EP3940155B1 - Structure de commande pour machine de travail mobile, machine de travail mobile dotée de la structure de commande, procédé comportant la structure de commande - Google Patents

Structure de commande pour machine de travail mobile, machine de travail mobile dotée de la structure de commande, procédé comportant la structure de commande Download PDF

Info

Publication number
EP3940155B1
EP3940155B1 EP21181629.3A EP21181629A EP3940155B1 EP 3940155 B1 EP3940155 B1 EP 3940155B1 EP 21181629 A EP21181629 A EP 21181629A EP 3940155 B1 EP3940155 B1 EP 3940155B1
Authority
EP
European Patent Office
Prior art keywords
power
control structure
load
transferred
setpoint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21181629.3A
Other languages
German (de)
English (en)
Other versions
EP3940155A1 (fr
Inventor
Steffen Mutschler
Michael Mast
Frank Bender
Norman Brix
Joerg Spang
Claus Schepers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3940155A1 publication Critical patent/EP3940155A1/fr
Application granted granted Critical
Publication of EP3940155B1 publication Critical patent/EP3940155B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2079Control of mechanical transmission
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2246Control of prime movers, e.g. depending on the hydraulic load of work tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2253Controlling the travelling speed of vehicles, e.g. adjusting travelling speed according to implement loads, control of hydrostatic transmission

