EP3938348A1 - Novel 3-(2-brom-4-alkynyl-6-alkoxyphenyl)-3-pyrrolin-2-ones and their use as herbicides - Google Patents

Novel 3-(2-brom-4-alkynyl-6-alkoxyphenyl)-3-pyrrolin-2-ones and their use as herbicides

Info

Publication number
EP3938348A1
EP3938348A1 EP20707680.3A EP20707680A EP3938348A1 EP 3938348 A1 EP3938348 A1 EP 3938348A1 EP 20707680 A EP20707680 A EP 20707680A EP 3938348 A1 EP3938348 A1 EP 3938348A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
methyl
alkoxy
plants
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20707680.3A
Other languages
German (de)
French (fr)
Inventor
Guido Bojack
Alfred Angermann
Estella Buscato Arsequell
Andreas REMBIAK
Stefan Lehr
Elmar Gatzweiler
Anu Bheemaiah MACHETTIRA
Elisabeth ASMUS
Dirk Schmutzler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP3938348A1 publication Critical patent/EP3938348A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/30Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/10Spiro-condensed systems
    • C07D491/107Spiro-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/36Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings
    • A01N43/38Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings condensed with carbocyclic rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/96Spiro-condensed ring systems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/12Powders or granules
    • A01N25/14Powders or granules wettable

Definitions

  • New 3- (2-bromo-4-alkynyl-6-alkoxyphenyl) -3-pyrrolin-2-ones and their use as herbicides Description
  • the present invention relates to new herbicidally active 3-pyrrolin-2-ones according to the general formula (I ) or agrochemically acceptable salts thereof, as well as their use for controlling weeds and grass weeds in crops of useful plants.
  • the class of compounds of the 3-arylpyrrolidine-2,4-diones and their preparation and use as herbicides are well known from the prior art.
  • bicyclic 3-aryl-pyrrolidine-2,4-dione derivatives EP-A-355599, EP-A-415211 and JP-A-12-053670
  • substituted monocyclic 3-aryl-pyrrolidine - 2,4-dione derivatives EP-A-377893 and EP-A-442077
  • Alkynyl-substituted-3-phenylpyrrolidine-2,4-diones with herbicidal action are also known from WO 96/82395, WO 98/05638, WO 01/74770, WO 15/032702 or WO 15/040114.
  • the effectiveness of these herbicides against harmful plants depends on numerous parameters, for example on the application rate used, the preparation form (formulation), the harmful plants to be controlled, the range of harmful plants, the climatic and soil conditions and the duration of the action or the rate of degradation of the herbicide.
  • Numerous herbicides from the group of 3-arylpyrrolidine-2,4-diones require high application rates and / or only have a narrow range of weeds in order to develop an adequate herbicidal effect, which makes their use economically unattractive. There is therefore a need for alternative herbicides which have improved properties and are economically attractive and at the same time efficient.
  • the object of the present invention is therefore to provide new compounds which do not have the disadvantages mentioned.
  • the present invention therefore relates to 3- (2-bromo-4-alkynyl-6-alkoxyphenyl) -3-pyrrolin-2-ones of the general formula (I),
  • W is oxygen, the group S (O) n or a group CR 4 R 5 ;
  • R 1 is hydrogen, (C 1 -C 6) alkyl, (C 1 -C 4) alkoxy- (C 1 -C 4) alkyl, (C 1 -C 6) -haloalkyl, (C 3 - C 6 ) -Cycloalkyl, (C 2 -C 6 ) -alkenyl, (C 2 -C 6 ) -alkynyl, (C 1 -C 6 ) -alkoxy or (C 1 -C 6 ) -haloalkoxy;
  • R 2 is (C 1 -C 6 ) -alkyl or (C 1 -C 6 ) -haloalkyl;
  • R 3 is hydrogen, (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -haloalkyl, (C 3 -C 6 ) -cycloalkyl or halogen;
  • R 4 (C 1 -C 6 ) -alkyl, (C 3 -C 6 ) -cycloalkyl, (C 3 -C 6 ) -alkoxy, (C 1 -C 4 ) -alkoxy- (C 1 -C 6 ) - Alkoxy,
  • R 5 is hydrogen or methyl
  • R 4 and R 5 together with the carbon atom to which they are attached form a keto group or a spirocyclic (C 3 -C 7 ) -cycloalkyl or (C 5 -C 7 ) -cycloalkenyl ring, in which optionally one or two ring carbons can be replaced by oxygen atoms and which can optionally be substituted one to two times and independently of one another by (C 1 -C 2 ) -alkyl or (C 1 -C 2 ) -alkoxy;
  • n 0, 1 or 2;
  • G denotes hydrogen, a removable group L or a cation E; where L is one of the following radicals
  • R 6 is (C 1 -C 4 ) alkyl or (C 1 -C 3 ) alkoxy- (C 2 -C 4 ) alkyl;
  • R 7 is (C 1 -C 4 ) -alkyl
  • R 8 is an unsubstituted phenyl or one or more times with halogen, (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -haloalkyl, (C 1 -C 4 ) -alkoxy, (C 1 -C 4 ) -Haloalkoxy, nitro or cyano is substituted phenyl;
  • R 9 , R 9 'independently of one another denote methoxy or ethoxy
  • R 10 , R 11 each independently represent methyl, ethyl, phenyl or together form a saturated 5-, 6- or 7-membered ring, or together form a saturated 5-, 6- or 7-membered heterocycle with an oxygen or Form a sulfur atom, E an alkali metal ion, an ion equivalent of an alkaline earth metal, an ion equivalent
  • Alkyl means saturated, straight-chain or branched hydrocarbon radicals with the specified number of carbon atoms, for example (C 1 -C 6 ) -alkyl such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1 , 1-dimethylethyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2 -Methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1 -E
  • Haloalkyl means straight-chain or branched alkyl groups, in which case the hydrogen atoms in these groups can be partially or completely replaced by halogen atoms, for example C 1 -C 2 -haloalkyl such as chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, Difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1- chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2- Chlorine, 2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl, pentafluoroethyl and 1,1,1-
  • Alkenyl means unsaturated, straight-chain or branched hydrocarbon radicals with the specified number of carbon atoms and a double bond in any position, e.g. C 2 -C 6 -alkenyl such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 2-pentenyl, 3- Pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl-1-butenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl- 2-butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 3-methyl-3-butenyl, 1,1-dimethyl-2-propeny
  • Alkynyl means straight-chain or branched hydrocarbon radicals with the specified number of carbon atoms and a triple bond in any position, for example C 2 -C 6 alkynyl such as ethynyl, 1-propynyl, 2-propynyl (or propargyl), 1-butynyl, 2- Butynyl, 3-butynyl, 1-methyl-2-propynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 3-methyl-1-butynyl, 1-methyl-2-butynyl, 1-methyl- 3-butynyl, 2-methyl-3-butynyl, 1,1-dimethyl-2-propynyl, 1-ethyl-2-propynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 3-methyl-1-pent
  • Cycloalkyl means a carbocyclic, saturated ring system with preferably 3-8 ring carbon atoms, for example cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.
  • cyclic systems with substituents are included, with substituents having a double bond on the cycloalkyl radical, e.g. B. an alkylidene group such as methylidene are included.
  • Alkoxy means saturated, straight-chain or branched alkoxy radicals with the number of carbon atoms specified in each case, for example C 1 -C 6 -alkoxy such as methoxy, ethoxy, propoxy, 1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy, 1,1 -Dimethylethoxy, pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 2,2-dimethylpropoxy, 1-ethylpropoxy, hexoxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy, 1-methylpentoxy, 2-methylpentoxy , 3-methylpentoxy, 4-methylpentoxy, 1,1-dimethylbutoxy, 1,2-dimethylbutoxy, 1,3-dimethylbutoxy, 2,2-dimethylbutoxy, 2,3-dimethylbutoxy, 3,3-dimethylbutoxy, 1-ethylbutoxy, 2 -Ethylbutoxy, 1,1,2-trimethylpropoxy, 1,2,2-trimethylprop
  • Alkoxy substituted by halogen means straight-chain or branched alkoxy radicals with the specified number of carbon atoms, it being possible for some or all of the hydrogen atoms in these groups to be replaced by halogen atoms as mentioned above, for example C 1 -C 2 -haloalkoxy such as chloromethoxy, bromomethoxy, dichloromethoxy, Trichloromethoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 1-chloroethoxy, 1-bromoethoxy, 1-fluoroethoxy, 2-fluoroethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro 2-fluoroethoxy, 2-chloro-1,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloro
  • the compounds of the formula (I) can, depending on the nature of the substituents, be present as geometric and / or optical isomers or isomer mixtures, in different compositions, for example also in cis or trans form, which are for example If W represents the group CR 4 R 5 and R 5 represents hydrogen, are defined as follows:
  • the present invention relates to both the pure isomers and the tautomer and isomer mixtures, their preparation and use, and agents containing them.
  • compounds of the formula (I) are always referred to below, although both the pure compounds and, if appropriate, mixtures with different proportions of isomeric and tautomeric compounds are meant.
  • the compounds according to the invention are generally defined by the formula (I). Preferred substituents or ranges of the radicals listed in the formulas mentioned above and below are explained below: Preference is given to compounds of the formula (I) in which W is oxygen, the group S (O) n or a group CR 4 R 5 ;
  • R 1 hydrogen, (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -alkoxy- (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -haloalkyl, (C 3 -C6) -Cycloalkyl, (C 2 -C 4 ) -alkenyl, (C 2 -C 4 ) -alkynyl, (C 1 -C 4 ) -alkoxy or (C 1 -C 4 ) -haloalkoxy;
  • R 2 is (C 1 -C 4 ) -alkyl or (C 1 -C 4 ) -haloalkyl;
  • R 3 is hydrogen, (C 1 -C 4) -alkyl, (C 1 -C 4 ) -haloalkyl, (C 3 -C 6 ) -cycloalkyl or halogen;
  • R 4 (C 1 -C 4 ) -alkyl, (C 3 -C 4 ) -cycloalkyl, (C 3 -C 6 ) -alkoxy, (C 1 -C 4 ) -alkoxy- (C 1 -C 4 ) - Alkoxy,
  • R 5 is hydrogen or methyl
  • R 4 and R 5 together with the carbon atom to which they are attached form a keto group or a spirocyclic (C 3 -C 7 ) -cycloalkyl or (C 5 -C 7 ) -cycloalkenyl ring, in which optionally one or two ring carbons can be replaced by oxygen atoms and which can optionally be substituted one to two times and independently of one another by (C 1 -C 2 ) -alkyl or (C 1 -C 2 ) -alkoxy;
  • n 0, 1 or 2;
  • G denotes hydrogen, a removable group L or a cation E, where L is one of the following radicals
  • R 6 is (C 1 -C 4 ) alkyl or (C 1 -C 3 ) alkoxy- (C 2 -C 4 ) alkyl;
  • R 7 is (C 1 -C 4 ) -alkyl
  • R 8 is an unsubstituted phenyl or one or more times with halogen, (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -haloalkyl, (C 1 -C 4 ) -alkoxy, (C 1 -C 4 ) -Haloalkoxy, nitro or cyano is substituted phenyl
  • E is an alkali metal ion, an ion equivalent of an alkaline earth metal, an ion equivalent
  • Particularly preferred are compounds of the formula (I) in which
  • W is oxygen or a group CR 4 R 5 ;
  • R 1 denotes hydrogen, (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -haloalkyl, cyclopropyl, (C 2 -C 4 ) -alkenyl, (C2-C 4 ) -alkynyl;
  • R 2 is (C 1 -C 4 ) -alkyl or (C 1 -C 4 ) -haloalkyl;
  • R 3 is hydrogen, (C 1 -C 4 ) -alkyl, (C 1 -C 2 ) -haloalkyl, cyclopropyl or halogen;
  • R 4 (C 1 -C 2 ) -alkyl, cyclopropyl, (C 3 -C 6 ) -alkoxy, (C 1 -C 4 ) -alkoxy- (C 1 -C 2 ) -alkoxy (C 1 -C 4 ) - is haloalkoxy- (C 1 -C 2 ) -alkoxy, (C 2 -C 4 ) -alkenyloxy or (C 2 -C 4 ) -haloalkenyloxy;
  • R 5 is hydrogen or methyl
  • R 4 and R 5 together with the carbon atom to which they are attached form a keto group or a spirocyclic (C 5 -C 7 ) -cycloalkyl or (C 5 -C 7 ) -cycloalkenyl ring, in which optionally one or two ring carbons can be replaced by oxygen atoms and which can optionally be substituted one to two times and independently of one another by methyl or methoxy;
  • G denotes hydrogen, a removable group L or a cation E, where
  • R 6 is (C 1 -C 4 ) -alkyl or (C 1 -C 3 ) -alkoxy- (C 2 -C 4 ) -alkyl;
  • R 7 is (C 1 -C 4 ) -alkyl
  • E is an alkali metal ion, an ion equivalent of an alkaline earth metal, an ion equivalent
  • R 1 is hydrogen or methyl
  • R 2 is methyl or ethyl
  • R 3 is hydrogen, methyl, ethyl, difluoromethyl, trifluoromethyl, chlorine or bromine;
  • R 4 denotes methyl, ethyl, n-propoxy, i-propoxy, methoxyethoxy, ethoxyethoxy or allyloxy;
  • R 5 is hydrogen or methyl
  • G denotes hydrogen, a removable group L or a cation E, where L is one of the following radicals
  • R 6 is methyl, ethyl, i-propyl or t-butyl
  • R 7 is methyl or ethyl
  • E means a sodium ion or a potassium ion.
  • R 1 , R 2 , R 3 and W have the meaning given above
  • R 12 is alkyl, preferably methyl or ethyl, optionally in the presence of a suitable solvent or diluent, with a suitable base with formal splitting off of the group R 12 OH cyclized, or
  • R 1 , R 2 , R 3 and W have the meanings given above, for example with a compound of the general formula (III), Hal-L (III) in which L has the meaning given above and Hal is a halogen, preferably Chlorine or bromine, if appropriate in the presence of a suitable solvent or diluent and a suitable base, reacts (c) by adding compounds of the general formula (IV),
  • Z represents hydrogen or a suitable leaving group and R 3 has the meaning given above, optionally in the presence of suitable catalysts and a suitable base.
  • the leaving group Z includes, for example, halogen atoms such as chlorine, bromine or iodine, alkyl sulfonic ester groups such as triflate, mesylate or nonaflate, magnesium chloride, magnesium bromide, zinc chloride, a trialkyltin radical, carboxyl and boric acid radicals such as -B (OH) 2 or -B (O-alkyl) 2 into consideration.
  • Pd 0 complexes in particular are very suitable as catalysts, the addition of Cu (I) salts can also be very advantageous in many cases.
  • Ligands such as 1,4-bis (diphenylphosphino) butane can also be used.
  • the required precursors of the general formula (XII) can be obtained, for example, by adding a compound of the general formula (XIV) in which R 2 and U are as defined above and R 14 is alkyl, preferably methyl or ethyl , according to the already described cross-coupling method with a compound of the general formula (V), in which Z and R 3 has the meaning given above, reacts and cleaves the resulting carboxylic acid ester according to standard methods:
  • R 2 is methyl, ethyl
  • R 3 is chlorine, bromine, difluoromethyl, trifluoromethyl
  • R 14 is H, methyl.
  • the compounds of the formula (I) according to the invention (and / or salts thereof), hereinafter referred to collectively as “compounds according to the invention”, have excellent herbicidal activity against a broad spectrum of economically important monocotyledon and dicotyledon annual harmful plants.
  • the present invention therefore also provides a method for controlling unwanted plants or for regulating the growth of plants, preferably in plant crops, in which one or more compound (s) according to the invention are applied to the plants (for example harmful plants such as monocotyledonous or dicotyledonous weeds or unwanted crop plants), the seeds (e.g. grains, seeds or vegetative reproductive organs such as tubers or sprouts with buds) or the area on which the plants grow (e.g.
  • the compounds according to the invention can be applied, for example, by the pre-sowing method (optionally also by incorporation into the soil), pre-emergence or post-emergence method.
  • Some representatives of the monocotyledonous and dicotyledonous weed flora that are caused by the inventive Connections can be controlled without restricting them to certain types.
  • Monocotyledonous harmful plants of the genera Aegilops, Agropyron, Agrostis, Alopecurus, Apera, Avena, Brachiaria, Bromus, Cenchrus, Commelina, Cynodon, Cyperus, Dactyloctenium, Digitaria, Echinochloa, Eleocharis, Eleusine, Fagrostis, Festylochata , Ischaemum, Leptochloa, Lolium, Monochoria, Panicum, Paspalum, Phalaris, Phleum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sorghum.
  • the compounds according to the invention are applied to the surface of the earth before germination, either the emergence of the weed seedlings is completely prevented or the weeds grow to the cotyledon stage, but then stop growing.
  • the active ingredients are applied to the green parts of the plant using the post-emergence method, growth arrests after the treatment and the harmful plants remain in the growth stage present at the time of application or die completely after a certain time, so that in this way competition from weeds that is harmful to the crop plants is very early and is permanently eliminated.
  • the compounds according to the invention can have selectivities in useful crops and can also be used as non-selective herbicides.
  • the active compounds can also be used for combating harmful plants in crops of known or still to be developed genetically modified plants.
  • the transgenic plants are usually characterized by particularly advantageous properties, for example by resistance to certain active ingredients used in the agricultural industry, especially certain herbicides, resistance to plant diseases or pathogens of plant diseases such as certain insects or microorganisms such as fungi, bacteria or viruses.
  • Other special properties concern e.g. the crop in terms of quantity, quality, Shelf life, composition and special ingredients.
  • transgenic plants with an increased starch content or a changed quality of the starch or those with a different fatty acid composition of the harvested material are known.
  • transgenic crop plants which are resistant to certain herbicides of the glufosinate type (see, for example, EP 0242236 A, EP 0242246 A) or glyphosate (WO 92/000377 A) or the sulfonylureas (EP 0257993 A, US 5,013,659) or are resistant to combinations or mixtures of these herbicides by “gene stacking”, such as transgenic crops e.g. . B.
  • Optimum TM GAT TM Glyphosate ALS Tolerant.
  • Bt toxins Bacillus thuringiensis toxins
  • - transgenic crop plants with modified fatty acid composition WO 91/013972 A.
  • nucleic acid molecules can be introduced into plasmids which allow mutagenesis or a sequence change by recombining DNA sequences.
  • base exchanges can be carried out, partial sequences can be removed or natural or synthetic sequences can be added.
  • adapters or linkers can be added to the fragments, see, for example, Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2nd edition.
  • the production of plant cells with a reduced activity of a gene product can be achieved, for example, by expressing at least one corresponding antisense RNA, one sense RNA to achieve a cosuppression effect or expression at least a correspondingly constructed ribozyme which specifically cleaves transcripts of the above-mentioned gene product.
  • DNA molecules can be used that include the entire coding sequence of a gene product including any flanking sequences that may be present, as well as DNA molecules that only include parts of the coding sequence, these parts having to be long enough to be in the cells to bring about an antisense effect.
  • DNA sequences which have a high degree of homology to the coding sequences of a gene product can be used, but which are not completely identical.
  • the synthesized protein can be localized in any desired compartment of the plant cell.
  • the coding region can be linked to DNA sequences which ensure the localization in a certain compartment.
  • sequences are known to the person skilled in the art (see, for example, Braun et al., EMBO J. 11 (1992), 3219-3227; Wolter et al., Proc. Natl. Acad. Sci. USA 85 (1988), 846-850; Sonnewald et al., Plant J.
  • the expression of the nucleic acid molecules can also take place in the organelles of the plant cells.
  • the transgenic plant cells can be regenerated into whole plants using known techniques.
  • the transgenic plants can be plants of any plant species, ie, both monocotyledonous and dicotyledonous plants.
  • the compounds (I) according to the invention can preferably be used in transgenic crops which are effective against growth substances such as 2,4-D, dicamba or against herbicides, the essential plant enzymes, e.g.
  • acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS) or hydoxyphenylpyruvate Dioxygenases (HPPD) inhibit or are resistant to herbicides from the group of sulfonylureas, glyphosates, glufosinates or benzoylisoxazoles and analogous active ingredients, or to any combination of these active ingredients.
  • the compounds according to the invention can particularly preferably be used in transgenic crop plants which are resistant to a combination of glyphosates and glufosinates, glyphosates and sulfonylureas or imidazolinones.
  • the compounds according to the invention can very particularly preferably be used in transgenic crop plants such as. B. corn or soy with the trade name or the designation OptimumTM GATTM (Glyphosate ALS Tolerant) can be used.
  • OptimumTM GATTM Glyphosate ALS Tolerant
  • the active ingredients according to the invention are used in transgenic crops, in addition to the effects on harmful plants observed in other crops, effects that are specific to the application in the respective transgenic crop, for example a modified or specially expanded weed spectrum that can be controlled, often occur
  • Application rates which can be used for the application, preferably good compatibility with the herbicides to which the transgenic culture is resistant, and influencing the growth and yield of the transgenic crop plants.
  • the invention therefore also relates to the use of the compounds of the formula (I) according to the invention as herbicides for controlling harmful plants in transgenic crop plants.
  • the compounds according to the invention can be used in the customary preparations in the form of wettable powders, emulsifiable concentrates, sprayable solutions, dusts or granules.
  • the invention therefore also relates to herbicidal and Plant growth regulating agents which contain the compounds according to the invention.
  • the compounds according to the invention can be formulated in various ways, depending on which biological and / or chemico-physical parameters are given.
  • Possible formulation options include, for example: wettable powders (WP), water-soluble powders (SP), water-soluble concentrates, emulsifiable concentrates (EC), emulsions (EW), such as oil-in-water and water-in-oil emulsions, sprayable solutions , Suspension concentrates (SC), oil- or water-based dispersions, oil-miscible solutions, capsule suspensions (CS), dusts (DP), dressings, granules for litter and soil application, granules (GR) in the form of micro, spray, lift - and adsorption granules, water-dispersible granules (WG), water-soluble granules (SG), ULV formulations, microcapsules and waxes.
  • WP wettable powders
  • SP water-soluble powders
  • EC emulsifiable concentrates
  • EW emulsions
  • SC Suspension concentrates
  • SC oil- or water-based
  • Combination partners for the compounds according to the invention in mixture formulations or in the tank mix are, for example, known active ingredients which act on an inhibition of, for example, acetolactate synthase, acetyl-CoA carboxylase, cellulose synthase, enolpyruvylshikimate-3-phosphate synthase, glutamine synthetase, p-hydroxyphenylpyruvate dioxygenase, phytoene desaturase, photosystem I, photosystem II or protoporphyrinogen oxidase, can be used, as described, for example, in Weed Research 26 (1986) 441-445 or "The Pesticide Manual", 16th edition, The British Crop Protection Council and the Royal Soc.
  • herbicidal mixture partners are: Acetochlor, acifluorfen, acifluorfen-sodium, aclonifen, alachlor, allidochlor, alloxydim, alloxydim-sodium, ametryn, amicarbazone, amidochlor, amidosulfuron, 4-amino-3-chloro-5-fluoro-6- ( 7-fluoro-1H- indol-6-yl) pyridine-2-carboxylic acid, aminocyclopyrachlor, aminocyclopyrachlor-potassium, aminocyclopyrachlor-methyl, aminopyralid, amitrole, ammoniumsulfamate, anilofamidos, asulam, atrazine, azafenidin, beazubolin, benflutazolin, -ethyl, benfluralin, benfuresate, bensulfuron, bensulfuron-methyl, bensulide, bentazone
  • plant growth regulators as possible mixing partners are: acibenzolar, acibenzolar-S-methyl, 5-aminolevulinic acid, ancymidol, 6-benzylaminopurine, brassinolide, catechin, chlormequat chloride, cloprop, cyclanilide, 3- (cycloprop-1-enyl) propionic acid, dazomet, n-decanol, dikegulac, dikegulac-sodium, endothal, endothal-dipotassium, -disodium, and mono (N, N-dimethylalkylammonium), ethephon, flumetralin, flurenol, flurenol-butyl, flurprimidol, forchlorfenuron, gibberellic, acid, indol-3-acetic acid (IAA), 4-indol-3-ylbutyric acid, isoprothiolane, probenazole, jasmonic acid, jasmonic acid
  • Safeners which can be used in combination with the compounds of the formula (I) according to the invention and optionally in combinations with other active ingredients such as insecticides, acaricides, herbicides, fungicides as listed above, are preferably selected from the group consisting of: S1) Compounds of the formula (S1),
  • nA is a natural number from 0 to 5, preferably 0 to 3;
  • R A 1 is halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, nitro or (C 1 -C 4 ) haloalkyl;
  • W A is an unsubstituted or substituted divalent heterocyclic radical from the group of partially unsaturated or aromatic five-membered ring heterocycles with 1 to 3 hetero ring atoms from the group N and O, with at least one N atom and at most one O atom in the ring, preferably a residue from the group (W 1
  • n A is 0 or 1; R 2
  • A is OR 3
  • A is hydrogen or an unsubstituted or substituted aliphatic hydrocarbon radical, preferably with a total of 1 to 18 carbon atoms;
  • R A 4 is hydrogen, (C 1 -C 6 ) alkyl, (C 1 -C 6 ) alkoxy or substituted or unsubstituted phenyl;
  • R A 5 is H, (C 1 -C 8 ) alkyl, (C 1 -C 8 ) haloalkyl, (C 1 -C 4 ) alkoxy, (C 1 -C 8 ) alkyl, cyano or COOR A 9 , where R A 9 hydrogen, (C 1 -C 8 ) alkyl, (C 1 -C 8 ) haloalkyl, (C 1 -C 4 ) alkoxy- (C 1 -C 4 ) alkyl, (C 1 -C 6 ) hydroxyalkyl, (C 3 -C12) cycloalkyl or tri- (C 1
  • A are identically or differently hydrogen, (C 1 -C8) alkyl, (C 1 -C8) haloalkyl, (C 3 -C 12 ) cycloalkyl or substituted or unsubstituted phenyl; preferably: a) compounds of the dichlorophenylpyrazoline-3-carboxylic acid type (S1 a ), preferably compounds such as 1- (2,4-dichlorophenyl) -5- (ethoxycarbonyl) -5-methyl-2-pyrazoline-3-carboxylic acid, 1 - (2,4-Dichlorophenyl) -5- (ethoxycarbonyl) -5-methyl-2-pyrazoline-3-carboxylic acid ethyl ester (S1-1) ("Mefenpyr-diethyl”), and related compounds, as described in WO-A -91/07874 are described; b) Derivatives of dichlorophenylpyrazole carboxylic acid (S1
  • R B 1 is halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, nitro or (C 1 -C 4 ) haloalkyl;
  • n B is a natural number from 0 to 5, preferably 0 to 3;
  • B or a saturated or unsaturated 3 to 7-membered heterocycle with at least one N atom and up to 3 heteroatoms, preferably from the group O and S, which is connected to the carbonyl group in (S2) via the N atom and is unsubstituted or is substituted by radicals from the group (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy or optionally substituted phenyl, preferably a radical of the formula OR B 3 , NHR B 4 or N (CH 3 ) 2 , in particular of the formula OR B 3 ; R 3
  • B is hydrogen or an unsubstituted or substituted aliphatic hydrocarbon radical, preferably with a total of 1 to 18 carbon atoms;
  • B is hydrogen, (C 1 -C 6 ) alkyl, (C 1 -C 6 ) alkoxy or substituted or unsubstituted phenyl;
  • T B is a (C 1 or C 2) -alkanediyl chain which is unsubstituted or substituted with one or two (C 1 - C 4) alkyl or substituted with [(C 1 -C 3) -alkoxy] carbonyl; preferably: a) compounds of the 8-quinolinoxyacetic acid type (S2 a ), preferably (5-chloro-8-quinolinoxy) acetic acid (1-methylhexyl) ester ("Cloquintocet-mexyl") (S2-1), (5- Chloro-8-quinolinoxy) acetic acid (1,3-dimethyl-but-1-yl) ester (S2-2), (5-chloro-8-quinolinoxy) acetic acid 4-allyloxy-butyl ester (S2-3)
  • R C 1 is (C 1 -C 4 ) alkyl, (C 1 -C 4 ) haloalkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) haloalkenyl, ( C 3 -C 7 ) cycloalkyl, preferably dichloromethyl;
  • R C 2 , R C 3 are identically or differently hydrogen, (C 1 -C 4 ) alkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) alkynyl, (C 1 -C 4 ) haloalkyl, ( C 2 -C 4) haloalkenyl, (C 1 -C 4) alkylcarbamoyl (C 1 -C 4) alkyl, (C 2 - C 4) Alkenylcarbamoyl- (C 1 -C 4) alkyl, (C 1 -C 4) alkyl, (C 1
  • C together form a substituted or unsubstituted heterocyclic ring, preferably an oxazolidine, thiazolidine, piperidine, morpholine, hexahydropyrimidine or benzoxazine ring; preferably: active ingredients of the dichloroacetamide type, which are often used as pre-emergence safeners (soil-acting safeners), such as. B.
  • AD is SO 2 -NR 3
  • D - SO 2 XD is CH or N;
  • R D 1 is CO-NR D 5 R D 6 or NHCO-R D 7 ;
  • R D 2 is halogen, (C 1 -C 4 ) haloalkyl, (C 1 -C 4 ) haloalkoxy, nitro, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, (C 1 -C 4 ) Alkylsulfonyl, (C 1 -C 4 ) alkoxycarbonyl or (C 1 -C 4 ) alkylcarbonyl;
  • R 3
  • D is hydrogen, (C 1 -C 4 ) alkyl, (C 2 -C 4 ) alkenyl or (C 2 -C 4 ) alkynyl; R 4
  • D is halogen, nitro, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) haloalkyl, (C 1 -C 4 ) haloalkoxy, (C 3 -C 6 ) cycloalkyl, phenyl, (C 1 -C 4 ) alkoxy, cyano, (C 1 -C 4) alkylthio, (C 1 -C 4) alkylsulfinyl, (C 1 -C 4) alkylsulfonyl, (C 1 - C 4) alkoxycarbonyl or (C 1 -C 4) alkylcarbonyl; R 5
  • D is hydrogen, (C 1 -C 6 ) alkyl, (C 3 -C 6 ) cycloalkyl, (C 2 -C 6 ) alkenyl, (C 2 -C 6 ) alkynyl, (C 5 -C 6 ) cycloalkenyl, phenyl or 3- to 6-membered heterocyclyl containing v D heteroatoms from the group nitrogen, oxygen and sulfur, the seven last-mentioned radicals being replaced by v D substituents from the group halogen, (C 1 -C 6 ) alkoxy, (C 1 -C 6 ) Haloalkoxy, (C 1 -C 2 ) alkylsulfinyl, (C 1 -C 2 ) alkylsulfonyl, (C 3 -C 6 ) cycloalkyl, (C 1 -C 4 ) alkoxycarbonyl, (C 1 -C 4 ) alkylcarbonyl and pheny
  • D is hydrogen, (C 1 -C 4 ) alkylamino, di- (C 1 -C 4 ) alkylamino, (C 1 -C 6 ) alkyl, (C 3 -C 6 ) cycloalkyl, the last two radicals mentioned by vD substituents from the group halogen, (C 1 -C 4 ) alkoxy, (C 1 -C 6 ) haloalkoxy and (C 1 -C 4 ) alkylthio and in the case of cyclic radicals also (C 1 -C 4 ) alkyl and (C 1 - C 4 ) haloalkyl are substituted; nD is 0, 1 or 2; mD is 1 or 2; vD is 0, 1, 2, or 3; Preferred of these are compounds of the N-acylsulfonamide type, for example of the following formula (S4 a ), which z. B. are known from WO-A-97/45016
  • R D 7 (C 1 -C 6 ) alkyl, (C 3 -C 6 ) cycloalkyl, the 2 last-mentioned radicals being replaced by v D substituents from the group halogen, (C 1 -C 4 ) alkoxy, (C 1 -C 6 ) haloalkoxy and (C 1 -C 4 ) alkylthio and, in the case of cyclic radicals, also (C 1 -C 4 ) alkyl and (C 1 -C 4 ) haloalkyl are substituted; R 4
  • D independently of one another is hydrogen, (C 1 -C 8 ) alkyl, (C 3 -C 8 ) cycloalkyl, (C 3 -C 6 ) alkenyl, (C 3 -C 6 ) alkynyl, R 4
  • D is halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, CF 3 m D is 1 or 2; for example 1- [4- (N-2-methoxybenzoylsulfamoyl) phenyl] -3-methylurea, 1- [4- (N-2-methoxybenzoylsulfamoyl) phenyl] -3,3-dimethylurea,
  • R D 4 is halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, CF 3; m D 1 or 2; R 5
  • D is hydrogen, (C 1 -C 6 ) alkyl, (C 3 -C 6 ) cycloalkyl, (C 2 -C 6 ) alkenyl, (C 2 -C 6 ) alkynyl, (C 5 -C 6 ) cycloalkenyl.
