyvinyl acetal resin, an ethylene-vinyl acetate copolymer resin, an ionomer resin, a polyurethane resin, and a thermoplastic elastomer. Using these resins makes it easy to secure the bondability to a glass plate.
  • In the light-emitting layer of the present invention, the thermoplastic resin may be used singly, or two or more thermoplastic resins may be used together. Among these, the thermoplastic resin is preferably at least one selected from the group consisting of a polyvinyl acetal resin and an ethylene-vinyl acetate copolymer resin, and the thermoplastic resin is more preferably a polyvinyl acetal resin in that the polyvinyl acetal resin, particularly when used together with a plasticizer, exhibits excellent bondability to glass.
  • (Polyvinyl Acetal Resin)
  • The polyvinyl acetal resin is obtained by acetalizing polyvinyl alcohol with an aldehyde. Polyvinyl alcohol is obtained by, for example, saponifying a polyvinyl ester, such as polyvinyl acetate. The polyvinyl acetal resin may be used singly, or two or more polyvinyl acetal resins may be used together.
  • The aldehyde which is used for acetalization is not particularly limited, but a C1-10 aldehyde is suitably used, more preferably a C2-6 aldehyde, and still more preferably a C4 aldehyde.
  • Examples of the C1-10 aldehyde include, but not particularly limited to, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethylbutyraldehyde, n-hexyl aldehyde, n-octyl aldehyde, n-nonyl aldehyde, n-decyl aldehyde, formaldehyde, acetaldehyde, and benzaldehyde. Among others, n-butyraldehyde, n-hexyl aldehyde, and n-valeraldehyde are preferable, and more preferably n-butyraldehyde. These aldehydes may be used singly, or two or more of these aldehydes may be used together.
  • As polyvinyl alcohol, polyvinyl alcohol having a degree of saponification of 80 to 99.8 mol% is generally used. The average degree of polymerization of the polyvinyl alcohol is preferably 500 or more, and is preferably 4000 or less in order to adjust the average degree of polymerization of the polyvinyl acetal resin within a desired range. The average degree of polymerization of the polyvinyl alcohol is more preferably 1000 or more, and is more preferably 3600 or less. The average degree of polymerization of the polyvinyl alcohol is determined by a method in accordance with JIS K6726 "Testing methods for polyvinyl alcohol."
  • The number of carbon atoms of the acetal group contained in the polyvinyl acetal resin is not particularly limited, but is preferably 1 to 10, more preferably 2 to 6, and still more preferably 4. Specifically, the acetal group is particularly preferably a butyral group, and accordingly the polyvinyl acetal resin is preferably a polyvinyl butyral resin.
  • The degree of acetalization of the polyvinyl acetal resin is preferably 40 mol% or more, and is preferably 85 mol% or less. The degree of acetalization is more preferably 60 mol% or more, and is more preferably 75 mol% or less. When the acetal group is a butyral group, and the polyvinyl acetal resin is a polyvinyl butyral resin, the degree of acetalization means a degree of butyralization.
  • The amount of the hydroxy group in the polyvinyl acetal resin is preferably 15 mol% or more, and is preferably 35 mol% or less. Setting the amount of the hydroxy group to 15 mol% or more easily makes the bondability to a glass plate or the like good, which easily makes the penetration resistance or the like of laminated glass good. When the polyvinyl acetal resin is used, for example, for laminated glass, setting the amount of the hydroxy group to 35 mol% or less prevents the laminated glass from being too hard. The amount of the hydroxy group in the polyvinyl acetal resin is more preferably 20 mol% or more, and is more preferably 33 mol% or less.
  • The degree of acetylation (the amount of the acetyl group) of the polyvinyl acetal resin is preferably 0.1 mol% or more, and is preferably 20 mol% or less. Setting the degree of acetylation to the lower limit value or more easily makes the compatibility with a plasticizer or the like good. Setting the degree of acetylation to the upper limit value or less enhances the humidity resistance of the light-emitting layer. From these viewpoints, the degree of acetylation is more preferably 0.3 mol% or more, and still more preferably 0.5 mol% or more, and is more preferably 10 mol% or less, and still more preferably 5 mol% or less.
  • The amount of the hydroxy group, the degree of acetalization (the degree of butyralization), and the degree of acetylation can be calculated from the results of measurement by methods in accordance with JIS K6728 "Testing methods for polyvinyl butyral."
  • The average degree of polymerization of the polyvinyl acetal resin is preferably 500 or more, and is preferably 4000 or less. Setting the average degree of polymerization to 500 or more makes the penetration resistance of laminated glass good. Setting the average degree of polymerization to 4000 or less makes it easy to shape laminated glass. The degree of polymerization is more preferably 1000 or more, and is more preferably 3600 or less. The average degree of polymerization of the polyvinyl acetal resin is the same as the average degree of polymerization of polyvinyl alcohol, which is a raw material, and can be determined by the average degree of polymerization of the polyvinyl alcohol.
  • (Ethylene-Vinyl Acetate Copolymer Resin)
  • The ethylene-vinyl acetate copolymer resin may be a non-crosslinked ethylene-vinyl acetate copolymer resin or a high-temperature-crosslinked ethylene-vinyl acetate copolymer resin. As the ethylene-vinyl acetate copolymer resin, a resin of an ethylene-vinyl acetate-modified product, such as a saponified product of an ethylene-vinyl acetate copolymer and a hydrolysate of ethylene-vinyl acetate, can also be used.
  • The vinyl acetate content of the ethylene-vinyl acetate copolymer resin, as measured in accordance with JIS K 6730 "Testing methods for ethylene/vinyl acetate resin" or JIS K 6924-2:1997, is preferably 10% by mass or more and 50% by mass or less, and more preferably 20 mass or more and 40% by mass or less. Setting the vinyl acetate content to the lower limit value of these or more enhances the bondability to glass, and easily makes the penetration resistance of laminated glass good when the ethylene-vinyl acetate copolymer resin is used for laminated glass. Setting the vinyl acetate content to the upper limit value of these or less enhances the breaking strength of the light-emitting layer, making the impact resistance of laminated glass good.
  • (Ionomer Resin)
  • The ionomer resin is not particularly limited, and various ionomer resins can be used. Specific examples thereof include an ethylene-based ionomer, a styrene-based ionomer, a perfluorocarbon-based ionomer, a telechelic ionomer, and a polyurethane ionomer. Among these, an ethylene-based ionomer is preferable in terms of making the mechanical strength, the durability, the transparency, and the like of laminated glass, which will be mentioned later, good, and in terms of having excellent bondability to glass.
  • As the ethylene-based ionomer, an ionomer of an ethylene/unsaturated carboxylic acid copolymer is suitably used because of having excellent transparency and toughness. The ethylene/unsaturated carboxylic acid copolymer is a copolymer having at least a constitutional unit derived from ethylene and a constitutional unit derived from an unsaturated carboxylic acid, and may have a constitutional unit derived from an additional monomer.
  • Examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, and maleic acid, and acrylic acid and methacrylic acid are preferable, and methacrylic acid is particularly preferable. Examples of the additional monomer include an acrylic acid ester, a methacrylic acid ester, and 1-butene.
  • The ethylene/unsaturated carboxylic acid copolymer preferably has 75 to 99 mol% of the constitutional unit derived from ethylene, and preferably has 1 to 25 mol% of the constitutional unit derived from an unsaturated carboxylic acid when the amount of all the constitutional units of the copolymer is assumed to be 100 mol%.
  • The ionomer of the ethylene/unsaturated carboxylic acid copolymer is an ionomer resin obtained by neutralizing or crosslinking at least part of the carboxyl groups of the ethylene/unsaturated carboxylic acid copolymer with a metal ion, and the degree of neutralization of the carboxyl groups is usually 1 to 90%, and preferably 5 to 85%.
  • Examples of the ion source in the ionomer resin include alkali metals, such as lithium, sodium, potassium, rubidium, and cesium, and polyvalent metals, such as magnesium, calcium, and zinc, and sodium and zinc are preferable.
  • The method for producing the ionomer resin is not particularly limited, and the ionomer resin can be produced by a conventionally known production method. For example, when an ionomer of an ethylene/unsaturated carboxylic acid copolymer is used as the ionomer resin, radical copolymerization is performed on, for example, ethylene and an unsaturated carboxylic acid at a high temperature and a high pressure to produce an ethylene/unsaturated carboxylic acid copolymer. The ionomer of the ethylene/unsaturated carboxylic acid copolymer can be produced by reacting the ethylene/unsaturated carboxylic acid copolymer and a metal compound containing the above-described ion source.
  • (Polyurethane Resin)
  • Examples of the polyurethane resin include a polyurethane obtained by reacting an isocyanate compound and a diol compound, and a polyurethane obtained by reacting an isocyanate compound, a diol compound, and further, a chain extender, such as a polyamine. In addition, the polyurethane resin may be a polyurethane resin containing a sulfur atom. In that case, part or the whole of the diol may be selected from the group consisting of a polythiol and a sulfur-containing polyol. The polyurethane resin can make the bondability to organic glass good. Therefore, the polyurethane resin is suitably used when the glass plate is organic glass.
  • (Thermoplastic Elastomer)
  • Examples of the thermoplastic elastomer include a styrene-based thermoplastic elastomer and an aliphatic polyolefin. The styrene-based thermoplastic elastomer is not particularly limited, and a known styrene-based thermoplastic elastomer can be used. The styrene-based thermoplastic elastomer generally has a polymer block of a styrene monomer, which is a hard segment, and a polymer block of a conjugated diene compound or a hydrogenated block thereof, which is a soft segment. Specific examples of the styrene-based thermoplastic elastomer include a styrene-isoprene diblock copolymer, a styrene-butadiene diblock copolymer, a styrene-isoprene-styrene triblock copolymer, a styrene-butadiene/isoprene-styrene triblock copolymer, a styrene-butadiene-styrene triblock copolymer, and hydrogenated products thereof.
  • The aliphatic polyolefin may be a saturated aliphatic polyolefin, or may be an unsaturated aliphatic polyolefin. The aliphatic polyolefin may be a polyolefin obtained by using a chain olefin as a monomer, or may be a polyolefin obtained by using a cyclic olefin as a monomer. From the viewpoint of enhancing the storage stability or the like of the light-emitting layer effectively, the aliphatic polyolefin is preferably a saturated aliphatic polyolefin.
  • Examples of the material for the aliphatic polyolefin include ethylene, propylene, 1-butene, trans-2-butene, cis-2-butene, 1-pentene, trans-2-pentene, cis-2-pentene, 1-hexene, trans-2-hexene, cis-2-hexene, trans-3-hexene, cis-3-hexene, 1-heptene, trans-2-heptene, cis-2-heptene, trans-3-heptene, cis-3-heptene, 1-octene, trans-2-octene, cis-2-octene, trans-3-octene, cis-3-octene, trans-4-octene, cis-4-octene, 1-nonene, trans-2-nonene, cis-2-nonene, trans-3-nonene, cis-3-nonene, trans-4-nonene, cis-4-nonene, 1-decene, trans-2-decene, cis-2-decene, trans-3-decene, cis-3-decene, trans-4-decene, cis-4-decene, trans-5-decene, cis-5-decene, 4-methyl-1-pentene, and vinylcyclohexane.
  • [Plasticizer]
  • The light-emitting layer of the present invention may further comprise a plasticizer. The light-emitting layer, when comprising a plasticizer, is made more flexible, and as a result, the flexibility of the thermoplastic film and laminated glass can be improved, and the penetration resistance of the laminated glass is also improved. Further, the light-emitting layer can also exhibit high bondability to a glass plate. The plasticizer is particularly effective when contained in the light-emitting layer in the case where a polyvinyl acetal resin is used as the thermoplastic resin.
  • Examples of the plasticizer include organic ester plasticizers, such as a monobasic organic acid ester and a polybasic organic acid ester, and phosphorus plasticizers, such as an organic phosphorus plasticizer and an organic phosphite plasticizer. Among others, an organic ester plasticizer is preferable.
  • Examples of the monobasic organic acid ester include an ester of a glycol and a monobasic organic acid. Examples of the glycol include a polyalkylene glycol in which each alkylene unit has 2 to 4 carbon atoms, and preferably 2 or 3 carbon atoms, and the number of repeating alkylene units is 2 to 10, and preferably 2 to 4. The glycol may be a monoalkylene glycol having 2 to 4 carbon atoms, and preferably 2 or 3 carbon atoms, and having a number of repeating units of 1.
  • Specific examples of the glycol include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, and butylene glycol.
  • Examples of the monobasic organic acid include a C3-10 organic acid, and specific examples thereof include butyric acid, isobutyric acid, caproic acid, 2-ethyl butyric acid, 2-ethylpentanoic acid, heptylic acid, n-octylic acid, 2-ethylhexylic acid, n-nonylic acid, and decylic acid.
  • Specific examples of the monobasic organic acid include triethylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylhexanoate, triethylene glycol dicaprylate, triethylene glycol di-n-octanoate, triethylene glycol di-n-heptanoate, tetraethylene glycol di-n-heptanoate, tetraethylene glycol di-2-ethylhexanoate, diethylene glycol di-2-ethylbutyrate, diethylene glycol di-2-ethylhexanoate, dipropylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylpentanoate, tetraethylene glycol di-2-ethylbutyrate, diethylene glycol dicaprylate, triethylene glycol di-n-heptanoate, tetraethylene glycol di-n-heptanoate, triethylene glycol di-2-ethylbutyrate, ethylene glycol di-2-ethylbutyrate, 1,2-propylene glycol di-2-ethylbutyrate, 1,3-propylene glycol di-2-ethylbutyrate, 1,4-butylene glycol di-2-ethylbutyrate, and 1,2-butylene glycol di-2-ethylbutyrate.
  • Examples of the polybasic organic acid ester include an ester compound of a C4-12 dibasic organic acid, such as adipic acid, sebacic acid, or azelaic acid, and a C4-10 alcohol. The C4-10 alcohol may be linear, may have a branched structure, or may have a cyclic structure.