Definitions

  • the invention is based on a control structure for a mobile work machine. Furthermore, the invention is based on a mobile work machine with such a control structure and a method with such a control structure.
  • Control structures with energy management strategies for passenger cars and trucks are known from the state of the art, which focus on optimizing a drive train including its hybrid components. Secondary or working components only account for a very small proportion of the power consumption.
  • a basic way of distributing power in a mobile work machine is a control element known as an "inch pedal".
  • the setting of the pedal selected by the operator divides the drive power available to the work machine between the driving and work functions, particularly in the form of a power reduction of the driving function.
  • the publication EN 10 2013 214 732 A1 shows proactive energy or power management of the drive system and the working hydraulics of a mobile work machine.
  • a higher-level overall energy coordinator (GEK) and subordinate consumer energy coordinators (VEK) connected to it by signals are provided.
  • the latter are each assigned to one or more consumers, which are, for example, of a hydrostatic, mechanical or electrical nature and which fulfill the driving function, working functions and other auxiliary functions.
  • the GEK communicates with the VEKs and with a control system of the drive machine and determines a total power requirement of the consumers and an available total power of the drive machine.
  • the GEK intervenes in particular in the event of an undersupply of power to the consumers and limits their power consumption so that no more power is consumed than is available.
  • Another example from the prior art is from EP3316861A1 known.
  • the invention is based on the object of creating a control structure for a mobile work machine that enables dynamic power limitation.
  • a further object of the invention is to create a mobile work machine with such a control structure and a method for controlling this mobile work machine.
  • control structure is achieved according to the features of claim 1, with regard to the mobile work machine according to the features of claim 21 and with regard to the method according to the features of claim 22.
  • a control structure is provided for a mobile work machine, for example a wheel loader, mobile excavator, forklift, telehandler or an agricultural machine or the like.
  • the work machine has power users, at least one of which is a power source, a driving consumer and a hydraulic working consumer.
  • the control structure has energy or power coordinators, at least for the consumers, each of which is signal-connected to a control assigned to the consumer or a group of consumers.
  • a setpoint value assigned to the consumer is transferred from the energy coordinator to the control, so that the control can control or regulate a power of the consumer depending on the setpoint value and thus limit, in particular limit, the consumer.
  • the respective setpoint value for the driving consumer is a setpoint torque and for the working consumer a setpoint pressure medium volume flow.
  • the torque setpoint specification by the energy coordinator enables particularly dynamic control and limitation of the power of the driving consumer. Its power is fundamentally dependent on speed and torque. However, the speed or speed of the mobile work machine and thus of the driving consumer can be controlled relatively slowly or reacts sluggishly.
  • the torque as the factor determining the tractive force of the power, reacts relatively quickly, since even a relatively small difference in the volume flow balance of the driving consumer leads to a relatively large change in the pressure. This determines the torque as a factor and largely the driving behavior perceived by the driver.
  • energy coordinators decouples the power control, regulation and limitation from the functionally effective control of the respective power participant and thus offers the possibility of power management and power distribution, independent of the functional fulfillment of needs by the power participant(s).
  • one or more power sources of the same or different types can be provided.
  • a combustion engine in particular a diesel engine, a diesel-electric drive, in particular for supplying a power device designed as a high-voltage on-board network, a A fuel cell that provides electrical power, a battery with power electronics, an electric hybrid drive that charges a battery via an electric machine and, conversely, converts the chemical energy stored in this way back into mechanical energy and provides it, a hydraulic hybrid drive that converts mechanical energy into hydraulic energy and stores it and then provides it again as mechanical energy, are possible.
  • Preferred or common combinations in agricultural technology for example, are two or more combustion engines, in the case of a hybrid drive an electric hybrid or a hydraulic hybrid, in the case of a range extender a combination of, for example, a battery, diesel engine and generator.
  • At least one energy coordinator with associated control is additionally provided for at least one of the following power participants of the mobile work machine: low-voltage or high-voltage electrical system, electrical energy storage, hydraulic energy storage.
  • the control structure in a further development has demand interfaces at least for the at least one driving consumer and the at least one working consumer. On the input side, these can be connected or are signal-connected to a control element, in particular a manually operable one, and/or to a mechanical or automated control device in order to record the request or the need. In this way, the need of the operator of the mobile work machine and, alternatively or additionally, the need of the control device can be recorded.
  • the respective demand interface is signal-connected to the energy coordinator of the consumer assigned to it.
  • control element is a joystick for the work consumer, an accelerator pedal or drive lever (HMI) for the driving consumer and the mechanical or automated control device is an automation function (automatic function).
  • HMI accelerator pedal or drive lever
  • automation function automated function
  • the driving consumer for example, a speed limiter or a function of automated or autonomous driving.
  • the automation function is triggered in particular for the work consumer in a further development via a movement pattern of the control element and/or via a switch or button.
  • the automation function has the particular task of implementing a movement pattern of the work consumer(s). This can include a single work axis, for example aligning a shovel or bucket, or several work axes, for example simultaneously lowering and aligning the shovel or bucket.
  • a recorded requirement for the work consumer preferably consists - regardless of whether it is entered by the operator or the machine interface - of a requested axis speed for each axis, in particular of the work consumer(s).
  • This is in particular an axis speed of a tool center point, for example in the case of a lifting or tilting axis.
  • this can be a cylinder speed or alternatively a rotational speed.
  • Such an axis combination represents, for example, the drive of a broom.
  • the recorded requirement can optionally have an additional force limitation in order to limit, for example, a lifting force, clamping force or closing force of the work consumer.
  • a required tractive force is determined depending on an accelerator pedal position and a current speed of the mobile work machine, in particular from a tractive force-speed diagram.
  • the required tractive force, a required torque or a torque dependent thereon, for example of a transmission coupled to the driving consumer is transferred from the demand interface of the driving consumer to its energy coordinator.
  • the energy consumer's demand interface passes on a demand speed of the energy consumer or an operating variable dependent on it to its energy coordinator.