  • S5 Active ingredients from the class of the hydroxyaromatics and the aromatic-aliphatic carboxylic acid derivatives (S5), for example ethyl 3,4,5-triacetoxybenzoate, 3,5-dimethoxy-4-hydroxybenzoic acid, 3,5-dihydroxybenzoic acid, 4-hydroxysalicylic acid, 4-fluorosalicyclic acid , 2-hydroxycinnamic acid, 2,4-dichlorocinnamic acid, as described in WO-A-2004/084631, WO-A-2005/015994, WO-A-2005/016001.
  • S6 Active ingredients from the class of 1,2-dihydroquinoxalin-2-ones (S6), e.g.
  • R E 1 , R E 2 are independently halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, (C 1 -C 4 ) haloalkyl, (C 1 -C 4 ) alkylamino, di- (C 1 -C 4 ) alkylamino, nitro;
  • a E is COOR E 3 or COSR E 4 R 3
  • E are independently hydrogen, (C 1 -C 4 ) alkyl, (C 2 -C 6 ) alkenyl, (C 2 -C 4 ) alkynyl, cyanoalkyl, (C 1 -C 4 ) haloalkyl, phenyl, nitrophenyl, benzyl, Halobenzyl, pyridinylalkyl and alkylammonium, n 1
  • E is 0 or 1 n 2
  • n E 3 are independently 0, 1 or 2, preferably:
  • X F is CH or N
  • Phenyl optionally substituted phenoxy, R F 2 hydrogen or (C 1 -C 4 ) alkyl R F 3 hydrogen, (C 1 -C 8 ) alkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) Alkynyl or aryl, where each of the aforementioned C-containing radicals is unsubstituted or substituted by one or more, preferably up to three, identical or different radicals from the group consisting of halogen and alkoxy; or their salts, preferably compounds in which X F is CH, n F is an integer from 0 to 2, R 1
  • F is hydrogen, (C 1 -C 8) alkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) alkynyl, or aryl, where each of the aforementioned C-containing radicals is unsubstituted or by one or more, preferably up to three identical or different radicals from the group consisting of halogen and alkoxy is substituted, or their salts.
  • R G 1 is halogen, (C 1 -C 4 ) alkyl, methoxy, nitro, cyano, CF 3 , OCF 3 Y G , Z G, independently of one another, O or S, n G is an integer from 0 to 4, R 2
  • Oxabetrinil ((Z) -1,3-Dioxolan-2-ylmethoxyimino (phenyl) acetonitrile) (S11-1), which is known as a seed dressing safener for millet against damage from metolachlor
  • Fluofenim (1- (4-chlorophenyl) -2,2,2-trifluoro-1-ethanone-O- (1,3-dioxolan-2-ylmethyl) oxime
  • S11-2 which is used as a seed dressing safener for millet against damage from Metolachlor is known
  • Cyometrinil or “CGA-43089” ((Z) -Cyanomethoxyimino (phenyl) acetonitrile) (S11-3), which is known as a seed dressing safener for millet against damage from metolachlor.
  • S12 Active ingredients from the class of isothiochromanones (S12), such as methyl - [(3-oxo-1H-2-benzothiopyran-4 (3H) -ylidene) methoxy] acetate (CAS reg. No. 205121-04-6 ) (S12-1) and related compounds from WO-A-1998/13361.
  • S12 isothiochromanones
  • S13 One or more compounds from group (S13): “Naphthalic anhydride” (1,8-naphthalenedicarboxylic acid anhydride) (S13-1), which is known as a seed dressing safener for maize against damage from thiocarbamate herbicides, "Fenclorim” (4.6 -Dichlor-2-phenylpyrimidine) (S13-2) which is known as a safener for pretilachlor in sown rice, "Flurazole” (benzyl-2-chloro-4-trifluoromethyl-1,3-thiazole-5-carboxylate) (S13 -3), which is known as a seed dressing safener for millet against damage from alachlor and metolachlor, "CL 304415” (CAS Reg.Nr.
  • R H 1 denotes a (C 1 -C 6 ) haloalkyl radical and R 2
  • H is hydrogen or halogen and R 3
  • H independently hydrogen, (C 1 -C 1 6) alkyl, (C 2 -C 16) alkenyl or (C 2 -C 16 ) alkynyl, each of the last-mentioned 3 radicals being unsubstituted or substituted by one or more radicals from the group consisting of halogen, hydroxy, cyano, (C 1 -C 4 ) alkoxy, (C 1 -C 4 ) haloalkoxy, ( C 1 -C 4 ) alkylthio, (C 1 -C 4 ) alkylamino, di [(C 1 -C 4 ) alkyl] amino, [(C 1 -C 4 ) alkoxy] carbonyl, [(C 1 -C 4 ) haloalkoxy] carbonyl, (C 3 -C 6 ) cycloalkyl that is unsubstituted or substituted, phenyl that is unsubstituted or substituted, and heterocyclyl that
  • H is (C 1 -C 4 ) -alkoxy, (C 2 -C 4 ) alkenyloxy, (C 2 -C 6 ) alkynyloxy or (C 2 -C 4 ) haloalkoxy and R 4
  • H is hydrogen or (C 1 -C 4 ) -alkyl or R H 3 and R H 4 together with the directly bonded N atom form a four- to eight-membered heterocyclic ring which, in addition to the N atom, also has further hetero ring atoms, preferably up to can contain two further hetero ring atoms from the group N, O and S and which is unsubstituted or substituted by one or more radicals from the group consisting of halogen, cyano, nitro, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) haloalkyl, ( C 1 -C 4 ) alkoxy, (C 1 -C 4 ) haloalkoxy and (C 1 -C 4 ) alkylthio is substituted.
  • Dicamba 3,6-dichloro-2-methoxybenzoic acid
  • 1- (ethoxycarbonyl) ethyl-3,6-dichloro-2-methoxybenzoate lactidichloro-ethyl
  • Particularly preferred safeners are Mefenpyr-diethyl, Cyprosulfamid, Isoxadifen-ethyl, Cloquintocet-Mexyl, Dichlormid and Metcamifen.
  • Wettable powders are preparations that are uniformly dispersible in water, which in addition to the active ingredient, in addition to a diluent or inert substance, also surfactants of an ionic and / or nonionic type (wetting agents, dispersants), e.g.
  • polyoxyethylated alkylphenols polyoxethylated fatty alcohols, polyoxethylated fatty amines, fatty alcohol polyglycol ether sulfates, alkane sulfonates, alkyl benzene sulfonates Sodium lignosulfonic acid, sodium 2,2'-dinaphthylmethane-6,6'-disulfonic acid, sodium dibutylnaphthalene-sulfonic acid or sodium oleoylmethyltauric acid.
  • the herbicidally active ingredients are finely ground, for example, in customary apparatus such as hammer mills, blower mills and air jet mills, and simultaneously or subsequently mixed with the formulation auxiliaries.
  • Emulsifiable concentrates are produced by dissolving the active ingredient in an organic solvent, e.g. butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons or mixtures of organic solvents with the addition of one or more ionic and / or nonionic surfactants (emulsifiers).
  • alkylarylsulphonic acid calcium salts such as calcium dodecylbenzenesulphonate or nonionic emulsifiers such as fatty acid polyglycol esters, alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide-ethylene oxide condensation products
  • alkyl polyethers such as sorbitan oxyethane fatty esters, eg sorbitan oxyethyl fatty esters, sorbitan oxyethyl esters such as sorbitan oxyethyl fatty esters, eg sorbitan oxyethyl fatty esters, sorbitan oxyethylene fatty esters, sorbitan oxyethylene fatty esters, sorbitan oxyethylene fatty esters, sorbitan oxyethyl esters such as sorbitan oxyethyl fatty esters, sorbitan oxyethyl esters, sorbitan oxye
  • Dusts are obtained by grinding the active ingredient with finely divided solid substances, for example talc, natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth.
  • Suspension concentrates can be water or oil based. They can be produced, for example, by wet grinding using commercially available bead mills and, if necessary, addition of surfactants, such as those already listed above for the other types of formulation.
  • Emulsions for example oil-in-water emulsions (EW) can be converted, for example, by means of stirrers, colloid mills and / or static mixers using aqueous organic Solvents and optionally surfactants, such as those already listed above for the other types of formulation, for example.
  • Granules can either be produced by spraying the active ingredient onto adsorptive, granulated inert material or by applying active ingredient concentrates using adhesives, e.g. polyvinyl alcohol, sodium polyacrylate or mineral oils, to the surface of carrier materials such as sand, kaolinite or granulated inert material.
  • adhesives e.g. polyvinyl alcohol, sodium polyacrylate or mineral oils
  • Suitable active ingredients can also be granulated in the manner customary for the production of fertilizer granules - if desired as a mixture with fertilizers.
  • Water-dispersible granules are generally produced by the customary processes such as spray drying, fluidized bed granulation, plate granulation, mixing with high-speed mixers and extrusion without solid inert material.
  • the agrochemical preparations generally contain 0.1 to 99% by weight, in particular 0.1 to 95% by weight, of compounds according to the invention.
  • the active ingredient concentration is, for example, about 10 to 90% by weight, the remainder to 100% by weight consists of conventional formulation components.
  • the active ingredient concentration can be about 1 to 90, preferably 5 to 80% by weight.
  • Dust-like formulations contain 1 to 30% by weight of active ingredient, preferably mostly 5 to 20% by weight of active ingredient
  • sprayable solutions contain about 0.05 to 80, preferably 2 to 50% by weight of active ingredient.
  • the active ingredient content depends in part on whether the active compound is liquid or solid and which granulation aids, fillers, etc. are used.
  • the content of active ingredient is, for example, between 1 and 95% by weight, preferably between 10 and 80% by weight.
  • the active ingredient formulations mentioned may contain the customary adhesive, wetting, dispersing, emulsifying, penetration, preservation, antifreeze and solvent, filler, Carriers and dyes, defoamers, evaporation inhibitors and agents that influence pH and viscosity.
  • combinations with other pesticidally active substances such as insecticides, acaricides, herbicides, fungicides, and with safeners, fertilizers and / or growth regulators, for example in the form of a finished formulation or as a tank mix, can also be produced.
  • the formulations which are available in commercially available form are, if appropriate, diluted in the customary manner, for example with wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules using water. Preparations in dust form, soil granules or granules as well as sprayable solutions are usually no longer diluted with other inert substances before use.
  • the required application rate of the compounds of the formula (I) and their salts varies with the external conditions such as temperature, humidity and the type of herbicide used.
  • Carrier means a natural or synthetic, organic or inorganic substance with which the active ingredients are mixed or combined for better applicability, especially for application to plants or plant parts or seeds.
  • the carrier which can be solid or liquid, is generally inert and should be agriculturally useful.
  • Possible solid or liquid carriers are: for example ammonium salts and natural rock flour such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and synthetic rock flour such as highly disperse silica, aluminum oxide and natural or synthetic silicates, resins, waxes , solid fertilizers, water, alcohols, especially butanol, organic solvents, mineral and vegetable oils and derivatives thereof. Mixtures of such carriers can also be used.
  • natural rock flour such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth
  • synthetic rock flour such as highly disperse silica, aluminum oxide and natural or synthetic silicates, resins, waxes , solid fertilizers, water, alcohols, especially butanol, organic solvents, mineral and vegetable oils and derivatives thereof. Mixtures of such carriers can also be used.
  • Solid carriers for granulates include: broken and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite and synthetic granulates made from inorganic and organic flours and granulates made from organic material such as sawdust, coconut shells, corn cobs and tobacco stalks.
  • Liquids that can be used as liquefied gaseous extenders or carriers are those which are gaseous at normal temperature and under normal pressure, for example aerosol propellants such as halogenated hydrocarbons, as well as butane, propane, nitrogen and carbon dioxide.
  • Adhesives such as carboxymethylcellulose and natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, and also natural phospholipids such as cephalins and lecithins and synthetic phospholipids can be used in the formulations. Further additives can be mineral and vegetable oils. If water is used as an extender, it is also possible, for example, to use organic solvents as auxiliary solvents.
  • the main liquid solvents are: aromatics such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylene or dichloromethane, aliphatic hydrocarbons such as cyclohexane or paraffins, for example petroleum fractions, mineral and vegetable oils, alcohols such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethyl formamide and dimethyl sulfoxide, and water.
  • aromatics such as xylene, toluene or alkylnaphthalenes
  • chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylene or dichloromethane
  • aliphatic hydrocarbons such as
  • the agents according to the invention can additionally contain further components, such as surface-active substances.
  • Suitable surface-active substances are emulsifiers and / or foam-generating agents, dispersants or wetting agents with ionic or non-ionic properties or mixtures of these surface-active substances.
  • salts of polyacrylic acid salts of lignosulphonic acid, salts of phenolsulphonic acid or naphthalenesulphonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, substituted phenols (preferably alkylphenols or arylphenols), salts of sulfosuccinic acid esters (preferably) of sulfosuccinic acid esters, taurine esters polyethoxylated alcohols or phenols, fatty acid esters of polyols and derivatives of the compounds containing sulphates, sulphonates and phosphates, for example alkylaryl polyglycol ethers, alkyl sulphonates, alkyl sulphates, aryl sulphonates, protein hydrolysates, lignin sulphite waste liquors and methyl cellulose.
  • a surface-active substance is necessary if one of the active substances and / or one of the inert carriers is not soluble in water and if the application takes place in water.
  • the proportion of surface-active substances is between 5 and 40 percent by weight of the agent according to the invention.
  • Dyes such as inorganic pigments, for example iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc can be used.
  • the active ingredients can be combined with any solid or liquid additive commonly used for formulation purposes.
  • the agents and formulations according to the invention contain between 0.05 and 99% by weight, 0.01 and 98% by weight, preferably between 0.1 and 95% by weight, particularly preferably between 0.5 and 90% Active ingredient, very particularly preferably between 10 and 70 percent by weight.
  • the active ingredients or agents according to the invention can be used as such or depending on their respective physical and / or chemical properties in the form of their formulations or the use forms prepared therefrom, such as aerosols, capsule suspensions, cold mist concentrates, hot mist concentrates, encapsulated granules, fine granules, flowable concentrates for the treatment of seeds, ready-to-use solutions, dustable powders, emulsifiable concentrates, oil-in-water emulsions, water-in-oil emulsions, macrogranulates, microgranulates, oil-dispersible powders, oil-miscible flowable concentrates, oil-miscible liquids , Foams, pastes, pesticide-coated seeds, suspension concentrates, suspension-emulsion concentrates, soluble concentrates, suspensions, wettable powders, soluble powders, dusts and granulates, water-soluble granulates or tablets, water-soluble powders for seed treatment, wettable powders, active ingredient
  • the formulations mentioned can be prepared in a manner known per se, for example by mixing the active ingredients with at least one customary extender, solvent or diluent, emulsifier, dispersant and / or binding or fixing agent, wetting agent, water repellent, if appropriate Siccatives and UV stabilizers and optionally dyes and pigments, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and other processing aids.
  • the agents according to the invention not only include formulations which are already ready to use and can be applied to the plant or the seed with a suitable apparatus, but also commercial concentrates which have to be diluted with water before use.
  • the active compounds according to the invention can be used as such or in their (commercially available) formulations and in the use forms prepared from these formulations as a mixture with other (known) active compounds, such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides , Fertilizers, safeners or semiochemicals are present.
  • active compounds such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides , Fertilizers, safeners or semiochemicals are present.
  • the treatment according to the invention of the plants and plant parts with the active ingredients or agents is carried out directly or by acting on their surroundings, living space or storage room using the customary treatment methods, for example by dipping, spraying, spraying, sprinkling, evaporating, Spraying, misting, scattering, foaming, brushing, spreading, watering (drenching), drip irrigation and, in the case of propagation material, especially seeds, furthermore by dry dressing, wet dressing, slurry dressing, encrusting, single or multi-layer coating, etc. It is also possible to apply the active ingredients according to the ultra-low-volume method or to inject the active ingredient preparation or the active ingredient itself into the soil.
  • transgenic seeds with the active ingredients or agents according to the invention are of particular importance.
  • This relates to the seeds of plants which contain at least one heterologous gene that enables the expression of a polypeptide or protein with insecticidal properties.
  • the heterologous gene in transgenic seed can originate, for example, from microorganisms of the species Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium.
  • This heterologous gene is preferably derived from Bacillus sp., The gene product having an effect against the European corn borer and / or Western corn rootworm.
  • the heterologous gene is particularly preferably derived from Bacillus thuringiensis.
  • the agent according to the invention is applied to the seed alone or in a suitable formulation.
  • the seed is preferably treated in a state in which it is so stable that no damage occurs during the treatment.
  • the seed can be treated at any point in time between harvest and sowing.
  • seeds are used that have been separated from the plant and freed from cobs, peels, stems, husks, wool or pulp.
  • seeds can be used that have been harvested, cleaned and dried to a moisture content of less than 15% by weight.
  • seeds can also be used which, after drying, have been treated with water, for example, and then dried again.
  • the amount of the agent according to the invention and / or further additives applied to the seed is selected so that the germination of the seed is not impaired or the resulting plant is not damaged. This is particularly important for active ingredients that can show phytotoxic effects when applied in certain amounts.
  • the agents according to the invention can be applied immediately, that is to say without containing further components and without having been diluted. Usually it is preferable to that To apply means in the form of a suitable formulation to the seed.
  • Suitable formulations and methods for seed treatment are known to the person skilled in the art and are described, for example, in the following documents: US 4,272,417 A, US 4,245,432 A, US 4,808,430, US 5,876,739, US 2003/0176428 A1, WO 2002/080675 A1, WO 2002/028186 A2.
  • the active compounds according to the invention can be converted into the customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other coating materials for seeds, and also ULV formulations.
  • These formulations are prepared in a known manner by mixing the active ingredients with customary additives, such as customary extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and also Water.
  • customary additives such as customary extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and also Water.
  • Suitable dyes which can be contained in the seed dressing formulations which can be used according to the invention are all dyes customary for such purposes. Both pigments which are sparingly soluble in water and dyes which are soluble in water can be used here. Examples are the dyes known under the names Rhodamine B, CI Pigment Red 112 and CI Solvent Red 1.
  • Suitable wetting agents which can be contained in the seed dressing formulations which can be used according to the invention are all substances which are customary for the formulation of agrochemical active ingredients and which promote wetting.
  • Alkylnaphthalene sulfonates such as diisopropyl or diisobutyl naphthalene sulfonates, can preferably be used.
  • Suitable dispersants and / or emulsifiers which can be contained in the seed dressing formulations which can be used according to the invention are all nonionic, anionic and cationic dispersants customary for the formulation of agrochemical active ingredients.
  • Nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants can preferably be used.
  • Suitable nonionic dispersants are, in particular, ethylene oxide-propylene oxide block polymers, alkylphenol polyglycol ethers and tristryrylphenol polyglycol ethers and their phosphated or sulfated derivatives.
  • Suitable anionic dispersants are, in particular, lignin sulfonates, polyacrylic acid salts and aryl sulfonate-formaldehyde condensates.
  • the seed dressing formulations which can be used according to the invention can contain all foam-inhibiting substances customary for the formulation of agrochemical active ingredients as defoamers. Silicone defoamers and magnesium stearate can preferably be used.
  • All substances which can be used for such purposes in agrochemical agents can be present as preservatives in the seed dressing formulations which can be used according to the invention.
  • Examples include dichlorophene and benzyl alcohol hemiformal.
  • Secondary thickeners which can be contained in the seed dressing formulations which can be used according to the invention are all substances which can be used in agrochemical compositions for such purposes. Cellulose derivatives, acrylic acid derivatives, xanthan, modified clays and highly disperse silicic acid are preferred.
  • Suitable adhesives which can be contained in the seed dressing formulations which can be used according to the invention are all conventional binders which can be used in seed dressings.
  • the seed dressing formulations which can be used according to the invention can be used either directly or after prior dilution with water for the treatment of seeds of the most varied of types, including seeds of transgenic plants. In this context, additional synergistic effects can also occur in cooperation with the substances formed by expression.
  • all mixing devices which can customarily be used for dressing are suitable.
  • the process of dressing is to put the seed in a mixer, add the desired amount of dressing formulations either as such or after prior dilution with water and mix until the formulation is evenly distributed on the seed . If necessary, this is followed by a drying process.
  • the active compounds according to the invention are suitable for protecting plants and plant organs, for increasing crop yields and improving the quality of the harvested crop, given good plant tolerance, favorable warm-blooded toxicity and good environmental compatibility. They can preferably be used as crop protection agents. They are effective against normally sensitive and resistant species and against all or individual stages of development.
  • the following main crops may be mentioned as plants which can be treated according to the invention: maize, soybean, cotton, Brassica oil seeds such as Brassica napus (e.g.
  • canola Brassica rapa
  • B. juncea e.g. (field) mustard
  • Brassica carinata rice, Wheat, sugar beet, sugar cane, oats, rye, barley, millet, triticale, flax, wine and various fruits and vegetables from various botanical taxa such as Rosaceae sp.
  • Theaceae sp. Sterculiceae sp., Rutaceae sp. (e.g. lemons, organs and grapefruit); Solanaceae sp. (for example tomatoes, potatoes, pepper, eggplant), Liliaceae sp., Compositae sp. (e.g., lettuce, artichoke and chicory - including root chicory, endive or common chicory), Umbelliferae sp. (e.g., carrot, parsley, celery and celeriac), Cucurbitaceae sp. (for example, cucumber - including pickles, squash, watermelon, bottle gourd, and melons), Alliaceae sp.
  • Solanaceae sp. for example tomatoes, potatoes, pepper, eggplant
  • Liliaceae sp. Compositae sp.
  • lettuce, artichoke and chicory - including root chicory, endive or common chicory e.g
  • Cruciferae sp. for example white cabbage, red cabbage, broccoli, cauliflower, Brussels sprouts, pak choi, kohlrabi, radishes, horseradish, cress and Chinese cabbage
  • Leguminosae sp. for example peanuts, peas, and beans - such as runner beans and field beans
  • Chenopodiaceae sp. e.g. chard, fodder beet, spinach, beetroot
  • Malvaceae e.g. okra
  • Asparagaceae e.g. asparagus
  • plants and their parts can be treated according to the invention.
  • plant species and plant cultivars occurring in the wild or obtained by conventional biological breeding methods such as crossing or protoplast fusion, as well as their parts are treated.
  • transgenic plants and plant cultivars obtained by genetic engineering methods, if appropriate in combination with conventional methods (genetically modified organisms), and their parts are treated.
  • the term “parts” or “parts of plants” or “plant parts” has been explained above. According to the invention, it is particularly preferred to treat plants of the plant varieties which are commercially available or in use. Plant cultivars are understood to be plants with new properties (“traits”) that have been bred by conventional breeding, by mutagenesis or by recombinant DNA techniques.
  • GMOs genetically modified organisms
  • B. plants or seeds can be used.
  • Genetically modified plants are plants in which a heterologous gene has been stably integrated into the genome.
  • heterologous gene means essentially a gene which is provided or assembled outside the plant and which, when introduced into the nucleus genome, the chloroplast genome or the mitochondrial genome of the transformed plant, gives new or improved agronomic or other properties that it gives an interesting Protein or polypeptide expressed or that it is another gene that is present in the plant or others Genes that are present in the plant are downregulated or switched off (for example using antisense technology, cosuppression technology or RNAi technology [RNA interference]).
  • a heterologous gene that is present in the genome is also called a transgene.
  • a transgene that is defined by its specific presence in the plant genome is called a transformation or transgenic event.
  • the treatment according to the invention can also lead to superadditive (“synergistic”) effects.
  • the following effects are possible that go beyond the effects that are actually to be expected: reduced application rates and / or expanded spectrum of activity and / or increased effectiveness of the active ingredients and compositions that can be used according to the invention, better plant growth, increased tolerance to high or low levels Temperatures, increased tolerance to drought or water or soil salt content, increased flowering performance, ease of harvest, acceleration of ripening, higher yields, larger fruits, greater plant height, more intense green color of the leaf, earlier flowering, higher quality and / or higher nutritional value of the harvested products, higher sugar concentration in the fruits, better storability and / or processability of the harvested products.
  • Plants and plant cultivars which are preferably treated according to the invention include all plants which have genetic material which gives these plants particularly advantageous, useful characteristics (regardless of whether this was achieved by breeding and / or biotechnology).
  • Examples of nematode-resistant plants are described, for example, in the following US patent applications: 11 / 765,491, 11 / 765,494, 10 / 926,819, 10 / 782,020, 12 / 032,479, 10 / 783,417, 10 / 782,096, 11 / 657,964, 12 / 192,904, 11 / 396.808, 12 / 166.253, 12 / 166.239, 12 / 166.124, 12 / 166.209, 11 / 762.886, 12 / 364.335, 11 / 763.947, 12 / 252.453, 12 / 209.354, 12 / 491.396 and 12 / 497.221.
  • Plants which can be treated according to the invention are hybrid plants which already express the properties of heterosis or the hybrid effect, which generally leads to higher yields, higher vigor, better health and better resistance to biotic and abiotic stress factors.
  • Such plants are typically produced by crossing an inbred male sterile parent line (the female cross partner) with another inbred male fertile parent line (the male cross partner).
  • the hybrid seeds are typically harvested from the male-sterile plants and sold to propagators.
  • Male-sterile plants can sometimes (e.g. with maize) by detasseling (ie mechanical removal of the male reproductive organs or the male flowers); however, it is more common that male sterility is due to genetic determinants in the plant genome.
  • a particularly favorable means for producing male-sterile plants is described in WO 89/10396, for example a ribonuclease such as a barnase being selectively expressed in the tapetum cells in the stamens. Fertility can then be restored by expressing a ribonuclease inhibitor such as barstar in the tapetum cells.
  • Plants or plant cultivars which are obtained using methods of plant biotechnology, such as genetic engineering) which can be treated according to the invention are herbicide-tolerant plants, ie plants which have been made tolerant to one or more specified herbicides. Such plants can be obtained either by genetic transformation or by selection of plants which contain a mutation which confers such herbicide tolerance.
  • Herbicide-tolerant plants are, for example, glyphosate-tolerant plants, ie plants which have been made tolerant to the herbicide glyphosate or its salts. Plants can be made tolerant to glyphosate using various methods. For example, glyphosate-tolerant plants can be obtained by transforming the plant with a gene which codes for the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Examples of such EPSPS genes are the AroA gene (mutant CT7) of the bacterium Salmonella typhimurium (Comai et al., 1983, Science 221, 370-371), the CP4 gene of the bacterium Agrobacterium sp.
  • EPSPS 5-enolpyruvylshikimate-3-phosphate synthase
  • Glyphosate-tolerant plants can also be obtained by having a gene which codes for a glyphosate acetyltransferase enzyme. Glyphosate tolerant plants can also be obtained by selecting plants which contain naturally occurring mutations of the genes mentioned above. Plants expressing EPSPS genes that confer glyphosate tolerance are described. Plants that confer other genes that confer glyphosate tolerance, e.g., decarboxylase genes, are described. Other herbicide-resistant plants are, for example, plants which have been made tolerant to herbicides which inhibit the enzyme glutamine synthase, such as bialaphos, phosphinotricin or glufosinate.
  • Such plants can be obtained by expressing an enzyme that detoxifies the herbicide or a mutant of the enzyme glutamine synthase that is resistant to inhibition.
  • an effective detoxifying enzyme is, for example, an enzyme which codes for a phosphinotricin acetyltransferase (such as the bar or pat protein from Streptomyces species). Plants expressing an exogenous phosphinotricin acetyltransferase have been described. Other herbicide-tolerant plants are also plants which have been made tolerant to the herbicides which inhibit the enzyme hydroxyphenylpyruvate dioxygenase (HPPD).
  • HPPD hydroxyphenylpyruvate dioxygenase
  • the hydroxyphenylpyruvate dioxygenases are enzymes that catalyze the reaction in which para-hydroxyphenylpyruvate (HPP) is converted to homogenate.
  • Plants that are tolerant of HPPD inhibitors can be transformed with a gene encoding a naturally occurring resistant HPPD enzyme or a gene encoding a mutated or chimeric HPPD enzyme, as in WO 96/38567 , WO 99/24585, WO 99/24586, WO 2009/144079, WO 2002/046387 or US 6,768,044.
  • Tolerance to HPPD inhibitors can also be achieved by transforming plants with genes which code for certain enzymes that enable the formation of homogenate despite the inhibition of the native HPPD enzyme by the HPPD inhibitor.
  • plants are described in WO 99/34008 and WO 02/36787.
  • the tolerance of plants to HPPD inhibitors can also be improved by transforming plants, in addition to a gene that codes for an HPPD-tolerant enzyme, with a gene that codes for a prephenate dehydrogenase enzyme, as in WO 2004/024928 is described.
  • plants can be made even more tolerant of HPPD inhibitors by inserting a gene into their genome which codes for an enzyme that metabolizes or breaks down HPPD inhibitors, such as CYP450 enzymes (see WO 2007/103567 and WO 2008/150473 ).
  • Other herbicide-resistant plants are plants that have been made tolerant to acetolactate synthase (ALS) inhibitors.
  • ALS acetolactate synthase
  • ALS inhibitors include, for example, sulfonylurea, imidazolinone, triazolopyrimidines, pyrimidinyloxy (thio) benzoates and / or Sulfonylaminocarbonyltriazolinone herbicides.
  • ALS also known as acetohydroxy acid synthase, AHAS
  • AHAS acetohydroxy acid synthase
  • sulfonylurea and imidazolinone tolerant plants are also described. Further plants that are tolerant to imidazolinones and / or sulfonylureas can be obtained by induced mutagenesis, selection in cell cultures in the presence of the herbicide or by mutation breeding (cf., for example, US Pat. No. 5,084,082 for soybeans, WO 97/41218 for rice, US Pat. No. 5,773,702 for sugar beet and WO 99/057965, for lettuce US 5,198,599 or for sunflower WO 01/065922).
  • Plants or plant varieties which were obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, are tolerant of abiotic stress factors. Such plants can be obtained by genetic transformation or by selection of plants which contain a mutation which confers such stress resistance.
  • Particularly useful plants with stress tolerance include the following: a. Plants which contain a transgene which is able to reduce the expression and / or activity of the gene for the poly (ADP-ribose) polymerase (PARP) in the plant cells or plants.
  • PARP poly (ADP-ribose) polymerase
  • Plants which contain a stress tolerance-promoting transgene which is able to reduce the expression and / or activity of the genes of the plants or plant cells coding for PARG; c.
  • nicotinamidase nicotinate phosphoribosyl transferase
  • nicotinic acid mononucleotide adenyl transferase or nicotinamide adenine phosphide dinucleotide synthase.
  • Plants or plant varieties which were obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, have a changed quantity, quality and / or shelf life of the harvested product and / or changed properties of certain components of the harvested product, For example: 1) Transgenic plants which synthesize a modified starch which, with regard to their chemical-physical properties, in particular the amylose content or the amylose / amylopectin ratio, the degree of branching, the average chain length, the distribution of the Side chains, the viscosity behavior, the gel strength, the starch grain size and / or starch grain morphology is changed in comparison with the synthesized starch in wild-type plant cells or plants, so that this modified starch is more suitable for certain applications.
  • a modified starch which, with regard to their chemical-physical properties, in particular the amylose content or the amylose / amylopectin ratio, the degree of branching, the average chain length, the distribution of the Side chains, the viscosity behavior, the gel
  • Transgenic plants that synthesize non-starch carbohydrate polymers or non-starch carbohydrate polymers whose properties are changed compared to wild-type plants without genetic modification. Examples are plants that produce polyfructose, especially of the inulin and levan types, plants that produce alpha-1,4-glucans, plants that produce alpha-1,6-branched alpha-1,4-glucans and plants that produce Produce alternan. 3) Transgenic Plants That Produce Hyaluronan. 4) Transgenic plants or hybrid plants such as onions with certain properties such as “high soluble solids content”, low pungency (LP) and / or long storage life (“long storage”, LS ).
  • LP low pungency
  • long storage life long storage
  • Plants or plant cultivars are plants such as cotton plants with modified fiber properties. Such plants can be obtained by genetic transformation or by selection of plants which contain a mutation which confers such altered fiber properties; these include: a) plants such as cotton plants which contain a modified form of cellulose synthase genes, b) plants such as cotton plants which contain a modified form of rsw2- or rsw3-homologous nucleic acids, such as cotton plants with an increased expression of sucrose phosphate synthase; c) Plants such as cotton plants with an increased expression of sucrose synthase; d) Plants such as cotton plants in which the timing of the flow control of the plasmodesmata is changed at the base of the fiber cell, e.g.
  • Plants such as cotton plants with fibers with modified reactivity, e.g. B. by expression of the N-acetylglucosamine transferase gene, including nodC, and of chitin synthase genes.
  • Plants or plant cultivars which were obtained by methods of plant biotechnology, such as genetic engineering) which can likewise be treated according to the invention are Plants such as rapeseed or related Brassica plants with altered properties of the oil composition.
  • Such plants can be obtained by genetic transformation or by selection of plants which contain a mutation which confers such altered oil properties; these include: a) Plants such as rape plants that produce oil with a high oleic acid content; b) Plants, such as rape plants, that produce oil with a low linolenic acid content. c) Plants such as rape plants that produce oil with a low content of saturated fat. Plants or plant varieties (which can be obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, are plants such as potatoes, which are virus-resistant, e.g.