  • Specific examples of the polybasic organic acid ester include dibutyl sebacate, dioctyl azelate, dihexyl adipate, dioctyl adipate, hexyl cyclohexyl adipate, diisononyl adipate, heptyl nonyl adipate, dibutylcarbitol adipate, and a mixed ester of adipic acid. The polybasic organic acid ester may be an oil-modified sebacic alkyd or the like. Examples of the mixed ester of adipic acid include an adipic acid ester prepared from two or more alcohols selected from the group consisting of C4-9 alkyl alcohols and C4-9 cyclic alcohols.
  • Examples of the organic phosphorus plasticizer include phosphoric acid esters, such as tributoxy ethyl phosphate, isodecyl phenyl phosphate, and triisopropyl phosphate.
  • The plasticizer may be used singly, or two or more plasticizers may be used together.
  • The plasticizer is preferably an ester of a glycol and a monobasic organic acid among those described above, and triethylene glycol-di-2-ethylhexanoate (3GO) is particularly suitably used.
  • The content of the plasticizer in the light-emitting layer is not particularly limited, but is preferably 20 parts by mass or more, and is preferably 80 parts by mass or less based on 100 parts by mass of the thermoplastic resin. Setting the content of the plasticizer to 20 parts by mass or more makes laminated glass moderately flexible, making the penetration resistance and the like good. By setting the content of the plasticizer to 80 parts by mass or less, separation of the plasticizer from the light-emitting layer is prevented. The content of the plasticizer is more preferably 30 parts by mass or more, and still more preferably 35 parts by mass or more, and is more preferably 70 parts by mass or less, and still more preferably 63 parts by mass or less.
  • The thermoplastic resin, or the thermoplastic resin and the plasticizer are the main components in the light-emitting layer, and the total amount of the thermoplastic resin and the plasticizer is usually 70% by mass or more, preferably 80% by mass or more, and still more preferably 90% by mass or more and less than 100% by mass based on the total amount of the light-emitting layer.
  • The thickness of the light-emitting layer is preferably 0.05 to 1.5 mm, more preferably 0.1 to 1 mm, and still more preferably 0.2 to 0.8 mm. Setting the thickness of the light-emitting layer to 0.05 mm or more enables the light-emitting layer to exhibit sufficient emission performance. In addition, the penetration resistance of laminated glass is made good. Setting the thickness of the light-emitting layer to 1.5 mm or less prevents lowering of the transparency of the light-emitting layer.
  • (Visible Light Absorber)
  • The thermoplastic film of the present invention preferably comprises a visible light absorber. The visible light absorber is a compound which absorbs light in a wavelength region of at least 400 to 420 nm. As the visible light absorber, a compound having relatively high heat resistance may be used in order to prevent deterioration in the production process and the use environment thereof.
  • The visible light absorber may be a compound which absorbs light in a wavelength region of at least 400 to 420 nm, but does not necessarily have a maximum absorption wavelength peak at 400 to 420 nm. However, the maximum absorption peak of the visible light absorber exists in, for example, 360 nm or more and 780 nm or less so that certain quantity of light in a wavelength region of 400 to 420 nm can be absorbed. The maximum absorption wavelength peak of the visible light absorber may exist in a wavelength region of 400 to 420 nm, or in the vicinity of the wavelength region, and specifically, the maximum absorption wavelength peak of the visible light absorber is at preferably 375 nm or more and 430 nm or less, more preferably at 380 nm or more and 430 nm or less, and still more preferably at 390 nm or more and 425 nm or less.
  • In the present specification, the maximum absorption wavelength peak of the visible light absorber, and an ultraviolet ray absorber, which will be mentioned later, can be measured by the following method. A chloroform solution is obtained by mixing 0.0002 to 0.002 parts by mass of the compound to be measured based on 100 parts by mass of chloroform. The obtained chloroform solution is put in a quartz cell for a spectrophotometer, having an optical path length of 1.0 cm. The transmittance from 300 to 2500 nm is measured using an automatic recording spectrophotometer ("U4100" manufactured by Hitachi, Ltd.) to determine a maximum absorption wavelength peak. A maximum absorption wavelength peak refers to a wavelength where the transmittance shows a minimum value, and a plurality of such wavelengths exists in some cases, and in those cases, the maximum absorption wavelength peak refers to a wavelength where the minimum value is the smallest.
  • Specific examples of the visible light absorber include an indole-based compound, a benzotriazole-based compound, a cyanoacrylate-based compound, a benzophenone-based compound, and a triazine-based compound. Among these, the visible light absorber is preferably an indole-based compound, a benzotriazole-based compound, a cyanoacrylate-based compound, or a benzophenone-based compound, and is more preferably an indole based compound.
  • <Indole-based Compound>
  • The indole-based compound is a compound having an indole skeleton and being capable of absorbing light in a wavelength region of at least 400 to 420 nm. Preferred examples of the indole-based compound include a compound represented by the following general formula (12).
    Figure imgb0014
  • In the formula (12), R21 represents a C1-3 alkyl group, and R22 represents a hydrogen atom, a C1-10 alkyl group, or a C7-10 aralkyl group.
  • Each of the alkyl groups of R21 and R22 may be an alkyl group having a linear structure, or may be an alkyl group having a branched structure. Examples of R21 in the formula (12) include a methyl group, an ethyl group, an isopropyl group, and a n-propyl group, among others, R21 is preferably a methyl group, an ethyl group, or an isopropyl group, and from the viewpoint of light resistance, R21 is more preferably a methyl group or an ethyl group.
  • R22 in the formula (12) is preferably a C1-10 alkyl group, and more preferably a C1-8 alkyl group. Examples of the C1-10 alkyl group include a methyl group, an ethyl group, an isopropyl group, a n-propyl group, an isobutyl group, a n-butyl group, a pentyl group, a hexyl group, a 2-ethylhexyl group, and a n-octyl group. Examples of the C7-10 aralkyl group include a benzyl group, a phenylethyl group, a phenylpropyl group, and a phenylbutyl group.
  • The indole-based compound is not particularly limited, but the maximum absorption wavelength peak is, for example, at 380 to 400 nm, and preferably 385 to 395 nm.
  • As the indole-based compound, a commercially available product can also be used, and examples of the commercially available product include "UA-3911" manufactured by ORIENT CHEMICAL INDUSTRIES CO., LTD.
  • Examples of the benzotriazole-based compound which is used as the visible light absorber include a benzotriazole-based compound having a heterocyclic group which is bonded to the 5- and the 6-position of the benzotriazole skeleton, and forms a 5-membered ring or a 6-membered ring with the phenyl ring. A benzotriazole-based compound generally absorbs light in the ultraviolet ray region, and when a heterocyclic group is further formed, the absorption wavelength thereby shifts to the longer wavelength side. Therefore, the benzotriazole-based compound having the above-described structure can absorb light in a wavelength region of 400 to 420 nm. In addition, the maximum absorption wavelength peak can be positioned in a wavelength region of 400 to 420 nm, or in the vicinity of the wavelength region, as described above. Example of the atom which forms a heterocyclic group include a nitrogen atom, an oxygen atom, and a sulfur atom. Two or more polycyclic skeletons in which a heterocyclic ring is bonded to a benzotriazole skeleton may be bonded to each other through a crosslinking group.
  • The benzotriazole-based compound, the absorption wavelength of which shifts to the longer wavelength side as described above, is described in, for example, International Publication WO 2008/000646 .
  • As the benzotriazole-based compound, a commercially available product can also be used, and examples of the commercially available product include "Tinuvin 970" manufactured by BASF Japan, Ltd.
  • Examples of the cyanoacrylate-based compound which is used as the visible light absorber include a cyanoacrylate-based compound having a basic skeleton of 2-cyano-3,3-diphenylacrylate to which an electron withdrawing group is bonded as a substituent on the benzene ring. Examples of the electron withdrawing group include a halogen group and an ester group. Further, the electron withdrawing group may be a heterocyclic group which forms a 5-membered ring, a 6-membered ring, or the like with the benzene ring, or may be a heterocyclic group which forms a polycyclic ring with the benzene ring. A compound having a 2-cyano-3,3-diphenylacrylate skeleton absorbs ultraviolet rays, and when an electron withdrawing group is bonded as described above, the absorption wavelength region thereby shifts to the longer wavelength side, so that the compound can absorb light in the wavelength region of 400 to 420 nm.
  • Examples of the benzophenone-based compound which is used as the visible light absorber include a benzophenone-based compound having a benzophenone skeleton to which an electron withdrawing group is bonded as a substituent on the benzene ring. Examples of the electron withdrawing group include a halogen group and an ester group, and the electron withdrawing group may be a heterocyclic group which forms a 5-membered ring, a 6-membered ring, or the like with the benzene ring, or may be a heterocyclic group which forms a polycyclic ring with the benzene ring. The benzophenone-based compound may be a compound which is symmetrical about the carbonyl group (C=O) of the benzophenone skeleton.
  • A compound having a benzophenone skeleton absorbs ultraviolet rays, and when an electron withdrawing group is bonded as described above, the absorption wavelength region thereby shifts to the longer wavelength side, so that the compound can absorb light in a wavelength region of 400 to 420 nm.
  • As the triazine-based compound which is used as the visible light absorber, a compound having a triazine skeleton can be used, and, for example, 2,4,6-tris(2-hydroxy-4-hexyloxy-3-methylphenyl)-1,3,5-triazine and the like can be used. As the triazine-based compound, a commercially available product can also be used, and examples of the commercially available product include "ADK STAB LA-F70" manufactured by ADEKA Corporation.
  • [Dye and Pigment]
  • Examples of another preferred embodiment of the visible light absorber include a visible light absorber comprising at least one or more selected from the group consisting of dyes and pigments. Using such a visible light absorber can prevent undesired emission by the light-emitting material even when the thermoplastic film is irradiated with light of an LED light, an HID light, and the like from outside. In addition, by using a dye or a pigment, the light shieldability can be secured, and privacy protectability and the like can be enhanced.
  • Examples of the dye include, but not particularly limited to, yellow dyes, such as an anthraquinone dye, a quinoline dye, an isoquinoline dye, a monoazo dye, a disazo dye, a quinophthalone dye, a perylene dye, a triphenylmethane dye, and a methine dye, a phthalocyanine compound, a naphthalocyanine compound, and an anthracyanine compound. Among these, a yellow dye and a phthalocyanine compound are preferable, and a yellow dye and a phthalocyanine compound are preferably used together. The yellow dye is preferably a perylene dye, the phthalocyanine compound is preferably a phthalocyanine compound containing a vanadium atom or a copper atom, and more preferably a phthalocyanine compound having a copper atom. An anthraquinone dye is also preferable.
  • As the pigment, black pigments, such as titanium black, carbon black, and aniline black, and the like can be used, and among others, carbon black is preferable.
  • The pigment is preferably used together with the above-described dye, and particularly from the viewpoint of preventing undesired emission by the light-emitting material even when the thermoplastic film is irradiated with light of an LED light, an HID light, and the like from outside, a phthalocyanine compound, a perylene dye, and a black pigment, such as carbon black, are preferably used together, or an anthraquinone dye and a black pigment, such as carbon black, are preferably used together.
  • [Absorber-containing Layer]
  • The visible light absorber may be contained in the light-emitting layer, but preferably, an additional layer other than the light-emitting layer is provided, and the visible light absorber is contained in the additional layer (hereinafter, also referred to as "absorber-containing layer"). The absorber-containing layer may be laminated directly or through another layer on the light-emitting layer, and the thermoplastic film may have a multi-layered structure.
  • When the thermoplastic film comprises the absorber-containing layer, and is used for window glass, such as a windshield for an automobile, the light-emitting layer may be disposed on the indoor side (that is, as for an automobile, the inner side of the car), and the absorber-containing layer may be disposed on the outdoor side (that is, as for an automobile, the outer side of the car). In the case where the absorber-containing layer is disposed on the outdoor side, when light from outside is incident on the thermoplastic film, the light from outside is incident on the light-emitting layer through the absorber-containing layer. For that reason, light of wavelengths of 400 to 420 nm is absorbed sufficiently by the visible light absorber in the absorber-containing layer, and therefore undesired emission in the light-emitting layer is suppressed even when light of an LED light, an HID light, and the like from outside is incident on the thermoplastic film.
  • In addition, when the thermoplastic film is irradiated with excitation light from an excitation light source on the indoor side, the excitation light from the excitation light source is incident on the light-emitting layer without being absorbed by the visible light absorber by providing the absorber-containing layer comprising a visible light absorber. Therefore, even when the thermoplastic film comprises a visible light absorber, the emission of the light-emitting layer by excitation light is not inhibited by the visible light absorber.
  • The transmittance of the absorber-containing layer is preferably lower than the transmittance of the light-emitting layer over the whole region of wavelengths of 420 to 430 nm. That the transmittance is lower over the whole region of wavelengths of 420 to 430 nm means that when the transmittances of the absorber-containing layer and the light-emitting layer are measured every 1 nm of the wavelengths in 420 to 430 nm, and the transmittances at each wavelength are compared, the transmittance of the absorber-containing layer is lower than the transmittance of the light-emitting layer in all the wavelengths.