  • a required or limit speed is also transmitted via the user's requirements interface in a further development, particularly at least in predetermined operating situations or driving conditions or driving ranges of the user. Examples include a speed limiter or a downhill drive or the like.
  • an overall energy coordinator is provided which is signal-connected at least to the energy coordinators of the consumers, as well as to a controller or an energy coordinator of the at least one power source.
  • a particularly high level of flexibility and dynamism in the control structure with regard to control or regulation and limitation is achieved if at least the coordinators, controls and demand interfaces are electronic in a training course. This has the advantage, particularly in dynamic processes, that the electronic components communicate very quickly, which results in extremely short response times. The dynamism and precision of the control, regulation and limitation thus increases, so that the service participants only call up their service when it is also available from the service source and/or other service participants.
  • the power users are designed in such a way that they communicate their required power via the assigned energy coordinator and do not consume more power than they have requested as required, and are equipped with devices to comply with a limit on their power.
  • the energy coordinators pass on to the overall energy coordinator the performance that can be provided by the respective service participant, the performance that can be absorbed and/or the performance that is required.
  • This preferably includes at least the power that can be provided and the power that can be absorbed or supported by the one or more power sources, and in the case of consumers, their required power and optionally absorbed power. This can certainly exceed the first mentioned, particularly in the case of the energy consumer, which will be explained in more detail later with regard to a retarder function.
  • the powers are transferred with a sign.
  • a sign is a common drive shaft of the mobile work machine, in particular that of one of the power sources or that of a hydraulic pump of the working hydraulics.
  • the sign allows the overall energy coordinator to balance the power.
  • the distinction between accelerating and decelerating power enables the power to be exchanged or "flowed" between the power participants as required. This results in a potential for saving consumption, as the consumption of primary energy by the power sources can be minimized.
  • a performance balance of at least the available performance, the absorbable performance and the required performance is therefore carried out via the overall energy coordinator and, depending on this, the performance of at least one of the performance participants, in particular consumers, is limited or not.
  • both a pulling performance and a pushing performance of at least one of the performance participants, in particular consumers can be limited via the overall energy coordinator in cooperation with the energy coordinators.
  • the absorbable power transferred via the energy coordinator of the service participant, in particular the consumer, to the overall energy coordinator is intended to perform work on the consumer, in particular the work consumer.
  • the retarder function can be switched on; in a more powerful version, it can be operated proportionally.
  • the hydraulic work consumer is assigned a hybrid system which can store energy.
  • the energy coordinator it is therefore advantageous in a further development for the energy coordinator to pass a signal of the absorbable power of the respective work consumer to the overall energy coordinator. This way, the overall energy coordinator is informed of the power that the working hydraulics can absorb at the current time, regardless of the minimum power required for productive work, in particular through the dissipation described. If necessary, for example the thrust of the drive to be reduced, a request or a signal of such power consumption is passed via the overall energy coordinator to the energy coordinator(s) of the work consumer.
  • This requested power consumption is implemented via the control system assigned to the power consumer(s). This can be implemented in particular via a combined pressure medium volume flow and pressure requirement, which leads to the requested power consumption.
  • the required hydraulic power for the respective work consumer results in the case of a hydraulic cylinder from a recorded requirement for an axis speed assigned to it and in the case of a hydraulic motor from a recorded requirement for a rotational speed assigned to it, as well as in dependence on the known piston geometry, or the known displacement volume of the hydraulic motor and the Load pressure.
  • a sum of the required pressure medium volume flows is formed via the assigned energy coordinator(s) in a further training.
  • the minimum required power of the working consumers is then determined from the product of this sum and the highest of the load pressures of the working consumers.
  • this minimum required hydraulic power of the energy consumers is increased by a static power reserve. This allows a dampened behavior of the energy consumers, especially in the event of an increase in the recorded demand. In particular, it is defined as decreasing with increasing, minimum required power of the energy consumers, so that a total power of one or more power sources, in particular designed as internal combustion engines, can actually be used when required.
  • At least the required minimum speed and/or the possible maximum speed is or are passed on to the overall energy coordinator for the respective consumer.
  • the minimum speed is preferably the input speed of the consumer that is at least necessary to fulfil a requested task of the consumer, regardless of the required or requested power.
  • the maximum speed is the input speed of the consumer that must not be exceeded, for example for safety or device reasons. Reasons for this are in particular the mechanical load capacity of the components, an operating strategy - such as a silent mode - or a temperature-related limitation.
  • a possible minimum speed of a hydraulic pump assigned to the consumer results from the quotient of the pressure medium volume flow and the maximum delivery volume.
  • a delivery volume reserve in the form of a submaximal set delivery volume, in particular a sub-maximum swivel angle in the case of an adjustable axial piston pump is operated away from its mechanical end stop and can quickly increase its delivery volume and thus its pressure medium volume flow if the demand increases accordingly.
  • At least the power source via which the minimum speed is determined is operated at a speed that is disproportionately adjusted and increased to the submaximum delivery volume. This advantageously results in a power reserve of the power source, so that the rapid increase in the delivery volume does not lead to a drop in the speed of the power source. This speed can also be maintained more smoothly or more easily at a constant level.
  • This further development is particularly suitable for a comparatively low to medium pressure medium volume flow.
  • At least the power source via which the said minimum speed is determined is operated at a speed that is adjusted and increased disproportionately to the submaximum set delivery volume, so that the theoretical and actual speeds match, especially at maximum volume flow. This ensures that unnecessarily high speeds are avoided and, as a result, consumption and noise are reduced.
  • the overall energy coordinator determines a required decelerating power of the power participants and an available accelerating power of the power participants from the signed required power, absorbable power and available power that are passed on to it. It determines a permissible speed range from the minimum and maximum speeds passed on to it.
  • one or more power sources are controlled via the overall energy coordinator.
  • the overall energy coordinator the one or more power sources are controlled at a target speed at which the required power is provided via the one or more power sources.