  • Plants or plant cultivars obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, are plants such as oilseed rape or related Brassica plants with changed properties in the case of seed shattering.
  • Such plants can, by genetic transformation or by selection of plants that contain a mutation, confer such altered properties and include plants such as oilseed rape with delayed or reduced seed loss.
  • Particularly useful transgenic plants that can be treated according to the invention are plants with transformation events or combinations of transformation events which are the subject of petitions issued or pending in the USA at the Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) are for the non-regulated status. Information on this is available at any time from APHIS (4700 River Road Riverdale, MD 20737, USA), for example via the website http://www.aphis.usda.gov/brs/not_reg.html. On the filing date of this application, the petitions with the following information were either granted or pending at APHIS:
  • - Petition identification number of the petition. The technical description of the transformation event can be found in the individual petition document available from APHIS on the website via the petition number. These descriptions are hereby disclosed by reference.
  • - Extension of a petition reference to a previous petition for which an extension or extension is requested.
  • - Institution Name of the person submitting the petition.
  • - Regulated article the plant species concerned.
  • - Transgenic phenotype the trait given to the plant by the transformation event.
  • - Transformation event or line the name of the event or events (sometimes referred to as line (s)) for which non-regulated status is requested.
  • APHIS documents various documents that are published by APHIS regarding the petition or can be obtained from APHIS on request.
  • transgenic plants which can be treated according to the invention are plants with one or more genes which code for one or more toxins, are the transgenic plants which are sold under the following trade names: YIELD GARD ⁇ (for example maize, cotton, Soybeans), KnockOut ⁇ (for example corn), BiteGard ⁇ (for example corn), BT-Xtra ⁇ (for example corn), StarLink ⁇ (for example corn), Bollgard ⁇ (cotton), Nucotn ⁇ (cotton), Nucotn 33B ⁇ (cotton), NatureGard ⁇ (e.g. maize), Protecta ⁇ and NewLeaf ⁇ (potato).
  • YIELD GARD ⁇ for example maize, cotton, Soybeans
  • KnockOut ⁇ for example corn
  • BiteGard ⁇ for example corn
  • BT-Xtra ⁇ for example corn
  • StarLink ⁇ for example corn
  • Bollgard ⁇ cotton
  • Nucotn ⁇ cotton
  • Nucotn 33B ⁇ cotton
  • Herbicide-tolerant plants to be mentioned are, for example, maize varieties, cotton varieties and soybean varieties, which are sold under the following trade names: Roundup Ready ⁇ (glyphosate tolerance, e.g. corn, cotton, soybean), Liberty Link ⁇ (phosphinotricintolerance, e.g. rapeseed) , IMI ⁇ (imidazolinone tolerance) and SCS ⁇ (sylphonylurea tolerance), for example corn.
  • the herbicide-resistant plants (plants traditionally bred for herbicide tolerance) to be mentioned include the varieties sold under the name Clearfield ⁇ (for example maize). The following examples illustrate the present invention.
  • Clearfield ⁇ for example maize.
  • a dusting agent is obtained by mixing 10 parts by weight of a compound of the formula (I) and / or its salts and 90 parts by weight of talc as an inert substance and comminuting it in a hammer mill.
  • a wettable powder which is easily dispersible in water is obtained by adding 25 parts by weight of a compound of the formula (I) and / or its salts, 64 parts by weight of kaolin-containing quartz as an inert substance, 10 parts by weight of potassium lignosulfonate and 1 part by weight of sodium oleoylmethyltaurinate as a wetting agent and dispersant and grinds in a pin mill.
  • a dispersion concentrate that is easily dispersible in water is obtained by adding 20 parts by weight of a compound of the formula (I) and / or its salts with 6 parts by weight of alkylphenol polyglycol ether (®Triton X 207), 3 parts by weight of isotridecanol polyglycol ether (8 EO ) and 71 parts by weight of paraffinic mineral oil (boiling range for example about 255 to over 277 C) and ground in a friction ball mill to a fineness of less than 5 microns.
  • alkylphenol polyglycol ether ®Triton X 207
  • isotridecanol polyglycol ether (8 EO ) 8 EO
  • paraffinic mineral oil ground in a friction ball mill to a fineness of less than 5 microns.
  • An emulsifiable concentrate is obtained from 15 parts by weight of a compound of the formula (I) and / or their salts, 75 parts by weight of cyclohexanone as solvent and 10 parts by weight of ethoxylated nonylphenol as emulsifier.
  • a water-dispersible granulate is obtained by
  • a water-dispersible granulate is also obtained by
  • the compounds according to the invention formulated in the form of wettable powders (WP) or as emulsion concentrates (EC), are then applied to the surface of the covering soil as an aqueous suspension or emulsion with a water application rate of the equivalent of 600 to 800 l / ha with the addition of 0.2% wetting agent applied.
  • WP wettable powders
  • EC emulsion concentrates
  • the pots are placed in the greenhouse and kept under good growth conditions for the test plants.
  • the compounds each show a 90-100% activity against Alopecurus myosuroides, Avena fatua, Digitaria sanguinalis, Echinochloa crusgalli, Lolium rigidum and Setaria viridis.
  • the compounds according to the invention are therefore suitable in the pre-emergence method for combating undesirable vegetation.
  • Table 1 Pre-emergence effect at 80 g / ha
  • Seeds of monocotyledonous or dicotyledonous weed or crop plants are laid out in wooden fiber pots in sandy loam soil, covered with soil and grown in the greenhouse under good growth conditions. 2 to 3 weeks after sowing, the test plants are treated in the single-leaf stage.
  • the compounds according to the invention formulated in the form of wettable powders (WP) or as emulsion concentrates (EC), are then sprayed onto the green plant parts as an aqueous suspension or emulsion with a water application rate of 600 to 800 l / ha with the addition of 0.2% wetting agent .
  • the compounds in Table 2-4 each show an 80-100% activity against Alopecurus myosuroides, Echinochloa crus-galli, Setaria viridis, Lolium multiflorum, Digitaria sanguinalis and Hordeum murinum.
  • the compounds according to the invention are therefore suitable for combating undesirable vegetation by the post-emergence method.

Abstract

The present invention relates to new herbicidally active 3-phenylpyrrolin-2-ones according to general formula (I) or agrochemically acceptable salts thereof, and the use thereof for controlling weeds and weed grasses in plant crops.

Description

Neue 3-(2-Brom-4-alkinyl-6-alkoxyphenyl)-3-pyrrolin-2-one und deren Verwendung als Herbizide Beschreibung Die vorliegende Erfindung betrifft neue herbizid wirksame 3-Pyrrolin-2-one gemäß der allgemeinen Formel (I) oder agrochemisch akzeptable Salze davon, sowie deren Verwendung zur Bekämpfung von Unkräutern und Ungräsern in Nutzpflanzenkulturen. Die Verbindungsklasse der 3-Arylpyrrolidin-2,4-dione sowie deren Herstellung und Verwendung als Herbizide sind aus dem Stand der Technik wohl bekannt. Darüber hinaus sind aber auch zum Beispiel bicyclische 3-Aryl-pyrrolidin-2,4-dion-Derivate (EP-A- 355599, EP-A-415211 und JP-A-12-053670) sowie substituierte monocyclische 3-Aryl-pyrrolidin- 2,4-dion-Derivate (EP-A-377893 und EP-A-442077) mit herbizider, insektizider oder fungizider Wirkung beschrieben. Alkinyl-substituierte-3-Phenylpyrrolidin-2,4-dione mit herbizider Wirkung sind ferner aus WO 96/82395, WO 98/05638, WO 01/74770, WO 15/032702 oder WO 15/040114 bekannt. Die Wirksamkeit dieser Herbizide gegen Schadpflanzen ist von zahlreichen Parametern abhängig, beispielsweise von der verwendeten Aufwandmenge, der Zubereitungsform (Formulierung), den jeweils zu bekämpfenden Schadpflanzen, dem Schadpflanzenspektrum, den Klima- und Bodenverhältnissen sowie der Dauer der Wirkung bzw. der Abbaugeschwindigkeit des Herbizids. Zahlreiche Herbizide aus der Gruppe der 3-Arylpyrrolidin-2,4-dione erfordern, um eine ausreichende herbizide Wirkung zu entfalten, hohe Aufwandmengen und/oder haben nur ein schmales Unkrautspektrum, was deren Anwendung ökonomisch unattraktiv macht. Es besteht daher der Bedarf an alternativen Herbiziden, die verbesserte Eigenschaften aufweisen sowie ökonomisch attraktiv und gleichzeitig effizient sind. Aufgabe der vorliegenden Erfindung ist folglich die Bereitstellung von neuen Verbindungen, die die genannten Nachteile nicht aufweisen. Die vorliegende Erfindung betrifft daher 3-(2-Brom-4-alkinyl-6-alkoxyphenyl)-3-pyrrolin-2-one der allgemeinen Formel (I), New 3- (2-bromo-4-alkynyl-6-alkoxyphenyl) -3-pyrrolin-2-ones and their use as herbicides Description The present invention relates to new herbicidally active 3-pyrrolin-2-ones according to the general formula (I ) or agrochemically acceptable salts thereof, as well as their use for controlling weeds and grass weeds in crops of useful plants. The class of compounds of the 3-arylpyrrolidine-2,4-diones and their preparation and use as herbicides are well known from the prior art. In addition, however, there are also, for example, bicyclic 3-aryl-pyrrolidine-2,4-dione derivatives (EP-A-355599, EP-A-415211 and JP-A-12-053670) and substituted monocyclic 3-aryl-pyrrolidine - 2,4-dione derivatives (EP-A-377893 and EP-A-442077) described with herbicidal, insecticidal or fungicidal action. Alkynyl-substituted-3-phenylpyrrolidine-2,4-diones with herbicidal action are also known from WO 96/82395, WO 98/05638, WO 01/74770, WO 15/032702 or WO 15/040114. The effectiveness of these herbicides against harmful plants depends on numerous parameters, for example on the application rate used, the preparation form (formulation), the harmful plants to be controlled, the range of harmful plants, the climatic and soil conditions and the duration of the action or the rate of degradation of the herbicide. Numerous herbicides from the group of 3-arylpyrrolidine-2,4-diones require high application rates and / or only have a narrow range of weeds in order to develop an adequate herbicidal effect, which makes their use economically unattractive. There is therefore a need for alternative herbicides which have improved properties and are economically attractive and at the same time efficient. The object of the present invention is therefore to provide new compounds which do not have the disadvantages mentioned. The present invention therefore relates to 3- (2-bromo-4-alkynyl-6-alkoxyphenyl) -3-pyrrolin-2-ones of the general formula (I),
und deren agrochemisch verträgliche Salze, in welcher W Sauerstoff, die Gruppe S(O)n oder eine Gruppe CR4R5 bedeutet; and their agrochemically acceptable salts, in which W is oxygen, the group S (O) n or a group CR 4 R 5 ;
R1 Wasserstoff, (C1-C6)-Alkyl, (C1-C4)-Alkoxy-(C1-C4)-Alkyl, (C1-C6)-Halogenalkyl, (C3- C6)-Cycloalkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C1-C6)-Alkoxy oder (C1-C6)- Halogenalkoxy bedeutet; R 1 is hydrogen, (C 1 -C 6) alkyl, (C 1 -C 4) alkoxy- (C 1 -C 4) alkyl, (C 1 -C 6) -haloalkyl, (C 3 - C 6 ) -Cycloalkyl, (C 2 -C 6 ) -alkenyl, (C 2 -C 6 ) -alkynyl, (C 1 -C 6 ) -alkoxy or (C 1 -C 6 ) -haloalkoxy;
R2 (C1-C6)-Alkyl oder (C1-C6)-Halogenalkyl bedeutet; R 2 is (C 1 -C 6 ) -alkyl or (C 1 -C 6 ) -haloalkyl;
R3 Wasserstoff, (C1-C4)-Alkyl, (C1-C4)-Halogenalkyl, (C3-C6)-Cycloalkyl oder Halogen bedeutet; R 3 is hydrogen, (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -haloalkyl, (C 3 -C 6 ) -cycloalkyl or halogen;
R4 (C1-C6)-Alkyl, (C3-C6)-Cycloalkyl, (C3-C6)-Alkoxy, (C1-C4)-Alkoxy-(C1-C6)-Alkoxy, R 4 (C 1 -C 6 ) -alkyl, (C 3 -C 6 ) -cycloalkyl, (C 3 -C 6 ) -alkoxy, (C 1 -C 4 ) -alkoxy- (C 1 -C 6 ) - Alkoxy,
(C1-C4)-Halogenalkoxy-(C1-C6)-Alkoxy, (C2-C6)-Alkenyloxy oder (C2-C6)- Halogenalkenyloxy bedeutet; Is (C 1 -C 4 ) haloalkoxy (C 1 -C 6 ) alkoxy, (C 2 -C 6 ) alkenyloxy or (C 2 -C 6 ) haloalkenyloxy;
R5 Wasserstoff oder Methyl bedeutet; oder R 5 is hydrogen or methyl; or
R4 und R5 bilden gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, eine Ketogruppe oder einen spirocyclischen (C3-C7)-Cycloalkyl- oder (C5-C7)-Cycloalkenyl-Ring, bei dem gegebenenfalls ein oder zwei Ringkohlenstoffe durch Sauerstoffatome ersetzt sein können und der gegebenenfalls ein- bis zweifach und unabhängig voneinander mit (C1-C2)-Alkyl oder (C1-C2)-Alkoxy substituiert sein kann; R 4 and R 5 together with the carbon atom to which they are attached form a keto group or a spirocyclic (C 3 -C 7 ) -cycloalkyl or (C 5 -C 7 ) -cycloalkenyl ring, in which optionally one or two ring carbons can be replaced by oxygen atoms and which can optionally be substituted one to two times and independently of one another by (C 1 -C 2 ) -alkyl or (C 1 -C 2 ) -alkoxy;
n 0, 1 oder 2 bedeutet; n is 0, 1 or 2;
G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E bedeutet; wobei L einer der folgenden Reste G denotes hydrogen, a removable group L or a cation E; where L is one of the following radicals
ist, worin R6 (C1-C4)-Alkyl oder (C1-C3)-Alkoxy-(C2-C4)-Alkyl bedeutet; wherein R 6 is (C 1 -C 4 ) alkyl or (C 1 -C 3 ) alkoxy- (C 2 -C 4 ) alkyl;
R7 (C1-C4)-Alkyl bedeutet; R8 ein unsubstituiertes Phenyl oder ein einfach oder mehrfach mit Halogen, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C1-C4)-Alkoxy, (C1-C4)-Haloalkoxy, Nitro oder Cyano substituiertes Phenyl bedeutet; R 7 is (C 1 -C 4 ) -alkyl; R 8 is an unsubstituted phenyl or one or more times with halogen, (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -haloalkyl, (C 1 -C 4 ) -alkoxy, (C 1 -C 4 ) -Haloalkoxy, nitro or cyano is substituted phenyl;
R9, R9' unabhängig voneinander Methoxy oder Ethoxy bedeuten; R 9 , R 9 'independently of one another denote methoxy or ethoxy;
R10, R11 jeweils unabhängig voneinander Methyl, Ethyl, Phenyl bedeuten oder gemeinsam einen gesättigten 5-, 6- oder 7-gliedrigen Ring bilden, oder gemeinsam einen gesättigten 5-, 6-, oder 7-gliedrigen Heterozyklus mit einem Sauerstoff- oder Schwefelatom bilden, E ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent R 10 , R 11 each independently represent methyl, ethyl, phenyl or together form a saturated 5-, 6- or 7-membered ring, or together form a saturated 5-, 6- or 7-membered heterocycle with an oxygen or Form a sulfur atom, E an alkali metal ion, an ion equivalent of an alkaline earth metal, an ion equivalent
Aluminium, ein Ionenäquivalent eines Übergangsmetalls, ein Magnesium-Halogen- Kation oder ein Ammoniumion bedeutet, bei dem gegebenenfalls ein, zwei, drei oder alle vier Wasserstoffatome durch gleiche oder verschiedene Reste aus den Gruppen (C1-C10)- Alkyl oder (C3-C7)-Cycloalkyl ersetzt sein können, wobei diese unabhängig voneinander jeweils ein- oder mehrfach mit Fluor, Chlor, Brom, Cyano, Hydroxy substituiert oder durch ein- oder mehrere Sauerstoff- oder Schwefelatome unterbrochen sein können; ein cyclisches sekundäres oder tertiäres aliphatisches oder heteroaliphatisches Ammoniumion bedeutet, beispielsweise jeweils Morpholinium, Thiomorpholinium, Piperidinium, Pyrrolidinium, oder jeweils protoniertes 1,4-Diazabicyclo[1.1.2]octane (DABCO) oder 1,5-Diazabicyclo[4.3.0]undec-7-en (DBU); ein heteroaromatisches Ammoniumkation bedeutet, beispielsweise jeweils protoniertes Pyridin, 2-Methylpyridin, 3-Methylpyridin, 4-Methylpyridin, 2,4- Dimethylpyridin, 2,5-Dimethylpyridin, 2,6-Dimethylpyridin, 5- Ethyl-2-methylpyridin, Collidin , Pyrrol, Imidazol, Chinolin, Chinoxalin, 1,2- Dimethylimidazol, 1,3-Dimethylimidazolium-methylsulfat oder weiterhin auch für ein Trimethylsulfoniumion stehen kann. Alkyl bedeutet gesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit der jeweils angegebenen Anzahl von Kohlenstoffatomen, z.B. (C1-C6)-Alkyl wie Methyl, Ethyl, Propyl, 1- Methylethyl, Butyl, 1-Methyl-propyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2- Methylbutyl, 3-Methylbutyl, 2,2-Di-methylpropyl, 1-Ethylpropyl, Hexyl, 1,1-Dimethylpropyl, 1,2- Dimethylpropyl,1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethyl- butyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3- Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl- 1-methylpropyl und 1-Ethyl-2-methylpropyl. Halogenalkyl bedeutet geradkettige oder verzweigte Alkylgruppen, wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch Halogenatome ersetzt sein können, z.B. C1- C2-Halogenalkyl wie Chlormethyl, Brommethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1- Chlorethyl, 1-Bromethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor- 2-fluorethyl, 2-Chlor,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl und 1,1,1-Trifluorprop-2-yl. Alkenyl bedeutet ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit der jeweils angegebenen Anzahl von Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position, z.B. C2-C6-Alkenyl wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3- Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1- Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-1-butenyl, 2-Methyl-1-butenyl, 3-Methyl-1- butenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2- Methyl-3-butenyl, 3-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-1-propenyl, 1,2- Dimethyl-2-propenyl, 1-Ethyl-1-propenyl, 1-Ethyl-2-propenyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4- Hexenyl, 5-Hexenyl, 1-Methyl-1-pentenyl, 2-Methyl-1-pentenyl, 3-Methyl-1-pentenyl, 4-Methyl-1- pentenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1- Methyl-3-pentenyl, 2-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-4- pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-pentenyl, 1,1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-butenyl, 1,2-Dimethyl-1-butenyl, 1,2-Dimethyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-1-butenyl, 1,3-Dimethyl-2-butenyl, 1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-1-butenyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-1-butenyl, 3,3-Dimethyl-2-butenyl, 1-Ethyl-1-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-1- butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2- propenyl, 1-Ethyl-2-methyl-1-propenyl und 1-Ethyl-2-methyl-2-propenyl. Alkinyl bedeutet geradkettige oder verzweigte Kohlenwasserstoffreste mit der jeweils angegebenen Anzahl von Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen Position, z.B. C2-C6- Alkinyl wie Ethinyl, 1-Propinyl, 2-Propinyl (oder Propargyl), 1-Butinyl, 2-Butinyl, 3-Butinyl, 1- Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 3-Methyl-1-butinyl, 1-Methyl-2- butinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 1- Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 3-Methyl-1-pentinyl, 4-Methyl-1-pentinyl, 1- Methyl-2-pentinyl, 4-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 2-Methyl-3-pentinyl, 1-Methyl-4- pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-4-pentinyl, 1,1-Dimethyl-2-butinyl, 1,1-Dimethyl-3- butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 3,3-Dimethyl-1-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl. Cycloalkyl bedeutet ein carbocyclisches, gesättigtes Ringsystem mit vorzugsweise 3-8 Ring- C-Atomen, z.B. Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl. Im Falle von gegebenenfalls substituiertem Cycloalkyl werden cyclische Systeme mit Substituenten umfasst, wobei auch Substituenten mit einer Doppelbindung am Cycloalkylrest, z. B. eine Alkylidengruppe wie Methyliden, umfasst sind. Alkoxy bedeutet gesättigte, geradkettige oder verzweigte Alkoxyreste mit der jeweils angegebenen Anzahl von Kohlenstoffatomen, z.B. C1-C6-Alkoxy wie Methoxy, Ethoxy, Propoxy, 1-Methylethoxy, Butoxy, 1-Methyl-propoxy, 2-Methylpropoxy, 1,1-Dimethylethoxy, Pentoxy, 1-Methylbutoxy, 2- Methylbutoxy, 3-Methylbutoxy, 2,2-Di-methylpropoxy, 1-Ethylpropoxy, Hexoxy, 1,1- Dimethylpropoxy, 1,2-Dimethylpropoxy,1-Methylpentoxy, 2-Methylpentoxy, 3-Methylpentoxy, 4- Methylpentoxy, 1,1-Dimethylbutoxy, 1,2-Dimethylbutoxy, 1,3-Dimethylbutoxy, 2,2- Dimethylbutoxy, 2,3-Dimethylbutoxy, 3,3-Dimethylbutoxy, 1-Ethylbutoxy, 2-Ethylbutoxy, 1,1,2- Trimethylpropoxy, 1,2,2-Trimethylpropoxy, 1-Ethyl-1-methylpropoxy und 1-Ethyl-2-methyl- propoxy. Durch Halogen substitiertes Alkoxy bedeutet geradkettige oder verzweigte Alkoxyreste mit der jeweils angegebenen Anzahl von Kohlenstoffatomen, wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch Halogenatome wie vorstehend genannt ersetzt sein können, z.B. C1-C2-Halogenalkoxy wie Chlormethoxy, Brommethoxy, Dichlormethoxy, Trichlormethoxy, Fluormethoxy, Difluormethoxy, Trifluormethoxy, Chlorfluormethoxy, Dichlor-fluormethoxy, Chlordifluormethoxy, 1-Chlorethoxy, 1-Bromethoxy, 1-Fluorethoxy, 2-Fluorethoxy, 2,2- Difluorethoxy, 2,2,2-Trifluorethoxy, 2-Chlor-2-fluorethoxy, 2-Chlor-1,2-difluorethoxy, 2,2-Dichlor- 2-fluorethoxy, 2,2,2-Trichlorethoxy, Pentafluor-ethoxy und 1,1,1-Trifluorprop-2-oxy. Die Verbindungen der Formel (I) können, in Abhängigkeit von der Art der Substituenten, als geo- metrische und/oder optische Isomere oder Isomerengemische, in unterschiedlicher Zusammen- setzung vorliegen, beispielsweise auch in cis- oder trans-Form, welche etwa für den Fall, daß W für die Gruppe CR4R5 und R5 für Wasserstoff steht, folgendermaßen definiert sind: Aluminum, an ion equivalent of a transition metal, a magnesium-halogen cation or an ammonium ion, in which, if appropriate, one, two, three or all four hydrogen atoms are replaced by identical or different radicals from the groups (C 1 -C 10) -alkyl or (C 3 -C 7 ) -cycloalkyl can be replaced, which independently of one another can each be substituted one or more times by fluorine, chlorine, bromine, cyano, hydroxy or interrupted by one or more oxygen or sulfur atoms; denotes a cyclic secondary or tertiary aliphatic or heteroaliphatic ammonium ion, for example morpholinium, thiomorpholinium, piperidinium, pyrrolidinium, or protonated 1,4-diazabicyclo [1.1.2] octane (DABCO) or 1,5-diazabicyclo [4.3.0] undec -7-en (DBU); denotes a heteroaromatic ammonium cation, for example in each case protonated pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2,4-dimethylpyridine, 2,5-dimethylpyridine, 2,6-dimethylpyridine, 5-ethyl-2-methylpyridine, collidine, Pyrrole, imidazole, quinoline, quinoxaline, 1,2-dimethylimidazole, 1,3-dimethylimidazolium methyl sulfate or can also stand for a trimethyl sulfonium ion. Alkyl means saturated, straight-chain or branched hydrocarbon radicals with the specified number of carbon atoms, for example (C 1 -C 6 ) -alkyl such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1 , 1-dimethylethyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2 -Methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1 -Ethylbutyl, 2-ethylbutyl, 1,1,2-trimethylpropyl, 1,2,2-trimethylpropyl, 1-ethyl-1-methylpropyl and 1-ethyl-2-methylpropyl. Haloalkyl means straight-chain or branched alkyl groups, in which case the hydrogen atoms in these groups can be partially or completely replaced by halogen atoms, for example C 1 -C 2 -haloalkyl such as chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, Difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1- chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2- Chlorine, 2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl, pentafluoroethyl and 1,1,1-trifluoroprop-2-yl. Alkenyl means unsaturated, straight-chain or branched hydrocarbon radicals with the specified number of carbon atoms and a double bond in any position, e.g. C 2 -C 6 -alkenyl such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 2-pentenyl, 3- Pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl-1-butenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl- 2-butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 3-methyl-3-butenyl, 1,1-dimethyl-2-propenyl, 1,2-dimethyl-1-propenyl, 1, 2- dimethyl-2-propenyl, 1-ethyl-1-propenyl, 1-ethyl-2-propenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 1-methyl-1- pentenyl, 2-methyl-1-pentenyl, 3-methyl-1-pentenyl, 4-methyl-1-pentenyl, 1-methyl-2-pentenyl, 2-methyl-2-pentenyl, 3-methyl-2-pentenyl, 4-methyl-2-pentenyl, 1-methyl-3-pentenyl, 2-methyl-3-pentenyl , 3-methyl-3-pentenyl, 4-methyl-3-pentenyl, 1-methyl-4-pentenyl, 2-methyl-4-pentenyl, 3-methyl-4-pentenyl, 4-methyl-4-pentenyl, 1 , 1-dimethyl-2-butenyl, 1,1-dimethyl-3-butenyl, 1,2-dimethyl-1-butenyl, 1,2-dimethyl-2-butenyl, 1,2-dimethyl-3-butenyl, 1 , 3-dimethyl-1-butenyl, 1,3-dimethyl-2-butenyl, 1,3-dimethyl-3-butenyl, 2,2-dimethyl-3-butenyl, 2,3-dimethyl-1-butenyl, 2 , 3-dimethyl-2-butenyl, 2,3-dimethyl-3-butenyl, 3,3-dimethyl-1-butenyl, 3,3-dimethyl-2-butenyl, 1-ethyl-1-butenyl, 1-ethyl -2-butenyl, 1-ethyl-3-butenyl, 2-ethyl-1-butenyl, 2-ethyl-2-butenyl, 2-ethyl-3-butenyl, 1,1,2-trimethyl-2-propenyl, 1 -Ethyl-1-methyl-2-propenyl, 1-ethyl-2-methyl-1-propenyl and 1-ethyl-2-methyl-2-propenyl. Alkynyl means straight-chain or branched hydrocarbon radicals with the specified number of carbon atoms and a triple bond in any position, for example C 2 -C 6 alkynyl such as ethynyl, 1-propynyl, 2-propynyl (or propargyl), 1-butynyl, 2- Butynyl, 3-butynyl, 1-methyl-2-propynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 3-methyl-1-butynyl, 1-methyl-2-butynyl, 1-methyl- 3-butynyl, 2-methyl-3-butynyl, 1,1-dimethyl-2-propynyl, 1-ethyl-2-propynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 3-methyl-1-pentynyl, 4-methyl-1-pentynyl, 1- methyl-2-pentynyl, 4-methyl-2-pentynyl, 1-methyl-3-pentynyl, 2-methyl-3-pentynyl, 1- Methyl-4-pentynyl, 2-methyl-4-pentynyl, 3-methyl-4-pentynyl, 1,1-dimethyl-2-butynyl, 1,1-dimethyl-3-butynyl, 1,2-dimethyl-3- butynyl, 2,2-dimethyl-3-butynyl, 3,3-dimethyl-1-butynyl, 1-ethyl-2-butynyl, 1-ethyl-3-butynyl, 2-ethyl-3-butynyl and 1-ethyl 1-methyl-2-propynyl. Cycloalkyl means a carbocyclic, saturated ring system with preferably 3-8 ring carbon atoms, for example cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl. In the case of possibly substituted cycloalkyl, cyclic systems with substituents are included, with substituents having a double bond on the cycloalkyl radical, e.g. B. an alkylidene group such as methylidene are included. Alkoxy means saturated, straight-chain or branched alkoxy radicals with the number of carbon atoms specified in each case, for example C 1 -C 6 -alkoxy such as methoxy, ethoxy, propoxy, 1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy, 1,1 -Dimethylethoxy, pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 2,2-dimethylpropoxy, 1-ethylpropoxy, hexoxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy, 1-methylpentoxy, 2-methylpentoxy , 3-methylpentoxy, 4-methylpentoxy, 1,1-dimethylbutoxy, 1,2-dimethylbutoxy, 1,3-dimethylbutoxy, 2,2-dimethylbutoxy, 2,3-dimethylbutoxy, 3,3-dimethylbutoxy, 1-ethylbutoxy, 2 -Ethylbutoxy, 1,1,2-trimethylpropoxy, 1,2,2-trimethylpropoxy, 1-ethyl-1-methylpropoxy and 1-ethyl-2-methyl-propoxy. Alkoxy substituted by halogen means straight-chain or branched alkoxy radicals with the specified number of carbon atoms, it being possible for some or all of the hydrogen atoms in these groups to be replaced by halogen atoms as mentioned above, for example C 1 -C 2 -haloalkoxy such as chloromethoxy, bromomethoxy, dichloromethoxy, Trichloromethoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 1-chloroethoxy, 1-bromoethoxy, 1-fluoroethoxy, 2-fluoroethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro 2-fluoroethoxy, 2-chloro-1,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy, pentafluoro-ethoxy and 1,1,1-trifluoroprop-2-oxy. The compounds of the formula (I) can, depending on the nature of the substituents, be present as geometric and / or optical isomers or isomer mixtures, in different compositions, for example also in cis or trans form, which are for example If W represents the group CR 4 R 5 and R 5 represents hydrogen, are defined as follows:
Die gegebenfalls bei der Synthese anfallenden Isomerengemische können mit den üblichen technischen Methoden getrennt werden. Sowohl die reinen Isomeren als auch die Tautomeren- und Isomerengemische, deren Herstellung und Verwendung sowie diese enthaltende Mittel sind Gegenstand der vorliegenden Erfindung. Im Folgenden wird der Einfachheit halber jedoch stets von Verbindungen der Formel (I) gesprochen, obwohl sowohl die reinen Verbindungen als auch gegebenenfalls Gemische mit unterschiedlichen Anteilen an isomeren und tautomeren Verbindungen gemeint sind. Die erfindungsgemäßen Verbindungen sind durch die Formel (I) allgemein definiert. Bevorzugte Substituenten bzw. Bereiche der in der oben und nachstehend erwähnten Formeln aufgeführten Reste werden im Folgenden erläutert: Bevorzugt sind Verbindungen der Formel (I), in welchen W Sauerstoff, die Gruppe S(O)n oder eine Gruppe CR4R5 bedeutet; Any mixtures of isomers obtained in the synthesis can be separated using the customary technical methods. The present invention relates to both the pure isomers and the tautomer and isomer mixtures, their preparation and use, and agents containing them. in the For the sake of simplicity, however, compounds of the formula (I) are always referred to below, although both the pure compounds and, if appropriate, mixtures with different proportions of isomeric and tautomeric compounds are meant. The compounds according to the invention are generally defined by the formula (I). Preferred substituents or ranges of the radicals listed in the formulas mentioned above and below are explained below: Preference is given to compounds of the formula (I) in which W is oxygen, the group S (O) n or a group CR 4 R 5 ;
R1 Wasserstoff, (C1-C4)-Alkyl, (C1-C4)-Alkoxy-(C1-C4)-Alkyl, (C1-C4)-Halogenalkyl, (C3- C6)-Cycloalkyl, (C2-C4)-Alkenyl, (C2-C4)-Alkinyl, (C1-C4)-Alkoxy oder (C1-C4)- Halogenalkoxy bedeutet; R 1 hydrogen, (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -alkoxy- (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -haloalkyl, (C 3 -C6) -Cycloalkyl, (C 2 -C 4 ) -alkenyl, (C 2 -C 4 ) -alkynyl, (C 1 -C 4 ) -alkoxy or (C 1 -C 4 ) -haloalkoxy;
R2 (C1-C4)-Alkyl oder (C1-C4)-Halogenalkyl bedeutet; R 2 is (C 1 -C 4 ) -alkyl or (C 1 -C 4 ) -haloalkyl;
R3 Wasserstoff, (C1-C4)-Alkyl, (C1-C4)-Halogenalkyl, (C3-C6)-Cycloalkyl oder Halogen bedeutet; R 3 is hydrogen, (C 1 -C 4) -alkyl, (C 1 -C 4 ) -haloalkyl, (C 3 -C 6 ) -cycloalkyl or halogen;
R4 (C1-C4)-Alkyl, (C3-C4)-Cycloalkyl, (C3-C6)-Alkoxy, (C1-C4)-Alkoxy-(C1-C4)-Alkoxy, R 4 (C 1 -C 4 ) -alkyl, (C 3 -C 4 ) -cycloalkyl, (C 3 -C 6 ) -alkoxy, (C 1 -C 4 ) -alkoxy- (C 1 -C 4 ) - Alkoxy,
(C1-C4)-Halogenalkoxy-(C1-C4)-Alkoxy, (C2-C4)-Alkenyloxy oder (C2-C4)- Halogenalkenyloxy bedeutet; (C 1 -C 4) -haloalkoxy (C 1 -C 4) -alkoxy, (C 2 -C 4) alkenyloxy or (C 2 -C 4) - haloalkenyloxy group;
R5 Wasserstoff oder Methyl bedeutet; oder R 5 is hydrogen or methyl; or
R4 und R5 bilden gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, eine Ketogruppe oder einen spirocyclischen (C3-C7)-Cycloalkyl- oder (C5-C7)-Cycloalkenyl-Ring, bei dem gegebenenfalls ein oder zwei Ringkohlenstoffe durch Sauerstoffatome ersetzt sein können und der gegebenenfalls ein- bis zweifach und unabhängig voneinander mit (C1-C2)-Alkyl oder (C1-C2)-Alkoxy substituiert sein kann; R 4 and R 5 together with the carbon atom to which they are attached form a keto group or a spirocyclic (C 3 -C 7 ) -cycloalkyl or (C 5 -C 7 ) -cycloalkenyl ring, in which optionally one or two ring carbons can be replaced by oxygen atoms and which can optionally be substituted one to two times and independently of one another by (C 1 -C 2 ) -alkyl or (C 1 -C 2 ) -alkoxy;
n 0, 1 oder 2 bedeutet; n is 0, 1 or 2;
G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E bedeutet, wobei L einer der folgenden Reste G denotes hydrogen, a removable group L or a cation E, where L is one of the following radicals
ist, worin R6 (C1-C4)-Alkyl oder (C1-C3)-Alkoxy-(C2-C4)-Alkyl bedeutet; wherein R 6 is (C 1 -C 4 ) alkyl or (C 1 -C 3 ) alkoxy- (C 2 -C 4 ) alkyl;
R7 (C1-C4)-Alkyl bedeutet; R8 ein unsubstituiertes Phenyl oder ein einfach oder mehrfach mit Halogen, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C1-C4)-Alkoxy, (C1-C4)-Haloalkoxy, Nitro oder Cyano substituiertes Phenyl bedeutet; E ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent R 7 is (C 1 -C 4 ) -alkyl; R 8 is an unsubstituted phenyl or one or more times with halogen, (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -haloalkyl, (C 1 -C 4 ) -alkoxy, (C 1 -C 4 ) -Haloalkoxy, nitro or cyano is substituted phenyl; E is an alkali metal ion, an ion equivalent of an alkaline earth metal, an ion equivalent
Aluminium, ein Ionenäquivalent eines Übergangsmetalls, ein Magnesium-Halogen- Kation oder ein Ammoniumion bedeutet, bei dem gegebenenfalls ein, zwei, drei oder alle vier Wasserstoffatome durch gleiche oder verschiedene Reste aus den Gruppen (C1-C10)- Alkyl oder (C3-C7)-Cycloalkyl ersetzt sein können, wobei diese unabhängig voneinander jeweils ein- oder mehrfach mit Fluor, Chlor, Brom, Cyano, Hydroxy substituiert oder durch ein- oder mehrere Sauerstoff- oder Schwefelatome unterbrochen sein können. Besonders bevorzugt sind Verbindungen der Formel (I), in welchen Aluminum, an ion equivalent of a transition metal, a magnesium-halogen cation or an ammonium ion, in which optionally one, two, three or all four hydrogen atoms are replaced by identical or different radicals from the groups (C 1 -C 10 ) - alkyl or (C 3 -C 7 ) -cycloalkyl, which, independently of one another, can each be substituted one or more times with fluorine, chlorine, bromine, cyano, hydroxy or interrupted by one or more oxygen or sulfur atoms. Particularly preferred are compounds of the formula (I) in which
W Sauerstoff oder eine Gruppe CR4R5 bedeutet; W is oxygen or a group CR 4 R 5 ;
R1 Wasserstoff, (C1-C4)-Alkyl, (C1-C4)-Halogenalkyl, Cyclopropyl, (C2-C4)-Alkenyl, (C2- C4)-Alkinyl bedeutet; R 1 denotes hydrogen, (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -haloalkyl, cyclopropyl, (C 2 -C 4 ) -alkenyl, (C2-C 4 ) -alkynyl;
R2 (C1-C4)-Alkyl oder (C1-C4)-Halogenalkyl bedeutet; R 2 is (C 1 -C 4 ) -alkyl or (C 1 -C 4 ) -haloalkyl;
R3 Wasserstoff, (C1-C4)-Alkyl, (C1-C2)-Halogenalkyl, Cyclopropyl oder Halogen bedeutet; R4 (C1-C2)-Alkyl, Cyclopropyl, (C3-C6)-Alkoxy, (C1-C4)-Alkoxy-(C1-C2)-Alkoxy (C1-C4)- Halogenalkoxy-(C1-C2)-Alkoxy, (C2-C4)-Alkenyloxy oder (C2-C4)-Halogenalkenyloxy bedeutet; R 3 is hydrogen, (C 1 -C 4 ) -alkyl, (C 1 -C 2 ) -haloalkyl, cyclopropyl or halogen; R 4 (C 1 -C 2 ) -alkyl, cyclopropyl, (C 3 -C 6 ) -alkoxy, (C 1 -C 4 ) -alkoxy- (C 1 -C 2 ) -alkoxy (C 1 -C 4 ) - is haloalkoxy- (C 1 -C 2 ) -alkoxy, (C 2 -C 4 ) -alkenyloxy or (C 2 -C 4 ) -haloalkenyloxy;
R5 Wasserstoff oder Methyl bedeutet; oder R 5 is hydrogen or methyl; or
R4 und R5 bilden gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, eine Ketogruppe oder einen spirocyclischen (C5-C7)-Cycloalkyl- oder (C5-C7)-Cycloalkenyl-Ring, bei dem gegebenenfalls ein oder zwei Ringkohlenstoffe durch Sauerstoffatome ersetzt sein können und der gegebenenfalls ein- bis zweifach und unabhängig voneinander mit Methyl oder Methoxy substituiert sein kann; R 4 and R 5 together with the carbon atom to which they are attached form a keto group or a spirocyclic (C 5 -C 7 ) -cycloalkyl or (C 5 -C 7 ) -cycloalkenyl ring, in which optionally one or two ring carbons can be replaced by oxygen atoms and which can optionally be substituted one to two times and independently of one another by methyl or methoxy;
G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E bedeutet, wobei G denotes hydrogen, a removable group L or a cation E, where
L einer der folgenden Reste L one of the following residues
ist, worin is where
R6 (C1-C4)-Alkyl oder (C1-C3)-Alkoxy-(C2-C4)-Alkyl bedeutet; R 6 is (C 1 -C 4 ) -alkyl or (C 1 -C 3 ) -alkoxy- (C 2 -C 4 ) -alkyl;
R7 (C1-C4)-Alkyl bedeutet; R 7 is (C 1 -C 4 ) -alkyl;
E ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent E is an alkali metal ion, an ion equivalent of an alkaline earth metal, an ion equivalent
Aluminium, ein Ionenäquivalent eines Übergangsmetalls oder ein Magnesium-Halogen- Kation bedeutet. Ganz besonders bevorzugt sind Verbindungen der Formel (I), in welchen W Sauerstoff oder eine Gruppe CR4R5 bedeutet; Aluminum, an ion equivalent of a transition metal or a magnesium-halogen Means cation. Compounds of the formula (I) in which W is oxygen or a group CR 4 R 5 are very particularly preferred;
R1 Wasserstoff oder Methyl bedeutet; R 1 is hydrogen or methyl;
R2 Methyl oder Ethyl bedeutet; R 2 is methyl or ethyl;
R3 Wasserstoff, Methyl, Ethyl, Difluormethyl, Trifluormethyl, Chlor oder Brom bedeutet; R4 Methyl, Ethyl, n-Propoxy, i-Propoxy, Methoxyethoxy, Ethoxyethoxy oder Allyloxy bedeutet; R 3 is hydrogen, methyl, ethyl, difluoromethyl, trifluoromethyl, chlorine or bromine; R 4 denotes methyl, ethyl, n-propoxy, i-propoxy, methoxyethoxy, ethoxyethoxy or allyloxy;
R5 Wasserstoff oder Methyl bedeutet; oder R 5 is hydrogen or methyl; or
R4 und R5 bilden gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen R 4 and R 5 together with the carbon atom to which they are attached form one
Dioxolanring; Dioxolane ring;
G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E bedeutet, wobei L einer der folgenden Reste G denotes hydrogen, a removable group L or a cation E, where L is one of the following radicals
ist, worin is where
R6 Methyl, Ethyl, i-Propyl oder t-Butyl bedeutet; R 6 is methyl, ethyl, i-propyl or t-butyl;
R7 Methyl oder Ethyl bedeutet; R 7 is methyl or ethyl;
E ein Natriumion oder ein Kaliumion bedeutet. E means a sodium ion or a potassium ion.
