EP3942644A1 - Répartition de températures ou répartition de chaleur dans un accumulateur d'énergie cylindrique - Google Patents

Répartition de températures ou répartition de chaleur dans un accumulateur d'énergie cylindrique

Info

Publication number
EP3942644A1
EP3942644A1 EP20712910.7A EP20712910A EP3942644A1 EP 3942644 A1 EP3942644 A1 EP 3942644A1 EP 20712910 A EP20712910 A EP 20712910A EP 3942644 A1 EP3942644 A1 EP 3942644A1
Authority
EP
European Patent Office
Prior art keywords
heat
cylinder
temperature
energy store
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20712910.7A
Other languages
German (de)
English (en)
Inventor
Markus Thannhuber
Michael Sternad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Einhell Germany AG
Original Assignee
Einhell Germany AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Einhell Germany AG filed Critical Einhell Germany AG
Publication of EP3942644A1 publication Critical patent/EP3942644A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/623Portable devices, e.g. mobile telephones, cameras or pacemakers
    • H01M10/6235Power tools
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This spatial grid which may be coarser, can in particular reduce the computational effort required to determine the temperature distribution or heat distribution.
  • each hollow cylinder or partial cylinder is viewed as a homogeneous body. This approximation can easily be made and does not usually represent a disadvantage with the typical layer structures.
  • each hollow cylinder or partial cylinder is determined by modeling a cylindrical dissipation body on both end faces of the energy store for heat dissipation.
  • the heat dissipation can also be determined easily and reliably at the end faces of the energy store.
  • heat absorption can of course also be modeled by the dissipation body if the environment is warmer than the energy store. This can be the case if the energy storage device has to be heated up externally in order to achieve optimal operating conditions.
  • the respective temperature or amount of heat in each hollow cylinder or partial cylinder as a function of a charging current, a discharge current, a cell voltage, a total voltage of the energy store, a change in the state of charge, a change in the discharge current, a change in the cell voltage or the total voltage, a measured temperature of one or more cells of the energy store, an age and or a SOH (state of health; based on the ratio between residual capacity and nominal capacity) is determined.
  • the temperature or amount of heat of each cylinder or in each cylinder can thus be determined as a function of one or more parameters of the amount described above. Not only static currents or voltages are of interest, but also their dynamics, i.e. the changes in currents and voltages.
  • a numerical simulation is carried out when determining the respective temperature or amount of heat of each hollow cylinder or partial cylinder.
  • Such a numerical simulation usually has advantages over an analytical solution.
  • real-time conditions can thereby be maintained in which, for example, switching processes must take place in fractions of a second (in particular 0.1 s to 1 s).
  • Such numerical simulations can be carried out in a management system of the energy store. In particular, corresponding processors can be designed for this.
  • the energy store can have several cells, each of which is modeled by several of the hollow cylinders or partial cylinders. In this way, even in complex energy storage systems that have a multi-cell structure, a spatial temperature distribution or heat distribution can be determined with the desired accuracy.
  • Fig. 2 shows a further model for another cylindrical energy store for
  • a technical approach according to FIG. 1 would be, for example, a model that is built up in its spatial expression from coaxial hollow cylinders, which already have their inner and outer radius, the cylinder length, the cylinder mass and the axial and radial thermal conductivity are defined.
  • the temperature model 1 can also be subdivided in its geometrical form in the axial direction.
  • the circular cylindrical temperature model has four cylinders 3 arranged axially one behind the other in the axial direction, which in turn consist of several hollow cylinders 2 lying one inside the other.
  • the number of cylinders in the axial direction can be selected as desired. If, for example, no resolution in the axial direction is desired, the temperature model can also consist of just a single cylinder 3.
  • the temperature model 1 has four cylinders 3 arranged axially one behind the other. The number of cylinders 3 can also be larger or smaller in the axial direction, depending on the desired spatial resolution.
  • FIG. 2 shows another embodiment of a cylindrical temperature model for a corresponding cylindrical energy store.
  • a rectangular cylinder is selected here.
  • the end faces of this cylindrical temperature model are rectangular.
  • the end faces can of course also be elliptical, triangular, hexagonal, octagonal or the like.
  • the end faces can also take any other shape as long as they are the same and parallel to one another. In any case, they form a corresponding cylinder.
  • a cuboid temperature model 4 results for a cuboid energy store. It has a stacking axis 5 along which numerous small plates are stacked here. Each plate here represents a rectangular partial cylinder 6.
  • the individual partial cylinders 6 are not hollow here, but are also arranged coaxially one behind the other, with the stacking axis 5 forming the common axis. If an energy storage device has a stacked layer structure, the heat or temperature model of FIG. 2 could be used to determine the spatial temperature or heat distribution. Here, too, it is of particular advantage if the number of partial cylinders corresponds to the number of actual layers of the stacked energy store. If necessary, several parallel temperature models 4 of this type can be used in order to generate a larger cuboid overall temperature model.
  • a layer corresponds, for example, to an anode, a cathode or a separator. If necessary, the anode is further subdivided into a metal foil and an anode mass. In a similar way, the cathode can also be divided into a cathode foil and a cathode mass.
  • a single winding layer can have three or five sub-layers (without any sheathing). Each sub-layer can be represented in the model by a layer (e.g. a Flohl cylinder 2 or a sub-cylinder 6).
  • Fig. 3 shows a battery pack that can be used, for example, for an electric tool such as a cordless screwdriver or an electric garden tool. It has a receptacle 7 with which it can be plugged into the respective power tool. In the interior of its housing 8 there are, for example, several cylindrical energy stores. Each individual energy storage device can be a wound lithium-ion cell, for example.
  • the respective associated thermal model 1 can be similar to that of FIG. 1 in its geometric configuration.
  • the temperature model of the battery management system can supply a temperature or heat distribution in accordance with the current operating parameters, which can be used to control the operation of the energy store and / or an electrical device operated with the energy store.
  • FIG. 4 schematically shows a process sequence according to which an electrical device can be operated.
  • the process steps that are used to determine the temperature distribution or heat distribution are an essential part of this.
  • a heat balance according to step S2 can be established for each of these cylinders according to an overall heat model (see below).
  • Such operating parameters possibly detected by corresponding sensors of the energy store, for example the charge current, the discharge current, a cell voltage, a total voltage of the energy store, a change in the charge current, a change in the discharge current, a change in the cell voltage or the total voltage and / or a change in a be measured temperature of one or more cells of the energy storage.
  • R m is the thermal conductivity of the hollow cylinder
  • I is the length
  • ra is the outer radius
  • ri is the inner radius of the hollow cylinder
  • Ti and T a is the inner and outer temperature of the hollow cylinder.
  • T z and T s mean the central temperature in the wall of the hollow cylinder and the end face temperature.
  • m denotes the mass of the respective hollow cylinder
  • c P its specific heat capacity and DT the temperature difference.
  • I denotes the current, U the voltage, t the time, T the temperature, Etot the total electrical energy input, h the efficiency, Vi the volume of the respective hollow cylinder and Vtot the total volume of the cylinder arrangement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Secondary Cells (AREA)