  • By lowering the transmittance of the absorber-containing layer in the whole region of 420 to 430 nm in this way, undesired emission due to light of an LED light, an HID light, and the like from outside can more effectively be prevented.
  • The transmittance of the absorber-containing layer at a wavelength of 420 nm is not particularly limited, and is, for example, 5 to 65%, but is more preferably 8 to 40%, and still more preferably 10 to 35%. The transmittance of the absorber-containing layer at a wavelength of 430 nm is usually higher than the transmittance at a wavelength of 420 nm, and is preferably 35 to 80%, and more preferably 40 to 70%. By setting the transmittances of the absorber-containing layer at wavelengths of 420 nm and 430 nm to the ranges, it is made easy to prevent undesired emission due to light from outside which is from an LED light, an HID light, and the like. In addition, the visible light transmittance is improved, and coloration or the like is made unlikely to occur.
  • The absorber-containing layer preferably comprises a thermoplastic resin in addition to the visible light absorber. By comprising the thermoplastic resin, the absorber-containing layer easily bonds to the light-emitting layer, and a barrier layer, which will be mentioned later, making it easy to shape the thermoplastic film. In addition, the bondability of the thermoplastic film to a glass plate is easily enhanced. In the absorber-containing layer, the visible light absorber, and an ultraviolet ray absorber, which will be mentioned later, may be dispersed or dissolved in the thermoplastic resin.
  • Examples of the thermoplastic resin which is used in the absorber-containing layer include, but not particularly limited to, a polyvinyl acetal resin, an ethylene-vinyl acetate copolymer resin, an ionomer resin, a polyurethane resin, and a thermoplastic elastomer. Using these resins makes it easy to secure the bondability to a glass plate.
  • In the absorber-containing layer of the present invention, the thermoplastic resin may be used singly, or two or more thermoplastic resins may be used together. Among these, the thermoplastic resin is preferably at least one selected from the group consisting of a polyvinyl acetal resin and an ethylene-vinyl acetate copolymer resin, and the thermoplastic resin is more preferably a polyvinyl acetal resin in that the polyvinyl acetal resin, particularly when used together with a plasticizer, exhibits excellent bondability to glass.
  • When the absorber-containing layer comprises a thermoplastic resin, the same types of resins may be used, or different types of resins may be used as the thermoplastic resin in the light-emitting layer and the thermoplastic resin in the absorber-containing layer, but the same types of resins are preferably used. For example, when the thermoplastic resin in the light-emitting layer is a polyvinyl acetal resin, the thermoplastic resin in the absorber-containing layer is preferably a polyvinyl acetal resin, too. Further, for example, when the thermoplastic resin in the light-emitting layer is an ethylene-vinyl acetate copolymer resin, the thermoplastic resin in the absorber-containing layer is preferably an ethylene-vinyl acetate copolymer resin, too.
  • Details on the polyvinyl acetal resin, the ethylene-vinyl acetate copolymer resin, the ionomer resin, the polyurethane resin, and the thermoplastic elastomer are as described in Light-emitting Layer, and therefore the description is omitted.
  • The absorber-containing layer, when comprising a thermoplastic resin, may further comprise a plasticizer. The absorber-containing layer, when comprising a plasticizer, is made to be more flexible, and, when used, for example, for laminated glass, makes the laminated glass flexible. Further, the absorber-containing layer can exhibit enhanced bondability to a glass plate. The absorber-containing layer is particularly effective when comprising a plasticizer in the case where a polyvinyl acetal resin is used as the thermoplastic resin.
  • Examples of the plasticizer include organic ester plasticizers, such as a monobasic organic acid ester and a polybasic organic acid ester, and phosphorus plasticizers, such as an organic phosphorus plasticizer and an organic phosphite plasticizer. Specific examples of the plasticizer are as described above. Among these, an organic ester plasticizer is preferable, and triethylene glycol-di-2-ethylhexanoate (3GO) is particularly suitably used. Also, in the absorber-containing layer, the plasticizer may be used singly, or two or more plasticizers may be used together.
  • The content of the plasticizer in the absorber-containing layer is not particularly limited, but a preferred lower limit is 30 parts by mass, and a preferred upper limit is 70 parts by mass based on 100 parts by mass of the thermoplastic resin. Setting the content of the plasticizer to 30 parts by mass or more makes laminated glass moderately flexible, making handlability and the like good. By setting the content of the plasticizer to 70 parts by mass or less, separation of the plasticizer from the absorber-containing layer is prevented. A more preferred lower limit of the content of the plasticizer is 35 parts by mass, and a more preferred upper limit of the content of the plasticizer is 63 parts by mass.
  • The absorber-containing layer may be such that the thermoplastic resin, or the thermoplastic resin and the plasticizer are the main components, and the total amount of the thermoplastic resin and the plasticizer is usually 70% by mass or more, preferably 80% by mass or more, and still more preferably 90% by mass or more based on the total amount of the absorber-containing layer.
  • The content of the visible light absorber in the absorber-containing layer is not particularly limited as long as the transmittance is 25% or less over the whole region of 400 to 420 nm, but is preferably 0.0005 parts by mass or more, more preferably 0.001 parts by mass or more, and still more preferably 0.002 parts by mass or more based on 100 parts by mass of the thermoplastic resin. The content of the visible light absorber in the absorber-containing layer is, for example, 1.8 parts by mass or less, preferably 0.5 parts by mass or less, more preferably 0.3 parts by mass or less, still more preferably 0.1 parts by mass or less, and further still more preferably 0.01 parts by mass or less. Setting the content of the visible light absorber to the lower limit value or more makes it easy to lower the transmittance in 400 to 420 nm. By setting the content of the visible light absorber to the upper limit value or less, coloration of the absorber-containing layer due to the visible light absorber can be prevented, and the effects commensurate with the content are easily exhibited.
  • The absorber-containing layer is a layer substantially free of a light-emitting material. When the absorber-containing layer is substantially free of a light-emitting material, thereby it is made easier to prevent undesired emission due to light from outside.
  • Being substantially free of a light-emitting material means not blending a light-emitting material intentionally in the absorber-containing layer, and there is a possibility that a light-emitting material is unavoidably contained in the absorber-containing layer. For example, when a barrier layer, which will be mentioned later, is not provided, a light-emitting material migrates into the absorber-containing layer from the light-emitting layer in some cases. In addition, there is a possibility that a light-emitting material is unavoidably mixed in the production process.
  • Even if a light-emitting material is unavoidably contained in the absorber-containing layer, the content of the light-emitting material in the absorber-containing layer is sufficiently smaller than the content of the light-emitting material in the light-emitting layer. Specifically, the content of the light-emitting material based on 100 parts by mass of the thermoplastic resin in the absorber-containing layer is sufficiently smaller than the content of the light-emitting material based on 100 parts by mass of the thermoplastic resin in the light-emitting layer, and may be, for example, less than 1/2, and preferably less than 1/10.
  • (Ultraviolet Ray Absorber)
  • The thermoplastic film of the present invention preferably comprises an ultraviolet ray absorber. The ultraviolet ray absorber may be contained in the light-emitting layer, or may be contained in the absorber-containing layer, but is preferably contained at least in the absorber-containing layer, and is more preferably contained in both of the light-emitting layer and the absorber-containing layer. That is, the absorber-containing layer preferably comprises an ultraviolet ray absorber in addition to the above-described visible light absorber.
  • When the absorber-containing layer comprises an ultraviolet ray absorber in addition to the visible light absorber, thereby incidence of not only the above-described visible light in a wavelength region of 400 to 420 nm but also ultraviolet rays on the light-emitting layer can effectively be prevented. For that reason, light in a short wavelength region, included in light of an LED light, an HID light, and the like from outside is absorbed further by the absorber-containing layer, and therefore undesired emission by the light-emitting material can more adequately be prevented.
  • Further, when the light-emitting layer and the absorber-containing layer comprise an ultraviolet ray absorber, deterioration of the light-emitting layer and the absorber-containing layer by light due to sunlight or the like can also be prevented. Furthermore, when the thermoplastic film is used, for example, for window glass, transmission of ultraviolet rays into the indoor side (the inner side of a car) through the window glass can be prevented.
  • The ultraviolet ray absorber is a compound having a maximum absorption wavelength peak in a wavelength region of 300 nm or more and less than 360 nm, preferably 330 nm or more and less than 360 nm, and more preferably 345 nm or more and 358 nm or less.
  • As the ultraviolet ray absorber, for example, a compound having a malonic acid ester skeleton, a compound having an oxalic anilide skeleton, a compound having a benzotriazole skeleton, a compound having a benzophenone skeleton, a compound having a triazine skeleton, a compound having a benzoate skeleton, and a compound having a hindered amine skeleton can be used. Among these, a compound having a benzotriazole skeleton (benzotriazole-based compound) is preferable.
  • Preferred specific examples of the benzotriazole-based compound include a compound represented by the following general formula (13). The compound represented by the following formula (13) is preferably contained in the light-emitting layer or the absorber-containing layer, or both of these, but is more preferably contained in both of the light-emitting layer and the absorber-containing layer.
    Figure imgb0015
    wherein, R31 represents a hydrogen atom, a C1-8 alkyl group, or a C4-20 alkoxycarbonylalkyl group, R32 represents a hydrogen atom or a C1-8 alkyl group, and X is a chlorine atom or a hydrogen atom.
  • In the formula (13), the alkyl groups of R31 and R32 may each be an alkyl group having a linear structure, or an alkyl group having a branched structure. The alkoxycarbonylalkyl group may be an alkoxycarbonylalkyl group having a linear structure, or an alkoxycarbonylalkyl group having a branched structure. Examples of R31 and R32 include a hydrogen atom, a methyl group, an ethyl group, a n-propyl group, an iso-propyl group, a n-butyl group, a tert-butyl group, a pentyl group, a hexyl group, and an octyl group. In addition to these, examples of R31 include a methoxycarbonylpropyl group, an octyloxycarbonylpropyl group. Among others, R31 is preferably a hydrogen atom or an alkyl group, and is particularly preferably a hydrogen atom, a methyl group, a tert-butyl group, a pentyl group, or an octyl group. R31 and R32 may be the same or different.
  • Specific examples of the compound represented by the formula (13) include 2-(3-t-butyl-5-methyl-2-hydroxyphenyl)-5-chlorobenzotriazole, 2-(3,5-di-t-butyl-2-hydroxyphenyl)-5-chlorobenzotriazole, octyl 3-[3-tert-butyl-5-(5-chloro-2H-benzotriazol-2-yl)-4-hydroxyphenyl]propionate, methyl 3-(5-chloro-2H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenylpropionate, and 2-(3,5-di-tert-amyl-2-hydroxyphenyl)benzotriazole.
  • The content of the ultraviolet ray absorber in the light-emitting layer is, for example, 0.01 mass or more, preferably 0.05 parts by mass or more, and more preferably 0.1 parts by mass or more based on 100 parts by mass of the thermoplastic resin. By setting the content of the ultraviolet ray absorber in the light-emitting layer to these contents or more, deterioration of the light-emitting layer by being irradiated with sunlight or the like can be prevented.
  • The content of the ultraviolet ray absorber in the light-emitting layer is, for example, 1.5 parts by mass or less, preferably 0.7 parts by mass or less, and more preferably 0.35 parts by mass or less based on 100 parts by mass of the thermoplastic resin. By setting the content of the ultraviolet ray absorber to the upper limit value of these or less, excitation light which irradiates the light-emitting layer is not absorbed so much by the ultraviolet ray absorber, and therefore the light-emitting layer can more efficiently emit light by the excitation light.
  • The content of the ultraviolet ray absorber in the absorber-containing layer is, for example, 0.1 mass or more, preferably more than 0.2 mass, more preferably 0.4 parts by mass or more, and still more preferably 0.6 parts by mass or more based on 100 parts by mass of the thermoplastic resin. By setting the content of the ultraviolet ray absorber to the lower limit value of these or more, it is made easy to prevent incidence of ultraviolet rays on the light-emitting layer. In addition, it is made easy to lower the transmittance in 400 to 420 nm. Further, the absorber-containing layer itself is made unlikely to be deteriorated by sunlight or the like.
  • The content of the ultraviolet ray absorber in the absorber-containing layer is preferably 2.0 parts by mass or less, more preferably 1.5 parts by mass or less, and still more preferably 1.2 parts by mass or less based on 100 parts by mass of the thermoplastic resin. By setting the content of the ultraviolet ray absorber in the absorber-containing layer to the upper limit value of these or less, coloration of the absorber-containing layer due to the ultraviolet ray absorber can be prevented. In addition, the ultraviolet ray absorber can adequately be dispersed or dissolved in the thermoplastic resin, and the effects commensurate with the content are easily exhibited.