Die Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel (I) ist im Prinzip bekannt bzw. kann in Anlehnung an literaturbekannte Verfahren erfolgen, beispielsweise indem man a) eine Verbindung der allgemeinen Formel (II) The preparation of the compounds of the general formula (I) according to the invention is known in principle or can be carried out on the basis of processes known from the literature, for example by a) a compound of the general formula (II)
in welcher R1, R2, R3 und W die oben angegebene Bedeutung haben, und R12 für Alkyl, bevorzugt für Methyl oder Ethyl steht, gegebenenfalls in Anwesenheit eines geeigneten Lösungs- oder Verdünnungsmittels, mit einer geeigneten Base unter formaler Abspaltung der Gruppe R12OH cyclisiert, oder in which R 1 , R 2 , R 3 and W have the meaning given above, and R 12 is alkyl, preferably methyl or ethyl, optionally in the presence of a suitable solvent or diluent, with a suitable base with formal splitting off of the group R 12 OH cyclized, or
b) eine Verbindung der allgemeinen Formel (Ia), b) a compound of the general formula (Ia),
in der R1, R2, R3 und W die oben angegebenen Bedeutungen haben, beispielsweise mit einer Verbindung der allgemeinen Formel (III), Hal-L (III) in der L die oben angegebene Bedeutung hat und Hal für ein Halogen, vorzugsweise Chlor oder Brom stehen kann, gegebenenfalls in Anwesenheit eines geeigneten Lösungs- oder Verdünnungsmittels sowie einer geeigneten Base, zur Reaktion bringt, (c) indem man Verbindungen der allgemeinen Formel (IV), in which R 1 , R 2 , R 3 and W have the meanings given above, for example with a compound of the general formula (III), Hal-L (III) in which L has the meaning given above and Hal is a halogen, preferably Chlorine or bromine, if appropriate in the presence of a suitable solvent or diluent and a suitable base, reacts (c) by adding compounds of the general formula (IV),
in der R1, R2, W und G die oben angegebenen Bedeutungen haben, und U für eine geeignete Abgangsgruppe steht, mit einem geeigneten Alkinyl-Reagenz der allgemeinen Formel (V), in which R 1 , R 2, W and G have the meanings given above, and U stands for a suitable leaving group, with a suitable alkynyl reagent of the general formula (V),
in der Z für Wasserstoff oder eine geeignete Abgangsgruppe steht und R3 die oben angegebene Bedeutung hat, gegebenenfalls in Gegenwart geeigneter Katalysatoren und einer geeigneten Base, umsetzt. Als Abgangsgruppe Z kommen beispielsweise Halogenatome wie Chlor, Brom oder Iod, Alkylsulfonestergruppen wie beispielsweise Triflat, Mesylat oder Nonaflat, Magnesiumchlorid, Magnesiumbromid, Zinkchlorid, ein Trialkylzinnrest, Carboxyl sowie Borsäure-Reste wie -B(OH)2 oder–B(OAlkyl)2 in Betracht. Als Katalysatoren sind insbesondere Pd0 Komplexe sehr gut geeignet, wobei in vielen Fällen auch der Zusatz von Cu(I)-Salzen sehr vorteilhaft sein kann. Auch Liganden wie etwa 1,4-Bis(diphenylphosphino)butan können verwendet werden. in which Z represents hydrogen or a suitable leaving group and R 3 has the meaning given above, optionally in the presence of suitable catalysts and a suitable base. The leaving group Z includes, for example, halogen atoms such as chlorine, bromine or iodine, alkyl sulfonic ester groups such as triflate, mesylate or nonaflate, magnesium chloride, magnesium bromide, zinc chloride, a trialkyltin radical, carboxyl and boric acid radicals such as -B (OH) 2 or -B (O-alkyl) 2 into consideration. Pd 0 complexes in particular are very suitable as catalysts, the addition of Cu (I) salts can also be very advantageous in many cases. Ligands such as 1,4-bis (diphenylphosphino) butane can also be used.
Die beschriebene Methodik ist Stand der Technik und im Übrigen auch unter dem Stichwort "Palladium-katalysierte Kreuzkupplung", "Sonogashira-, Negishi-, Suzuki-, Stille- oder Kumada- Kupplung" einschlägig literaturbekannt. Eine weitere Alternative für Verbindungen der Formel (I), für die R3=Me bedeutet, besteht darin, eine Verbindung der allgemeinen Formel (IV) mit einem Alkinyl-Reagenz der allgemeinen Formel (IX), worin R13 beispielsweise für einen (C1-C4)-Trialkylsilylrest steht und Z die oben angegebene Bedeutung besitzt, in analoger Anwendung der oben beschriebenen Kupplungs-Methodik zu einer Verbindung der allgemeinen Formel (X) umzusetzen. Die Gruppe R13 kann anschließend unter geeigneten Bedingungen abgespalten werden und man erhält erfindungsgemäße Verbindungen der Formel (I). The methodology described is state of the art and otherwise also relevantly known from the literature under the heading “Palladium-catalyzed cross-coupling”, “Sonogashira, Negishi, Suzuki, Stille or Kumada coupling”. Another alternative for compounds of the formula (I) for which R 3 = Me is to react a compound of the general formula (IV) with an alkynyl reagent of the general formula (IX), in which R 13 is , for example, a (C 1 -C 4 ) -Trialkylsilylrest and Z has the meaning given above, to implement in an analogous application of the coupling methodology described above to a compound of the general formula (X). The group R 13 can then be split off under suitable conditions and compounds of the formula (I) according to the invention are obtained.
Diese Technik ist beispielsweise im Journal of Medicinal Chemistry 2007, 50 (7), 1627-1634 beschrieben. Die benötigten Vorstufen der allgemeinen Formel (II) This technique is described, for example, in the Journal of Medicinal Chemistry 2007, 50 (7), 1627-1634. The required precursors of the general formula (II)
können in Analogie zu bekannten Verfahren, beispielsweise durch Umsetzung eines Aminosäureesters der allgemeinen Formel (XI) mit einer Phenylessigsäure der allgemeinen Formel (XII), wobei R1, R2, R3, W und R13 die oben beschriebene Bedeutung haben, gegebenenfalls durch Zusatz eines wasserentziehenden Mittels und gegebenenfalls in Anwesenheit eines geeigneten Lösungs- bzw. Verdünnungsmittels, hergestellt werden. Die Herstellung von Aminosäureestern der allgemeinen Formel (XI) ist z.B. in WO 04/024688 oder WO 08/067873 beschrieben. Eine weitere Variante zur Herstellung von Vorstufen der allgemeinen Formel (II) besteht unter anderem auch darin, dass man eine Verbindung mit der allgemeinen Formel (XIII), in der R1, R2, R12 und U die oben angegebene Bedeutung haben, nach der bereits beschriebenen Kreuzkupplungs- Methodik mit einer Verbindung der allgemeinen Formel (V), in der Z und R3 die oben angegebene Bedeutung hat, umsetzt: can in analogy to known processes, for example by reacting an amino acid ester of the general formula (XI) with a phenylacetic acid of the general formula (XII), where R 1 , R 2 , R 3 , W and R 13 have the meaning described above, optionally by Addition of a dehydrating agent and optionally in the presence of a suitable solvent or diluent, are prepared. The preparation of amino acid esters of the general formula (XI) is described, for example, in WO 04/024688 or WO 08/067873. Another variant for the preparation of precursors of the general formula (II) consists, inter alia, of a compound of the general formula (XIII) in which R 1 , R 2, R 12 and U have the meaning given above, after the already described cross-coupling method with a compound of the general formula (V), in which Z and R 3 has the meaning given above, implements:
Die benötigten Vorstufen der allgemeinen Formel (XII) können beispielsweise erhalten werden, indem man eine Verbindung mit der allgemeinen Formel (XIV), in der R2 und U die oben angegebene Bedeutung haben und R14 für Alkyl, bevorzugt für Methyl- oder Ethyl steht, nach der bereits beschriebenen Kreuzkupplungs-Methodik mit einer Verbindung der allgemeinen Formel (V), in der Z und R3 die oben angegebene Bedeutung hat, zur Reaktion bringt und die resultierenden Carbonsäureester nach Standardmethoden spaltet: The required precursors of the general formula (XII) can be obtained, for example, by adding a compound of the general formula (XIV) in which R 2 and U are as defined above and R 14 is alkyl, preferably methyl or ethyl , according to the already described cross-coupling method with a compound of the general formula (V), in which Z and R 3 has the meaning given above, reacts and cleaves the resulting carboxylic acid ester according to standard methods:
Die benötigten Vorstufen der allgemeinen Formel (XIV) können zum Beispiel erhalten werden, indem man nach literaturbekannten Verfahren eine Acetateinheit in Verbindungen der allgemeinen Formel (XVI), in der R2 und U die oben angegebene Bedeutung haben, einführt. The required precursors of the general formula (XIV) can be obtained, for example, by introducing an acetate unit into compounds of the general formula (XVI) in which R 2 and U have the meaning given above, according to processes known from the literature.
Dies kann beispielsweise analog zu den in WO 05/44796 oder in WO 10/115780 beschriebenen Verfahren durch Meerwein-Arylierung eines Anilins der allgemeinen Formel (XVI) mit Vinylidenchlorid gefolgt von einer Hydrolyse der Zwischenverbindung (XV) mit Alkoholat geschehen: This can be done, for example, analogously to the process described in WO 05/44796 or in WO 10/115780 by Meerwein arylation of an aniline of the general formula (XVI) with vinylidene chloride followed by hydrolysis of the intermediate compound (XV) with alcoholate:
Daneben sind auch weitere alternative Herstellungsverfahren bekannt, die in WO 15/032702 beschrieben sind. Vorstufen der allgemeinen Formel (XVI) wiederum können durch gängige Standardmethoden wie Bromierung und/oder Alkylierung aus kommerziell erhältlichen Aminonitrophenolen erhalten werden. Gegenstand der vorliegenden Erfindung sind desweiteren Verbindungen der Formel (XIV), worin die Reste folgende Bedeutungen aufweisen: In addition, other alternative manufacturing processes are also known, which are described in WO 15/032702. Precursors of the general formula (XVI) in turn can be obtained from commercially available amino nitrophenols by common standard methods such as bromination and / or alkylation. The present invention further relates to compounds of the formula (XIV) in which the radicals have the following meanings:
R2 ist Methyl, Ethyl; R 2 is methyl, ethyl;
R3 ist Chlor, Brom, Difluormethyl, Trifluormethyl; R 3 is chlorine, bromine, difluoromethyl, trifluoromethyl;
R14 ist H, Methyl. Die erfindungsgemäßen Verbindungen der Formel (I) (und/oder deren Salze), im folgenden zusammen als„erfindungsgemäße Verbindungen“ bezeichnet, weisen eine ausgezeichnete herbizide Wirksamkeit gegen ein breites Spektrum wirtschaftlich wichtiger mono- und dikotyler annueller Schadpflanzen auf. Gegenstand der vorliegenden Erfindung ist daher auch ein Verfahren zur Bekämpfung von unerwünschten Pflanzen oder zur Wachstumsregulierung von Pflanzen, vorzugsweise in Pflanzenkulturen, worin eine oder mehrere erfindungsgemäße Verbindung(en) auf die Pflanzen (z.B. Schadpflanzen wie mono- oder dikotyle Unkräuter oder unerwünschte Kulturpflanzen), das Saatgut (z.B. Körner, Samen oder vegetative Vermehrungsorgane wie Knollen oder Sprossteile mit Knospen) oder die Fläche, auf der die Pflanzen wachsen (z.B. die Anbaufläche), ausgebracht werden. Dabei können die erfindungsgemäßen Verbindungen z.B. im Vorsaat- (ggf. auch durch Einarbeitung in den Boden), Vorauflauf- oder Nachauflaufverfahren ausgebracht werden. Im einzelnen seien beispielhaft einige Vertreter der mono- und dikotylen Unkrautflora genannt, die durch die erfindungsgemäßen Verbindungen kontrolliert werden können, ohne dass durch die Nennung eine Beschränkung auf bestimmte Arten erfolgen soll. Monokotyle Schadpflanzen der Gattungen: Aegilops, Agropyron, Agrostis, Alopecurus, Apera, Avena, Brachiaria, Bromus, Cenchrus, Commelina, Cynodon, Cyperus, Dactyloctenium, Digitaria, Echinochloa, Eleocharis, Eleusine, Eragrostis, Eriochloa, Festuca, Fimbristylis, Heteranthera, Imperata, Ischaemum, Leptochloa, Lolium, Monochoria, Panicum, Paspalum, Phalaris, Phleum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sorghum. Dikotyle Unkräuter der Gattungen: Abutilon, Amaranthus, Ambrosia, Anoda, Anthemis, Aphanes, Artemisia, Atriplex, Bellis, Bidens, Capsella, Carduus, Cassia, Centaurea, Chenopodium, Cirsium, Convolvulus, Datura, Desmodium, Emex, Erysimum, Euphorbia, Galeopsis, Galinsoga, Galium, Hibiscus, Ipomoea, Kochia, Lamium, Lepidium, Lindernia, Matricaria, Mentha, Mercurialis, Mullugo, Myosotis, Papaver, Pharbitis, Plantago, Polygonum, Portulaca, Ranunculus, Raphanus, Rorippa, Rotala, Rumex, Salsola, Senecio, Sesbania, Sida, Sinapis, Solanum, Sonchus, Sphenoclea, Stellaria, Taraxacum, Thlaspi, Trifolium, Urtica, Veronica, Viola, Xanthium. Werden die erfindungsgemäßen Verbindungen vor dem Keimen auf die Erdoberfläche appliziert, so wird entweder das Auflaufen der Unkrautkeimlinge vollständig verhindert oder die Unkräuter wachsen bis zum Keimblattstadium heran, stellen jedoch dann ihr Wachstum ein. Bei Applikation der Wirkstoffe auf die grünen Pflanzenteile im Nachauflaufverfahren tritt nach der Behandlung Wachstumsstop ein und die Schadpflanzen bleiben in dem zum Applikationszeitpunkt vorhandenen Wachstumsstadium stehen oder sterben nach einer gewissen Zeit ganz ab, so dass auf diese Weise eine für die Kulturpflanzen schädliche Unkrautkonkurrenz sehr früh und nachhaltig beseitigt wird. Die erfindungsgemäßen Verbindungen können in Nutzkulturen Selektivitäten aufweisen und können auch als nichtselektive Herbizide eingesetzt werden. Aufgrund ihrer herbiziden und pflanzenwachstumsregulatorischen Eigenschaften können die Wirkstoffe auch zur Bekämpfung von Schadpflanzen in Kulturen von bekannten oder noch zu entwickelnden gentechnisch veränderten Pflanzen eingesetzt werden. Die transgenen Pflanzen zeichnen sich in der Regel durch besondere vorteilhafte Eigenschaften aus, beispielsweise durch Resistenzen gegenüber bestimmten in der Agrarindustrie verwendeten Wirkstoff , vor allem bestimmten Herbiziden, Resistenzen gegenüber Pflanzenkrankheiten oder Erregern von Pflanzenkrankheiten wie bestimmten Insekten oder Mikroorganismen wie Pilzen, Bakterien oder Viren. Andere besondere Eigenschaften betreffen z.B. das Erntegut hinsichtlich Menge, Qualität, Lagerfähigkeit, Zusammensetzung und spezieller Inhaltsstoffe. So sind transgene Pflanzen mit erhöhtem Stärkegehalt oder veränderter Qualität der Stärke oder solche mit anderer Fettsäurezusammensetzung des Ernteguts bekannt. Weitere besondere Eigenschaften liegen in einer Toleranz oder Resistenz gegen abiotische Stressoren z.B. Hitze, Kälte, Trockenheit, Salz und ultraviolette Strahlung. Bevorzugt ist die Anwendung der erfindungsgemäßen Verbindungen der Formel (I) oder deren Salze in wirtschaftlich bedeutenden transgenen Kulturen von Nutz-und Zierpflanzen, Die Verbindungen der Formel (I) können als Herbizide in Nutzpflanzenkulturen eingesetzt werden, welche gegenüber den phytotoxischen Wirkungen der Herbizide resistent sind bzw. gentechnisch resistent gemacht wurden. Herkömmliche Wege zur Herstellung neuer Pflanzen, die im Vergleich zu bisher vorkommenden Pflanzen modifizierte Eigenschaften aufweisen, bestehen beispielsweise in klassischen Züchtungsverfahren und der Erzeugung von Mutanten. Alternativ können neue Pflanzen mit veränderten Eigenschaften mit Hilfe gentechnischer Verfahren erzeugt werden (siehe z.B. EP 0221044, EP 0131624). Beschrieben wurden beispielsweise in mehreren Fällen gentechnische Veränderungen von Kulturpflanzen zwecks Modifikation der in den Pflanzen synthetisierten Stärke (z.B. WO 92/011376 A, WO 92/014827 A, WO 91/019806 A), transgene Kulturpflanzen, welche gegen bestimmte Herbizide vom Typ Glufosinate (vgl. z.B. EP 0242236 A, EP 0242246 A) oder Glyphosate (WO 92/000377 A) oder der Sulfonylharnstoffe (EP 0257993 A, US 5,013,659) oder gegen Kombinationen oder Mischungen dieser Herbizide durch„gene stacking“ resistent sind, wie transgenen Kulturpflanzen z. B. Mais oder Soja mit dem Handelsnamen oder der Bezeichnung OptimumTM GATTM (Glyphosate ALS Tolerant). - transgene Kulturpflanzen, beispielsweise Baumwolle, mit der Fähigkeit Bacillus thuringiensis- Toxine (Bt-Toxine) zu produzieren, welche die Pflanzen gegen bestimmte Schädlinge resistent machen (EP 0142924 A, EP 0193259 A). - transgene Kulturpflanzen mit modifizierter Fettsäurezusammensetzung (WO 91/013972 A). - gentechnisch veränderte Kulturpflanzen mit neuen Inhalts- oder Sekundärstoffen z.B. neuen Phytoalexinen, die eine erhöhte Krankheitsresistenz verursachen (EP 0309862 A, EP 0464461 A) - gentechnisch veränderte Pflanzen mit reduzierter Photorespiration, die höhere Erträge und höhere Stresstoleranz aufweisen (EP 0305398 A) - transgene Kulturpflanzen, die pharmazeutisch oder diagnostisch wichtige Proteine produzieren („molecular pharming“) - transgene Kulturpflanzen, die sich durch höhere Erträge oder bessere Qualitat auszeichnen - transgene Kulturpflanzen die sich durch eine Kombinationen z.B. der o. g. neuen Eigenschaften auszeichnen („gene stacking“) Zahlreiche molekularbiologische Techniken, mit denen neue transgene Pflanzen mit veränderten Eigenschaften hergestellt werden können, sind im Prinzip bekannt; siehe z.B. I. Potrykus und G. Spangenberg (eds.) Gene Transfer to Plants, Springer Lab Manual (1995), Springer Verlag Berlin, Heidelberg. oder Christou, "Trends in Plant Science" 1 (1996) 423-431). Für derartige gentechnische Manipulationen können Nucleinsäuremoleküle in Plasmide eingebracht werden, die eine Mutagenese oder eine Sequenzveränderung durch Rekombination von DNA- Sequenzen erlauben. Mit Hilfe von Standardverfahren können z.B. Basenaustausche vorgenommen, Teilsequenzen entfernt oder natürliche oder synthetische Sequenzen hinzugefügt werden. Für die Verbindung der DNA-Fragmente untereinander können an die Fragmente Adaptoren oder Linker angesetzt werden, siehe z.B. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2. Aufl. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; oder Winnacker "Gene und Klone", VCH Weinheim 2. Auflage 1996 Die Herstellung von Pflanzenzellen mit einer verringerten Aktivität eines Genprodukts kann beispielsweise erzielt werden durch die Expression mindestens einer entsprechenden antisense-RNA, einer sense-RNA zur Erzielung eines Cosuppressionseffektes oder die Expression mindestens eines entsprechend konstruierten Ribozyms, das spezifisch Transkripte des obengenannten Genprodukts spaltet. Hierzu können zum einen DNA-Moleküle verwendet werden, die die gesamte codierende Sequenz eines Genprodukts einschließlich eventuell vorhandener flankierender Sequenzen umfassen, als auch DNA-Moleküle, die nur Teile der codierenden Sequenz umfassen, wobei diese Teile lang genug sein müssen, um in den Zellen einen antisense-Effekt zu bewirken. Möglich ist auch die Verwendung von DNA-Sequenzen, die einen hohen Grad an Homologie zu den codiereden Sequenzen eines Genprodukts aufweisen, aber nicht vollkommen identisch sind. Bei der Expression von Nucleinsäuremolekülen in Pflanzen kann das synthetisierte Protein in jedem beliebigen Kompartiment der pflanzlichen Zelle lokalisiert sein. Um aber die Lokalisation in einem bestimmten Kompartiment zu erreichen, kann z.B. die codierende Region mit DNA-Sequenzen verknüpft werden, die die Lokalisierung in einem bestimmten Kompartiment gewährleisten. Derartige Sequenzen sind dem Fachmann bekannt (siehe beispielsweise Braun et al., EMBO J. 11 (1992), 3219-3227; Wolter et al., Proc. Natl. Acad. Sci. USA 85 (1988), 846-850; Sonnewald et al., Plant J. 1 (1991), 95-106). Die Expression der Nukleinsäuremoleküle kann auch in den Organellen der Pflanzenzellen stattfinden. Die transgenen Pflanzenzellen können nach bekannten Techniken zu ganzen Pflanzen regeneriert werden. Bei den transgenen Pflanzen kann es sich prinzipiell um Pflanzen jeder beliebigen Pflanzenspezies handeln, d.h., sowohl monokotyle als auch dikotyle Pflanzen. So sind transgene Pflanzen erhältlich, die veränderte Eigenschaften durch Überexpression, Suppression oder Inhibierung homologer (= natürlicher) Gene oder Gensequenzen oder Expression heterologer (= fremder) Gene oder Gensequenzen aufweisen. Vorzugsweise können die erfindungsgemäßen Verbindungen (I) in transgenen Kulturen eingesetzt werden, welche gegen Wuchsstoffe, wie z.B. 2,4-D, Dicamba oder gegen Herbizide, die essentielle Pflanzenenzyme, z.B. Acetolactatsynthasen (ALS), EPSP Synthasen, Glutaminsynthasen (GS) oder Hydoxyphenylpyruvat Dioxygenasen (HPPD) hemmen, respektive gegen Herbizide aus der Gruppe der Sulfonylharnstoffe, der Glyphosate, Glufosinate oder Benzoylisoxazole und analogen Wirkstoffe, oder gegen beliebige Kombinationen dieser Wirkstoffe, resistent sind. Besonders bevorzugt können die erfindungsgemäßen Verbindungen in transgenen Kulturpflanzen eingesetzt werden, die gegen eine Kombination von Glyphosaten und Glufosinaten, Glyphosaten und Sulfonylharnstoffen oder Imidazolinonen resistent sind. Ganz besonders bevorzugt können die erfindungsgemäßen Verbindungen in transgenen Kulturpflanzen wie z. B. Mais oder Soja mit dem Handelsnamen oder der Bezeichnung OptimumTM GATTM (Glyphosate ALS Tolerant) eingesetzt werden. Bei der Anwendung der erfindungsgemäßen Wirkstoffe in transgenen Kulturen treten neben den in anderen Kulturen zu beobachtenden Wirkungen gegenüber Schadpflanzen oftmals Wirkungen auf, die für die Applikation in der jeweiligen transgenen Kultur spezifisch sind, beispielsweise ein verändertes oder speziell erweitertes Unkrautspektrum, das bekämpft werden kann, veränderte Aufwandmengen, die für die Applikation eingesetzt werden können, vorzugsweise gute Kombinierbarkeit mit den Herbiziden, gegenüber denen die transgene Kultur resistent ist, sowie Beeinflussung von Wuchs und Ertrag der transgenen Kulturpflanzen. Gegenstand der Erfindung ist deshalb auch die Verwendung der erfindungsgemäßen Verbindungen der Formel (I) als Herbizide zur Bekämpfung von Schadpflanzen in transgenen Kulturpflanzen. Die erfindungsgemäßen Verbindungen können in Form von Spritzpulvern, emulgierbaren Konzentraten, versprühbaren Lösungen, Stäubemitteln oder Granulaten in den üblichen Zubereitungen angewendet werden. Gegenstand der Erfindung sind deshalb auch herbizide und pflanzenwachstumsregulierende Mittel, welche die erfindungsgemäßen Verbindungen enthalten. Die erfindungsgemäßen Verbindungen können auf verschiedene Art formuliert werden, je nachdem welche biologischen und/oder chemisch-physikalischen Parameter vorgegeben sind. Als Formulierungsmöglichkeiten kommen beispielsweise in Frage: Spritzpulver (WP), wasserlösliche Pulver (SP), wasserlösliche Konzentrate, emulgierbare Konzentrate (EC), Emulsionen (EW), wie Öl-in-Wasser- und Wasser-in-Öl-Emulsionen, versprühbare Lösungen, Suspensionskonzentrate (SC), Dispersionen auf Öl- oder Wasserbasis, ölmischbare Lösungen, Kapselsuspensionen (CS), Stäubemittel (DP), Beizmittel, Granulate für die Streu- und Bodenapplikation, Granulate (GR) in Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, wasserdispergierbare Granulate (WG), wasserlösliche Granulate (SG), ULV-Formulierungen, Mikrokapseln und Wachse. Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden beispielsweise beschrieben in: Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hanser Verlag München, 4. Aufl. 1986, Wade van Valkenburg, "Pesticide Formulations", Marcel Dekker, N.Y., 1973, K. Martens, "Spray Drying" Handbook, 3rd Ed.1979, G. Goodwin Ltd. London. Die notwendigen Formulierungshilfsmittel wie Inertmaterialien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J., H.v. Olphen, "Introduction to Clay Colloid Chemistry", 2nd Ed., J. Wiley & Sons, N.Y., C. Marsden, "Solvents Guide", 2nd Ed., Interscience, N.Y.1963, McCutcheon's "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J., Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964, Schönfeldt, "Grenzflächenaktive Äthylenoxid-addukte", Wiss. Verlagsgesell., Stuttgart 1976, Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hanser Verlag München, 4. Aufl.1986. Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen Wirkstoffen, wie z.B. Insektiziden, Akariziden, Herbiziden, Fungiziden, sowie mit Safenern, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix. Als Kombinationspartner für die erfindungsgemäßen Verbindungen in Mischungsformulierungen oder im Tank-Mix sind beispielsweise bekannte Wirkstoffe, die auf einer Inhibition von beispielsweise Acetolactat-Synthase, Acetyl-CoA-Carboxylase, Cellulose-Synthase, Enolpyruvylshikimat-3-phosphat- Synthase, Glutamin-Synthetase, p-Hydroxyphenylpyruvat-Dioxygenase, Phytoendesaturase, Photosystem I, Photosystem II oder Protoporphyrinogen-Oxidase beruhen, einsetzbar, wie sie z.B. aus Weed Research 26 (1986) 441-445 oder "The Pesticide Manual", 16th edition, The British Crop Protection Council und the Royal Soc. of Chemistry, 2006 und dort zitierter Literatur beschrieben sind. Nachfolgend werden beispielhaft bekannte Herbizide oder Pflanzenwachstumsregulatoren genannt, die mit den erfindungsgemäßen Verbindungen kombiniert werden können, wobei diese Wirkstoffe entweder mit ihrem "common name" in der englischsprachigen Variante gemäß International Organization for Standardization (ISO) oder mit dem chemischen Namen bzw. mit der Codenummer bezeichnet sind. Dabei sind stets sämtliche Anwendungsformen wie beispielsweise Säuren, Salze, Ester sowie auch alle isomeren Formen wie Stereoisomere und optische Isomere umfaßt, auch wenn diese nicht explizit erwähnt sind. Beispiele für solche herbiziden Mischungspartner sind: Acetochlor, acifluorfen, acifluorfen-sodium, aclonifen, alachlor, allidochlor, alloxydim, alloxydim- sodium, ametryn, amicarbazone, amidochlor, amidosulfuron, 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1H- indol-6-yl)pyridine-2-carboxylic acid, aminocyclopyrachlor, aminocyclopyrachlor-potassium, aminocyclopyrachlor-methyl, aminopyralid, amitrole, ammoniumsulfamate, anilofos, asulam, atrazine, azafenidin, azimsulfuron, beflubutamid, benazolin, benazolin-ethyl, benfluralin, benfuresate, bensulfuron, bensulfuron-methyl, bensulide, bentazone, benzobicyclon, benzofenap, bicyclopyron, bifenox, bilanafos, bilanafos-sodium, bispyribac, bispyribac-sodium, bixlozone, bromacil, bromobutide, bromofenoxim, bromoxynil, bromoxynil-butyrate, -potassium, -heptanoate und -octanoate, busoxinone, butachlor, butafenacil, butamifos, butenachlor, butralin, butroxydim, butylate, cafenstrole, carbetamide, carfentrazone, carfentrazone-ethyl, chloramben, chlorbromuron, 1-{2-Chlor-3-[(3-cyclopropyl-5- hydroxy-1-methyl-1H-pyrazol-4-yl)carbonyl]-6-(trifluormethyl)phenyl}piperidin-2-on, 4-{2-Chlor-3- [(3,5-dimethyl-1H-pyrazol-1-yl)methyl]-4-(methylsulfonyl)benzoyl}-1,3-dimethyl-1H-pyrazol-5-yl-1,3- dimethyl-1H-pyrazol-4-carboxylat, chlorfenac, chlorfenac-sodium, chlorfenprop, chlorflurenol, chlorflurenol-methyl, chloridazon, chlorimuron, chlorimuron-ethyl, 2-[2-Chlor-4-(methylsulfonyl)-3- (morpholin-4-ylmethyl)benzoyl]-3-hydroxycyclohex-2-en-1-on, 4-{2-Chlor-4-(methylsulfonyl)-3- [(2,2,2-trifluorethoxy)methyl]benzoyl}-1-ethyl-1H-pyrazol-5-yl-1,3-dimethyl-1H-pyrazol-4-carboxylat, chlorophthalim, chlorotoluron, chlorthal-dimethyl, chlorsulfuron, 3-[5-Chlor-4-(trifluormethyl)pyridin-2- yl]-4-hydroxy-1-methylimidazolidin-2-on, cinidon, cinidon-ethyl, cinmethylin, cinosulfuron, clacyfos, clethodim, clodinafop, clodinafop-propargyl, clomazone, clomeprop, clopyralid, cloransulam, cloransulam-methyl, cumyluron, cyanamide, cyanazine, cycloate, cyclopyranil, cyclopyrimorate, cyclosulfamuron, cycloxydim, cyhalofop, cyhalofop-butyl, cyprazine, 2,4-D, 2,4-D-butotyl, -butyl, - dimethylammonium, -diolamin, -ethyl, 2-ethylhexyl, -isobutyl, -isooctyl, -isopropylammonium, - potassium, -triisopropanolammonium und -trolamine, 2,4-DB, 2,4-DB-butyl, -dimethylammonium, isooctyl, -potassium und -sodium, daimuron (dymron), dalapon, dazomet, n-decanol, desmedipham, detosyl-pyrazolate (DTP), dicamba, dichlobenil, dichlorprop, dichlorprop-P, diclofop, diclofop-methyl, diclofop-P-methyl, diclosulam, difenzoquat, diflufenican, diflufenzopyr, diflufenzopyr-sodium, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, 3-(2,6- Dimethylphenyl)-6-[(2-hydroxy-6-oxocyclohex-1-en-1-yl)carbonyl]-1-methylchinazolin-2,4(1H,3H)- dion, 1,3-Dimethyl-4-[2-(methylsulfonyl)-4-(trifluormethyl)benzoyl]-1H-pyrazol-5-yl-1,3-dimethyl-1H- pyrazol-4-carboxylat, dimetrasulfuron, dinitramine, dinoterb, diphenamid, diquat, diquat-dibromid, dithiopyr, diuron, DMPA, DNOC, endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron, ethamet- sulfuron-methyl, ethiozin, ethofumesate, ethoxyfen, ethoxyfen-ethyl, ethoxysulfuron, etobenzanid, Ethyl- [(3-{2-chlor-4-fluor-5-[3-methyl-2,6-dioxo-4-(trifluormethyl)-3,6-dihydropyrimidin-1(2H)- yl]phenoxy}pyridin-2-yl)oxy]acetat, F-9960, F-5231, i.e. N-[2-Chlor-4-fluor-5-[4-(3-fluorpropyl)-4,5- dihydro-5-oxo-1H-tetrazol-1-yl]-phenyl]-ethansulfonamid, F-7967, i.e. 3-[7-Chlor-5-fluor-2- (trifluormethyl)-1H-benzimidazol-4-yl]-1-methyl-6-(trifluormethyl)pyrimidin-2,4(1H,3H)-dion, fenoxaprop, fenoxaprop-P, fenoxaprop-ethyl, fenoxaprop-P-ethyl, fenoxasulfone, fenquinotrione, fentrazamide, flamprop, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, florasulam, florpyrauxifen, florpyrauxifen-benzyl, fluazifop, fluazifop-P, fluazifop-butyl, fluazifop-P-butyl, flucarbazone, flucarbazone-sodium, flucetosulfuron, fluchloralin, flufenacet, flufenpyr, flufenpyr-ethyl, flumetsulam, flumiclorac, flumiclorac-pentyl, flumioxazin, fluometuron, flurenol, flurenol-butyl, - dimethylammonium und -methyl, fluoroglycofen, fluoroglycofen-ethyl, flupropanate, flupyrsulfuron, flupyrsulfuron-methyl-sodium, fluridone, flurochloridone, fluroxypyr, fluroxypyr-meptyl, flurtamone, fluthiacet, fluthiacet-methyl, fomesafen, fomesafen-sodium, foramsulfuron, fosamine, glufosinate, glufosinate-ammonium, glufosinate-P-sodium, glufosinate-P-ammonium, glufosinate-P-sodium, glyphosate, glyphosate-ammonium, -isopropylammonium, -diammonium, -dimethylammonium, - potassium, -sodium und -trimesium, H-9201, i.e. O-(2,4-Dimethyl-6-nitrophenyl)-O-ethyl- isopropylphosphoramidothioat, halauxifen, halauxifen-methyl, halosafen, halosulfuron, halosulfuron- methyl, haloxyfop, haloxyfop-P, haloxyfop-ethoxyethyl, haloxyfop-P-ethoxyethyl, haloxyfop-methyl, haloxyfop-P-methyl, hexazinone, HW-02, i.e. 1-(Dimethoxyphosphoryl)-ethyl-(2,4- dichlorphenoxy)acetat, 4-Hydroxy-1-methoxy-5-methyl-3-[4-(trifluormethyl)pyridin-2-yl]imidazolidin- 2-on, 4-Hydroxy-1-methyl-3-[4-(trifluormethyl)pyridin-2-yl]imidazolidin-2-on, (5-Hydroxy-1-methyl- 1H-pyrazol-4-yl)(3,3,4-trimethyl-1,1-dioxido-2,3-dihydro-1-benzothiophen-5-yl)methanon, 6-[(2- Hydroxy-6-oxocyclohex-1-en-1-yl)carbonyl]-1,5-dimethyl-3-(2-methylphenyl)chinazolin-2,4(1H,3H)- dion, imazamethabenz, Imazamethabenz-methyl, imazamox, imazamox-ammonium, imazapic, imazapic- ammonium, imazapyr, imazapyr-isopropylammonium, imazaquin, imazaquin-ammonium, imazethapyr, imazethapyr-immonium, imazosulfuron, indanofan, indaziflam, iodosulfuron, iodosulfuron-methyl- sodium, ioxynil, ioxynil-octanoate, -potassium und sodium, ipfencarbazone, isoproturon, isouron, isoxaben, isoxaflutole, karbutilate, KUH-043, i.e. 3-({[5-(Difluormethyl)-1-methyl-3-(trifluormethyl)- 1H-pyrazol-4-yl]methyl}sulfonyl)-5,5-dimethyl-4,5-dihydro-1,2-oxazol, ketospiradox, lactofen, lenacil, linuron, MCPA, MCPA-butotyl, -dimethylammonium, -2-ethylhexyl, -isopropylammonium, -potassium und -sodium, MCPB, MCPB-methyl, -ethyl und -sodium, mecoprop, mecoprop-sodium, und -butotyl, mecoprop-P, mecoprop-P-butotyl, -dimethylammonium, -2-ethylhexyl und -potassium, mefenacet, mefluidide, mesosulfuron, mesosulfuron-methyl, mesotrione, methabenzthiazuron, metam, metamifop, metamitron, metazachlor, metazosulfuron, methabenzthiazuron, methiopyrsulfuron, methiozolin, 2- ({2-[(2-Methoxyethoxy)methyl]-6-(trifluormethyl)pyridin-3-yl}carbonyl)cyclohexan-1,3-dion, methyl isothiocyanate, 1-Methyl-4-[(3,3,4-trimethyl-1,1-dioxido-2,3-dihydro-1-benzothiophen-5-yl)carbonyl]- 1H-pyrazol-5-ylpropan-1-sulfonat, metobromuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, metsulfuron-methyl, molinat, monolinuron, monosulfuron, monosulfuron-ester, MT-5950, i.e. N-[3-chlor-4-(1-methylethyl)-phenyl]-2-methylpentanamid, NGGC-011, napropamide, NC-310, i.e.4-(2,4-Dichlorbenzoyl)-1-methyl-5-benzyloxypyrazol, neburon, nicosulfuron, nonanoic acid (Pelargonsäure), norflurazon, oleic acid (fatty acids), orbencarb, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefon, oxotrione (lancotrione), oxyfluorfen, paraquat, paraquat dichloride, pebulate, pendimethalin, penoxsulam, pentachlorphenol, pentoxazone, pethoxamid, petroleum oils, phenmedipham, picloram, picolinafen, pinoxaden, piperophos, pretilachlor, primisulfuron, primisulfuron-methyl, prodiamine, profoxydim, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, propisochlor, propoxycarbazone, propoxycarbazone-sodium, propyrisulfuron, propyzamide, prosulfocarb, prosulfuron, pyraclonil, pyraflufen, pyraflufen-ethyl, pyrasulfotole, pyrazolynate (pyrazolate), pyrazosulfuron, pyrazosulfuron-ethyl, pyrazoxyfen, pyribambenz, pyribambenz-isopropyl, pyribambenz-propyl, pyribenzoxim, pyributicarb, pyridafol, pyridate, pyriftalid, pyriminobac, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyrithiobac-sodium, pyroxasulfone, pyroxsulam, quinclorac, quinmerac, quinoclamine, quizalofop, quizalofop-ethyl, quizalofop-P, quizalofop-P-ethyl, quizalofop-P-tefuryl, QYM-201, QYR-301, rimsulfuron, saflufenacil, sethoxydim, siduron, simazine, simetryn, sulcotrion, sulfentrazone, sulfometuron, sulfometuron-methyl, sulfosulfuron, , SYN-523, SYP-249, i.e. 1-Ethoxy-3-methyl-1-oxobut-3-en-2-yl-5-[2-chlor-4- (trifluormethyl)phenoxy]-2-nitrobenzoat, SYP-300, i.e.1-[7-Fluor-3-oxo-4-(prop-2-in-1-yl)-3,4-dihydro- 2H-1,4-benzoxazin-6-yl]-3-propyl-2-thioxoimidazolidin-4,5-dion, 2,3,6-TBA, TCA (Trifluoressigsäure), TCA-sodium, tebuthiuron, tefuryltrione, tembotrione, tepraloxydim, terbacil, terbucarb, terbumeton, terbuthylazin, terbutryn, tetflupyrolimet, thenylchlor, thiazopyr, thiencarbazone, thiencarbazone-methyl, thifensulfuron, thifensulfuron-methyl, thiobencarb, tiafenacil, tolpyralate, topramezone, tralkoxydim, triafamone, tri-allate, triasulfuron, triaziflam, tribenuron, tribenuron-methyl, triclopyr, trietazine, trifloxysulfuron, trifloxysulfuron-sodium, trifludimoxazin, trifluralin, triflusulfuron, triflusulfuron- methyl, tritosulfuron, urea sulfate, vernolate, ZJ-0862, i.e. 3,4-Dichlor-N-{2-[(4,6-dimethoxypyrimidin- 2-yl)oxy]benzyl}anilin. Beispiele für Pflanzenwachstumsregulatoren als mögliche Mischungspartner sind: Acibenzolar, acibenzolar-S-methyl, 5-Aminolävulinsäure, ancymidol, 6-benzylaminopurine, Brassinolid, Catechin, chlormequat chloride, cloprop, cyclanilide, 3-(Cycloprop-1-enyl)propionsäure, daminozide, dazomet, n-decanol, dikegulac, dikegulac-sodium, endothal, endothal-dipotassium, -disodium, und mono(N,N-dimethylalkylammonium), ethephon, flumetralin, flurenol, flurenol-butyl, flurprimidol, forchlorfenuron, gibberellic acid, inabenfide, indol-3-acetic acid (IAA), 4-indol-3-ylbutyric acid, isoprothiolane, probenazole, Jasmonsäure, Jasmonsäuremethylester, maleic hydrazide, mepiquat chloride, 1-methylcyclopropene, 2-(1-naphthyl)acetamide, 1-naphthylacetic acid, 2- naphthyloxyacetic acid, nitrophenolate-mixture, 4-Oxo-4[(2-phenylethyl)amino]buttersäure, paclobutrazol, N-phenylphthalamic acid, prohexadione, prohexadione-calcium, prohydrojasmone, Salicylsäure, Strigolacton, tecnazene, thidiazuron, triacontanol, trinexapac, trinexapac-ethyl, tsitodef, uniconazole, uniconazole-P. Safener, die in Kombination mit den erfindungsgemäßen Verbindungen der Formel (I) und ggf. in Kombinationen mit weiteren Wirkstoffen wie z.B. Insektiziden, Akariziden, Herbiziden, Fungiziden wie oben aufgelistet, eingesetzt werden können, sind vorzugsweise ausgewählt aus der Gruppe bestehend aus: S1) Verbindungen der Formel (S1), R 14 is H, methyl. The compounds of the formula (I) according to the invention (and / or salts thereof), hereinafter referred to collectively as “compounds according to the invention”, have excellent herbicidal activity against a broad spectrum of economically important monocotyledon and dicotyledon annual harmful plants. The present invention therefore also provides a method for controlling unwanted plants or for regulating the growth of plants, preferably in plant crops, in which one or more compound (s) according to the invention are applied to the plants (for example harmful plants such as monocotyledonous or dicotyledonous weeds or unwanted crop plants), the seeds (e.g. grains, seeds or vegetative reproductive organs such as tubers or sprouts with buds) or the area on which the plants grow (e.g. the area under cultivation) are applied. The compounds according to the invention can be applied, for example, by the pre-sowing method (optionally also by incorporation into the soil), pre-emergence or post-emergence method. Some representatives of the monocotyledonous and dicotyledonous weed flora that are caused by the inventive Connections can be controlled without restricting them to certain types. Monocotyledonous harmful plants of the genera: Aegilops, Agropyron, Agrostis, Alopecurus, Apera, Avena, Brachiaria, Bromus, Cenchrus, Commelina, Cynodon, Cyperus, Dactyloctenium, Digitaria, Echinochloa, Eleocharis, Eleusine, Fagrostis, Festylochata , Ischaemum, Leptochloa, Lolium, Monochoria, Panicum, Paspalum, Phalaris, Phleum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sorghum. Dicot weeds of the genera: Abutilon, Amaranthus, Ambrosia, Anoda, Anthemis, Aphanes, Artemisia, Atriplex, Bellis, Bidens, Capsella, Carduus, Cassia, Centaurea, Chenopodium, Cirsium, Convolvulus, Datura, Desmodium, Emex, Erysimum, Ealeopshorbia , Galinsoga, Galium, Hibiscus, Ipomoea, Kochia, Lamium, Lepidium, Lindernia, Matricaria, Mentha, Mercurialis, Mullugo, Myosotis, Papaver, Pharbitis, Plantago, Polygonum, Portulaca, Ranunculus, Raphanus, Rorippa, Rotala, Rumex, Salsola, Senecio , Sesbania, Sida, Sinapis, Solanum, Sonchus, Sphenoclea, Stellaria, Taraxacum, Thlaspi, Trifolium, Urtica, Veronica, Viola, Xanthium. If the compounds according to the invention are applied to the surface of the earth before germination, either the emergence of the weed seedlings is completely prevented or the weeds grow to the cotyledon stage, but then stop growing. When the active ingredients are applied to the green parts of the plant using the post-emergence method, growth arrests after the treatment and the harmful plants remain in the growth stage present at the time of application or die completely after a certain time, so that in this way competition from weeds that is harmful to the crop plants is very early and is permanently eliminated. The compounds according to the invention can have selectivities in useful crops and can also be used as non-selective herbicides. Because of their herbicidal and plant growth regulatory properties, the active compounds can also be used for combating harmful plants in crops of known or still to be developed genetically modified plants. The transgenic plants are usually characterized by particularly advantageous properties, for example by resistance to certain active ingredients used in the agricultural industry, especially certain herbicides, resistance to plant diseases or pathogens of plant diseases such as certain insects or microorganisms such as fungi, bacteria or viruses. Other special properties concern e.g. the crop in terms of quantity, quality, Shelf life, composition and special ingredients. Thus, transgenic plants with an increased starch content or a changed quality of the starch or those with a different fatty acid composition of the harvested material are known. Other special properties are tolerance or resistance to abiotic stressors such as heat, cold, drought, salt and ultraviolet radiation. Preference is given to using the compounds of the formula (I) according to the invention or their salts in economically important transgenic crops of useful and ornamental plants. The compounds of the formula (I) can be used as herbicides in useful plant crops which are resistant to the phytotoxic effects of the herbicides or made genetically resistant. Conventional ways of producing new plants that have modified properties compared to previously occurring plants consist, for example, in classic breeding processes and the creation of mutants. Alternatively, new plants with modified properties can be produced with the aid of genetic engineering processes (see eg EP 0221044, EP 0131624). For example, genetic modifications of crop plants for the purpose of modifying the starch synthesized in the plants (e.g. WO 92/011376 A, WO 92/014827 A, WO 91/019806 A), transgenic crop plants which are resistant to certain herbicides of the glufosinate type ( See, for example, EP 0242236 A, EP 0242246 A) or glyphosate (WO 92/000377 A) or the sulfonylureas (EP 0257993 A, US 5,013,659) or are resistant to combinations or mixtures of these herbicides by “gene stacking”, such as transgenic crops e.g. . B. corn or soy with the trade name or the designation Optimum GAT (Glyphosate ALS Tolerant). - Transgenic crop plants, for example cotton, with the ability to produce Bacillus thuringiensis toxins (Bt toxins), which make the plants resistant to certain pests (EP 0142924 A, EP 0193259 A). - transgenic crop plants with modified fatty acid composition (WO 91/013972 A). - genetically modified crops with new ingredients or secondary substances, for example new phytoalexins, which cause increased disease resistance (EP 0309862 A, EP 0464461 A) - genetically modified plants with reduced photorespiration, which have higher yields and higher stress tolerance (EP 0305398 A) - transgenic Cultivated plants that produce pharmaceutically or diagnostically important proteins (“Molecular pharming”) - transgenic crops that are characterized by higher yields or better quality - transgenic crops that are characterized by a combination of, for example, the above-mentioned new properties (“gene stacking”) Numerous molecular biological techniques with which new transgenic plants are modified Properties that can be produced are known in principle; see, for example, I. Potrykus and G. Spangenberg (eds.) Gene Transfer to Plants, Springer Lab Manual (1995), Springer Verlag Berlin, Heidelberg. or Christou, "Trends in Plant Science" 1 (1996) 423-431). For such genetic engineering manipulations, nucleic acid molecules can be introduced into plasmids which allow mutagenesis or a sequence change by recombining DNA sequences. With the help of standard procedures, for example, base exchanges can be carried out, partial sequences can be removed or natural or synthetic sequences can be added. To connect the DNA fragments to one another, adapters or linkers can be added to the fragments, see, for example, Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2nd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; or Winnacker "Gene und Klone", VCH Weinheim 2nd edition 1996 The production of plant cells with a reduced activity of a gene product can be achieved, for example, by expressing at least one corresponding antisense RNA, one sense RNA to achieve a cosuppression effect or expression at least a correspondingly constructed ribozyme which specifically cleaves transcripts of the above-mentioned gene product. For this purpose, on the one hand, DNA molecules can be used that include the entire coding sequence of a gene product including any flanking sequences that may be present, as well as DNA molecules that only include parts of the coding sequence, these parts having to be long enough to be in the cells to bring about an antisense effect. It is also possible to use DNA sequences which have a high degree of homology to the coding sequences of a gene product, but which are not completely identical. When nucleic acid molecules are expressed in plants, the synthesized protein can be localized in any desired compartment of the plant cell. In order to achieve the localization in a certain compartment, for example, the coding region can be linked to DNA sequences which ensure the localization in a certain compartment. Such sequences are known to the person skilled in the art (see, for example, Braun et al., EMBO J. 11 (1992), 3219-3227; Wolter et al., Proc. Natl. Acad. Sci. USA 85 (1988), 846-850; Sonnewald et al., Plant J. 1: 95-106 (1991)). The expression of the nucleic acid molecules can also take place in the organelles of the plant cells. The transgenic plant cells can be regenerated into whole plants using known techniques. In principle, the transgenic plants can be plants of any plant species, ie, both monocotyledonous and dicotyledonous plants. Thus, transgenic plants can be obtained which have altered properties through overexpression, suppression or inhibition of homologous (= natural) genes or gene sequences or the expression of heterologous (= foreign) genes or gene sequences. The compounds (I) according to the invention can preferably be used in transgenic crops which are effective against growth substances such as 2,4-D, dicamba or against herbicides, the essential plant enzymes, e.g. acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS) or hydoxyphenylpyruvate Dioxygenases (HPPD) inhibit or are resistant to herbicides from the group of sulfonylureas, glyphosates, glufosinates or benzoylisoxazoles and analogous active ingredients, or to any combination of these active ingredients. The compounds according to the invention can particularly preferably be used in transgenic crop plants which are resistant to a combination of glyphosates and glufosinates, glyphosates and sulfonylureas or imidazolinones. The compounds according to the invention can very particularly preferably be used in transgenic crop plants such as. B. corn or soy with the trade name or the designation OptimumTM GATTM (Glyphosate ALS Tolerant) can be used. When the active ingredients according to the invention are used in transgenic crops, in addition to the effects on harmful plants observed in other crops, effects that are specific to the application in the respective transgenic crop, for example a modified or specially expanded weed spectrum that can be controlled, often occur Application rates which can be used for the application, preferably good compatibility with the herbicides to which the transgenic culture is resistant, and influencing the growth and yield of the transgenic crop plants. The invention therefore also relates to the use of the compounds of the formula (I) according to the invention as herbicides for controlling harmful plants in transgenic crop plants. The compounds according to the invention can be used in the customary preparations in the form of wettable powders, emulsifiable concentrates, sprayable solutions, dusts or granules. The invention therefore also relates to herbicidal and Plant growth regulating agents which contain the compounds according to the invention. The compounds according to the invention can be formulated in various ways, depending on which biological and / or chemico-physical parameters are given. Possible formulation options include, for example: wettable powders (WP), water-soluble powders (SP), water-soluble concentrates, emulsifiable concentrates (EC), emulsions (EW), such as oil-in-water and water-in-oil emulsions, sprayable solutions , Suspension concentrates (SC), oil- or water-based dispersions, oil-miscible solutions, capsule suspensions (CS), dusts (DP), dressings, granules for litter and soil application, granules (GR) in the form of micro, spray, lift - and adsorption granules, water-dispersible granules (WG), water-soluble granules (SG), ULV formulations, microcapsules and waxes. These individual formulation types are known in principle and are described, for example, in: Winnacker-Küchler, "Chemische Technologie", Volume 7, C. Hanser Verlag Munich, 4th edition 1986, Wade van Valkenburg, "Pesticide Formulations", Marcel Dekker, NY , 1973, K. Martens, "Spray Drying" Handbook, 3rd Ed. 1979, G. Goodwin Ltd. London. The necessary formulation auxiliaries such as inert materials, surfactants, solvents and other additives are also known and are described, for example, in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell NJ, Hv Olphen, "Introduction to Clay Colloid Chemistry ", 2nd Ed., J. Wiley & Sons, NY, C. Marsden," Solvents Guide ", 2nd Ed., Interscience, NY 1963, McCutcheon's" Detergents and Emulsifiers Annual ", MC Publ. Corp., Ridgewood NJ, Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., NY 1964, Schönfeldt, "Grenzflächenaktiv Äthylenoxid-addukte", Wiss. Verlagsgesell., Stuttgart 1976, Winnacker-Küchler, "Chemische Technologie", Volume 7, C. Hanser Verlag Munich, 4th edition 1986. On the basis of these formulations, combinations with other active ingredients, such as insecticides, acaricides, herbicides, fungicides, and with safeners, fertilizers and / or growth regulators, for example in the form of a finished formulation or as a tank mix, can also be produced. Combination partners for the compounds according to the invention in mixture formulations or in the tank mix are, for example, known active ingredients which act on an inhibition of, for example, acetolactate synthase, acetyl-CoA carboxylase, cellulose synthase, enolpyruvylshikimate-3-phosphate synthase, glutamine synthetase, p-hydroxyphenylpyruvate dioxygenase, phytoene desaturase, photosystem I, photosystem II or protoporphyrinogen oxidase, can be used, as described, for example, in Weed Research 26 (1986) 441-445 or "The Pesticide Manual", 16th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2006 and the literature cited there. Known herbicides or plant growth regulators with the Compounds according to the invention can be combined, these active ingredients being designated either by their "common name" in the English-language variant according to the International Organization for Standardization (ISO) or by the chemical name or by the code number. This always includes all application