  • the individual power participants in particular consumers, can access or feed in their respective power without restriction, in particular without power limitation. This is particularly the case if the power source or sources is or are each designed as an internal combustion engine.
  • the overall energy coordinator can divide the available power between the power users according to a key or procedure. In a particularly simple development, the power is divided proportionally to the respective needs of the power users and is therefore limited in each case. Depending on the application or user requirement, prioritization or weighting can be implemented by the overall energy coordinator so that important consumers are not limited in their power consumption or are limited disproportionately less. A signal of the maximum pulling or pushing power that the power user can absorb is passed on to the assigned energy coordinator from each power user via the overall energy coordinator.
  • the overall energy coordinator divides the absorbable power between the individual power participants. In the simplest case, this power is divided in proportion to the needs of the power participants.
  • the overall energy coordinator can implement prioritization or weighting. A signal is sent to each power participant via the overall energy coordinator to the assigned energy coordinator stating how much power it is allowed to feed in. For example, this can mean that the drive is allowed to decelerate less than the assigned recorded need.
  • the overall energy coordinator limits the performance of the hydraulic work consumer(s) by limiting the total pressure medium volume flow from one or more hydraulic pumps.
  • a third variant is a combination of the first mentioned.
  • the limitation is simply implemented by limiting the delivery volume.
  • the limited delivery volume depends on the limited total power, the speed of the hydraulic pump and the pressure loss of the hydraulic pump.
  • the hydraulic pump is designed for this purpose with an electrically proportional controller to limit its delivery volume.
  • a pressure-flow controller can be provided.
  • the hydraulic pump is fully electronic, as is known, for example, as the applicant's EOC hydraulic machine which can be operated in both pump and motor mode, and has a pressure control and/or displacement control and/or a torque control or limitation.
  • the hydraulic pump is adjustable on both sides of its zero volume, so that it can work either as a pump or as a motor with the same direction of rotation. This enables regeneration of the reduced power of the energy consumer, which can be recovered in a further development by the overall energy coordinator.
  • Such a hydraulic pump is preferably integrated into a load-sensing LS or LUDV system.
  • a limited pressure medium volume flow is determined and transferred for the respective energy consumer at the load pressure of the energy consumer via the energy or total energy coordinator.
  • a quotient of limited to required pressure medium volume flow is the same for all energy consumers.
  • the driving consumer is designed as at least one hydraulic motor and/or at least one electric motor.
  • the former can be designed with a constant or adjustable displacement volume.
  • the hydraulic motor is integrated into a hydrostatic transmission consisting of a hydraulic pump and a hydraulic motor
  • the electric motor is integrated into an electrical transmission consisting of a generator and an electric motor.
  • a transmission can be referred to as a variator.
  • a required torque is determined from the required traction of the driving consumer and passed on to the energy coordinator or an associated determination device. This device uses the required torque to determine a required transmission torque that should be present at the output of the variator so that the requirement is met.
  • the required transmission torque is also determined as a function of the current gear ratio of this transmission.
  • the electric motor is not powered and driven by a generator, but directly.
  • a mechanical or hybrid transmission is provided in parallel and/or in series with the hydrostatic or electric variator or the directly driven electric motor.
  • Alternatives to a manual transmission are a transmission with a fixed gear ratio, a standstill transmission, a so-called “2+1 transmission” with 2 hydraulic motors and a clutch in which another hydraulic motor is switched on in the lower speed range, a so-called “2+3 transmission” which has 2 hydraulic motors and three clutches in order to realize different gear ratios and hydraulic motor combinations, or a manual transmission with powershift clutches, a so-called "powershift transmission”.
  • the energy coordinator must determine the required performance of the The driving consumer's power is determined from the required transmission torque and a current speed of the mobile work machine or a current speed of the driving consumer and is passed on to the overall energy coordinator as the required power of the driving consumer. According to the invention, this can be a required traction or thrust power.
  • a minimum speed and a maximum speed are passed on to the overall energy coordinator in a further training course.
  • a delivery volume reserve of in particular approximately 5% is provided, which is taken into account when determining the minimum speed.
  • the overall energy coordinator implements an automated braking of the working machine in the event of a downhill journey, depending on the absorbable power transferred to it by the consumers, by at least partially allocating the thrust power of the drive machine to the consumers.
  • the braking power to be provided by a braking device can be reduced and the driver can be relieved of the burden of controlling the working machine.
  • the maximum power that the respective energy coordinator can absorb is given as a specification via the overall energy coordinator.
  • This specification is then implemented via the respective energy coordinator by specifying a setpoint value for the functional controls of the consumer(s) assigned to it.
  • the delivery volume of the hydraulic pump supplying the consumer with pressure medium is limited via the energy coordinator depending on the ratio.
  • the required traction force is corrected via a controller that is signal-connected to the overall energy coordinator.
  • a preferred speed limitation, especially downhill, which does not require any control, is achieved by limiting the delivery volume of the hydraulic pump of the hydrostatic variator.
  • a maximum speed of the driving consumer is stored in a variator or transmission control, in particular variable or static for one or more driving ranges of the working machine.
  • the variable maximum speed is dependent in particular on a position of the accelerator pedal or a value of the automation function.
  • the power of the driving consumer is indirectly limited via the overall energy coordinator, in that according to the invention the target torque is indirectly limited via the energy coordinator, in particular by reducing the pressure of the hydraulic pump supplying the driving consumer with pressure medium. In this way, “free wheeling" can be achieved, in which the driving consumer does not necessarily switch to overrun mode, i.e. there is no support from the drive machine.
  • the power of the driving consumer is preferably limited by a current reduction via the total energy coordinator.
  • the limitation of the thrust power of the driving consumer is carried out analogously and mirrored to the limitation of its traction power described above.
  • the delivery volume must be increased in overrun mode in order to reduce the system pressure.
  • the generator switches to motor mode and the motor switches to generator mode in overrun mode.
  • the considerations for limiting the power of the driving consumer also apply to rotary power consumers, such as a slewing gear drive for an excavator, a winch drive in a closed circuit or a fan drive.