  • When the ultraviolet ray absorber is contained in both of the absorber-containing layer and the light-emitting layer, the content of the ultraviolet ray absorber based on 100 parts by mass of the thermoplastic resin in the absorber-containing layer is preferably larger than the content of the ultraviolet ray absorber based on 100 parts by mass of the thermoplastic resin in the light-emitting layer. Such adjustment makes the emission by the light-emitting layer good and makes it further easier to prevent undesired emission due to light from outside. In this case, the difference in the content based on 100 parts by mass of the thermoplastic resin (the content in the absorber-containing layer - the content in the light-emitting layer) is, for example, 0.1 parts by mass or more, preferably 0.3 parts by mass or more, and more preferably 0.5 parts by mass or more.
  • [Other Additives]
  • If necessary, coloring matter other than the light-emitting material may be blended in the thermoplastic film. The coloring matter may be contained in the absorber-containing layer or the light-emitting layer, or both of these, but is preferably contained in the absorber-containing layer. When the absorber-containing layer comprises a visible light absorber, coloration thereby occurs in the absorber-containing layer in some cases, but by allowing coloring matter to be contained, the color of the absorber-containing layer can be changed into a desired color. The coloring matter is not particularly limited, and may be any of pigments, dyes, and the likes, or may be any coloring matter of blue coloring matter, red coloring matter, yellow coloring matter, green coloring matter, and the like.
  • Further, if necessary, the thermoplastic film may comprise additives such as an infrared ray absorber, an antioxidant, a light stabilizer, an adhesive strength modifier, a fluorescent brightener, a crystal nucleating agent, and a dispersant. The light-emitting layer may comprise one or more selected from the group consisting of these. The absorber-containing layer as well as the light-emitting layer may comprise one or more selected from the group consisting of these.
  • The infrared ray absorber is not particularly limited as long as it has performance of shielding infrared rays, but, for example, tin-doped indium oxide particle is suitable. The absorber-containing layer, when comprising an infrared ray absorber, can exhibit high heat shieldability.
  • Examples of the antioxidant include, but not particularly limited to, 2,2-bis[[[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionyl]oxy]methyl]propane-1,3-diol, 1,3-bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], 4,4'-thiobis(6-tert-butyl-3-methylphenol), 4,4'-dimethyl-6,6'-di(tert-butyl)[2,2'-methylenebis(phenol)], 2,6-di-t-butyl-p-cresol, and 4,4'-butylidenebis-(6-t-butyl-3-methylphenol).
  • Examples of the crystal nucleating agent include, but not particularly limited to, dibenzylidene sorbitol, dibenzylidene xylitol, dibenzylidene dulcitol, dibenzylidene mannitol, and calixarene. The crystal nucleating agent is suitably used when an ethylene-vinyl acetate copolymer resin is used as the thermoplastic resin.
  • As the adhesive strength modifier, for example, various magnesium salts or potassium salts, and the like are used.
  • The above description shows an aspect such that the absorber-containing layer comprises a visible light absorber, but the absorber-containing layer does not have to comprise the above-described visible light absorber. In that case, the absorber-containing layer may comprise the above-described ultraviolet ray absorber, and the transmittance in 400 to 420 nm may be lowered by the ultraviolet ray absorber.
  • The content of the ultraviolet ray absorber in the absorber-containing layer in the case where the absorber-containing layer does not contain a visible light absorber may be made relatively large, and is 0.35 parts by mass or more, preferably 0.4 parts by mass or more, and more preferably 0.7 parts by mass or more based on 100 parts by mass of the thermoplastic resin. The content of the ultraviolet ray absorber in the absorber-containing layer in that case is preferably 2.0 parts by mass or less, more preferably 1.5 parts by mass or less, and still more preferably 1.2 parts by mass or less.
  • [Barrier Layer]
  • The thermoplastic film may further comprise a barrier layer between the light-emitting layer and the absorber-containing layer. The barrier layer is a layer for preventing diffusion of the light-emitting material, and specifically prevents migration of the light-emitting material blended in the light-emitting layer into the absorber-containing layer. For that reason, the light-emitting material stays in the light-emitting layer, and the ultraviolet ray absorber and the visible light absorber stay in the absorber-containing layer even after a long period of use, and therefore undesired emission due to light from outside can be suppressed.
  • The barrier layer may be constituted by a resin layer. Examples of the resin which forms the resin layer include polyvinyl acetal resins, such as a polyvinyl butyral resin, polyester resins, such as polyethylene terephthalate, and acrylic resins.
  • As the acrylic resin, an acrylic polymer comprising a constitutional unit derived from a hydroxy group-containing (meth)acrylate is preferable, and specifically polyhydroxypropyl methacrylate (HPMA resin), polyhydroxyethyl methacrylate (HEMA resin), and the like are preferable.
  • As the resin which is used for the barrier layer, polyethylene terephthalate, polyhydroxypropyl methacrylate, polyhydroxyethyl methacrylate are preferable, and among others, polyethylene terephthalate (PET) is preferable. Polyethylene terephthalate may be modified PET, and, for example, cyclohexanedimethylene-modified PET (PETG) is preferable.
  • The resin which is used for the barrier layer may be used singly, or two or more such resins may be used together.
  • The barrier layer may be composed of the resin only, but an additive may be blended in the barrier layer as long as the function of the barrier layer is not inhibited. Examples of the additive include an antioxidant, a light stabilizer, a fluorescent brightener, and a crystal nucleating agent. The details on these are as described above.
  • In addition, the barrier layer is preferably substantially free of a plasticizer. When the barrier layer does not comprise a plasticizer, diffusion of the light-emitting material and the like can thereby be prevented. Particularly when both of the light-emitting layer and the absorber-containing layer comprise a plasticizer, diffusion of the light-emitting material and the like easily occurs, and therefore when both of the light-emitting layer and the absorber-containing layer comprise a plasticizer, the barrier layer is preferably substantially free of a plasticizer.
  • The phrase "substantially free of a plasticizer" means that a plasticizer may be contained in an amount not impairing the function of the barrier layer, or a plasticizer mixed therein, for example, unintentionally and unavoidably may be contained. The content of the plasticizer in the barrier layer may be, for example, less than 2 parts by mass, and is preferably less than 1 part by mass, more preferably less than 0.5 parts by mass, and most preferably 0 parts by mass based on 100 parts by mass of the thermoplastic resin.
  • The thickness of the barrier layer is preferably 15 to 300 µm. By setting the thickness of the barrier layer to 15 µm or more, the barrier ability is made good, and diffusion of the light-emitting material and the like can be prevented. By setting the thickness of the barrier layer to 300 µm or less, the flexibility of the thermoplastic film can be secured. From the viewpoint of barrier performance, the thickness of the barrier layer is more preferably 10 µm or more, and still more preferably 25 µm or more. From the viewpoint of flexibility of the thermoplastic film, the thickness of the barrier layer is more preferably 200 µm or less, and still more preferably 150 µm or less.
  • (Layer Constitution)
  • Next, the layer constitution of the thermoplastic film of the present invention will be described with reference to the drawings. As described above, the thermoplastic film 10 may be composed of a light-emitting layer 11 singly (see Fig. 1), but preferably comprises the light-emitting layer 11 and an absorber-containing layer 12, as shown in Figs. 2 and 3.
  • The thermoplastic film 10 comprises the light-emitting layer 11 and the absorber-containing layer 12 laminated on the light-emitting layer 11 as shown in Fig. 2, and may be composed of these two layers, but may comprise another layer, and, for example, a barrier layer 13 may be provided between the light-emitting layer 11 and the absorber-containing layer 12, as shown in Fig. 3.
  • The thermoplastic film 10 is used for window glass, and preferably window glass for an automobile, such as a windshield, as will be mentioned later, and one surface 10A is disposed on the indoor side (as for an automobile, the inner side of the car), and the other surface 10B is disposed on the outdoor side (as for an automobile, the outer side of the car). The thermoplastic film 10 is irradiated with excitation light from an excitation light source to allow the light-emitting layer 11 to emit light, and the excitation light from the excitation light source is incident from the indoor side, that is, from the one surface 10A of the thermoplastic film 10. The emission of the light-emitting layer 11 is generally observed from the side of the one surface 10A (that is, the indoor side).
  • When the thermoplastic film 10 comprises the light-emitting layer 11 and the absorber-containing layer 12, as shown in Figs. 2 and 3, the light-emitting layer 11 may be disposed on the side of the one surface 10A (that is, the indoor side), and the absorber-containing layer 12 may be disposed on the side of the other surface 10B (that is, the outdoor side). Due to such constitution, part of light from outside (such as light of wavelengths of 400 to 420 nm) is absorbed by the absorber-containing layer 12, and undesired emission of the light-emitting layer 12 due to light from outside can be prevented, as described above. The excitation light from the excitation light source is incident on the light-emitting layer 11 without being absorbed by the absorber-containing layer 12, and therefore lowering of the emission intensity of the light-emitting layer 11 can be prevented even when the absorber-containing layer 12 is provided.
  • Respective components (such as the light-emitting material, the visible light absorber, and the ultraviolet ray absorber) contained in the light-emitting layer 11 and the absorber-containing layer 12 are usually dispersed in a uniform manner in each layer, but may be unevenly distributed.
  • For example, when the thermoplastic film 10 is composed of the light-emitting layer 11 singly comprising a light-emitting material, the content rate of the light-emitting material may be adjusted in such a way as to be larger in the region on the side of the one surface 10A of the light-emitting layer 11 than in the region on the side of the other surface 10B, or, for example, may be adjusted in such a way that the content rate changes gradually. On the other hand, the content rate of the visible light absorber may be adjusted in such a way as to be larger in the region on the side of the other surface 10B of the light-emitting layer 11 than in the region on the side of the one surface 10A, or, for example, may be adjusted in such a way that the content rate changes gradually. Similarly, the content rate of the ultraviolet ray absorber may also be adjusted in such a way as to be larger in the region on the side of the other surface 10B of the light-emitting layer 11 than in the region on the side of the one surface 10A, or, for example, may be adjusted in such a way that the content rate changes gradually.
  • When the light-emitting material, the visible light absorber, and the like are unevenly distributed in this way, as well as when the two layers of the light-emitting layer 11 and the absorber-containing layer 12 are provided, undesired emission due to light from outside, which is incident from the other surface 10B, can effectively be suppressed. In addition, excitation light incident from the one surface 10A is likely to irradiate the light-emitting material before being absorbed by the visible light absorber, the ultraviolet ray absorber, and the like, and therefore lowering of the emission intensity of the light-emitting layer 11 can be prevented.
  • The thermoplastic film in another aspect of the present invention is a thermoplastic film comprising a light-emitting layer, wherein the light-emitting layer comprises a thermoplastic resin, and a light-emitting material that emits light by being irradiated with excitation light, and the thermoplastic film further comprises a visible light absorber having a maximum absorption wavelength peak in a wavelength region of 360 nm or more and 780 nm or less.
  • In the thermoplastic film having such constitution, the transmittance in the whole region of 400 to 420 nm can be lowered, and even when light from outside which is from an LED light and an HID light is incident on the thermoplastic film, the light-emitting material is not excited sufficiently, so that undesired emission can be suppressed.
  • The thermoplastic film in the aspect preferably further comprises an ultraviolet ray absorber having a maximum absorption wavelength peak in a wavelength region of 300 nm or more and less than 360 nm. As just described, when the absorber-containing layer comprises an ultraviolet ray absorber in addition to the visible light absorber, thereby incidence of not only the above-described visible light in a wavelength region of 400 to 420 nm but also ultraviolet rays on the light-emitting layer can effectively be prevented. For that reason, light in a short wavelength region, included in light of an LED light, an HID light, and the like from outside is more likely to be absorbed by the thermoplastic film, and therefore undesired emission by the light-emitting material can further adequately be prevented.
  • In addition, when the thermoplastic film comprises an ultraviolet ray absorber, thereby deterioration by light due to sunlight or the like can be prevented, and further when the thermoplastic film is used, for example, for window glass, transmission of ultraviolet rays into the indoor side (the inner side of a car) through the window glass can also be prevented.
  • Details on the constitution of the thermoplastic film in one aspect of the present invention are as described above, and therefore the description is omitted.
  • The thermoplastic film of the present invention may be used by being laminated on a glass plate, and may be used by being laminated on, for example, one glass plate, but is preferably used as an interlayer film for laminated glass. The interlayer film for laminated glass is disposed between two glass plates, and is used for bonding the two glass plates, as will be mentioned later.