Abstract

La présente invention a pour objet de déterminer de manière simple une répartition de températures ou de chaleur dans un accumulateur d'énergie (1) cylindrique. Pour ce faire, la structure de l'accumulateur d'énergie (1) est décrite par un agencement de plusieurs cylindres creux (2) disposés coaxialement les uns dans les autres et/ou disposés les uns à côté des autres ou de plusieurs cylindres partiels disposés les uns à côté des autres de manière coaxiale et/ou de manière parallèle en référence à leur axe. Une température ou une quantité de chaleur respective de chaque cylindre creux (2) ou de chaque cylindre partiel est déterminée, un état quasi statique dans chaque cylindre creux ou cylindre partiel étant reçu, au cours d'une série temporelle, à chaque instant d'observation individuelle.
EP20712910.7A 2019-03-22 2020-03-18 Répartition de températures ou répartition de chaleur dans un accumulateur d'énergie cylindrique Pending EP3942644A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019107470.3A DE102019107470A1 (de) 2019-03-22 2019-03-22 Temperaturverteilung oder Wärmeverteilung in einem zylindrischen Energiespeicher
PCT/EP2020/057416 WO2020193306A1 (fr) 2019-03-22 2020-03-18 Répartition de températures ou répartition de chaleur dans un accumulateur d'énergie cylindrique

Publications (1)

Publication Number Publication Date
EP3942644A1 true EP3942644A1 (fr) 2022-01-26

Family

ID=69903147

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20712910.7A Pending EP3942644A1 (fr) 2019-03-22 2020-03-18 Répartition de températures ou répartition de chaleur dans un accumulateur d'énergie cylindrique

Country Status (4)

Country Link
EP (1) EP3942644A1 (fr)
CN (1) CN113950767A (fr)
DE (1) DE102019107470A1 (fr)
WO (1) WO2020193306A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112117515A (zh) * 2020-10-21 2020-12-22 东莞市创明电池技术有限公司 电池控温环、电池轴向均温控制装置及电池结构
EP4191721A1 (fr) * 2021-12-01 2023-06-07 Hilti Aktiengesellschaft Accumulateur à performance améliorée de refroidissement, bloc d'accumulateur et machine-outil