  • a mobile work machine has at least one hydraulic pump which, depending on its input shaft speed n HP, provides a hydraulic pressure medium volume flow for several hydraulic work consumers 4.
  • the pressure medium volume flow is distributed to the work consumers 4 via a hydraulically or electrically actuated valve device (main control valve) to convert hydraulic power into mechanical power.
  • the work machine also has a drive with at least one drive consumer 6 or other rotary consumer.
  • a hydrostatic and/or an electric transmission a so-called variator, is provided, via which a conversion of the mechanical input power in relation to a torque increase or torque reduction can be carried out by changing the transmission ratio r.
  • the hydrostatic variator has at least one adjustable or constant hydraulic motor as a drive consumer.
  • an electric variator is possible. In this case, an electric generator is used instead of the hydraulic pump and an electric motor is used instead of the hydraulic motor.
  • the electric machines can be combined to form the same topologies as with the hydrostatic units.
  • the hydraulic or electric motors of the variator or variators are connected to a mechanical gearbox, which in its simplest form has a single gear ratio.
  • gearbox variants with several switchable gear ratios, as well as gearbox variants with several gear inputs that can be activated and deactivated, are possible.
  • the transmission control is responsible for implementing the target torque T reqvarset and, if necessary, a speed limitation. In addition, it is responsible for controlling the individual components of several variators so that the target torque T reqvarset is generated.
  • a control structure 1 according to the invention for the mobile work machine has at least one power source 2, at least one hydraulic work consumer 4 supplied with work power by this and at least one driving consumer 6 supplied with driving power, demand interfaces 8, 10 for recording a driver's demand directed at the respective consumer 4, 6 or an automated function for the automated or autonomous working or driving operation of the work machine, as well as functional controls 12, 14, 16, 18 assigned to the consumers 4, 6.
  • an energy coordinator 20, 22 is assigned to the respective consumer 4, 6.
  • An overall energy coordinator 24 is superordinate to this.
  • the arrow connections according to Figure 1 show signal connections and flows for power management, which are bidirectional in particular between the overall energy coordinator 24 on the one hand and the energy coordinators 20, 22 and the power sources 2 on the other hand.
  • FIG 2 shows a section of the control structure 1 according to Figure 1 with more detailed signal flow.
  • the demand interface 8 records a demand from the driver and/or an automated function of the work machine directed at the work consumer 4 via an HMI interface 26 and/or a machine, automated interface 28 and transfers a required speed V req determined as a function of this, as well as optionally a correspondingly determined required force F req of the work consumer 4 to its energy coordinator 20.
  • the work consumer 4 consists of one to n axes, so that the demand interface 8 records the demand broken down into all axes 1 to n and records and transfers the assigned required speed V req (1...n) for each axis n accordingly.
  • the energy coordinator 20 uses this and a current pressure p, the load pressures pi, and a speed n HP of a hydraulic pump assigned to the work consumer 4 to determine a required power P req to meet the demand v req , F req .
  • This required power P req is transferred to the total energy coordinator 24.
  • a power P cns that can be absorbed by the energy consumer and its minimum necessary and maximum permitted speed n min , n max are transferred.
  • the respective pressure medium volume flow Q set(1...n) of the axes is determined via the energy coordinator 20.
  • the Figures 1 and 3 records the demand interface 10 (cf. Figure 1 ) via the HMI interface 30 and/or the automated interface 32 a requirement directed at the driving consumer 6 and determines a required torque T req , and optionally a required speed V req , of the driving consumer 6, which it transfers indirectly to the energy coordinator 22 via a transmission or variator torque calculation 34.
  • the transmission or variator torque calculation 34 determines a required variator or transmission torque T reqvar from T req , and optionally V req , depending on a current gear ratio r act of the mechanical transmission, and transfers this to the energy coordinator 22.
  • the energy coordinator 22 determines the target torque T reqvarset from T reqvar and depending on a current speed n act mot of the driving consumer 6 or a current speed v of the work machine .
  • the variator or transmission control 36 determines signals p HP , V gHM and optionally V gHPlim for transfer to the controls 16, 18, which are then assigned to the hydraulic pump HP and the hydraulic motor HM and are designed accordingly as pump control and hydraulic motor control.
  • These 16, 18 determine the necessary control currents i HPA , i HPB and i HM for controlling the respective adjustment device for adjusting the delivery volume V gHP of the hydraulic pump HP and the displacement volume V gHM of the hydraulic motor HM, depending on the operating variables ⁇ p, speed of the hydraulic pump n HP, the hydraulic motor n HM and, if applicable, the temperature T.
  • the variator or transmission control 36 determines signals U req , T EM (1...t) and n lim (1...t) for transfer to the controls 16, 18, which are then sent to the electric generator EG and the Electric motor EM and are designed accordingly as generator control and electric motor control.
  • These 16, 18 determine specific control variables for the generator, whereby the generator speed n Gen and voltage U Gen are reported back to the respective control for the generator EG and the motor current l act EM and the motor speed n act EM are reported back to the electric motor EM.
  • a signal r(1 ... n) is sent to a clutch control 40, which, depending on this, controls one or more clutches with a control current i clutch .
  • Figure 4 shows different from Figure 3 an electric variator with a directly driven electric motor EM, i.e. without the intermediate generator EG. Accordingly, only the signals T EM (1...t) and n lim (1...t) are taken into account by the variator or transmission control 36 for transfer to the electric motor controls 16, 18 of the or individual electric motors, which take into account the electric motor-specific signals already discussed. In this case too, a signal r(1...n) is sent to the clutch control 40 via a gear ratio calculation 38, which controls one or more clutches with the control current i clutch depending on this. If the drive does not have a manual transmission, the elements for controlling a clutch are omitted.
  • the energy coordinator 22 of the driving consumer 6 determines the power P req required by the driving consumer 6 depending on the demand and at least one current speed or speed of the working machine 1, which it calculates according to Figure 3 and 2 together with the speeds n min and n max of the driving consumer 6 to the total energy coordinator 24. In addition, unlike for the working consumer 4, no absorbable power P cns is provided for the driving consumer 6 and is therefore not transferred.
  • the power sources 2, more precisely their controllers or energy coordinators, transfer according to Figure 2 each have a power P cpby that they can provide and a power P cns that they can absorb.
  • the overall energy coordinator 24 balances the services and distributes, prioritizes or limits the The power provided to individual consumers 4, 6 is controlled by transferring the corresponding power limits P lim up or P lim low to the energy coordinators 20, 22. These process the signals in such a way that the power is maintained accordingly via the functional controls 12, 14, 16, 18.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Control Of Fluid Gearings (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Claims (22)