  • [Laminated Glass]
  • Laminated glass of the present invention comprises a first glass plate, a second glass plate, and a thermoplastic film disposed between the first glass plate and the second glass plate. In the laminated glass, the first glass plate and the second glass plate are bonded with the thermoplastic film. That is, the thermoplastic film is used as the interlayer film for laminated glass.
  • The laminated glass of the present invention comprises a light-emitting material that emits light by irradiation with excitation light, and has a visible light transmittance Tv of 70% or more and a transmittance in the whole region of wavelengths of 400 to 420 nm of 25% or less. In the laminated glass of the present invention, undesired emission based on light from outside which is from an LED light, an HID light, and the like can be prevented by lowering the transmittance in the whole region of 400 to 420 nm.
  • The transmittance of the laminated glass in the whole region of 400 to 420 nm is, as mentioned in the above-described Thermoplastic Film of the present invention, preferably 20% or less, and more preferably 16% or less. The maximum value of the transmittance of the laminated glass in the whole region of 400 to 420 nm is practically, for example, 0.5% or more, and is, from the viewpoint of making it easy to increase the visible light transmittance, preferably 2% or more.
  • The laminated glass of the present invention has a visible light transmittance Tv of 70% or more. When the visible light transmittance Tv is less than 70%, it is difficult to secure the transparency at a certain level, and it is difficult to use the laminated glass, for example, for a windshield of an automobile. The visible light transmittance Tv of the laminated glass is preferably 72% or more, more preferably 75% or more, and still more preferably 80% or more.
  • With respect to the visible light transmittance Tv of the laminated glass, the higher, the better from the viewpoint of the transparency, but the visible light transmittance Tv of the laminated glass is practically 99% or less, and is, from the viewpoint of lowering the transmittance in 400 to 420 nm, 97% or less.
  • The laminated glass of the present invention preferably has, as described in Thermoplastic Film, a transmittance at a wavelength of 425 nm of 60% or less, more preferably 50% or less, and still more preferably 35% or less. The transmittance of the laminated glass at a wavelength of 425 nm is not particularly limited, but is, for example, 1% or more, preferably 7% or more, and more preferably 15% or more.
  • From the viewpoint of preventing undesired emission more effectively, the laminated glass of the present invention preferably has a luminance, as measured when the HID light irradiation test is conducted for the laminated glass, of 20 cd/m2 or less, more preferably 18 cd/m2 or less, and still more preferably 16 cd/m2 or less.
  • The HID light irradiation test is as described above, and, for details, the HID light irradiation test is conducted by the method described in Examples.
  • The glass plate which is used in the laminated glass may be any of inorganic glass and organic glass, but is preferably inorganic glass. Examples of the inorganic glass include, but not particularly limited to, clear glass, float plate glass, polished plate glass, figured glass, meshed plate glass, wired plate glass, and green glass.
  • As the organic glass, organic glass generally called resin glass is used, and examples thereof include, but not particularly limited to, organic glass formed from a resin such as polycarbonate, an acrylic resin, an acrylic copolymer resin, or a polyester.
  • The two glass plates may be constituted by the same types of materials, or may be constituted by different materials from each other. For example, one and the other may be organic glass and inorganic glass, respectively, but both of the two glass plates are preferably inorganic glass or organic glass.
  • The thickness of each glass plate is not particularly limited, but is, for example, about 0.1 to 15 mm, and preferably 0.5 to 5 mm. The thicknesses of respective glass plates may be the same as or different from each other, but are preferably the same.
  • In the laminated glass of the present invention, the above-described thermoplastic film of the present invention may be used as the thermoplastic film disposed between the first glass plate and the second glass plate. That is, the thermoplastic film such that when laminated glass is prepared using the thermoplastic film and the standard glass, the laminated glass has a visible light transmittance Tv of 70% or more and a transmittance in the whole region of wavelengths of 400 to 420 nm of 25% or less may be used. In addition, the thermoplastic film comprising a visible light absorber having a maximum absorption wavelength peak in a wavelength region of 360 nm or more and 780 nm or less may be used.
  • When the above-described thermoplastic film 10 of the present invention is used for the laminated glass 20 of the present invention, the first and the second glass plates 21, 22 may be bonded with the thermoplastic film 10 interposed therebetween, as shown in Figs. 1 to 3.
  • The first glass plate 21 is bonded to the one surface 10A of the thermoplastic film 10, and is thereby disposed on the indoor side (as for an automobile, the inner side of the car), and the second glass plate 22 is bonded to the other surface 10B, and is thereby disposed on the outdoor side (as for an automobile, the outer side of the car).
  • The thermoplastic film which is used for the laminated glass of the present invention (that is, the interlayer film for laminated glass) is not limited to the above-described thermoplastic film of the present invention, and may have some other constitution. For example, the thermoplastic film may be a film such that the film comprises the above-described light-emitting layer comprising a thermoplastic resin and a light-emitting material, but when laminated glass is prepared using the standard glass, the transmittance in the whole region of wavelengths of 400 to 420 nm is not 25% or less, and the film does not comprise the above-described visible light absorber. In such a case, the thermoplastic film may be composed of the light-emitting layer singly, but an additional layer may further be laminated in an appropriate manner. As the additional layer, a thermoplastic resin layer may be used.
  • The thermoplastic resin layer is a layer not comprising the above-described light-emitting material and visible light absorber, but comprising a thermoplastic resin, and, if necessary, may comprise an ultraviolet ray absorber and other additives. The thermoplastic resin layer may have the constitution as described in light-emitting layer, except that the thermoplastic resin layer does not comprise a light-emitting material, and the specific contents thereof are as described above. The same applies to those mentioned simply as "the thermoplastic resin layer" in the following description.
  • Further, the thermoplastic film which is used for the laminated glass of the present invention (the interlayer film for laminated glass) may be a thermoplastic film not comprising a light-emitting layer but comprising an absorber-containing layer. Also in this case, the thermoplastic film may be composed of the absorber-containing layer singly, but an additional layer may further be laminated. As the additional layer, the thermoplastic resin layer may be used. Furthermore, the thermoplastic film which is used for the laminated glass of the present invention does not have to comprise both of the light-emitting layer and the absorber-containing layer, and in such a case, the thermoplastic film may be constituted by the thermoplastic resin layer.
  • As just described, when the thermoplastic film which is used for the laminated glass (the interlayer film for laminated glass) does not have the above-described constitution of the thermoplastic film of the present invention, the laminated glass may comprise at least any one of the light-emitting layer and the absorber-containing layer as an additional member other than the thermoplastic film. When the light-emitting layer is provided as the additional member, the laminate glass can thereby be allowed to emit light even when the thermoplastic film does not comprise a light-emitting layer. In addition, when the absorber-containing layer is provided as the additional member, the transmittance can thereby be lowered to 25% or less over the whole region of wavelengths of 400 to 420 nm even when the transmittance at wavelengths of 400 to 420 nm cannot be lowered by the thermoplastic film.
  • The light-emitting layer and the absorber-containing layer each provided as the additional member may each be, for example, a coat formed on any one of the surfaces of the first and the second glass plates.
  • The light-emitting layer constituted by a coat is, for example, a coat comprising a binder component comprising a thermosetting resin, a thermoplastic resin, or the like, and a light-emitting material. Such a light-emitting layer can be formed by coating a glass plate with a paint comprising a binder component and a light-emitting material, and, if necessary, conducting drying, curing, and the like. If necessary, an additive, such as an ultraviolet ray absorber, may be contained in the paint.
  • In the light-emitting layer constituted by a coat, the content, the type, and the like of the light-emitting material may appropriately be adjusted in such a way that the laminated glass and the light-emitting layer have the above-described optical properties (such as, for example, the transmittance and the maximum excitation wavelength).
  • The absorber-containing layer constituted by a coat is a coat comprising a binder component comprising a thermosetting resin, a thermoplastic resin, or the like, and at least one absorber of the visible light absorber and the ultraviolet ray absorber. Such an absorber-containing layer can be formed by coating a glass plate with a paint comprising a binder component and an absorber, and, if necessary, conducting drying, curing, and the like. If necessary, an additive other than the absorber may be contained in the paint.
  • In the absorber-containing layer constituted by a coat, the contents, the types, and the like of the visible light absorber and the ultraviolet ray absorber which are used may appropriately be adjusted in such a way that the laminated glass and the absorber-containing layer have the above-described optical properties (such as, for example, the transmittance).
  • When at least one of the light-emitting layer and the absorber-containing layer is provided as the additional member other than the thermoplastic film (the interlayer film for laminated glass), the laminated glass may comprise both of the light-emitting layer and the absorber-containing layer as a whole. For example, one of the light-emitting layer and the absorber-containing layer may be a coat formed on any one of the surfaces of the first and the second glass plates, and the other may be contained in the thermoplastic film (the interlayer layer for laminated glass). The light-emitting layer may be disposed on the indoor side (as for an automobile, the inner side of the car) with respect to the absorber-containing layer.
  • In more detail, for example, as shown in Figs. 4 and 5, when a thermoplastic film 30 comprises the light-emitting layer 11, the absorber-containing layer 12 may be a coat formed on any one of surfaces 22A, 22B of the second glass plate 22. Figs. 4 and 5 show an aspect such that the thermoplastic film 30 is composed of the light-emitting layer 11 singly, but a layer other than the light-emitting layer 11 may be provided. Such a layer may be, for example, the thermoplastic resin layer.
  • As shown in Figs. 6 and 7, when the thermoplastic film 30 comprises the absorber-containing layer 12, the light-emitting layer 11 may be a coat formed on any one of surfaces 21A, 21B of the first glass plate 21. Figs. 6 and 7 show an aspect such that the thermoplastic film 30 is composed of the absorber-containing layer 12 singly, but a layer other than the absorber-containing layer 12 may be provided. Such a layer may be, for example, the above-described thermoplastic resin layer.
  • Further, although not shown, when the thermoplastic film 30 contains neither the light-emitting layer 11 nor the absorber-containing layer 12, the light-emitting layer 11 may be formed on any one of surfaces 21A, 21B of the first glass plate 21, and the absorber-containing layer 12 may be formed on any one of the surfaces 22A, 22B of the second glass plate 22.
  • In the laminated glass 20 above, the first glass plate 21 is disposed on the indoor side (as for an automobile, the inner side of the car), and the second glass plate 22 is disposed on the outdoor side (as for an automobile, the outer side of the car).
  • When the laminated glass of the present invention comprises both of the light-emitting layer and the absorber-containing layer, and the absorber-containing layer is disposed on the outdoor side, thereby light of 400 to 420 nm included in light from outside can effectively be absorbed by the absorber-containing layer, and it is made easy to prevent undesired emission in the light-emitting layer due to light from outside. In addition, by irradiating the laminated glass with excitation light from the indoor side, the light-emitting layer emits light with high emission efficiency by the excitation light.
  • (Application of Laminated Glass)
  • The laminated glass of the present invention is used as, for example, window glass, and more specifically may be used for window glass of various vehicles, such as an automobile, a train, a ship, and an airplane, and various buildings, such as an office building, an apartment, a single house, a hall, and a gymnasium, and the like. The window glass is disposed at, for example, external surfaces of various buildings, and external surfaces of various vehicles, and light from outside may be incident from the outdoor side toward the indoor side through the window glass.
  • The laminated glass is preferably used for window glass of a vehicle, and particularly for window glass for an automobile. When the above-described first glass plate is irradiated with excitation light from the indoor side (as for an automobile, the inner side of the car), the laminated glass can thereby display various images by the emission from the light-emitting layer.
  • Light from outside, more specifically light from a headlight, such as an LED light and an HID light, is incident on window glass for a vehicle, particularly window glass for an automobile in some cases, but even when such light from outside is incident on the laminated glass of the present invention, undesired emission by the light-emitting layer can be prevented.