forms such as acids, salts, esters and also all isomeric forms such as stereoisomers and optical isomers, even if these are not explicitly mentioned. Examples of such herbicidal mixture partners are: Acetochlor, acifluorfen, acifluorfen-sodium, aclonifen, alachlor, allidochlor, alloxydim, alloxydim-sodium, ametryn, amicarbazone, amidochlor, amidosulfuron, 4-amino-3-chloro-5-fluoro-6- ( 7-fluoro-1H- indol-6-yl) pyridine-2-carboxylic acid, aminocyclopyrachlor, aminocyclopyrachlor-potassium, aminocyclopyrachlor-methyl, aminopyralid, amitrole, ammoniumsulfamate, anilofamidos, asulam, atrazine, azafenidin, beazubolin, benflutazolin, -ethyl, benfluralin, benfuresate, bensulfuron, bensulfuron-methyl, bensulide, bentazone, benzobicyclon, benzofenap, bicyclopyrone, bifenox, bilanafos, bilanafos-sodium, bispyribac, bispyribac-sodium, bixlozone, bromacil, brateomoxynoxynoxyn-butide, bromobutide , -potassium, -heptanoate and -octanoate, busoxinone, butachlor, butafenacil, butamifos, butenachlor, butraline, butroxydim, butylate, cafenstrole, carbetamide, carfentrazone, carfentrazone-ethyl, chloramben, chlorbro muron, 1- {2-chloro-3 - [(3-cyclopropyl-5-hydroxy-1-methyl-1H-pyrazol-4-yl) carbonyl] -6- (trifluoromethyl) phenyl} piperidin-2-one, 4 - {2-Chloro-3- [(3,5-dimethyl-1H-pyrazol-1-yl) methyl] -4- (methylsulfonyl) benzoyl} -1,3-dimethyl-1H-pyrazol-5-yl-1 , 3- dimethyl-1H-pyrazole-4-carboxylate, chlorfenac, chlorfenac-sodium, chlorfenprop, chlorflurenol, chlorflurenol-methyl, chloridazon, chlorimuron, chlorimuron-ethyl, 2- [2-chloro-4- (methylsulfonyl) -3- (morpholin-4-ylmethyl) benzoyl] -3-hydroxycyclohex-2-en-1-one, 4- {2-chloro-4- (methylsulfonyl) -3- [(2,2,2-trifluoroethoxy) methyl] benzoyl } -1-ethyl-1H-pyrazol-5-yl-1,3-dimethyl-1H-pyrazole-4-carboxylate, chlorophthalim, chlorotoluron, chlorthal-dimethyl, chlorosulfuron, 3- [5-chloro-4- (trifluoromethyl) pyridin-2- yl] -4-hydroxy-1-methylimidazolidin-2-one, cinidon, cinidon-ethyl, cinmethylin, cinosulfuron, clacyfos, clethodim, clodinafop, clodinafop-propargyl, clomazone, clomeprop, clopyralid, cloransulam-methyl, cloransulam , cumyluron, cyanamide, cyanazine, cycloate, cyclopyranil , cyclopyrimorate, cyclosulfamuron, cycloxydim, cyhalofop, cyhalofop-butyl, cyprazine, 2,4-D, 2,4-D-butotyl, -butyl, -dimethylammonium, -diolamine, -ethyl, 2-ethylhexyl, -isobutyl, -isooctyl , -isopropylammonium, -potassium, -triisopropanolammonium and -trolamine, 2,4-DB, 2,4-DB-butyl, -dimethylammonium, isooctyl, -potassium and -sodium, daimuron (dymron), dalapon, dazomet, n-decanol , desmedipham, detosyl-pyrazolate (DTP), dicamba, dichlobenil, dichlorprop, dichlorprop-P, diclofop, diclofop-methyl, diclofop-P-methyl, diclosulam, difenzoquat, diflufenican, diflufenzopyr, dimetheplorate, sodium-sodium dimethametryn, dimethenamid, dimethenamid-P, 3- (2,6-dimethylphenyl) -6 - [(2-hydroxy-6-oxocyclohex-1-en-1-yl) carbonyl] -1-methylquinazoline-2,4 (1H , 3H) -dione, 1,3-dimethyl-4- [2- (methylsulfonyl) -4- (trifluoromethyl) benzoyl] -1H-pyrazol-5-yl-1,3-dimethyl-1H-pyrazole-4-carboxylate , dimetrasulfuron, dinitramine, dinoterb, diphenamid, diquat, diquat-dibromide, dithiopyr, diuron, DMPA, DNOC, endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron, ethamet-sulfuron-methyl, ethiozin, ethofumesate, ethoxyfen, ethoxyfen-ethyl, ethoxysulfuron, etobenzanid, ethyl- [(3- {2-chloro-4 -fluoro-5- [3-methyl-2,6-dioxo-4- (trifluoromethyl) -3,6-dihydropyrimidin-1 (2H) -yl] phenoxy} pyridin-2-yl) oxy] acetate, F-9960 , F-5231, ie N- [2-chloro-4-fluoro-5- [4- (3-fluoropropyl) -4,5-dihydro-5-oxo-1H-tetrazol-1-yl] phenyl] - ethanesulfonamide, F-7967, ie 3- [7-chloro-5-fluoro-2- (trifluoromethyl) -1H-benzimidazol-4-yl] -1-methyl-6- (trifluoromethyl) pyrimidine-2,4 (1H, 3H) -dione, fenoxaprop, fenoxaprop-P, fenoxaprop-ethyl, fenoxaprop-P-ethyl, fenoxasulfone, fenquinotrione, fentrazamide, flamprop, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, florasulam, florpyrauxifen, florpyl , fluazifop, fluazifop-P, fluazifop-butyl, fluazifop-P-butyl, flucarbazone, flucarbazone-sodium, flucetosulfuron, fluchloralin, flufenacet, flufenpyr, flufenpyr-ethyl, flumetsulam, flumiclorac, flumi clorac-pentyl, flumioxazin, fluometuron, flurenol, flurenol-butyl, -dimethylammonium and -methyl, fluoroglycofen, fluoroglycofen-ethyl, flupropanate, flupyrsulfuron, flupyrsulfuron-methyl-sodium, fluridone, fluruthloridone, fluroxypyram, fluroxypyretone, fluroxypyretone, fluroxypyramone fluthiacet-methyl, fomesafen, fomesafen-sodium, foramsulfuron, fosamine, glufosinate, glufosinate-ammonium, glufosinate-P-sodium, glufosinate-P-ammonium, glufosinate-P-sodium, glyphosate, glyphosate-ammonium, -isopropylammonium, -diammonium, Dimethylammonium, potassium, sodium and trimesium, H-9201, ie O- (2,4-dimethyl-6-nitrophenyl) -O-ethyl isopropyl phosphoramidothioate, halauxifen, halauxifen-methyl, halosafen, halosulfuron, halosulfuron-methyl , haloxyfop, haloxyfop-P, haloxyfop-ethoxyethyl, haloxyfop-P-ethoxyethyl, haloxyfop-methyl, haloxyfop-P-methyl, hexazinone, HW-02, ie 1- (dimethoxyphosphoryl) -ethyl- (2,4-dichlorophenoxy) acetate , 4-Hydroxy-1-methoxy-5-methyl-3- [4- (trifluoromethyl) pyridin-2-yl] imidazoli din-2-one, 4-hydroxy-1-methyl-3- [4- (trifluoromethyl) pyridin-2-yl] imidazolidin-2-one, (5-hydroxy-1-methyl-1H-pyrazol-4-yl ) (3,3,4-trimethyl-1,1-dioxido-2,3-dihydro-1-benzothiophen-5-yl) methanone, 6 - [(2-hydroxy-6-oxocyclohex-1-en-1- yl) carbonyl] -1,5-dimethyl-3- (2-methylphenyl) quinazoline-2,4 (1H, 3H) -dione, imazamethabenz, imazamethabenz-methyl, imazamox, imazamox-ammonium, imazapic, imazapic-ammonium, imazapyr , imazapyr-isopropylammonium, imazaquin, imazaquin-ammonium, imazethapyr, imazethapyr-immonium, imazosulfuron, indanofan, indaziflam, iodosulfuron, iodosulfuron-methyl-, ioxynil, ioxynil-octanooxone, isfenoprotbassium, sodium, isfenoprotazone, isfenoprotazone, isfenoprotazon, sodium, isfenoprotazon, sodium, isfenopuronazon, sodium, isfenopuron. isoxaflutole, karbutilate, KUH-043, ie 3 - ({[5- (difluoromethyl) -1-methyl-3- (trifluoromethyl) -1H-pyrazol-4-yl] methyl} sulfonyl) -5,5-dimethyl-4 , 5-dihydro-1,2-oxazole, ketospiradox, lactofen, lenacil, linuron, MCPA, MCPA-butotyl, -dimethylammonium, -2-ethylhexyl, -isopropylammonium, -potassium and -sodium, MCPB, MCPB-methy l, -ethyl and -sodium, mecoprop, mecoprop-sodium, and -butotyl, mecoprop-P, mecoprop-P-butotyl, -dimethylammonium, -2-ethylhexyl and -potassium, mefenacet, mefluidide, mesosulfuron, mesosulfuron-methyl, mesotrione , methabenzthiazuron, metam, metamifop, metamitron, metazachlor, metazosulfuron, methabenzthiazuron, methiopyrsulfuron, methiozoline, 2- ({2 - [(2-methoxyethoxy) methyl] -6- (trifluoromethyl) pyridin-3-yl} carbonyl) cyclohexane-1 , 3-dione, methyl isothiocyanate, 1-methyl-4 - [(3,3,4-trimethyl-1,1-dioxido-2,3-dihydro-1-benzothiophen-5-yl) carbonyl] - 1H-pyrazol-5-ylpropane-1-sulfonate, metobromuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, metsulfuron-methyl, molinat, monolinuron, monosulfuron, monosulfuron-ester, MT-5950, ie 3-chloro-4- (1-methylethyl) -phenyl] -2-methylpentanamide, NGGC-011, napropamide, NC-310, ie4- (2,4-dichlorobenzoyl) -1-methyl-5-benzyloxypyrazole, neburon, nicosulfuron , nonanoic acid (pelargonic acid), norflurazon, oleic acid (fatty acids), orbencarb, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefon, oxotrione (lancotrione), oxyfluorfen, oxyfluorfen, paraquat, paraquethalol dichloride, pentachsulfate, pentachsuline, pentachsuline, pentachsulfate dichloride, paraquat, paraquate dichloride, pentachsulphin pentoxazone, pethoxamid, petroleum oils, phenmedipham, picloram, picolinafen, pinoxaden, piperophos, pretilachlor, primisulfuron, primisulfuron-methyl, prodiamine, profoxydim, prometon, prometryn, propachlor, propanil, propaquizafop, propycarbazone, propaquizafop, propycarbazone, propaquizafop, propycarbazone, propycarbazone, sodium, sodium , propyrisulfuron, propyzamide, prosulfocarb, prosulfuron, pyraclonil, pyraflufen, pyraflufen-ethyl, pyrasulfotole, pyrazolynate (pyrazolate), pyrazosulfuron, pyrazosulfuron-ethyl, pyrazoxyfen, pyribambenz, pyribamarbenzal, pyrobutim, pyrobutimid, pyrobutimid, pyrobutimid, pyrobutimid, pyrobutimid, pyrobutacid, pyrobacid -methyl, pyrimisulfan, pyrithiobac, pyrithiobac-sodium, pyroxasulfone, pyroxsulam, quinclorac, quinmerac, quinoclamine, quizalofop, quizalofop-ethyl, quizalofop-P, quizalofop-P-ethyl, QY tefuryl-201, QY tefuryl-201, P -Y tefuryl-201 , rimsulfuron, saflufenacil, sethoxydim, siduron, simazine, simetryn, sulcotrione, sulfentrazone, sulfometuron, sulfometuron-methyl, sulfosulfuron,, SYN-523, SYP-249, ie 1-ethoxy-3-methyl-1-oxobut-3-ene -2-yl-5- [2-chloro-4- (trifluoromethyl) phenoxy] -2-nitrobenzoate, SYP-300, ie1- [7-fluoro-3-oxo-4- (prop-2-yn-1- yl) -3,4-dihydro-2H-1,4-benzoxazin-6-yl] -3-propyl-2-thioxoimidazolidine-4,5-dione, 2,3,6-TBA, TCA (trifluoroacetic acid), TCA -sodium, tebuthiuron, tefuryltrione, tembotrione, tepraloxydim, terbacil, terbucarb, terbumeton, terbuthylazine, terbutryn, tetflupyrolimet, thenylchlor, thiazopyr, thiencarbazone, thiencarbazone-methyl, thifensulfuron, thifensulfuron-methyl, thiobencarb, toprydone-methyl, thiobencarb, toprydamezone, trioben-trias, trioben-tri-zone, tri-oxylazone, trioben-sulfate, tri-oxyzone, tri-oxyzone, tri-oxyzone, tri-oxyzone, tri-oxyzone, tri-oxyralif tribenuron, tribenuron-methyl, triclopyr, trietazine, trifloxysulfuron, trifloxysulfuron-sodium, trifludimoxazin, trifluralin, triflusulfuron, triflusulfuron-methyl, tritosulfuron, urea sulfate, vernolate, ZJ-0862, ie 3,4-dicholate, ZJ-0862, ie 3,4-dicholate (4,6-dimethoxypyrimidin-2-yl) oxy] benzyl} aniline. Examples of plant growth regulators as possible mixing partners are: acibenzolar, acibenzolar-S-methyl, 5-aminolevulinic acid, ancymidol, 6-benzylaminopurine, brassinolide, catechin, chlormequat chloride, cloprop, cyclanilide, 3- (cycloprop-1-enyl) propionic acid, dazomet, n-decanol, dikegulac, dikegulac-sodium, endothal, endothal-dipotassium, -disodium, and mono (N, N-dimethylalkylammonium), ethephon, flumetralin, flurenol, flurenol-butyl, flurprimidol, forchlorfenuron, gibberellic, acid, indol-3-acetic acid (IAA), 4-indol-3-ylbutyric acid, isoprothiolane, probenazole, jasmonic acid, jasmonic acid methyl ester, maleic hydrazide, mepiquat chloride, 1-methylcyclopropene, 2- (1-naphthyl) acetamide, 1-naphthylacetic acid , 2- naphthyloxyacetic acid, nitrophenolate-mixture, 4-oxo-4 [(2-phenylethyl) amino] butyric acid, paclobutrazole, N-phenylphthalamic acid, prohexadione, prohexadione-calcium, prohydrojasmone, salicylic acid, strigolacton, tecnazene, thidiazuron, triacontanol, trinexapac, trinexapac-ethyl, tsitodef, uniconazole, uniconazole-P. Safeners, which can be used in combination with the compounds of the formula (I) according to the invention and optionally in combinations with other active ingredients such as insecticides, acaricides, herbicides, fungicides as listed above, are preferably selected from the group consisting of: S1) Compounds of the formula (S1),
wobei die Symbole und Indizes folgende Bedeutungen haben: nA ist eine natürliche Zahl von 0 bis 5, vorzugsweise 0 bis 3; RA 1 ist Halogen, (C1-C4)Alkyl, (C1-C4)Alkoxy, Nitro oder (C1-C4)Haloalkyl; WA ist ein unsubstituierter oder substituierter divalenter heterocyclischer Rest aus der Gruppe der teilungesättigten oder aromatischen Fünfring-Heterocyclen mit 1 bis 3 Heteroringatomen aus der Gruppe N und O, wobei mindestens ein N-Atom und höchstens ein O-Atom im Ring enthalten ist, vorzugsweise ein Rest aus der Gruppe (W 1 where the symbols and indices have the following meanings: nA is a natural number from 0 to 5, preferably 0 to 3; R A 1 is halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, nitro or (C 1 -C 4 ) haloalkyl; W A is an unsubstituted or substituted divalent heterocyclic radical from the group of partially unsaturated or aromatic five-membered ring heterocycles with 1 to 3 hetero ring atoms from the group N and O, with at least one N atom and at most one O atom in the ring, preferably a residue from the group (W 1
A ) bis (W 4 A) to (W 4
A ), A),
mA ist 0 oder 1; R 2 m A is 0 or 1; R 2
A ist OR 3 A is OR 3
A , SR 3 A, SR 3
A oder NR 3 A or NR 3
A R 4 AR 4
A oder ein gesättigter oder ungesättigter 3- bis 7-gliedriger Heterocyclus mit mindestens einem N-Atom und bis zu 3 Heteroatomen, vorzugsweise aus der Gruppe O und S, der über das N-Atom mit der Carbonylgruppe in (S1) verbunden ist und unsubstituiert oder durch Reste aus der Gruppe (C1-C4)Alkyl, (C1-C4)Alkoxy oder gegebenenfalls substituiertes Phenyl substituiert ist, vorzugsweise ein Rest der Formel ORA 3, NHRA 4 oder N(CH3)2, insbesondere der Formel ORA 3; R 3 A or a saturated or unsaturated 3 to 7-membered heterocycle with at least one N atom and up to 3 heteroatoms, preferably from the group O and S, which is connected to the carbonyl group in (S1) via the N atom and is unsubstituted or is substituted by radicals from the group (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy or optionally substituted phenyl, preferably a radical of the formula OR A 3 , NHR A 4 or N (CH 3 ) 2 , in particular of the formula OR A 3 ; R 3
A ist Wasserstoff oder ein unsubstituierter oder substituierter aliphatischer Kohlenwasserstoffrest, vorzugsweise mit insgesamt 1 bis 18 C-Atomen; RA 4 ist Wasserstoff, (C1-C6)Alkyl, (C1-C6)Alkoxy oder substituiertes oder unsubstituiertes Phenyl; RA 5 ist H, (C1-C8)Alkyl, (C1-C8)Haloalkyl, (C1-C4)Alkoxy(C1-C8)Alkyl, Cyano oder COORA 9, worin RA 9 Wasserstoff, (C1-C8)Alkyl, (C1-C8)Haloalkyl, (C1-C4)Alkoxy-(C1-C4)alkyl, (C1-C6)Hydroxyalkyl, (C3-C12)Cycloalkyl oder Tri-(C1-C4)-alkyl-silyl ist; R 6 A is hydrogen or an unsubstituted or substituted aliphatic hydrocarbon radical, preferably with a total of 1 to 18 carbon atoms; R A 4 is hydrogen, (C 1 -C 6 ) alkyl, (C 1 -C 6 ) alkoxy or substituted or unsubstituted phenyl; R A 5 is H, (C 1 -C 8 ) alkyl, (C 1 -C 8 ) haloalkyl, (C 1 -C 4 ) alkoxy, (C 1 -C 8 ) alkyl, cyano or COOR A 9 , where R A 9 hydrogen, (C 1 -C 8 ) alkyl, (C 1 -C 8 ) haloalkyl, (C 1 -C 4 ) alkoxy- (C 1 -C 4 ) alkyl, (C 1 -C 6 ) hydroxyalkyl, (C 3 -C12) cycloalkyl or tri- (C 1 -C 4 ) -alkyl-silyl; R 6
A , R 7 A, R 7
A , R 8 A, R 8
A sind gleich oder verschieden Wasserstoff, (C1-C8)Alkyl, (C1-C8)Haloalkyl, (C3- C12)Cycloalkyl oder substituiertes oder unsubstituiertes Phenyl; vorzugsweise: a) Verbindungen vom Typ der Dichlorphenylpyrazolin-3-carbonsäure (S1a), vorzugsweise Verbindungen wie 1-(2,4-Dichlorphenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazolin-3-carbonsäure, 1-(2,4-Dichlorphenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazolin-3-carbonsäureethylester (S1-1) ("Mefenpyr-diethyl"), und verwandte Verbindungen, wie sie in der WO-A-91/07874 beschrieben sind; b) Derivate der Dichlorphenylpyrazolcarbonsäure (S1b), vorzugsweise Verbindungen wie 1-(2,4-Dichlorphenyl)-5-methyl-pyrazol-3-carbonsäureethylester (S1-2), 1-(2,4-Dichlorphenyl)-5-isopropyl-pyrazol-3-carbonsäureethylester (S1-3), 1-(2,4-Dichlorphenyl)-5-(1,1-dimethyl-ethyl)pyrazol-3-carbonsäureethyl-ester (S1-4) und verwandte Verbindungen, wie sie in EP-A-333131 und EP-A-269806 beschrieben sind; c) Derivate der 1,5-Diphenylpyrazol-3-carbonsäure (S1c), vorzugsweise Verbindungen wie 1-(2,4-Dichlorphenyl)-5-phenylpyrazol-3-carbonsäureethylester (S1-5), 1-(2-Chlorphenyl)-5-phenylpyrazol-3-carbonsäuremethylester (S1-6) und verwandte Verbindungen wie sie beispielsweise in der EP-A-268554 beschrieben sind; d) Verbindungen vom Typ der Triazolcarbonsäuren (S1d), vorzugsweise Verbindungen wie Fenchlorazol(-ethylester), d.h. 1-(2,4-Dichlorphenyl)-5-trichlormethyl-(1H)-1,2,4-triazol-3-carbon- säureethylester (S1-7), und verwandte Verbindungen wie sie in EP-A-174562 und EP-A-346620 beschrieben sind; e) Verbindungen vom Typ der 5-Benzyl- oder 5-Phenyl-2-isoxazolin-3- carbonsäure oder der 5,5- Diphenyl-2-isoxazolin-3-carbonsäure (S1e), vorzugsweise Verbindungen wie 5-(2,4-Dichlorbenzyl)-2-isoxazolin-3-carbonsäureethylester (S1-8) oder 5-Phenyl-2-isoxazolin-3- carbonsäureethylester (S1-9) und verwandte Verbindungen, wie sie in WO-A-91/08202 beschrieben sind, bzw. 5,5-Diphenyl-2-isoxazolin-3-carbonsäure (S1-10) oder 5,5-Diphenyl-2-isoxazolin-3- carbonsäureethylester (S1-11) ("Isoxadifen-ethyl") oder -n-propylester (S1-12) oder der 5-(4-Fluorphenyl)-5-phenyl-2-isoxazolin-3-carbonsäureethylester (S1-13), wie sie in der Patentanmeldung WO-A-95/07897 beschrieben sind. S2) Chinolinderivate der Formel (S2), A are identically or differently hydrogen, (C 1 -C8) alkyl, (C 1 -C8) haloalkyl, (C 3 -C 12 ) cycloalkyl or substituted or unsubstituted phenyl; preferably: a) compounds of the dichlorophenylpyrazoline-3-carboxylic acid type (S1 a ), preferably compounds such as 1- (2,4-dichlorophenyl) -5- (ethoxycarbonyl) -5-methyl-2-pyrazoline-3-carboxylic acid, 1 - (2,4-Dichlorophenyl) -5- (ethoxycarbonyl) -5-methyl-2-pyrazoline-3-carboxylic acid ethyl ester (S1-1) ("Mefenpyr-diethyl"), and related compounds, as described in WO-A -91/07874 are described; b) Derivatives of dichlorophenylpyrazole carboxylic acid (S1 b ), preferably compounds such as 1- (2,4-dichlorophenyl) -5-methyl-pyrazole-3-carboxylic acid ethyl ester (S1-2), 1- (2,4-dichlorophenyl) -5- isopropyl-pyrazole-3-carboxylic acid ethyl ester (S1-3), 1- (2,4-dichlorophenyl) -5- (1,1-dimethyl-ethyl) pyrazole-3-carboxylic acid ethyl ester (S1-4) and related compounds, as described in EP-A-333131 and EP-A-269806; c) Derivatives of 1,5-diphenylpyrazole-3-carboxylic acid (S1 c ), preferably compounds such as 1- (2,4-dichlorophenyl) -5-phenylpyrazole-3-carboxylic acid ethyl ester (S1-5), 1- (2-chlorophenyl ) -5-phenylpyrazole-3-carboxylic acid methyl ester (S1-6) and related compounds as described, for example, in EP-A-268554; d) Compounds of the triazole carboxylic acid type (S1 d ), preferably compounds such as fenchlorazole (ethyl ester), ie 1- (2,4-dichlorophenyl) -5-trichloromethyl- (1H) -1,2,4-triazole-3- ethyl carboxylate (S1-7) and related compounds as described in EP-A-174562 and EP-A-346620; e) Compounds of the 5-benzyl- or 5-phenyl-2-isoxazoline-3-carboxylic acid or 5,5-diphenyl-2-isoxazoline-3-carboxylic acid type (S1 e ), preferably compounds such as 5- (2, 4-dichlorobenzyl) -2-isoxazoline-3-carboxylic acid ethyl ester (S1-8) or 5-phenyl-2-isoxazoline-3-carboxylic acid ethyl ester (S1-9) and related compounds, as described in WO-A-91/08202 are, or 5,5-diphenyl-2-isoxazoline-3-carboxylic acid (S1-10) or 5,5-diphenyl-2-isoxazoline-3-carboxylic acid ethyl ester (S1-11) ("isoxadifen-ethyl") or - n-propyl ester (S1-12) or the 5- (4-fluorophenyl) -5-phenyl-2-isoxazoline-3-carboxylic acid ethyl ester (S1-13), as described in patent application WO-A-95/07897. S2) quinoline derivatives of the formula (S2),
wobei die Symbole und Indizes folgende Bedeutungen haben: RB 1 ist Halogen, (C1-C4)Alkyl, (C1-C4)Alkoxy, Nitro oder (C1-C4)Haloalkyl; nB ist eine natürliche Zahl von 0 bis 5, vorzugsweise 0 bis 3; R 2 where the symbols and indices have the following meanings: R B 1 is halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, nitro or (C 1 -C 4 ) haloalkyl; n B is a natural number from 0 to 5, preferably 0 to 3; R 2
B ist OR 3 B is OR 3
B , SR 3 B, SR 3
B oder NR 3 B or NR 3
B R 4 BR 4
B oder ein gesättigter oder ungesättigter 3- bis 7-gliedriger Heterocyclus mit mindestens einem N-Atom und bis zu 3 Heteroatomen, vorzugsweise aus der Gruppe O und S, der über das N-Atom mit der Carbonylgruppe in (S2) verbunden ist und unsubstituiert oder durch Reste aus der Gruppe (C1-C4)Alkyl, (C1-C4)Alkoxy oder gegebenenfalls substituiertes Phenyl substituiert ist, vorzugsweise ein Rest der Formel ORB 3, NHRB 4 oder N(CH3)2, insbesondere der Formel ORB 3; R 3 B or a saturated or unsaturated 3 to 7-membered heterocycle with at least one N atom and up to 3 heteroatoms, preferably from the group O and S, which is connected to the carbonyl group in (S2) via the N atom and is unsubstituted or is substituted by radicals from the group (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy or optionally substituted phenyl, preferably a radical of the formula OR B 3 , NHR B 4 or N (CH 3 ) 2 , in particular of the formula OR B 3 ; R 3
B ist Wasserstoff oder ein unsubstituierter oder substituierter aliphatischer Kohlenwasserstoffrest, vorzugsweise mit insgesamt 1 bis 18 C-Atomen; R 4 B is hydrogen or an unsubstituted or substituted aliphatic hydrocarbon radical, preferably with a total of 1 to 18 carbon atoms; R 4
B ist Wasserstoff, (C1-C6)Alkyl, (C1-C6)Alkoxy oder substituiertes oder unsubstituiertes Phenyl; TB ist eine (C1 oder C2)-Alkandiylkette, die unsubstituiert oder mit einem oder zwei (C1- C4)Alkylresten oder mit [(C1-C3)-Alkoxy]-carbonyl substituiert ist; vorzugsweise: a) Verbindungen vom Typ der 8-Chinolinoxyessigsäure (S2a), vorzugsweise (5-Chlor-8-chinolinoxy)essigsäure-(1-methylhexyl)ester ("Cloquintocet-mexyl") (S2-1), (5-Chlor-8-chinolinoxy)essigsäure-(1,3-dimethyl-but-1-yl)ester (S2-2), (5-Chlor-8-chinolinoxy)essigsäure-4-allyloxy-butylester (S2-3), (5-Chlor-8-chinolinoxy)essigsäure-1-allyloxy-prop-2-ylester (S2-4), (5-Chlor-8-chinolinoxy)essigsäureethylester (S2-5), (5-Chlor-8-chinolinoxy)essigsäuremethylester (S2-6), (5-Chlor-8-chinolinoxy)essigsäureallylester (S2-7), (5-Chlor-8-chinolinoxy)essigsäure-2-(2-propyliden-iminoxy)-1-ethylester (S2-8), (5-Chlor-8- chinolinoxy)essigsäure-2-oxo-prop-1-ylester (S2-9) und verwandte Verbindungen, wie sie in EP-A-86750, EP-A-94349 und EP-A-191736 oder EP-A-0 492 366 beschrieben sind, sowie (5- Chlor-8-chinolinoxy)essigsäure (S2-10), deren Hydrate und Salze, beispielsweise deren Lithium-, Natrium- Kalium-, Kalzium-, Magnesium-, Aluminium-, Eisen-, Ammonium-, quartäre Ammonium-, Sulfonium-, oder Phosphoniumsalze wie sie in der WO-A-2002/34048 beschrieben sind; b) Verbindungen vom Typ der (5-Chlor-8-chinolinoxy)malonsäure (S2b), vorzugsweise Verbindungen wie (5-Chlor-8-chinolinoxy)malonsäurediethylester, (5-Chlor-8-chinolinoxy)malonsäurediallylester, (5-Chlor-8-chinolin- oxy)malonsäure-methyl-ethylester und verwandte Verbindungen, wie sie in EP-A-0 582 198 beschrieben sind. S3) Verbindungen der Formel (S3) B is hydrogen, (C 1 -C 6 ) alkyl, (C 1 -C 6 ) alkoxy or substituted or unsubstituted phenyl; T B is a (C 1 or C 2) -alkanediyl chain which is unsubstituted or substituted with one or two (C 1 - C 4) alkyl or substituted with [(C 1 -C 3) -alkoxy] carbonyl; preferably: a) compounds of the 8-quinolinoxyacetic acid type (S2 a ), preferably (5-chloro-8-quinolinoxy) acetic acid (1-methylhexyl) ester ("Cloquintocet-mexyl") (S2-1), (5- Chloro-8-quinolinoxy) acetic acid (1,3-dimethyl-but-1-yl) ester (S2-2), (5-chloro-8-quinolinoxy) acetic acid 4-allyloxy-butyl ester (S2-3), (5-chloro-8-quinolinoxy) acetic acid 1-allyloxy-prop-2-yl ester (S2-4), (5-Chloro-8-quinolinoxy) ethyl acetate (S2-5), (5-chloro-8-quinolinoxy) methyl acetate (S2-6), (5-chloro-8-quinolinoxy) allyl acetate (S2-7), (5 -Chlor-8-quinolinoxy) acetic acid 2- (2-propylidene-iminoxy) -1-ethyl ester (S2-8), (5-chloro-8-quinolinoxy) acetic acid 2-oxo-prop-1-yl ester (S2 -9) and related compounds, as described in EP-A-86750, EP-A-94349 and EP-A-191736 or EP-A-0 492 366, and (5-chloro-8-quinolinoxy) acetic acid ( S2-10), their hydrates and salts, for example their lithium, sodium, potassium, calcium, magnesium, aluminum, iron, ammonium, quaternary ammonium, sulfonium, or phosphonium salts as described in WO A-2002/34048; b) Compounds of the (5-chloro-8-quinolinoxy) malonic acid type (S2 b ), preferably compounds such as (5-chloro-8-quinolinoxy) diethyl malonate, (5-chloro-8-quinolinoxy) diallyl malonate, (5-chloro) -8-quinolin-oxy) malonic acid methyl-ethyl ester and related compounds, as described in EP-A-0 582 198. S3) compounds of the formula (S3)
wobei die Symbole und Indizes folgende Bedeutungen haben: RC 1 ist (C1-C4)Alkyl, (C1-C4)Haloalkyl, (C2-C4)Alkenyl, (C2-C4)Haloalkenyl, (C3-C7)Cycloalkyl, vorzugsweise Dichlormethyl; RC 2, RC 3 sind gleich oder verschieden Wasserstoff, (C1-C4)Alkyl, (C2-C4)Alkenyl, (C2-C4)Alkinyl, (C1-C4)Haloalkyl, (C2-C4)Haloalkenyl, (C1-C4)Alkylcarbamoyl-(C1-C4)alkyl, (C2- C4)Alkenylcarbamoyl-(C1-C4)alkyl, (C1-C4)Alkoxy-(C1-C4)alkyl, Dioxolanyl-(C1-C4)alkyl, Thiazolyl, Furyl, Furylalkyl, Thienyl, Piperidyl, substituiertes oder unsubstituiertes Phenyl, oder R 2 where the symbols and indices have the following meanings: R C 1 is (C 1 -C 4 ) alkyl, (C 1 -C 4 ) haloalkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) haloalkenyl, ( C 3 -C 7 ) cycloalkyl, preferably dichloromethyl; R C 2 , R C 3 are identically or differently hydrogen, (C 1 -C 4 ) alkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) alkynyl, (C 1 -C 4 ) haloalkyl, ( C 2 -C 4) haloalkenyl, (C 1 -C 4) alkylcarbamoyl (C 1 -C 4) alkyl, (C 2 - C 4) Alkenylcarbamoyl- (C 1 -C 4) alkyl, (C 1 -C 4 ) Alkoxy- (C 1 -C 4 ) alkyl, dioxolanyl- (C 1 -C 4 ) alkyl, thiazolyl, furyl, furylalkyl, thienyl, piperidyl, substituted or unsubstituted phenyl, or R 2
C C.