  1. Structure de commande pour une machine de travail mobile comprenant des participants à la puissance (2, 4, 6), parmi lesquels au moins un est respectivement une source de puissance (2), un consommateur de conduite (6) et un consommateur de travail hydraulique (4), comprenant des coordinateurs d'énergie (20, 22), lesquels sont respectivement connectés par signaux à une commande (12, 14, 16, 18) associée au consommateur (4, 6) respectif, une valeur de consigne étant transmise du coordinateur d'énergie à la commande (12, 14, 16, 18), par le biais de laquelle une puissance (Plimup, Plimlow) du consommateur (4, 6) est limitée en fonction de la valeur de consigne, caractérisée en ce que la valeur de consigne est un couple de consigne (Treqvarset) pour le consommateur de conduite (6) et un débit volumique de moyen de pression de consigne (Qset) pour un consommateur de travail (4).
  2. Structure de commande selon la revendication 1 comprenant des interfaces de besoins (8, 10) pour les consommateurs (4, 6), qui sont connectées par signaux côté entrée à un ou plusieurs éléments de contrôle (26, 30) et/ou à un dispositif de commande (28, 32) mécanique ou automatisé en vue de l'enregistrement d'un besoin respectif, et qui sont connectées par signaux côté sortie respectivement directement ou indirectement au coordinateur d'énergie (20, 22) du consommateur (4, 6).
  3. Structure de commande selon la revendication 2, un couple de besoin (Treq) ou un couple (Treqvar) qui dépend de celui-ci étant transmis de l'interface de besoin (10) au coordinateur d'énergie (22) du consommateur de conduite (6), et/ou une vitesse de besoin (vreq) étant transmise de l'interface de besoin (8) au coordinateur d'énergie (20) du consommateur de travail (4).
  4. Structure de commande selon l'une des revendications précédentes, comprenant un coordinateur d'énergie totale (24), lequel est connecté par signaux au moins aux coordinateurs d'énergie (20, 22) des consommateurs (4, 6), ainsi qu'à une commande ou un coordinateur d'énergie de la source de puissance (2).
  5. Structure de commande au moins selon les revendications 2 et 4, les coordinateurs (20, 22, 24), les commandes (12, 14, 18) et les interfaces de besoin (8, 10) étant électronisés.
  6. Structure de commande selon la revendication 4 ou 5, au moins une puissance (Pcpby) pouvant être mise à disposition, une puissance (Pcns) absorbable et/ou une puissance (Preq) requise par le participant de puissance (2, 4, 6) respectif étant transmise(s) au coordinateur d'énergie totale (24) pour ledit participant de puissance.
  7. Structure de commande au moins selon l'une des revendications 4 à 6, au moins une puissance mettable à disposition (Pcpby) et une puissance absorbable (Pcns) de la source de puissance (2), des puissances nécessaires (Preq) des consommateurs (4, 6) et une puissance absorbable (Pcns) d'au moins l'un (4) des consommateurs (4, 6), notamment d'au moins le consommateur de travail (4), étant transmises au coordinateur d'énergie totale (24) .
  8. Structure de commande selon la revendication 6 ou 7, un signal à propos de la puissance absorbée (Preqdem) par le consommateur (4), notamment le consommateur de travail (4), étant transmis par le coordinateur d'énergie totale (24) au coordinateur d'énergie (20), indépendamment de la puissance (Preq) dont il a besoin.
  9. Structure de commande selon l'une des revendications 6 à 8, un travail pouvant être fourni au moins en partie par la puissance absorbable (Pcns) au niveau du participant à la puissance, notamment au niveau du consommateur, en particulier du consommateur de travail (4), et/ou la puissance absorbable (Pcns) pouvant être dissipée au moins en partie par le biais d'un dispositif de ralentisseur du participant à la puissance, notamment du consommateur, en particulier du consommateur de travail (4).
  10. Structure de commande selon l'une des revendications précédentes, la puissance respective (Pcpby, Pcns, Preq) étant transmise avec un signe.
  11. Structure de commande au moins selon la revendication 4, au moins la vitesse de rotation minimale nécessaire (nmin) du consommateur respectif (4, 6) et/ou sa vitesse de rotation maximale possible (nmax) étant transmise(s) au coordinateur d'énergie totale (24) pour ledit consommateur.
  12. Structure de commande selon l'une des revendications 6 à 8, un bilan de puissance des puissances pouvant être mises à disposition (Pcpby), des puissances absorbables (Pcns) et des puissances nécessaires (Preq) étant effectué par le biais du coordinateur d'énergie totale et, en fonction de cela, la puissance (Plim up, Plim low) d'au moins un des participants à la puissance (4, 6) étant limitée.
  13. Structure de commande au moins selon la revendication 4, une puissance de traction et/ou une puissance de poussée d'au moins un des participants à la puissance (4, 6) étant limitée par le biais du coordinateur d'énergie totale (24).