  • The window glass for an automobile may be any of a windshield, rear glass, side glass, and roof glass, but is preferably used for a windshield. When the laminated glass comprising a light-emitting layer is used for a windshield, the laminated glass can suitably be used for a HUD application.
  • The present invention also provides an image display system comprising the above-described laminated glass and a light source. As described above, the laminated glass may be window glass, the first glass plate is disposed on the indoor side (as for an automobile, the inner side of the car), and the second glass plate is disposed on the outdoor side (as for an automobile, the outer side of the car). The light source is not particularly limited as long as it emits excitation light capable of exciting the light-emitting material contained in the laminated glass, and a laser light source, an LED light source, a xenon lamp, or the like is used. The light source may be disposed indoors (as for an automobile, inside the car), and the first glass plate may thereby be irradiated with excitation light from the light source. When the laminated glass is irradiated with excitation light from the light source, the light-emitting material in the laminated glass emits light, and an image is displayed in the laminated glass.
  • When the laminated glass is made into a windshield of an automobile, the image display system of the present invention can suitably be used as HUD of an automobile.
  • (Production Method)
  • The light-emitting layer may be formed with, for example, a thermoplastic resin composition comprising materials that constitute the light-emitting layer, such as a thermoplastic resin, a light-emitting material, and a plasticizer, an ultraviolet ray absorber, and other additives, which are added as necessary. The absorber-containing layer may be formed with, for example, a thermoplastic resin composition comprising materials that constitute the absorber-containing layer, such as a thermoplastic resin, at least any absorber of a visible light absorber and an ultraviolet ray absorber, and a plasticizer, and other additives, which are added as necessary.
  • In the present invention, the light-emitting layer and the absorber-containing layer may be prepared by subjecting the thermoplastic resin compositions obtained by kneading the materials that constitute respective layers to extrusion shaping, press molding, or the like.
  • When the thermoplastic film of the present invention is composed of, for example, the light-emitting layer singly, the light-emitting layer prepared in the manner as described above may be used as the thermoplastic film. When the thermoplastic film of the present invention comprises a multi-layered structure of two layers or more, the thermoplastic film can be produced by laminating respective layers (for example, the light-emitting layer, the barrier layer, and the absorber-containing layer) that constitute the thermoplastic film, and then conducting thermocompression bonding or the like.
  • The laminated glass can also be produced in a similar manner, and can be produced by laminating respective layers that constitute the thermoplastic film between two glass plates, and then conducting thermocompression bonding or the like. In this case, when a coat that constitutes the light-emitting layer or the absorber-containing layer is formed on the surface of the glass plate, the coat may be formed on the surface of the glass plate in advance before the thermoplastic film is bonded to the glass plate.
  • Examples
  • The present invention will be described in more detail with reference to Examples, but the present invention is not limited at all by these Examples.
  • [Transmittances of Light-emitting Layer and Absorber-containing Layer]
  • With respect to the transmittances of the light-emitting layer and the absorber-containing layer in 420 to 430 nm, the transmittances of respective layers at every 1 nm were measured in accordance with JIS R 3211(1998) using a spectrophotometer ("U-4100" manufactured by Hitachi High-Tech Corporation). Table 1 describes the transmittances of respective layers at wavelengths of 420 and 430 nm.
  • Table 1 also describes whether or not the transmittance of the absorber-containing layer is lower than the transmittance of the light-emitting layer over the whole region of wavelengths of 420 to 430 nm in the row of "Absorber-containing layer < light-emitting layer." When the transmittance of the absorber-containing layer is lower than that of the light-emitting layer at all the wavelengths of 420 to 430 nm where the measurement was conducted, "Absorber-containing layer < light-emitting layer" is denoted as "YES" in Table 1, or as "NO" otherwise.
  • [Transmittance of Laminated Glass]
  • The transmittance of laminated glass at every 1 nm of wavelengths from 400 to 425 nm was measured in accordance with JIS R 3211(1998) using a spectrophotometer ("U-4100" manufactured by Hitachi High-Tech Corporation). Table 1 shows the transmittances of the laminated glass at 400, 420, and 425 nm, and the maximum value of the transmittance in 400 to 420 nm.
  • The visible light transmittance Tv of the laminated glass was determined by measuring the visible light transmittance of the laminated glass at wavelengths of 380 to 780 nm using a spectrophotometer ("U-4100" manufactured by Hitachi High-Tech Corporation) in accordance with JIS R 3211(1998).
  • [HID Light Irradiation Test]
  • In a dark room, the resultant laminated glass was irradiated from the side of the light-emitting layer (that is, the first glass plate) at an angle of 90° with an HID light (a xenon lamp, trade name "HAL-320W," manufactured by Asahi Spectra Co., Ltd.) from a position 30 cm away from the laminated glass. The luminance of emission was measured using a luminance meter ("SR-3AR" manufactured by TOPCON TECHNOHOUSE CORPORATION), which was disposed at an angle of 45° with respect to the surface of the first glass plate and at a position where the distance from the surface of the first glass plate was 35 cm, to adjust the quantity of light of the HID light in such a way that the luminance of emission was 40 cd/m2.
  • The laminated glass was irradiated from the side of the absorber-containing layer (that is, the second glass plate) at an angle of 90° with the HID light with the above-described quantity of light of the HID light. The luminance of emission was measured from an angle of 45° with respect to the surface of the second glass plate using the luminance meter, and the luminance value (Cd) is described in the row of "Absorber-containing layer side." Lower luminance means that the light-emitting layer emits light more efficiently, and undesired emission due to the HID light is smaller. Evaluation was conducted according to the following evaluation criteria using the obtained luminance value.
    • A: luminance is 13 Cd or smaller
    • B: luminance is larger than 13 Cd and 20 Cd or smaller
    • C: luminance is larger than 20 Cd
  • In Examples and Comparative Example, the following components and materials were used.
    • (Resin)
    • PVB: polyvinyl butyral resin, degree of acetalization 69 mol%, amount of hydroxy group 30 mol%, degree of acetylation 1 mol%, degree of polymerization 1700
    • (Plasticizer)
    • 3GO: triethylene glycol di-2-ethylhexanoate
    • (Light-emitting Material)
    • Terephthalic acid ester: diethyl-2,5-dihydroxyterephthalate
    • Quinoline-based: 2-(3-oxoindolin-1-ylidene)methylquinoline
    • Lanthanoid complex: (Tb(TFA)3phen)
    • (Ultraviolet Ray Absorber)
    • Benzotriazole: a compound represented by the formula (13), wherein X represents a chlorine atom, R31 represents a methyl group, and R32 represents a tert-butyl group. Trade name "Tinuvin 326," manufactured by Ciba Specialty Chemicals, Inc., maximum absorption wavelength peak 353 nm
    • (Visible Light Absorber)
    • Indole: trade name "UA-3911," manufactured by ORIENT CHEMICAL INDUSTRIES CO., LTD., maximum absorption wavelength peak 395 nm Benzotriazole: trade name "Tinuvin 970," manufactured by BASF Japan Ltd., maximum absorption wavelength peak 378 nm
    • Triazine: trade name "ADK STAB LA-F70," manufactured by ADEKA Corporation, maximum absorption wavelength peak 360 nm
    • Black pigment: Pigment Black 1 (P.BLA.1)
    • Anthraquinone dye: Pigment Blue 60 (P.B60), 6,15-dihydrodinaphtho[2,3-a:2,3-h]phenazine-5,9,14,18-tetraone
    • Anthraquinone dye: Solvent Red (S.R.146), 1-amino-4-hydroxy-2-phenoxy-9,10-anthraquinone
    • (Barrier Layer)
    • PET: polyethylene terephthalate film (thickness: 100 µm, trade name "Teijin (R) Tetoron (R) Film HB3," manufactured by TEIJIN FILM SOLUTIONS LIMITED)
    Example 1 (Preparation of Light-emitting Layer)
  • The polyvinyl butyral resin, the plasticizer, the light-emitting material, and the ultraviolet ray absorber were mixed according to combination shown in Table 1, and a resultant thermoplastic resin composition was extrusion-molded with a twin-screw anisotropic extruder to prepare a light-emitting layer having a thickness of 780 µm. The maximum excitation wavelength of the light-emitting layer was 385 nm.
  • (Preparation of Absorber-containing Layer)
  • The polyvinyl butyral resin, the plasticizer, and the ultraviolet ray absorber were mixed according to combination shown in Table 1, and a resultant thermoplastic resin composition was extrusion-molded with a twin-screw anisotropic extruder to prepare a light-emitting layer having a thickness of 780 µm.
  • (Preparation of Laminated Glass)
  • The resultant light-emitting layer and absorber-containing layer were retained under a constant temperature and humidity condition of 23°C and a relative humidity of 28% for 4 hours. Thereafter, two transparent clear glass plates (50 mm in length x 50 mm in width x 2.5 mm in thickness, visible light transmittance 90.4%, in accordance with JIS R 3211(1998)) were prepared, and on one of the clear glass plates, the light-emitting layer, the absorber-containing layer, and the other clear glass plate were stacked in the mentioned order, thereby making a laminated body. The resultant laminated body was transferred into a rubber bag, the rubber bag was connected to a suction depressurization system to heat the rubber bag at an outside air heating temperature and simultaneously retain the rubber bag under a reduced pressure of -600 mmHg (absolute pressure 160 mmHg) for 10 minutes in such a way that the temperature (preliminary compression-bonding temperature) of the laminated body reached 60°C, and thereafter the pressure was returned to the atmospheric pressure to conduct temporary compression bonding. After the laminated body, which was temporarily compression-bonded, was retained in an autoclave under a condition of a temperature of 140°C and a pressure of 1.3 MPa for 10 minutes, the temperature was decreased to 50°C, and the pressure was returned to the atmospheric pressure, thereby completing the main compression bonding, and thus laminated glass was obtained. The laminated glass comprised layer constitution of first glass plate/light-emitting layer/absorber-containing layer/second glass plate.
  • Example 2
  • A barrier layer was provided between the light-emitting layer and the absorber-containing layer. Specifically, when the laminated glass was prepared, on one of the clear glass plates, the light-emitting layer, the barrier layer, the absorber-containing layer and the other clear glass plate were stacked in the mentioned order to make a laminated body in such a way that the resultant laminated glass had the layer constitution of first glass plate/light-emitting layer/barrier layer/absorber-containing layer/second glass plate. In addition, the combination of the absorber-containing layer was changed as shown in Table 1. Example 2 was carried out in the same manner as Example 1, excluding those described above.
  • Examples 3 to 7
  • Examples 3 to 7 were carried out in the same manner as Example 2, except that the combinations in the light-emitting layer and the absorber-containing layer were changed as shown in Table 1.
  • Comparative Example 1
  • Comparative Example 1 was carried out in the same manner as Example 1, except that the content of the ultraviolet ray absorber in the absorber-containing layer was changed as shown in Table 1. [Table 1]
    Example1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Comparative Example
    Light-emitting layer (inner side of car) Resin Type PVB PVB PVB PVB PVB PVB PVB PVB
    Parts by mass 100 100 100 100 100 100 100 100
    Plasticizer Type 3GO 3GO 3GO 3GO 3GO 3GO 3GO 3GO
    Parts by mass 40 40 40 40 40 40 40 40
    Light-emitting material Type Terephthalic acid ester Terephthalic acid ester Terephthalic acid ester Terephthalic acid ester Terephthalic acid ester Quinoline-based Lanthanoid complex Terephthalic acid ester
    Parts by mass 0.56 0.56 0.56 0.56 0.56 0.4 0.4 0.56
    Ultraviolet ray absorber Type Benzotriazole Benzotriazole Benzotriazole Benzotriazole Benzotriazole Benzotriazole Benzotriazole Benzotriazole
    Parts by mass 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
    T420 % 30 30 30 30 30 30 65 30
    T430 % 73 73 73 73 73 61 76 73
    Barrier layer Material None PET PET PET PET PET PET None
    Absorber-containing layer (outer side of car) Resin Type PVB PVB PVB PVB PVB PVB PVB PVB
    Parts by mass 100 100 100 100 100 100 100 100
    Plasticizer Type 3GO 3GO 3GO 3GO 3GO 3GO 3GO 3GO
    Parts by mass 40 40 40 40 40 40 40 40
    Visible light absorber Type - Indole Benzotriazole Triazine P.BLA.1/ S.R.146/ P.B.60 Indole Benzotriazole -
    Parts by mass 0.05 1 1 0.001/ 0.0005/ 0.0007 0.05 1.5
    Ultraviolet ray absorber Type Benzotriazole Benzotriazole Benzotriazole Benzotriazole Benzotriazole Benzotriazole Benzotriazole Benzotriazole
    Parts by mass 0.96 0.96 0.96 0.5 0.96 0.96 0.96 0.2
    T420 % 55 35 32 48 50 35 32 74
    T430 % 75 60 58 73 70 60 58 79
    Absorber-containing layer < light-emitting layer NO YES YES NO NO YES YES NO
    Transmittance of laminated glass T400 % 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.05
    T420 % 21 15 13 20 19 15 25 28
    T425 % 45 40 37 44 43 30 60 53
    Maximum value of T400 to 420 % 21 15 13 20 19 15 25 28
    Visible light transmittance % 86.9 86.2 86 86.7 82 86 84 88.1
    HID light irradiation test (luminance) Light-emitting layer side Cd 40 40 40 40 40 40 40 40
    Absorber-containing layer side Cd 16 13 11 15 14 10 8 25
    Performance of suppressing light from outside - B A A B B A A C
  • As shown in Examples above, by lowering the transmittance of laminated glass at wavelengths of 400 to 420 nm when the laminated glass was prepared, the emission was able to be made good, and undesired emission due to light from outside was able to be reduced sufficiently.
  • Reference Signs List
  • 10, 30
    Thermoplastic film
    11
    Light-emitting layer
    12
    Absorber-containing layer
    13
    Barrier layer
    20
    Laminated glass
    21
    First glass plate
    22
    Second glass plate