und R 3 and R 3
C bilden zusammen einen substituierten oder unsubstituierten heterocyclischen Ring, vorzugsweise einen Oxazolidin-, Thiazolidin-, Piperidin-, Morpholin-, Hexahydropyrimidin- oder Benzoxazinring; vorzugsweise: Wirkstoffe vom Typ der Dichloracetamide, die häufig als Vorauflaufsafener (bodenwirksame Safener) angewendet werden, wie z. B. "Dichlormid" (N,N-Diallyl-2,2-dichloracetamid) (S3-1), "R-29148" (3-Dichloracetyl-2,2,5-trimethyl-1,3-oxazolidin) der Firma Stauffer (S3-2), "R-28725" (3-Dichloracetyl-2,2,-dimethyl-1,3-oxazolidin) der Firma Stauffer (S3-3), "Benoxacor" (4-Dichloracetyl-3,4-dihydro-3-methyl-2H-1,4-benzoxazin) (S3-4), "PPG-1292" (N-Allyl-N-[(1,3-dioxolan-2-yl)-methyl]-dichloracetamid) der Firma PPG Industries (S3-5), C together form a substituted or unsubstituted heterocyclic ring, preferably an oxazolidine, thiazolidine, piperidine, morpholine, hexahydropyrimidine or benzoxazine ring; preferably: active ingredients of the dichloroacetamide type, which are often used as pre-emergence safeners (soil-acting safeners), such as. B. "Dichlormid" (N, N-diallyl-2,2-dichloroacetamide) (S3-1), "R-29148" (3-dichloroacetyl-2,2,5-trimethyl-1,3-oxazolidine) from Stauffer ( S3-2), "R-28725" (3-dichloroacetyl-2,2, -dimethyl-1,3-oxazolidine) from Stauffer (S3-3), "Benoxacor" (4-dichloroacetyl-3,4-dihydro -3-methyl-2H-1,4-benzoxazine) (S3-4), "PPG-1292" (N-allyl-N - [(1,3-dioxolan-2-yl) methyl] dichloroacetamide) der Company PPG Industries (S3-5),
"DKA-24" (N-Allyl-N-[(allylaminocarbonyl)methyl]-dichloracetamid) der Firma Sagro-Chem (S3-6), "DKA-24" (N-Allyl-N - [(allylaminocarbonyl) methyl] dichloroacetamide) from Sagro-Chem (S3-6),
"AD-67" oder "MON 4660" (3-Dichloracetyl-1-oxa-3-aza-spiro[4,5]decan) der Firma Nitrokemia bzw. Monsanto (S3-7), "TI-35" (1-Dichloracetyl-azepan) der Firma TRI-Chemical RT (S3-8), "Diclonon" (Dicyclonon) oder "BAS145138" oder "LAB145138" (S3-9) ((RS)-1-Dichloracetyl-3,3,8a-trimethylperhydropyrrolo[1,2-a]pyrimidin-6-on) der Firma BASF, "Furilazol" oder "MON 13900" ((RS)-3-Dichloracetyl-5-(2-furyl)-2,2-dimethyloxazolidin) (S3-10); sowie dessen (R)-Isomer (S3-11). S4) N-Acylsulfonamide der Formel (S4) und ihre Salze, "AD-67" or "MON 4660" (3-dichloroacetyl-1-oxa-3-aza-spiro [4,5] decane) from Nitrokemia or Monsanto (S3-7), "TI-35" (1 -Dichloracetyl-azepan) from TRI-Chemical RT (S3-8), "Diclonon" (Dicyclonon) or "BAS145138" or "LAB145138" (S3-9) ((RS) -1-dichloroacetyl-3,3,8a -trimethylperhydropyrrolo [1,2-a] pyrimidin-6-one) from BASF, "Furilazol" or "MON 13900" ((RS) -3-dichloroacetyl-5- (2-furyl) -2,2-dimethyloxazolidine) (S3-10); as well as its (R) -isomer (S3-11). S4) N-acylsulfonamides of the formula (S4) and their salts,
worin die Symbole und Indizes folgende Bedeutungen haben: AD ist SO2-NR 3 where the symbols and indices have the following meanings: AD is SO 2 -NR 3
D -CO oder CO-NR 3 D -CO or CO-NR 3
D - SO2 XD ist CH oder N; RD 1 ist CO-NRD 5RD 6 oder NHCO-RD 7; RD 2 ist Halogen, (C1-C4)Haloalkyl, (C1-C4)Haloalkoxy, Nitro, (C1-C4)Alkyl, (C1-C4)Alkoxy, (C1- C4)Alkylsulfonyl, (C1-C4)Alkoxycarbonyl oder (C1-C4)Alkylcarbonyl; R 3 D - SO 2 XD is CH or N; R D 1 is CO-NR D 5 R D 6 or NHCO-R D 7 ; R D 2 is halogen, (C 1 -C 4 ) haloalkyl, (C 1 -C 4 ) haloalkoxy, nitro, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, (C 1 -C 4 ) Alkylsulfonyl, (C 1 -C 4 ) alkoxycarbonyl or (C 1 -C 4 ) alkylcarbonyl; R 3
D ist Wasserstoff, (C1-C4)Alkyl, (C2-C4)Alkenyl oder (C2-C4)Alkinyl; R 4 D is hydrogen, (C 1 -C 4 ) alkyl, (C 2 -C 4 ) alkenyl or (C 2 -C 4 ) alkynyl; R 4
D ist Halogen, Nitro, (C1-C4)Alkyl, (C1-C4)Haloalkyl, (C1-C4)Haloalkoxy, (C3-C6)Cycloalkyl, Phenyl, (C1-C4)Alkoxy, Cyano, (C1-C4)Alkylthio, (C1-C4)Alkylsulfinyl, (C1-C4)Alkylsulfonyl, (C1- C4)Alkoxycarbonyl oder (C1-C4)Alkylcarbonyl; R 5 D is halogen, nitro, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) haloalkyl, (C 1 -C 4 ) haloalkoxy, (C 3 -C 6 ) cycloalkyl, phenyl, (C 1 -C 4 ) alkoxy, cyano, (C 1 -C 4) alkylthio, (C 1 -C 4) alkylsulfinyl, (C 1 -C 4) alkylsulfonyl, (C 1 - C 4) alkoxycarbonyl or (C 1 -C 4) alkylcarbonyl; R 5
D ist Wasserstoff, (C1-C6)Alkyl, (C3-C6)Cycloalkyl, (C2-C6)Alkenyl, (C2-C6)Alkinyl, (C5- C6)Cycloalkenyl, Phenyl oder 3- bis 6-gliedriges Heterocyclyl enthaltend vD Heteroatome aus der Gruppe Stickstoff, Sauerstoff und Schwefel, wobei die sieben letztgenannten Reste durch vD Substituenten aus der Gruppe Halogen, (C1-C6)Alkoxy, (C1-C6)Haloalkoxy, (C1-C2)Alkylsulfinyl, (C1-C2)Alkylsulfonyl, (C3-C6)Cycloalkyl, (C1-C4)Alkoxycarbonyl, (C1-C4)Alkylcarbonyl und Phenyl und im Falle cyclischer Reste auch (C1-C4) Alkyl und (C1-C4)Haloalkyl substituiert sind; RD 6 ist Wasserstoff, (C1-C6)Alkyl, (C2-C6)Alkenyl oder (C2-C6)Alkinyl, wobei die drei letztgenannten Reste durch vD Reste aus der Gruppe Halogen, Hydroxy, (C1-C4)Alkyl, (C1-C4)Alkoxy und (C1-C4)Alkylthio substituiert sind, oder R 5 D is hydrogen, (C 1 -C 6 ) alkyl, (C 3 -C 6 ) cycloalkyl, (C 2 -C 6 ) alkenyl, (C 2 -C 6 ) alkynyl, (C 5 -C 6 ) cycloalkenyl, phenyl or 3- to 6-membered heterocyclyl containing v D heteroatoms from the group nitrogen, oxygen and sulfur, the seven last-mentioned radicals being replaced by v D substituents from the group halogen, (C 1 -C 6 ) alkoxy, (C 1 -C 6 ) Haloalkoxy, (C 1 -C 2 ) alkylsulfinyl, (C 1 -C 2 ) alkylsulfonyl, (C 3 -C 6 ) cycloalkyl, (C 1 -C 4 ) alkoxycarbonyl, (C 1 -C 4 ) alkylcarbonyl and phenyl and in the case of cyclic radicals, (C 1 -C 4 ) alkyl and (C 1 -C 4 ) haloalkyl are also substituted; R D 6 is hydrogen, (C 1 -C 6 ) alkyl, (C 2 -C 6 ) alkenyl or (C 2 -C 6 ) alkynyl, the last three radicals mentioned by v D radicals from the group halogen, hydroxy, ( C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy and (C 1 -C 4 ) alkylthio are substituted, or R 5
D und R 6 D and R 6
D gemeinsam mit dem dem sie tragenden Stickstoffatom einen Pyrrolidinyl- oder Piperidinyl-Rest bilden; R 7 D together with the nitrogen atom bearing them form a pyrrolidinyl or piperidinyl radical; R 7
D ist Wasserstoff, (C1-C4)Alkylamino, Di-(C1-C4)alkylamino, (C1-C6)Alkyl, (C3-C6)Cycloalkyl, wobei die 2 letztgenannten Reste durch vD Substituenten aus der Gruppe Halogen, (C1-C4)Alkoxy, (C1-C6)Haloalkoxy und (C1-C4)Alkylthio und im Falle cyclischer Reste auch (C1-C4)Alkyl und (C1-C4)Haloalkyl substituiert sind; nD ist 0, 1 oder 2; mD ist 1 oder 2; vD ist 0, 1, 2 oder 3; davon bevorzugt sind Verbindungen vom Typ der N-Acylsulfonamide, z.B. der nachfolgenden Formel (S4a), die z. B. bekannt sind aus WO-A-97/45016 D is hydrogen, (C 1 -C 4 ) alkylamino, di- (C 1 -C 4 ) alkylamino, (C 1 -C 6 ) alkyl, (C 3 -C 6 ) cycloalkyl, the last two radicals mentioned by vD substituents from the group halogen, (C 1 -C 4 ) alkoxy, (C 1 -C 6 ) haloalkoxy and (C 1 -C 4 ) alkylthio and in the case of cyclic radicals also (C 1 -C 4 ) alkyl and (C 1 - C 4 ) haloalkyl are substituted; nD is 0, 1 or 2; mD is 1 or 2; vD is 0, 1, 2, or 3; Preferred of these are compounds of the N-acylsulfonamide type, for example of the following formula (S4 a ), which z. B. are known from WO-A-97/45016
worin RD 7 (C1-C6)Alkyl, (C3-C6)Cycloalkyl, wobei die 2 letztgenannten Reste durch v D Substituenten aus der Gruppe Halogen, (C1-C4)Alkoxy, (C1-C6)Haloalkoxy und (C1-C4)Alkylthio und im Falle cyclischer Reste auch (C1-C4)Alkyl und (C1-C4)Haloalkyl substituiert sind; R 4 wherein R D 7 (C 1 -C 6 ) alkyl, (C 3 -C 6 ) cycloalkyl, the 2 last-mentioned radicals being replaced by v D substituents from the group halogen, (C 1 -C 4 ) alkoxy, (C 1 -C 6 ) haloalkoxy and (C 1 -C 4 ) alkylthio and, in the case of cyclic radicals, also (C 1 -C 4 ) alkyl and (C 1 -C 4 ) haloalkyl are substituted; R 4
D Halogen, (C1-C4)Alkyl, (C1-C4)Alkoxy, CF3; mD 1 oder 2; vD ist 0, 1, 2 oder 3 bedeutet; sowie Acylsulfamoylbenzoesäureamide, z.B. der nachfolgenden Formel (S4b), die z.B. bekannt sind aus WO-A-99/16744, D halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, CF 3 ; mD 1 or 2; v D is 0, 1, 2 or 3; and acylsulfamoylbenzoic acid amides, for example of the following formula (S4 b ), which are known, for example from WO-A-99/16744,
z.B. solche worin RD 5 = Cyclopropyl und (RD 4) = 2-OMe ist ("Cyprosulfamide", S4-1), RD 5 = Cyclopropyl und (RD 4) = 5-C1-2-OMe ist (S4-2), R 5 e.g. those in which R D 5 = cyclopropyl and (R D 4 ) = 2-OMe ("Cyprosulfamide", S4-1), R D 5 = cyclopropyl and (R D 4 ) = 5-C1-2-OMe ( S4-2), R 5
D = Ethyl und (R 4 D = ethyl and (R 4
D ) = 2-OMe ist (S4-3), R 5 D) = 2-OMe is (S4-3), R 5
D = Isopropyl und (R 4 D = isopropyl and (R 4
D ) = 5-C1-2-OMe ist (S4-4) und R 5 D) = 5-C1-2-OMe is (S4-4) and R 5
D = Isopropyl und (R 4 D = isopropyl and (R 4
D ) = 2-OMe ist (S4-5). sowie Verbindungen vom Typ der N-Acylsulfamoylphenylharnstoffe der Formel (S4c), die z.B. bekannt sind aus der EP-A-365484, D) = 2-OMe is (S4-5). and compounds of the N-acylsulfamoylphenylureas type of the formula (S4 c ), which are known, for example, from EP-A-365484,
worin R 8 wherein R 8
D und R 9 D and R 9
D unabhängig voneinander Wasserstoff, (C1-C8)Alkyl, (C3-C8)Cycloalkyl, (C3-C6)Alkenyl, (C3-C6)Alkinyl, R 4 D independently of one another is hydrogen, (C 1 -C 8 ) alkyl, (C 3 -C 8 ) cycloalkyl, (C 3 -C 6 ) alkenyl, (C 3 -C 6 ) alkynyl, R 4
D Halogen, (C1-C4)Alkyl, (C1-C4)Alkoxy, CF3 mD 1 oder 2 bedeutet; beispielsweise 1-[4-(N-2-Methoxybenzoylsulfamoyl)phenyl]-3-methylharnstoff, 1-[4-(N-2-Methoxybenzoylsulfamoyl)phenyl]-3,3-dimethylharnstoff, D is halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, CF 3 m D is 1 or 2; for example 1- [4- (N-2-methoxybenzoylsulfamoyl) phenyl] -3-methylurea, 1- [4- (N-2-methoxybenzoylsulfamoyl) phenyl] -3,3-dimethylurea,
1-[4-(N-4,5-Dimethylbenzoylsulfamoyl)phenyl]-3-methylharnstoff, sowie N-Phenylsulfonylterephthalamide der Formel (S4d), die z.B. bekannt sind aus CN 101838227, 1- [4- (N-4,5-dimethylbenzoylsulfamoyl) phenyl] -3-methylurea, and N-phenylsulfonylterephthalamides of the formula (S4 d ), which are known, for example, from CN 101838227,
z.B. solche worin RD 4 Halogen, (C1-C4)Alkyl, (C1-C4)Alkoxy, CF3; mD 1 oder 2; R 5 for example those in which R D 4 is halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, CF 3; m D 1 or 2; R 5
D Wasserstoff, (C1-C6)Alkyl, (C3-C6)Cycloalkyl, (C2-C6)Alkenyl, (C2-C6)Alkinyl, (C5- C6)Cycloalkenyl bedeutet. S5) Wirkstoffe aus der Klasse der Hydroxyaromaten und der aromatisch-aliphatischen Carbonsäurederivate (S5), z.B. 3,4,5-Triacetoxybenzoesäureethylester, 3,5-Dimethoxy-4-hydroxybenzoesäure, 3,5- Dihydroxybenzoesäure, 4-Hydroxysalicylsäure, 4-Fluorsalicyclsäure, 2-Hydroxyzimtsäure, 2,4- Dichlorzimtsäure, wie sie in der WO-A-2004/084631, WO-A-2005/015994, WO-A-2005/016001 beschrieben sind. S6) Wirkstoffe aus der Klasse der 1,2-Dihydrochinoxalin-2-one (S6), z.B. 1-Methyl-3-(2-thienyl)-1,2-dihydrochinoxalin-2-on, 1-Methyl-3-(2-thienyl)-1,2-dihydrochinoxalin- 2-thion, 1-(2-Aminoethyl)-3-(2-thienyl)-1,2-dihydro-chinoxalin-2-on-hydrochlorid, 1-(2- Methylsulfonylaminoethyl)-3-(2-thienyl)-1,2-dihydro-chinoxalin-2-on, wie sie in der WO-A- 2005/112630 beschrieben sind. S7) Verbindungen der Formel (S7),wie sie in der WO-A-1998/38856 beschrieben sind D is hydrogen, (C 1 -C 6 ) alkyl, (C 3 -C 6 ) cycloalkyl, (C 2 -C 6 ) alkenyl, (C 2 -C 6 ) alkynyl, (C 5 -C 6 ) cycloalkenyl. S5) Active ingredients from the class of the hydroxyaromatics and the aromatic-aliphatic carboxylic acid derivatives (S5), for example ethyl 3,4,5-triacetoxybenzoate, 3,5-dimethoxy-4-hydroxybenzoic acid, 3,5-dihydroxybenzoic acid, 4-hydroxysalicylic acid, 4-fluorosalicyclic acid , 2-hydroxycinnamic acid, 2,4-dichlorocinnamic acid, as described in WO-A-2004/084631, WO-A-2005/015994, WO-A-2005/016001. S6) Active ingredients from the class of 1,2-dihydroquinoxalin-2-ones (S6), e.g. 1-methyl-3- (2-thienyl) -1,2-dihydroquinoxalin-2-one, 1-methyl-3- ( 2-thienyl) -1,2-dihydroquinoxalin-2-thione, 1- (2-aminoethyl) -3- (2-thienyl) -1,2-dihydroquinoxalin-2-one hydrochloride, 1- (2- Methylsulfonylaminoethyl) -3- (2-thienyl) -1,2-dihydro-quinoxalin-2-one, as described in WO-A-2005/112630. S7) Compounds of the formula (S7), as they are described in WO-A-1998/38856
worin die Symbole und Indizes folgende Bedeutungen haben: RE 1, RE 2 sind unabhängig voneinander Halogen, (C1-C4)Alkyl, (C1-C4)Alkoxy, (C1-C4)Haloalkyl, (C1-C4)Alkylamino, Di-(C1-C4)Alkylamino, Nitro; AE ist COORE 3 oder COSRE 4 R 3 where the symbols and indices have the following meanings: R E 1 , R E 2 are independently halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, (C 1 -C 4 ) haloalkyl, (C 1 -C 4 ) alkylamino, di- (C 1 -C 4 ) alkylamino, nitro; A E is COOR E 3 or COSR E 4 R 3
E , R 4 E, R 4
E sind unabhängig voneinander Wasserstoff, (C1-C4)Alkyl, (C2-C6)Alkenyl, (C2-C4)Alkinyl, Cyanoalkyl, (C1-C4)Haloalkyl, Phenyl, Nitrophenyl, Benzyl, Halobenzyl, Pyridinylalkyl und Alkylammonium, n 1E are independently hydrogen, (C 1 -C 4 ) alkyl, (C 2 -C 6 ) alkenyl, (C 2 -C 4 ) alkynyl, cyanoalkyl, (C 1 -C 4 ) haloalkyl, phenyl, nitrophenyl, benzyl, Halobenzyl, pyridinylalkyl and alkylammonium, n 1
E ist 0 oder 1 n 2 E is 0 or 1 n 2
E , n E3 sind unabhängig voneinander 0, 1 oder 2, vorzugsweise: E, n E 3 are independently 0, 1 or 2, preferably:
Diphenylmethoxyessigsäure, Diphenylmethoxyacetic acid,
Diphenylmethoxyessigsäureethylester, Ethyl diphenyl methoxyacetate,
Diphenylmethoxyessigsäuremethylester (CAS-Reg.Nr.41858-19-9) (S7-1). S8) Verbindungen der Formel (S8),wie sie in der WO-A-98/27049 beschrieben sind Diphenylmethoxyacetic acid methyl ester (CAS-Reg.Nr.41858-19-9) (S7-1). S8) Compounds of the formula (S8), as described in WO-A-98/27049
worin XF CH oder N, nF für den Fall, dass XF=N ist, eine ganze Zahl von 0 bis 4 und für den Fall, dass XF=CH ist, eine ganze Zahl von 0 bis 5 , RF 1 Halogen, (C1-C4)Alkyl, (C1-C4)Haloalkyl, (C1-C4)Alkoxy, (C1-C4)Haloalkoxy, Nitro, (C1- C4)Alkylthio, (C1-C4)-Alkylsulfonyl, (C1-C4)Alkoxycarbonyl, ggf. substituiertes. Phenyl, ggf. substituiertes Phenoxy, RF 2 Wasserstoff oder (C1-C4)Alkyl RF 3 Wasserstoff, (C1-C8)Alkyl, (C2-C4)Alkenyl, (C2-C4)Alkinyl, oder Aryl, wobei jeder der vorgenannten C-haltigen Reste unsubstituiert oder durch einen oder mehrere, vorzugsweise bis zu drei gleiche oder verschiedene Reste aus der Gruppe, bestehend aus Halogen und Alkoxy substituiert ist; bedeuten, oder deren Salze, vorzugsweise Verbindungen worin XF CH, nF eine ganze Zahl von 0 bis 2 , R 1 wherein X F is CH or N, n F for the case that XF = N, an integer from 0 to 4 and for the case that XF = CH, an integer from 0 to 5, R F 1 halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) haloalkyl, (C 1 -C 4 ) alkoxy, (C 1 -C 4 ) haloalkoxy, nitro, (C 1 - C 4 ) alkylthio, (C 1 -C 4 ) -alkylsulfonyl, (C 1 -C 4 ) alkoxycarbonyl, optionally substituted. Phenyl, optionally substituted phenoxy, R F 2 hydrogen or (C 1 -C 4 ) alkyl R F 3 hydrogen, (C 1 -C 8 ) alkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) Alkynyl or aryl, where each of the aforementioned C-containing radicals is unsubstituted or substituted by one or more, preferably up to three, identical or different radicals from the group consisting of halogen and alkoxy; or their salts, preferably compounds in which X F is CH, n F is an integer from 0 to 2, R 1
F Halogen, (C1-C4)Alkyl, (C1-C4)Haloalkyl, (C1-C4)Alkoxy, (C1-C4)Haloalkoxy, RF 2 Wasserstoff oder (C1-C4)Alkyl, R 3 F halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) haloalkyl, (C 1 -C 4 ) alkoxy, (C 1 -C 4 ) haloalkoxy, R F 2 hydrogen or (C 1 -C 4 ) Alkyl, R 3
F Wasserstoff, (C1-C8)Alkyl, (C2-C4)Alkenyl, (C2-C4)Alkinyl, oder Aryl, wobei jeder der vorgenannten C-haltigen Reste unsubstituiert oder durch einen oder mehrere, vorzugsweise bis zu drei gleiche oder verschiedene Reste aus der Gruppe, bestehend aus Halogen und Alkoxy substituiert ist, bedeuten, oder deren Salze. S9) Wirkstoffe aus der Klasse der 3-(5-Tetrazolylcarbonyl)-2-chinolone (S9), z.B. 1,2-Dihydro-4-hydroxy-1-ethyl-3-(5-tetrazolylcarbonyl)-2-chinolon (CAS-Reg.Nr. 219479-18-2), 1,2-Dihydro-4-hydroxy-1-methyl-3-(5-tetrazolyl-carbonyl)-2-chinolon (CAS-Reg.Nr. 95855-00-8), wie sie in der WO-A-1999/000020 beschrieben sind. S10) Verbindungen der Formeln (S10a) oder (S10b) wie sie in der WO-A-2007/023719 und WO-A-2007/023764 beschrieben sind F is hydrogen, (C 1 -C 8) alkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) alkynyl, or aryl, where each of the aforementioned C-containing radicals is unsubstituted or by one or more, preferably up to three identical or different radicals from the group consisting of halogen and alkoxy is substituted, or their salts. S9) Active ingredients from the class of 3- (5-tetrazolylcarbonyl) -2-quinolones (S9), e.g. 1,2-dihydro-4-hydroxy-1-ethyl-3- (5-tetrazolylcarbonyl) -2-quinolone (CAS -Reg.No. 219479-18-2), 1,2-dihydro-4-hydroxy-1-methyl-3- (5-tetrazolyl-carbonyl) -2-quinolone (CAS-Reg.No. 95855-00- 8), as described in WO-A-1999/000020. S10) Compounds of the formulas (S10 a ) or (S10 b ) as described in WO-A-2007/023719 and WO-A-2007/023764
(S10a) (S10 b ) worin RG 1 Halogen, (C1-C4)Alkyl, Methoxy, Nitro, Cyano, CF3, OCF3 YG, ZG unabhängig voneinander O oder S, nG eine ganze Zahl von 0 bis 4, R 2 ( S10a) (S10 b ) wherein R G 1 is halogen, (C 1 -C 4 ) alkyl, methoxy, nitro, cyano, CF 3 , OCF 3 Y G , Z G, independently of one another, O or S, n G is an integer from 0 to 4, R 2
G (C1-C16)Alkyl, (C2-C6)Alkenyl, (C3-C6)Cycloalkyl, Aryl; Benzyl, Halogenbenzyl, RG 3 Wasserstoff oder (C1-C6)Alkyl bedeutet. S11) Wirkstoffe vom Typ der Oxyimino-Verbindungen (S11), die als Saatbeizmittel bekannt sind, wie z. B. "Oxabetrinil" ((Z)-1,3-Dioxolan-2-ylmethoxyimino(phenyl)acetonitril) (S11-1), das als Saatbeiz- Safener für Hirse gegen Schäden von Metolachlor bekannt ist, "Fluxofenim" (1-(4-Chlorphenyl)-2,2,2-trifluor-1-ethanon-O-(1,3-dioxolan-2-ylmethyl)-oxim) (S11-2), das als Saatbeiz-Safener für Hirse gegen Schäden von Metolachlor bekannt ist, und "Cyometrinil" oder "CGA-43089" ((Z)-Cyanomethoxyimino(phenyl)acetonitril) (S11-3), das als Saatbeiz-Safener für Hirse gegen Schäden von Metolachlor bekannt ist. S12) Wirkstoffe aus der Klasse der Isothiochromanone (S12), wie z.B. Methyl-[(3-oxo-1H-2- benzothiopyran-4(3H)-yliden)methoxy]acetat (CAS-Reg.Nr. 205121-04-6) (S12-1) und verwandte Verbindungen aus WO-A-1998/13361. S13) Eine oder mehrere Verbindungen aus Gruppe (S13): "Naphthalic anhydrid" (1,8-Naphthalindicarbonsäureanhydrid) (S13-1), das als Saatbeiz-Safener für Mais gegen Schäden von Thiocarbamatherbiziden bekannt ist, "Fenclorim" (4,6-Dichlor-2-phenylpyrimidin) (S13-2), das als Safener für Pretilachlor in gesätem Reis bekannt ist, "Flurazole" (Benzyl-2-chlor-4-trifluormethyl-1,3-thiazol-5-carboxylat) (S13-3), das als Saatbeiz- Safener für Hirse gegen Schäden von Alachlor und Metolachlor bekannt ist, "CL 304415" (CAS-Reg.Nr. 31541-57-8) (4-Carboxy-3,4-dihydro-2H-1-benzopyran-4-essigsäure) (S13-4) der Firma American Cyanamid, das als Safener für Mais gegen Schäden von Imidazolinonen bekannt ist, "MG 191" (CAS-Reg.Nr. 96420-72-3) (2-Dichlormethyl-2-methyl-1,3-dioxolan) (S13-5) der Firma Nitrokemia, das als Safener für Mais bekannt ist, "MG 838" (CAS-Reg.Nr. 133993-74-5) (2-propenyl 1-oxa-4-azaspiro[4.5]decan-4-carbodithioat) (S13-6) der Firma Nitrokemia, "Disulfoton" (O,O-Diethyl S-2-ethylthioethyl phosphordithioat) (S13-7), "Dietholate" (O,O-Diethyl-O-phenylphosphorothioat) (S13-8), "Mephenate" (4-Chlorphenyl-methylcarbamat) (S13-9). S14) Wirkstoffe, die neben einer herbiziden Wirkung gegen Schadpflanzen auch Safenerwirkung an Kulturpflanzen wie Reis aufweisen, wie z. B. "Dimepiperate" oder "MY 93" (S-1-Methyl-1-phenylethyl-piperidin-1-carbothioat), das als Safener für Reis gegen Schäden des Herbizids Molinate bekannt ist, "Daimuron" oder "SK 23" (1-(1-Methyl-1-phenylethyl)-3-p-tolyl-harnstoff), das als Safener für Reis gegen Schäden des Herbizids Imazosulfuron bekannt ist, "Cumyluron" = "JC 940" (3-(2-Chlorphenylmethyl)-1-(1-methyl-1-phenyl-ethyl)harnstoff, siehe JP- A-60087254), das als Safener für Reis gegen Schäden einiger Herbizide bekannt ist, "Methoxyphenon" oder "NK 049" (3,3'-Dimethyl-4-methoxy-benzophenon), das als Safener für Reis gegen Schäden einiger Herbizide bekannt ist, "CSB" (1-Brom-4-(chlormethylsulfonyl)benzol) von Kumiai, (CAS-Reg.Nr. 54091-06-4), das als Safener gegen Schäden einiger Herbizide in Reis bekannt ist. S15) Verbindungen der Formel (S15) oder deren Tautomere G (C 1 -C 16) alkyl, (C 2 -C 6 ) alkenyl, (C 3 -C 6 ) cycloalkyl, aryl; Benzyl, halobenzyl, R G 3 is hydrogen or (C 1 -C 6 ) alkyl. S11) Active ingredients of the oxyimino compound type (S11), which are known as seed dressings, such as. B. "Oxabetrinil" ((Z) -1,3-Dioxolan-2-ylmethoxyimino (phenyl) acetonitrile) (S11-1), which is known as a seed dressing safener for millet against damage from metolachlor, "Fluxofenim" (1- (4-chlorophenyl) -2,2,2-trifluoro-1-ethanone-O- (1,3-dioxolan-2-ylmethyl) oxime) (S11-2), which is used as a seed dressing safener for millet against damage from Metolachlor is known, and "Cyometrinil" or "CGA-43089" ((Z) -Cyanomethoxyimino (phenyl) acetonitrile) (S11-3), which is known as a seed dressing safener for millet against damage from metolachlor. S12) Active ingredients from the class of isothiochromanones (S12), such as methyl - [(3-oxo-1H-2-benzothiopyran-4 (3H) -ylidene) methoxy] acetate (CAS reg. No. 205121-04-6 ) (S12-1) and related compounds from WO-A-1998/13361. S13) One or more compounds from group (S13): "Naphthalic anhydride" (1,8-naphthalenedicarboxylic acid anhydride) (S13-1), which is known as a seed dressing safener for maize against damage from thiocarbamate herbicides, "Fenclorim" (4.6 -Dichlor-2-phenylpyrimidine) (S13-2) which is known as a safener for pretilachlor in sown rice, "Flurazole" (benzyl-2-chloro-4-trifluoromethyl-1,3-thiazole-5-carboxylate) (S13 -3), which is known as a seed dressing safener for millet against damage from alachlor and metolachlor, "CL 304415" (CAS Reg.Nr. 31541-57-8) (4-Carboxy-3,4-dihydro-2H- 1-benzopyran-4-acetic acid) (S13-4) from American Cyanamid, which is known as a safener for maize against damage by imidazolinones, "MG 191" (CAS reg. No. 96420-72-3) (2-dichloromethyl-2-methyl-1,3-dioxolane) (S13-5) from Nitrokemia, which is known as a safener for maize, " MG 838 "(CAS reg. No. 133993-74-5) (2-propenyl 1-oxa-4-azaspiro [4.5] decane-4-carbodithioate) (S13-6) from Nitrokemia," Disulfoton "(O , O-Diethyl S-2-ethylthioethyl phosphorodithioate) (S13-7), "Dietholate" (O, O-Diethyl-O-phenylphosphorothioate) (S13-8), "Mephenate" (4-chlorophenyl-methylcarbamate) (S13- 9). S14) Active ingredients which, in addition to a herbicidal action against harmful plants, also have a safener effect on crop plants such as rice, such as. B. "Dimepiperate" or "MY 93" (S-1-methyl-1-phenylethyl-piperidine-1-carbothioate), which is known as a safener for rice against damage by the herbicide Molinate, "Daimuron" or "SK 23" ( 1- (1-methyl-1-phenylethyl) -3-p-tolyl-urea), which is known as a safener for rice against damage by the herbicide imazosulfuron, "Cumyluron" = "JC 940" (3- (2-chlorophenylmethyl) -1- (1-methyl-1-phenyl-ethyl) urea, see JP-A-60087254), which is known as a safener for rice against damage of some herbicides, "Methoxyphenone" or "NK 049"(3,3'- Dimethyl-4-methoxy-benzophenone), which is known as a safener for rice against the damage of some herbicides, "CSB" (1-bromo-4- (chloromethylsulfonyl) benzene) from Kumiai, (CAS reg. No. 54091-06- 4), which is known as a safener against damage from some herbicides in rice. S15) Compounds of the formula (S15) or their tautomers
wie sie in der WO-A-2008/131861 und WO-A-2008/131860 beschrieben sind, worin as described in WO-A-2008/131861 and WO-A-2008/131860, wherein
RH 1 einen (C1-C6)Haloalkylrest bedeutet und R 2 R H 1 denotes a (C 1 -C 6 ) haloalkyl radical and R 2
H Wasserstoff oder Halogen bedeutet und R 3 H is hydrogen or halogen and R 3
H , R 4 H, R 4
H unabhängig voneinander Wasserstoff, (C1-C16)Alkyl, (C2-C16)Alkenyl oder (C2-C16)Alkinyl, wobei jeder der letztgenannten 3 Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Hydroxy, Cyano, (C1-C4)Alkoxy, (C1-C4)Haloalkoxy, (C1-C4)Alkylthio, (C1-C4)Alkylamino, Di[(C1-C4)alkyl]-amino, [(C1-C4)Alkoxy]-carbonyl, [(C1-C4)Haloalkoxy]- carbonyl, (C3-C6)Cycloalkyl, das unsubstituiert oder substituiert ist, Phenyl, das unsubstituiert oder substituiert ist, und Heterocyclyl, das unsubstituiert oder substituiert ist, substituiert ist, oder (C3-C6)Cycloalkyl, (C4-C6)Cycloalkenyl, (C3-C6)Cycloalkyl, das an einer Seite des Rings mit einem 4 bis 6-gliedrigen gesättigten oder ungesättigten carbocyclischen Ring kondensiert ist, oder (C4-C6)Cycloalkenyl, das an einer Seite des Rings mit einem 4 bis 6-gliedrigen gesättigten oder ungesättigten carbocyclischen Ring kondensiert ist, wobei jeder der letztgenannten 4 Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Hydroxy, Cyano, (C1-C4)Alkyl, (C1-C4)Haloalkyl, (C1-C4)Alkoxy, (C1-C4)Haloalkoxy, (C1-C4)Alkylthio, (C1-C4)Alkylamino, Di[(C1-C4)alkyl]-amino, [(C1-C4)Alkoxy]-carbonyl, [(C1-C4)Haloalkoxy]-carbonyl, (C3-C6)Cycloalkyl, das unsubstituiert oder substituiert ist, Phenyl, das unsubstituiert oder substituiert ist, und Heterocyclyl, das unsubstituiert oder substituiert ist, substituiert ist, bedeutet oder R 3 H independently hydrogen, (C 1 -C 1 6) alkyl, (C 2 -C 16) alkenyl or (C 2 -C 16 ) alkynyl, each of the last-mentioned 3 radicals being unsubstituted or substituted by one or more radicals from the group consisting of halogen, hydroxy, cyano, (C 1 -C 4 ) alkoxy, (C 1 -C 4 ) haloalkoxy, ( C 1 -C 4 ) alkylthio, (C 1 -C 4 ) alkylamino, di [(C 1 -C 4 ) alkyl] amino, [(C 1 -C 4 ) alkoxy] carbonyl, [(C 1 -C 4 ) haloalkoxy] carbonyl, (C 3 -C 6 ) cycloalkyl that is unsubstituted or substituted, phenyl that is unsubstituted or substituted, and heterocyclyl that is unsubstituted or substituted, is substituted, or (C 3 -C 6 ) Cycloalkyl, (C 4 -C 6 ) cycloalkenyl, (C 3 -C 6 ) cycloalkyl condensed on one side of the ring with a 4 to 6-membered saturated or unsaturated carbocyclic ring, or (C 4 -C 6 ) cycloalkenyl , which is condensed on one side of the ring with a 4 to 6-membered saturated or unsaturated carbocyclic ring, each of the last-mentioned 4 radicals being unsubstituted or substituted by one or more radicals from the group consisting of halogen, Hy droxy, cyano, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) haloalkyl, (C 1 -C 4 ) alkoxy, (C 1 -C 4 ) haloalkoxy, (C 1 -C 4 ) alkylthio, ( C 1 -C 4) alkylamino, di [(C 1 -C 4) alkyl] -amino, [(C1 - C4) alkoxy] carbonyl, [(C 1 -C 4) haloalkoxy] carbonyl, (C 3 -C 6 ) Cycloalkyl that is unsubstituted or substituted, phenyl that is unsubstituted or substituted, and heterocyclyl that is unsubstituted or substituted, is substituted, or R 3
H (C1-C4)-Alkoxy, (C2-C4)Alkenyloxy, (C2-C6)Alkinyloxy oder (C2-C4)Haloalkoxy bedeutet und R 4 H is (C 1 -C 4 ) -alkoxy, (C 2 -C 4 ) alkenyloxy, (C 2 -C 6 ) alkynyloxy or (C 2 -C 4 ) haloalkoxy and R 4