  14. Structure de commande selon l'une des revendications précédentes, ledit au moins un consommateur de conduite (6) étant un moteur hydraulique ou un moteur électrique.
  15. Structure de commande selon la revendication 14, une transmission hydrostatique étant formée par le moteur hydraulique avec une pompe hydraulique, ou une transmission électrique étant formée par le moteur électrique avec un générateur électrique, ou le moteur électrique étant alimenté électriquement ou entraîné directement.
  16. Structure de commande selon l'une des revendications précédentes, comprenant une transmission mécanique à rapport constant, à changement de rapport ou à variateur, laquelle peut être mise en circuit ou est mise en circuit en parallèle ou en série avec le consommateur de conduite (6), notamment le moteur hydraulique ou le moteur électrique.
  17. Structure de commande au moins selon les revendications 3 et 16, un couple de transmission requis (Treqvar), lequel dépend du couple requis (Treq) et d'un rapport de transmission (ract) de la transmission étant transmis au coordinateur d'énergie (22) du consommateur de conduite (6) .
  18. Structure de commande selon la revendication 17, le couple de consigne (Treqvarset) étant déterminé par le coordinateur d'énergie (22) du consommateur de conduite (6) en fonction du couple de transmission requis (Treqvar) et d'une puissance (Plimup, Plimlow) attribuée par le coordinateur d'énergie totale (24).
  19. Structure de commande selon la revendication 18, comprenant une commande de transmission (36) associée au consommateur de conduite (6), par le biais de laquelle, en fonction du couple de consigne (Treqvarset) ainsi que de la vitesse de rotation (nact) du consommateur de conduite (6), notamment du moteur électrique ou du moteur hydraulique, ou de la vitesse (vact) de la machine de travail mobile,
    - une pression de consigne (pHP), et notamment un volume de refoulement limite (VgHPlim), de la pompe hydraulique est transmis à une commande de la pompe hydraulique et un volume d'absorption de consigne (VgHM) du moteur hydraulique est transmis à une commande du moteur hydraulique de la transmission hydrostatique (HP, HM), et/ou
    - une tension de consigne (Ureq) est transmise à une commande du générateur électrique et un couple de consigne (TMot) et notamment une vitesse de rotation limite (nlim) est transmise à une commande du moteur électrique de la transmission électrique (EG, EM), et/ou
    - un couple de consigne (TEM), et notamment une vitesse de rotation limite (nlim), est transmis à une commande du moteur électrique (EM) à entraînement direct.
  20. Structure de commande selon la revendication 19, au moins
    - un courant de commande (iHPA, iHPB) d'un dispositif de réglage de la pompe hydraulique (HP) en fonction de la pression de consigne (pHP), et notamment du volume de refoulement limite (VgHPlim), de la pompe hydraulique (HP), et un courant de commande (iHM) du moteur hydraulique (HM) en fonction du volume d'absorption de consigne (VgHM),
    - et/ou un signal de commande du générateur électrique (EM) en fonction de la tension de consigne (Ureq) et un courant de consigne (IEM) du moteur électrique en fonction du couple de consigne (TEM), et notamment de la vitesse de rotation limite (nlim), du moteur électrique (EM),
    - et/ou un courant de consigne (IEM) du moteur électrique en fonction du couple de consigne (TEM), et notamment de la vitesse de rotation limite (nlim), du moteur électrique (EM)
    étant transmis par la commande respective.
  21. Machine de travail mobile comprenant des participants à la puissance (2, 4, 6), dont au moins un est une source de puissance (2), un consommateur de conduite (6) et un consommateur de travail (4) hydraulique, et comprenant une structure de commande (1), qui est configurée selon au moins l'une des revendications précédentes, et dont les coordinateurs d'énergie (20, 22) sont connectés par signaux respectivement au moins à une commande (12, 14, 16, 18) associée au consommateur respectif.
  22. Procédé de commande d'une machine de travail mobile, qui est configurée selon la revendication 21, caractérisé par les étapes suivantes
    - limitation d'une puissance (Plim up, Plim low) d'un consommateur de conduite (6) de la machine de travail au moyen d'un couple de consigne (Treqvarset), et
    - limitation d'une puissance (Plim up, Plim low) d'un consommateur de travail (4) de la machine de travail au moyen d'un débit volumique de moyen de pression de consigne (Treqvarset).
EP21181629.3A 2020-06-30 2021-06-25 Structure de commande pour machine de travail mobile, machine de travail mobile dotée de la structure de commande, procédé comportant la structure de commande Active EP3940155B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102020208103.4A DE102020208103A1 (de) 2020-06-30 2020-06-30 Steuerungsstruktur für eine mobile Arbeitsmaschine, mobile Arbeitsmaschine mit der Steuerungsstruktur, Verfahren mit der Steuerungsstruktur