Claims (19)

  1. A thermoplastic film comprising a light-emitting layer,
    the light-emitting layer comprising a thermoplastic resin, and a light-emitting material that emits light by being irradiated with excitation light, and
    a visible light transmittance Tv being 70% or more and a transmittance in the whole region of wavelengths of 400 to 420 nm being 25% or less, as measured for laminated glass obtained by bonding two sheets of clear glass in accordance with JIS R 3211(1998) having a thickness of 2.5 mm with the thermoplastic film interposed therebetween.
  2. The thermoplastic film according to claim 1, wherein a transmittance at a wavelength of 425 nm, as measured for the laminated glass, is 60% or less.
  3. The thermoplastic film according to claim 1 or 2, comprising a visible light absorber.
  4. The thermoplastic film according to claim 3, wherein the visible light absorber comprises at least one selected from the group consisting of an indolebased compound, a benzotriazole-based compound, a cyanoacrylate-based compound, a benzophenone-based compound, and a triazine-based compound.
  5. The thermoplastic film according to claim 3 or 4, wherein the visible light absorber has a maximum absorption wavelength peak in a wavelength region of 360 nm or more and 780 nm or less.
  6. The thermoplastic film according to any one of claims 3 to 5, further comprising an absorber-containing layer being a layer different from the light-emitting layer and comprising the visible light absorber.
  7. The thermoplastic film according to any one of claims 1 to 6, further comprising an ultraviolet ray absorber.
  8. The thermoplastic film according to claim 7, wherein the ultraviolet ray absorber has a maximum absorption wavelength peak in a wavelength region of 300 nm or more and less than 360 nm.
  9. The thermoplastic film according to claim 7 or 8, wherein the ultraviolet ray absorber is contained in the absorber-containing layer.
  10. The thermoplastic film according to any one of claims 6 to 9, further comprising a barrier layer between the light-emitting layer and the absorber-containing layer.
  11. The thermoplastic film according to any one of claims 6 to 10, wherein transmittance of the absorber-containing layer is lower than transmittance of the light-emitting layer over the whole region of wavelengths of 420 to 430 nm.
  12. A thermoplastic film comprising a light-emitting layer,
    the light-emitting layer comprising a thermoplastic resin, and a light-emitting material that emits light by being irradiated with excitation light,
    the thermoplastic film further comprising a visible light absorber having a maximum absorption wavelength peak in a wavelength region of 360 nm or more and 780 nm or less.
  13. The thermoplastic film according to claim 12, further comprising an ultraviolet ray absorber having a maximum absorption wavelength peak in a wavelength region of 300 nm or more and less than 360 nm.
  14. The thermoplastic film according to any one of claims 1 to 13, wherein a luminance as observed in the following HID light irradiation test for laminated glass obtained by bonding two sheets of clear glass in accordance with JIS R 3211(1998) having a thickness of 2.5 mm with the thermoplastic film interposed therebetween is 20 cd/m2 or less;
    HID light irradiation test: when the laminated glass is irradiated with an HID light from one surface of the laminated glass, quantity of light is adjusted in such a way that a luminance observed on a side of the one surface is 40 cd/m2, and the laminated glass is irradiated with the HID light of the same quantity of light from the other surface to observe a luminance on a side of the other surface.
  15. The thermoplastic film according to any one of claims 1 to 14, being an interlayer film for laminated glass.
  16. A laminated glass comprising:
    the interlayer film for laminated glass according to claim 15; and
    two sheets of glass plates, wherein
    the interlayer film for laminated glass is disposed between the two sheets of glass plates.
  17. A laminated glass comprising:
    a first glass plate;
    a second glass plate; and
    a thermoplastic film disposed between the first glass plate and the second glass plate,
    the laminated glass comprising a light-emitting material that emits light by irradiation with excitation light, and having a visible light transmittance Tv of 70% or more and a transmittance in the whole region of wavelengths of 400 to 420 nm of 25% or less.
  18. The laminated glass according to claim 16 or 17, wherein a luminance observed for the laminated glass in the following HID light irradiation test is 20 cd/m2 or less;
    HID light irradiation test: when the laminated glass is irradiated with an HID light from one surface of the laminated glass, quantity of light is adjusted in such a way that a luminance observed on a side of the one surface is 40 cd/m2, and the laminated glass is irradiated with the HID light of the same quantity of light from the other surface to observe a luminance on a side of the other surface.
  19. An image display system comprising:
    the laminated glass according to any one of claims 16 to 18; and
    a light source.
EP20773063.1A 2019-03-20 2020-03-19 Thermoplastic film and laminated glass Withdrawn EP3943288A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019053887 2019-03-20
PCT/JP2020/012510 WO2020189782A1 (en) 2019-03-20 2020-03-19 Thermoplastic film and laminated glass