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10346706B4 (de) * 2003-10-08 2006-11-09 Daimlerchrysler Ag Verfahren zur Regelung einer Kühlung einer Batterie
US7589529B1 (en) 2005-11-14 2009-09-15 Active Spectrum, Inc. Method of and apparatus for in-situ measurement of degradation of automotive fluids and the like by micro-electron spin resonance (ESR) spectrometry
CN100440614C (zh) * 2007-01-26 2008-12-03 清华大学 一种实时估计镍氢动力电池内外温差的方法
JP2008249459A (ja) * 2007-03-30 2008-10-16 Mazda Motor Corp バッテリの温度推定装置
CN201057537Y (zh) * 2007-03-30 2008-05-07 杜永红 输电线路接点超温监测器
JP6001823B2 (ja) * 2011-01-24 2016-10-05 株式会社豊田中央研究所 二次電池のシミュレーション装置
DE102011080512B4 (de) 2011-08-05 2023-11-30 Robert Bosch Gmbh Verfahren zur Funktionsüberwachung von Temperatursensoren eines Batteriesystems
US10468642B2 (en) * 2012-05-18 2019-11-05 Iterna, Llc Rechargeable storage battery with improved performance
DE102014208865A1 (de) * 2014-05-12 2015-11-12 Robert Bosch Gmbh Verfahren zum Ermitteln der Temperatur einer Batterie
CN105206888B (zh) 2015-08-31 2018-04-06 浙江工业大学之江学院 一种锂离子电池内部温度监测方法
CH711926A1 (de) * 2015-12-17 2017-06-30 Greenteg Ag Messaufbau zur Funktionskontrolle von wiederaufladbaren Batterien.
WO2017159031A1 (fr) * 2016-03-18 2017-09-21 ソニー株式会社 Système de charge de batterie secondaire, dispositif d'acquisition d'informations de température, procédé de charge de batterie secondaire, et procédé de mesure in situ de spectre d'impédance électrochimique
CN107687908B (zh) * 2017-08-24 2020-03-10 重庆大学 一种获取干式空心电抗器的温升热点及温度监测的方法和系统

Also Published As

Publication number Publication date
WO2020193306A1 (fr) 2020-10-01
DE102019107470A1 (de) 2020-09-24
CN113950767A (zh) 2022-01-18

Similar Documents

Publication Publication Date Title
EP2487499B1 (fr) Temps réel capable simulation de pile à batterie
EP2649666B1 (fr) Procédé permettant de déterminer des paramètres de fonctionnement d'une batterie, système de gestion de batterie et batterie
DE102015111952A1 (de) Elektrochemisches Batteriemodell reduzierter Ordnung zur Fahrzeugsteuerung
DE102015109290B4 (de) Vereinfachte Modellierung der Thermodynamik von Batterien für Steuerungen
EP3017496B1 (fr) Procédé de gestion de batterie et système de gestion de batterie
EP2997637A1 (fr) Procédé et dispositif de charge d'éléments accumulateurs rechargeables
DE102009036083A1 (de) Verfahren zum Steuern einer Batterie und Vorrichtung zur Durchführung des Verfahrens
WO2020193306A1 (fr) Répartition de températures ou répartition de chaleur dans un accumulateur d'énergie cylindrique
DE102015111954A1 (de) Batterieleistungsfähigkeitsschätzung basierend auf elektrochemischem Modell reduzierter Ordnung
DE112012005901T5 (de) Batteriesystem und Verschlechterungsbestimmungsverfahren
DE102020113829B3 (de) Kerntemperatur in einem zylindrischen Energiespeicher
EP2705379A1 (fr) Procédé et dispositif de mesure pour un dispositif accumulateur d'énergie électrochimique
DE102019209165A1 (de) System und verfahren zum betreiben von batterien auf basis einer elektrodenkristallstrukturänderung
DE102020206272A1 (de) Batterieverwaltungssystem mit gemischter elektrode
EP2586090B1 (fr) Procédé permettant d'établir au moins un état d'une pluralité d'éléments de batterie, programme informatique, batterie et véhicule automobile
DE102021125478B4 (de) Bestimmung eines alterungswerts für batterien mit strom-spannungs-zeitreihen in zeitdomäne und belastungsdomäne
DE102013214821A1 (de) Elektrochemisches Speichermodul und Verfahren zur Untersuchung einer elektrochemischen Speicherzelle in einem Modul
DE10103848A1 (de) Verfahren und Vorrichtung zur Bestimmung und/oder Beurteilung der Alterung oder zumindest eines vorgewählten Anteils der Alterung einer Batterie
DE202019101393U1 (de) Kalorimeter und Messanordnung mit einem derartigen Kalorimeter
EP2834656B1 (fr) Procédé de détermination d'une perte de capacité totale d'un élément secondaire
EP3596800B1 (fr) Charge d'un accumulateur
DE102020115370A1 (de) Verfahren zum Ermitteln eines Ladestroms sowie Steuergerät
DE102021130047A1 (de) Verfahren und system für eine batteriezelle
DE102009046964A1 (de) Verfahren und Vorrichtung zur Bestimmung von Akkumulatorzuständen
DE102022126431A1 (de) Batteriezellen-überwachungssystem und-vorrichtung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211019

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230215