Publications (2)

Publication Number Publication Date
EP3940155A1 EP3940155A1 (fr) 2022-01-19
EP3940155B1 true EP3940155B1 (fr) 2024-05-15

Family

ID=76623899

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21181629.3A Active EP3940155B1 (fr) 2020-06-30 2021-06-25 Structure de commande pour machine de travail mobile, machine de travail mobile dotée de la structure de commande, procédé comportant la structure de commande

Country Status (2)

Country Link
EP (1) EP3940155B1 (fr)
DE (1) DE102020208103A1 (fr)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183595A1 (fr) * 2012-06-04 2013-12-12 日立建機株式会社 Véhicule de travail
DE102013214732A1 (de) 2013-07-29 2015-02-26 Robert Bosch Gmbh Steuerungsstruktur für eine mobile Arbeitsmaschine, mobile Arbeitsmaschine und Verfahren mit einer Steuerungsstruktur
CA3017602C (fr) * 2016-04-01 2023-09-12 Clark Equipment Company Commande de vitesse de moteur variable
US10619330B2 (en) * 2016-11-08 2020-04-14 Guangxi Liugong Machinery Co., Ltd. Multiple level work hydraulics anti-stall

Also Published As

Publication number Publication date
DE102020208103A1 (de) 2021-12-30
EP3940155A1 (fr) 2022-01-19

Similar Documents

Publication Publication Date Title
EP2042745B1 (fr) Système d'entraînement hydraulique avec récupération d'énergie
DE60131832T2 (de) Hydraulisches hybridfahrzeug
EP3049687B1 (fr) Commande hydraulique destinée à une boîte de vitesses à double embrayage de véhicule utilitaire
EP0698518B1 (fr) Procédé et appareil de commande pour commander l'unité d'entraînement d'un véhicule de travail
DE19955311C2 (de) Antriebssystem für ein Flurförderzeug
EP3049270B1 (fr) Engin de travail automoteur et procédé de freinage d'un tel engin de travail
EP2050961B1 (fr) Système d'entraînement hydraulique
DE2810086A1 (de) Leistungsverzweigungsgetriebe und antriebsbaugruppe mit einem solchen leistungsverzweigungsgetriebe und einem bremsenergiespeicher
DE19955312B4 (de) Antriebssystem für Flurförderzeuge
EP2840452B1 (fr) Structure de commande pour une machine de travail mobile, machine de travail mobile et procédé présentant une structure de commande
DE4205770A1 (de) Fahrzeug mit verbrennungsmotor, elektrischem generator und elektromotor
DE112010001958T5 (de) Steuervorrichtung für eine hybride Baumaschine
DE102018203623A1 (de) Antrieb für eine Arbeitsmaschine
DE112011102866T5 (de) Steuergerät für Gabelstaplermotor
DE102018203624A1 (de) Antrieb für eine Arbeitsmaschine
EP2746212B1 (fr) Procédé d'ajustement du régime d'un entraînement de grue et entraînement de grue
DE102008025683B4 (de) Verfahren zur Ansteuerung eines Fahrantriebs
DE19955313A1 (de) Antriebssystem für Flurförderzeuge
DE102017221754A1 (de) Kombiniertes elektromechanisches und elektrohydraulisches Antriebssystem
WO2020187905A1 (fr) Procédé permettant de faire fonctionner une chaîne cinématique d'une machine de travail, chaîne cinématique pour une machine de travail et machine de travail
EP3940155B1 (fr) Structure de commande pour machine de travail mobile, machine de travail mobile dotée de la structure de commande, procédé comportant la structure de commande
DE102006036317A1 (de) Verfahren zur Steuerung eines Übersetzungsverhältnisses
DE112012004883T5 (de) Verfahren zur Steuerung einer Übersetzungswechselrate in einem stufenlos verstellbaren Getriebe
DE102018218024A1 (de) Steuerungsstruktur für eine mobile Arbeitsmaschine, Verfahren und mobile Arbeitsmaschine
DE102014105127A1 (de) Hydraulisches Antriebssystem einer mobilen Arbeitsmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220719

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231213

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: MUTSCHLER, STEFFEN

Inventor name: SCHEPERS, CLAUS

Inventor name: SPANG, JOERG

Inventor name: BRIX, NORMAN

Inventor name: BENDER, FRANK

Inventor name: MAST, MICHAEL

INTG Intention to grant announced

Effective date: 20240301

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021003694

Country of ref document: DE