Publications (2)

Publication Number Publication Date
EP3943288A1 true EP3943288A1 (en) 2022-01-26
EP3943288A4 EP3943288A4 (en) 2023-01-04

Family

ID=72520368

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20773063.1A Withdrawn EP3943288A4 (en) 2019-03-20 2020-03-19 Thermoplastic film and laminated glass

Country Status (7)

Country Link
US (1) US20220154914A1 (en)
EP (1) EP3943288A4 (en)
JP (1) JPWO2020189782A1 (en)
KR (1) KR20210143758A (en)
CN (1) CN113573889B (en)
TW (1) TW202045362A (en)
WO (1) WO2020189782A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021147287A (en) * 2020-03-19 2021-09-27 積水化学工業株式会社 Thermoplastic film, and laminated glass
US12109941B1 (en) * 2021-08-10 2024-10-08 Apple Inc. Windows with photoluminescent lighting
CN113698385B (en) * 2021-09-29 2022-12-23 许昌学院 2, 2-disubstituted indoline-3-ketone alkaloid, preparation method and application thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR72466B (en) * 1978-05-03 1983-11-10 Owens Illinois Inc
JP3741164B2 (en) * 1995-12-01 2006-02-01 東洋紡績株式会社 Laminated film for electronic materials
JPH09325717A (en) * 1996-05-31 1997-12-16 Oji Yuka Synthetic Paper Co Ltd Sheet for electric decoration signboard
ATE497502T1 (en) 2006-06-27 2011-02-15 Basf Se BENZOTRIAZOLE UV ABSORBERS SHIFTED TO LONG WAVELENGTHS AND THEIR USE
JP2009169306A (en) * 2008-01-18 2009-07-30 Nippon Zeon Co Ltd Protection film for polarizing plate, and polarizing plate
JP6192281B2 (en) 2011-12-12 2017-09-06 積水化学工業株式会社 Luminescent sheet, interlayer film for laminated glass and laminated glass
US10179442B2 (en) * 2013-01-11 2019-01-15 Kuraray Europe Gmbh Fluorescent displays containing an interlayer film of polyvinylacetal which comprises plasticizers
WO2014162619A1 (en) * 2013-04-03 2014-10-09 住友金属鉱山株式会社 Heat-ray-shielding film, heat-ray-shielding transparent substrate, vehicle, and building
KR102360711B1 (en) * 2014-04-07 2022-02-10 세키스이가가쿠 고교가부시키가이샤 Intermediate film for laminated glass, and laminated glass
WO2017099016A1 (en) * 2015-12-08 2017-06-15 東レ株式会社 Layered film
JP6870223B2 (en) * 2016-06-29 2021-05-12 日本ゼオン株式会社 Organic EL display device

Also Published As

Publication number Publication date
KR20210143758A (en) 2021-11-29
EP3943288A4 (en) 2023-01-04
TW202045362A (en) 2020-12-16
WO2020189782A1 (en) 2020-09-24
JPWO2020189782A1 (en) 2020-09-24
US20220154914A1 (en) 2022-05-19
CN113573889A (en) 2021-10-29
CN113573889B (en) 2023-05-26

Similar Documents

Publication Publication Date Title
US10363721B2 (en) Intermediate film for laminated glass and laminated glass
EP3943288A1 (en) Thermoplastic film and laminated glass
RU2415091C2 (en) Intermediate film for multilayer glass and multilayer glass
JP6351626B2 (en) Fluorescent display containing an interlayer film composed of a plasticizer-containing polyvinyl acetal
JP2014024312A (en) Luminescent sheet, intermediate film for laminated glass, and laminated glass
KR20170063435A (en) Interlayer film for laminated glass, and laminated glass
US20220242096A1 (en) Thermoplastic resin film and glass plate-containing laminate
JP6362500B2 (en) Interlayer film for laminated glass, laminated glass and vehicle
EP3943289A1 (en) Thermoplastic film and laminated glass
US11833784B2 (en) Thermoplastic film and laminated glass
JP7385513B2 (en) Thermoplastic films and laminated glass
JP2018177637A (en) Interlayer for glass laminate, glass laminate and vehicle
JP2021147287A (en) Thermoplastic film, and laminated glass
WO2021124948A1 (en) Intermediate film for laminated glass, and laminated glass
WO2005073312A1 (en) Resin composition and optical member

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210913

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20221202

RIC1 Information provided on ipc code assigned before grant

Ipc: B32B 7/023 20190101ALI20221128BHEP

Ipc: G02B 5/20 20060101ALI20221128BHEP

Ipc: C03C 27/12 20060101ALI20221128BHEP

Ipc: B32B 27/18 20060101ALI20221128BHEP

Ipc: B32B 17/10 20060101AFI20221128BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20231128