H Wasserstoff oder (C1-C4)-Alkyl bedeutet oder RH 3 und RH 4 zusammen mit dem direkt gebundenen N-Atom einen vier- bis achtgliedrigen heterocyclischen Ring, der neben dem N-Atom auch weitere Heteroringatome, vorzugsweise bis zu zwei weitere Heteroringatome aus der Gruppe N, O und S enthalten kann und der unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Cyano, Nitro, (C1-C4)Alkyl, (C1-C4)Haloalkyl, (C1-C4)Alkoxy, (C1-C4)Haloalkoxy und (C1-C4)Alkylthio substituiert ist, bedeutet. S16) Wirkstoffe, die vorrangig als Herbizide eingesetzt werden, jedoch auch Safenerwirkung auf Kulturpflanzen aufweisen, z.B. (2,4-Dichlorphenoxy)essigsäure (2,4-D), (4-Chlorphenoxy)essigsäure, H is hydrogen or (C 1 -C 4 ) -alkyl or R H 3 and R H 4 together with the directly bonded N atom form a four- to eight-membered heterocyclic ring which, in addition to the N atom, also has further hetero ring atoms, preferably up to can contain two further hetero ring atoms from the group N, O and S and which is unsubstituted or substituted by one or more radicals from the group consisting of halogen, cyano, nitro, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) haloalkyl, ( C 1 -C 4 ) alkoxy, (C 1 -C 4 ) haloalkoxy and (C 1 -C 4 ) alkylthio is substituted. S16) Active ingredients that are primarily used as herbicides, but also have a safener effect on crop plants, e.g. (2,4-dichlorophenoxy) acetic acid (2,4-D), (4-chlorophenoxy) acetic acid,
(R,S)-2-(4-Chlor-o-tolyloxy)propionsäure (Mecoprop), 4-(2,4-Dichlorphenoxy)buttersäure (2,4-DB), (4-Chlor-o-tolyloxy)essigsäure (MCPA), 4-(4-Chlor-o-tolyloxy)buttersäure, (R, S) -2- (4-chloro-o-tolyloxy) propionic acid (Mecoprop), 4- (2,4-dichlorophenoxy) butyric acid (2,4-DB), (4-chloro-o-tolyloxy) acetic acid (MCPA), 4- (4-chloro-o-tolyloxy) butyric acid,
4-(4-Chlorphenoxy)buttersäure, 4- (4-chlorophenoxy) butyric acid,
3,6-Dichlor-2-methoxybenzoesäure (Dicamba), 1-(Ethoxycarbonyl)ethyl-3,6-dichlor-2-methoxybenzoat (Lactidichlor-ethyl). Besonders bevorzugte Safener sind Mefenpyr-diethyl, Cyprosulfamid, Isoxadifen-ethyl, Cloquintocet-mexyl, Dichlormid und Metcamifen. Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Tenside ionischer und/oder nichtionischer Art (Netzmittel, Dispergiermittel), z.B. polyoxyethylierte Alkylphenole, polyoxethylierte Fettalkohole, polyoxethylierte Fettamine, Fettalkoholpolyglykolether-sulfate, Alkansulfonate, Alkylbenzolsulfonate, ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, dibutylnaphthalin-sulfonsaures Natrium oder auch oleoylmethyltaurinsaures Natrium enthalten. Zur Herstellung der Spritzpulver werden die herbiziden Wirkstoffe beispielsweise in üblichen Apparaturen wie Hammermühlen, Gebläsemühlen und Luftstrahlmühlen feingemahlen und gleichzeitig oder anschließend mit den Formulierungshilfsmitteln vermischt. Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen oder Mischungen der organischen Lösungsmittel unter Zusatz von einem oder mehreren Tensiden ionischer und/oder nichtionischer Art (Emulgatoren) hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calzium-Salze wie Ca-Dodecylbenzolsulfonat oder nichtionische Emulgatoren wie Fettsäurepoly-glykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylen- oxid-Kondensationsprodukte, Alkylpolyether, Sorbitanester wie z.B. Sorbitanfett-säureester oder Polyoxethylensorbitanester wie z.B. Polyoxyethylensorbitan-fettsäureester. Stäubemittel erhält man durch Vermahlen des Wirkstoffes mit fein verteilten festen Stoffen, z.B. Talkum, natürlichen Tonen, wie Kaolin, Bentonit und Pyrophyllit, oder Diatomeenerde. Suspensionskonzentrate können auf Wasser- oder Ölbasis sein. Sie können beispielsweise durch Naß-Vermahlung mittels handelsüblicher Perlmühlen und gegebenenfalls Zusatz von Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, hergestellt werden. Emulsionen, z.B. Öl-in-Wasser-Emulsionen (EW), lassen sich beispielsweise mittels Rührern, Kolloidmühlen und/oder statischen Mischern unter Verwendung von wäßrigen organischen Lösungsmitteln und gegebenenfalls Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, herstellen. Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden. Wasserdispergierbare Granulate werden in der Regel nach den üblichen Verfahren wie Sprühtrocknung, Wirbelbett-Granulierung, Teller-Granulierung, Mischung mit Hochgeschwindigkeitsmischern und Extrusion ohne festes Inertmaterial hergestellt. Zur Herstellung von Teller-, Fließbett-, Extruder- und Sprühgranulate siehe z.B. Verfahren in "Spray-Drying Handbook" 3rd ed.1979, G. Goodwin Ltd., London, J.E. Browning, "Agglomeration", Chemical and Engineering 1967, Seiten 147 ff, "Perry's Chemical Engineer's Handbook", 5th Ed., McGraw-Hill, New York 1973, S.8-57. Für weitere Einzelheiten zur Formulierung von Pflanzenschutzmitteln siehe z.B. G.C. Klingman, "Weed Control as a Science", John Wiley and Sons, Inc., New York, 1961, Seiten 81-96 und J.D. Freyer, S.A. Evans, "Weed Control Handbook", 5th Ed., Blackwell Scientific Publications, Oxford, 1968, Seiten 101-103. Die agrochemischen Zubereitungen enthalten in der Regel 0.1 bis 99 Gew.-%, insbesondere 0.1 bis 95 Gew.-%, erfindungsgemäße Verbindungen. In Spritzpulvern beträgt die Wirkstoff-konzentration z.B. etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 1 bis 90, vorzugsweise 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten 1 bis 30 Gew.-% Wirkstoff, vorzugsweise meistens 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen enthalten etwa 0.05 bis 80, vorzugsweise 2 bis 50 Gew.-% Wirkstoff. Bei wasser-dispergierbaren Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden. Bei den in Wasser dispergierbaren Granulaten liegt der Gehalt an Wirkstoff beispielsweise zwischen 1 und 95 Gew.-%, vorzugsweise zwischen 10 und 80 Gew.-%. Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Konservierungs-, Frostschutz- und Lösungsmittel, Füll-, Träger- und Farbstoffe, Entschäumer, Verdunstungshemmer und den pH-Wert und die Viskosität beeinflussende Mittel. Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, wie z.B. Insektiziden, Akariziden, Herbiziden, Fungiziden, sowie mit Safenern, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix. Zur Anwendung werden die in handelsüblicher Form vorliegenden Formulierungen gegebenenfalls in üblicher Weise verdünnt z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und wasserdispergierbaren Granulaten mittels Wasser. Staubförmige Zubereitungen, Boden- bzw. Streugranulate sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt. Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit, der Art des verwendeten Herbizids, u.a. variiert die erforderliche Aufwandmenge der Verbindungen der Formel (I) und deren Salze. Sie kann innerhalb weiter Grenzen schwanken, z.B. zwischen 0,001 und 10,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise liegt sie jedoch zwischen 0,005 bis 5 kg/ha, weiter bevorzugt im Bereich von 0,01 bis 1,5 kg/ha, insbesondere bevorzugt im Bereich von 0,05 bis 1 kg/ha g/ha. Dies gilt sowohl für die Anwendung im Vorauflauf oder im Nachauflauf. Trägerstoff bedeutet eine natürliche oder synthetische, organische oder anorganische Substanz, mit welchen die Wirkstoffe zur besseren Anwendbarkeit, v.a. zum Aufbringen auf Pflanzen oder Pflanzenteile oder Saatgut, gemischt oder verbunden sind. Der Trägerstoff, welcher fest oder flüssig sein kann, ist im Allgemeinen inert und sollte in der Landwirtschaft verwendbar sein. Als feste oder flüssige Trägerstoffe kommen infrage: z.B. Ammoniumsalze und natürliche Gesteins- mehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und natürliche oder synthetische Silikate, Harze, Wachse, feste Düngemittel, Wasser, Alkohole, besonders Butanol, organische Solventien, Mineral- und Pflanzenöle sowie Derivate hiervon. Mischungen solcher Trägerstoffe können ebenfalls verwendet werden. Als feste Trägerstoffe für Granulate kommen infrage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnussschalen, Maiskolben und Tabakstängel. Als verflüssigte gasförmige Streckmittel oder Trägerstoffe kommen solche Flüssigkeiten infrage, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe, sowie Butan, Propan, Stickstoff und Kohlendioxid. Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthe- tische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabikum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im Wesentlichen infrage: Aromaten, wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Dichlormethan, aliphatische Kohlen- wasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone, wie Aceton, Methyl- ethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel wie Dimethyl- formamid und Dimethylsulfoxid, sowie Wasser. Die erfindungsgemäßen Mittel können zusätzlich weitere Bestandteile enthalten, wie z.B. oberflächenaktive Stoffe. Als oberflächenaktive Stoffe kommen Emulgier- und/oder Schaum erzeugende Mittel, Dispergiermittel oder Benetzungsmittel mit ionischen oder nicht-ionischen Eigenschaften oder Mischungen dieser oberflächenaktiven Stoffe infrage. Beispiele hierfür sind Salze von Polyacrylsäure, Salze von Lignosulphonsäure, Salze von Phenolsulphonsäure oder Naphthalinsulphonsäure, Polykondensate von Ethylenoxid mit Fettalkoholen oder mit Fettsäuren oder mit Fettaminen, substituierten Phenolen (vorzugsweise Alkylphenole oder Arylphenole), Salze von Sulphobernsteinsäureestern, Taurinderivate (vorzugsweise Alkyltaurate), Phosphorsäureester von polyethoxylierten Alkoholen oder Phenole, Fettsäureester von Polyolen, und Derivate der Verbindungen enthaltend Sulphate, Sulphonate und Phosphate, z.B. Alkylarylpolyglycolether, Alkyl- sulfonate, Alkylsulfate, Arylsulfonate, Eiweißhydrolysate, Lignin-Sulfitablaugen und Methyl- cellulose. Die Anwesenheit einer oberflächenaktiven Substanz ist notwendig, wenn einer der Wirkstoff und/oder einer der inerten Trägerstoffe nicht in Wasser löslich ist und wenn die Anwendung in Wasser erfolgt. Der Anteil an oberflächenaktiven Stoffen liegt zwischen 5 und 40 Gewichtsprozent des erfindungsgemäßen Mittels. Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyanin- farbstoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden. Gegebenenfalls können auch andere zusätzliche Komponenten enthalten sein, z.B. schützende Kolloide, Bindemittel, Klebstoffe, Verdicker, thixotrope Stoffe, Penetrationsförderer, Stabilisatoren, Sequestiermittel, Komplexbildner. Im Allgemeinen können die Wirkstoffe mit jedem festen oder flüssigen Additiv, welches für Formulierungszwecke gewöhnlich verwendet wird, kombiniert werden. Im Allgemeinen enthalten die erfindungsgemäßen Mittel und Formulierungen zwischen 0,05 und 99 Gew.-%, 0,01 und 98 Gew.-%, vorzugsweise zwischen 0,1 und 95 Gew.-%, besonders bevorzugt zwischen 0,5 und 90 % Wirkstoff, ganz besonders bevorzugt zwischen 10 und 70 Gewichtsprozent. Die erfindungsgemäßen Wirkstoffe bzw. Mittel können als solche oder in Abhängigkeit von ihren jeweiligen physikalischen und/oder chemischen Eigenschaften in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, wie Aerosole, Kapselsuspensionen, Kaltnebelkonzentrate, Heißnebelkonzentrate, verkapselte Granulate, Feingranulate, fließfähige Kon- zentrate für die Behandlung von Saatgut, gebrauchsfertige Lösungen, verstäubbare Pulver, emulgier- bare Konzentrate, Öl-in-Wasser-Emulsionen, Wasser-in-Öl-Emulsionen, Makrogranulate, Mikrogra- nulate, Öl dispergierbare Pulver, Öl mischbare fließfähige Konzentrate, Öl mischbare Flüssigkeiten, Schäume, Pasten, Pestizid ummanteltes Saatgut, Suspensionskonzentrate, Suspensions-Emulsions- Konzentrate, lösliche Konzentrate, Suspensionen, Spritzpulver, lösliche Pulver, Stäubemittel und Granulate, wasserlösliche Granulate oder Tabletten, wasserlösliche Pulver für Saatgut-behandlung, benetzbare Pulver, Wirkstoff-imprägnierte Natur- und synthetische Stoffe sowie Feinstverkapse- lungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt- und Warmnebel- Formulierungen eingesetzt werden. Die genannten Formulierungen können in an sich bekannter Weise hergestellt werden, z.B. durch Vermischen der Wirkstoffe mit mindestens einem üblichen Streckmittel, Lösungs- bzw. Ver- dünnungsmittel, Emulgator, Dispergier- und/oder Binde- oder Fixiermittels, Netzmittel, Wasser- Repellent, gegebenenfalls Sikkative und UV-Stabilisatoren und gegebenenfalls Farbstoffen und Pigmenten, Entschäumer, Konservierungsmittel, sekundäre Verdickungsmittel, Kleber, Gibberelline sowie weiteren Verarbeitungshilfsmitteln. Die erfindungsgemäßen Mittel umfassen nicht nur Formulierungen, welche bereits anwendungsfertig sind und mit einer geeigneten Apparatur auf die Pflanze oder das Saatgut ausgebracht werden können, sondern auch kommerzielle Konzentrate, welche vor Gebrauch mit Wasser verdünnt werden müssen. Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren (handelsüblichen) Formu- lierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen (bekannten) Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Bakteriziden, Akariziden, Nematiziden, Fungiziden, Wachstumsregulatoren, Herbiziden, Düngemitteln, Safener bzw. Semiochemicals vorliegen. Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen bzw. Mitteln erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, (Ver-)Spritzen, (Ver-)Sprühen, Berieseln, Verdampfen, Zerstäuben, Vernebeln, (Ver-)Streuen, Verschäumen, Bestreichen, Verstreichen, Gießen (drenchen), Tröpfchenbewässerung und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch Trockenbeizen, Nassbeizen, Schlämmbeizen, Inkrustieren, ein- oder mehrschichtiges Umhüllen usw. Es ist ferner möglich, die Wirkstoffe nach dem Ultra-Low-Volume-Verfahren auszu- bringen oder die Wirkstoffzubereitung oder den Wirkstoff selbst in den Boden zu injizieren. Wie auch weiter unten beschrieben, ist die Behandlung von transgenem Saatgut mit den erfindungs- gemäßen Wirkstoffen bzw. Mitteln von besonderer Bedeutung. Dies betrifft das Saatgut von Pflanzen, die wenigstens ein heterologes Gen enthalten, das die Expression eines Polypeptids oder Proteins mit insektiziden Eigenschaften ermöglicht. Das heterologe Gen in transgenem Saatgut kann z.B. aus Mikroorganismen der Arten Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus oder Gliocladium stammen. Bevorzugt stammt dieses heterologe Gen aus Bacillus sp., wobei das Genprodukt eine Wirkung gegen den Maiszünsler (European corn borer) und/oder Western Corn Rootworm besitzt. Besonders bevorzugt stammt das heterologe Gen aus Bacillus thuringiensis. Im Rahmen der vorliegenden Erfindung wird das erfindungsgemäße Mittel alleine oder in einer ge- eigneten Formulierung auf das Saatgut aufgebracht. Vorzugsweise wird das Saatgut in einem Zustand behandelt, in dem so stabil ist, dass keine Schäden bei der Behandlung auftreten. Im Allgemeinen kann die Behandlung des Saatguts zu jedem Zeitpunkt zwischen der Ernte und der Aussaat erfolgen. Üblicherweise wird Saatgut verwendet, das von der Pflanze getrennt und von Kolben, Schalen, Stängeln, Hülle, Wolle oder Fruchtfleisch befreit wurde. So kann zum Beispiel Saatgut verwendet werden, das geerntet, gereinigt und bis zu einem Feuchtigkeitsgehalt von unter 15 Gew.-% getrocknet wurde. Alternativ kann auch Saatgut verwendet werden, das nach dem Trocknen z.B. mit Wasser behandelt und dann erneut getrocknet wurde. Im Allgemeinen muss bei der Behandlung des Saatguts darauf geachtet werden, dass die Menge des auf das Saatgut aufgebrachten erfindungsgemäßen Mittels und/oder weiterer Zusatzstoffe so gewählt wird, dass die Keimung des Saatguts nicht beeinträchtigt bzw. die daraus hervorgehende Pflanze nicht geschädigt wird. Dies ist vor allem bei Wirkstoffen zu beachten, die in bestimmten Aufwandmengen phytotoxische Effekte zeigen können. Die erfindungsgemäßen Mittel können unmittelbar aufgebracht werden, also ohne weitere Komponenten zu enthalten und ohne verdünnt worden zu sein. In der Regel ist es vorzuziehen, die Mittel in Form einer geeigneten Formulierung auf das Saatgut aufzubringen. Geeignete Formulierungen und Verfahren für die Saatgutbehandlung sind dem Fachmann bekannt und werden z.B. in den folgenden Dokumenten beschrieben: US 4,272,417 A, US 4,245,432 A, US 4,808,430, US 5,876,739, US 2003/0176428 A1, WO 2002/080675 A1, WO 2002/028186 A2. Die erfindungsgemäßen Wirkstoffe können in die üblichen Beizmittel-Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Slurries oder andere Hüllmassen für Saatgut, sowie ULV-Formulierungen. Diese Formulierungen werden in bekannter Weise hergestellt, indem man die Wirkstoffe mit üblichen Zusatzstoffen vermischt, wie zum Beispiel übliche Streckmittel sowie Lösungs- oder Verdünnungsmittel, Farbstoffe, Netzmittel, Dispergiermittel, Emulgatoren, Entschäumer, Konser- vierungsmittel, sekundäre Verdickungsmittel, Kleber, Gibberelline und auch Wasser. Als Farbstoffe, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle für derartige Zwecke üblichen Farbstoffe in Betracht. Dabei sind sowohl in Wasser wenig lösliche Pigmente als auch in Wasser lösliche Farbstoffe verwendbar. Als Beispiele genannt seien die unter den Bezeichnungen Rhodamin B, C.I. Pigment Red 112 und C.I. Solvent Red 1 bekannten Farbstoffe. Als Netzmittel, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen, die Benetzung fördernden Stoffe in Frage. Vorzugsweise verwendbar sind Alkylnaphthalin-Sulfonate, wie Diiso- propyl- oder Diisobutyl-naphthalin-Sulfonate. Als Dispergiermittel und/oder Emulgatoren, die in den erfindungsgemäß verwendbaren Beizmittel- Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen nichtionischen, anionischen und kationischen Dispergiermittel in Betracht. Vorzugsweise verwendbar sind nichtionische oder anionische Dispergiermittel oder Gemische von nichtionischen oder anionischen Dispergiermitteln. Als geeignete nichtionische Dispergiermittel sind insbesondere Ethylenoxid-Propylenoxid Blockpolymere, Alkylphenolpolyglykolether sowie Tri- stryrylphenolpolyglykolether und deren phosphatierte oder sulfatierte Derivate zu nennen. Geeignete anionische Dispergiermittel sind insbesondere Ligninsulfonate, Polyacrylsäuresalze und Aryl- sulfonat-Formaldehydkondensate. Als Entschäumer können in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen alle zur Formulierung von agrochemischen Wirkstoffen üblichen schaumhemmenden Stoffe enthalten sein. Vorzugsweise verwendbar sind Silikonentschäumer und Magnesiumstearat. Als Konservierungsmittel können in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen alle für derartige Zwecke in agrochemischen Mitteln einsetzbaren Stoffe vorhanden sein. Beispielhaft genannt seien Dichlorophen und Benzylalkoholhemiformal. Als sekundäre Verdickungsmittel, die in den erfindungsgemäß verwendbaren Beizmittel-Formu- lierungen enthalten sein können, kommen alle für derartige Zwecke in agrochemischen Mitteln einsetzbaren Stoffe in Frage. Vorzugsweise in Betracht kommen Cellulosederivate, Acrylsäure- derivate, Xanthan, modifizierte Tone und hochdisperse Kieselsäure. Als Kleber, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle üblichen in Beizmitteln einsetzbaren Bindemittel in Frage. Vorzugsweise genannt seien Polyvinylpyrrolidon, Polyvinylacetat, Polyvinylalkohol und Tylose. Die erfindungsgemäß verwendbaren Beizmittel-Formulierungen können entweder direkt oder nach vorherigem Verdünnen mit Wasser zur Behandlung von Saatgut der verschiedensten Art, auch von Saatgut transgener Pflanzen, eingesetzt werden. Dabei können im Zusammenwirken mit den durch Expression gebildeten Substanzen auch zusätzliche synergistische Effekte auftreten. Zur Behandlung von Saatgut mit den erfindungsgemäß verwendbaren Beizmittel-Formulierungen oder den daraus durch Zugabe von Wasser hergestellten Zubereitungen kommen alle üblicherweise für die Beizung einsetzbaren Mischgeräte in Betracht. Im einzelnen geht man bei der Beizung so vor, dass man das Saatgut in einen Mischer gibt, die jeweils gewünschte Menge an Beizmittel-Formu- lierungen entweder als solche oder nach vorherigem Verdünnen mit Wasser hinzufügt und bis zur gleichmäßigen Verteilung der Formulierung auf dem Saatgut mischt. Gegebenenfalls schließt sich ein Trocknungsvorgang an. Die erfindungsgemäßen Wirkstoffe eignen sich bei guter Pflanzenverträglichkeit, günstiger Warmblütertoxizität und guter Umweltverträglichkeit zum Schutz von Pflanzen und Pflanzenorganen, zur Steigerung der Ernteerträge, Verbesserung der Qualität des Erntegutes. Sie können vorzugsweise als Pflanzenschutzmittel eingesetzt werden. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam. Als Pflanzen, welche erfindungsgemäß behandelt werden können, seien folgende Hauptanbaupflanzen erwähnt: Mais, Sojabohne, Baumwolle, Brassica Ölsaaten wie Brassica napus (z.B. Canola), Brassica rapa, B. juncea (z.B. (Acker-)Senf) und Brassica carinata, Reis, Weizen Zuckerrübe, Zurckerrohr, Hafer, Roggen, Gerste, Hirse, Triticale, Flachs, Wein und verschiedene Früchte und Gemüse von verschiedenen botanischen Taxa wie z.B. Rosaceae sp. (beispielsweise Kernfrüchte wie Apfel und Birne, aber auch Steinfrüchte wie Aprikosen, Kirschen, Mandeln und Pfirsiche und Beerenfrüchte wie Erdbeeren), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp., Actinidaceae sp., Lauraceae sp., Musaceae sp. (beispielsweise Bananenbäume und -plantagen), Rubiaceae sp. (beispielsweise Kaffee), Theaceae sp., Sterculiceae sp., Rutaceae sp. (beispielsweise Zitronen, Organen und Grapefruit); Solanaceae sp. (beispielsweise Tomaten, Kartoffeln, Pfeffer, Auberginen), Liliaceae sp., Compositae sp. (beispielsweise Salat, Artischocke and Chicoree– einschließlich Wurzelchicoree, Endivie oder gemeinen Chicoree), Umbelliferae sp. (beispielsweise Karrotte, Petersilie, Stangensellerie und Knollensellerie), Cucurbitaceae sp. (beispielsweise Gurke– einschließlich Gewürzgurke, Kürbis, Wassermelone, Flaschenkürbis und Melonen), Alliaceae sp. (beispielsweise Lauch und Zwiebel), Cruciferae sp. (beispielsweise Weißkohl, Rotkohl, Brokkoli, Blumenkohl, Rosenkohl, Pak Choi, Kohlrabi, Radieschen, Meerrettich, Kresse und Chinakohl), Leguminosae sp. (beispielsweise Erdnüsse, Erbsen, und Bohnen– wie z.B. Stangenbohne und Ackerbohne), Chenopodiaceae sp. (beispielsweise Mangold, Futterrübe, Spinat, Rote Rübe), Malvaceae (beispielsweise Okra), Asparagaceae (beispielsweise Spargel); Nutzpflanzen und Zierpflanzen in Garten und Wald; sowie jeweils genetisch modifizierte Arten dieser Pflanzen. Wie oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetically Modified Organisms) und deren Teile behandelt. Der Begriff„Teile“ bzw.„Teile von Pflanzen“ oder„Pflanzenteile“ wurde oben erläutert. Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzensorten versteht man Pflanzen mit neuen Eigenschaften („Traits“), die sowohl durch konventionelle Züchtung, durch Mutagenese oder durch rekombinante DNA-Techniken gezüchtet worden sind. Dies können Sorten, Rassen, Bio- und Genotypen sein. Das erfindungsgemäße Behandlungsverfahren kann für die Behandlung von genetisch modifizierten Organismen (GMOs), z. B. Pflanzen oder Samen, verwendet werden. Genetisch modifizierte Pflanzen (oder transgene Pflanzen) sind Pflanzen, bei denen ein heterologes Gen stabil in das Genom integriert worden ist. Der Begriff "heterologes Gen" bedeutet im wesentlichen ein Gen, das außerhalb der Pflanze bereitgestellt oder assembliert wird und das bei Einführung in das Zellkerngenom, das Chloroplastengenom oder das Mitochondriengenom der transformierten Pflanze dadurch neue oder verbesserte agronomische oder sonstige Eigenschaften verleiht, dass es ein interessierendes Protein oder Polypeptid exprimiert oder dass es ein anderes Gen, das in der Pflanze vorliegt bzw. andere Gene, die in der Pflanze vorliegen, herunterreguliert oder abschaltet (zum Beispiel mittels Antisense- Technologie, Cosuppressionstechnologie oder RNAi-Technologie [RNA Interference]). Ein heterologes Gen, das im Genom vorliegt, wird ebenfalls als Transgen bezeichnet. Ein Transgen, das durch sein spezifisches Vorliegen im Pflanzengenom definiert ist, wird als Transformations- bzw. transgenes Event bezeichnet. In Abhängigkeit von den Pflanzenarten oder Pflanzensorten, ihrem Standort und ihren Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) kann die erfindungsgemäße Behandlung auch zu überadditiven ("synergistischen") Effekten führen. So sind zum Beispiel die folgenden Effekte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen: verringerte Aufwandmengen und/oder erweitertes Wirkungsspektrum und/oder erhöhte Wirksamkeit der Wirkstoffe und Zusammensetzungen, die erfindungsgemäß eingesetzt werden können, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegenüber Trockenheit oder Wasser- oder Bodensalzgehalt, erhöhte Blühleistung, Ernteerleichterung, Reifebeschleunigung, höhere Erträge, größere Früchte, größere Pflanzenhöhe, intensiver grüne Farbe des Blatts, frühere Blüte, höhere Qualität und/oder höherer Nährwert der Ernteprodukte, höhere Zuckerkonzentration in den Früchten, bessere Lagerfähigkeit und/oder Verarbeitbarkeit der Ernteprodukte. Zu Pflanzen und Pflanzensorten, die vorzugsweise erfindungsgemäß behandelt werden, zählen alle Pflanzen, die über Erbgut verfügen, das diesen Pflanzen besonders vorteilhafte, nützliche Merkmale verleiht (egal, ob dies durch Züchtung und/oder Biotechnologie erzielt wurde). Beispiele für Nematoden-resistente Pflanzen sind z.B. folgenden US Patentanmeldungen beschrieben: 11/765,491, 11/765,494, 10/926,819, 10/782,020, 12/032,479, 10/783,417, 10/782,096, 11/657,964, 12/192,904, 11/396,808, 12/166,253, 12/166,239, 12/166,124, 12/166,209, 11/762,886, 12/364,335, 11/763,947, 12/252,453, 12/209,354, 12/491,396 und 12/497,221. Pflanzen, die erfindungsgemäß behandelt werden können, sind Hybridpflanzen, die bereits die Eigenschaften der Heterosis bzw. des Hybrideffekts exprimieren, was im Allgemeinen zu höherem Ertrag, höherer Wüchsigkeit, besserer Gesundheit und besserer Resistenz gegen biotische und abiotische Stressfaktoren führt. Solche Pflanzen werden typischerweise dadurch erzeugt, dass man eine ingezüchtete pollensterile Elternlinie (den weiblichen Kreuzungspartner) mit einer anderen ingezüchteten pollenfertilen Elternlinie (dem männlichen Kreuzungspartner) kreuzt. Das Hybridsaatgut wird typischerweise von den pollensterilen Pflanzen geerntet und an Vermehrer verkauft. Pollensterile Pflanzen können manchmal (z. B. beim Mais) durch Entfahnen (d.h. mechanischem Entfernen der männlichen Geschlechtsorgane bzw. der männlichen Blüten), produziert werden; es ist jedoch üblicher, dass die Pollensterilität auf genetischen Determinanten im Pflanzengenom beruht. In diesem Fall, insbesondere dann, wenn es sich bei dem gewünschten Produkt, da man von den Hybridpflanzen ernten will, um die Samen handelt, ist es üblicherweise günstig, sicherzustellen, dass die Pollenfertilität in Hybridpflanzen, die die für die Pollensterilität verantwortlichen genetischen Determinanten enthalten, völlig restoriert wird. Dies kann erreicht werden, indem sichergestellt wird, dass die männlichen Kreuzungspartner entsprechende Fertilitätsrestorergene besitzen, die in der Lage sind, die Pollenfertilität in Hybridpflanzen, die die genetischen Determinanten, die für die Pollensterilität verantwortlich sind, enthalten, zu restorieren. Genetische Determinanten für Pollensterilität können im Cytoplasma lokalisiert sein. Beispiele für cytoplasmatische Pollensterilität (CMS) wurden zum Beispiel für Brassica-Arten beschrieben. Genetische Determinanten für Pollensterilität können jedoch auch im Zellkerngenom lokalisiert sein. Pollensterile Pflanzen können auch mit Methoden der pflanzlichen Biotechnologie, wie Gentechnik, erhalten werden. Ein besonders günstiges Mittel zur Erzeugung von pollensterilen Pflanzen ist in WO 89/10396 beschrieben, wobei zum Beispiel eine Ribonuklease wie eine Barnase selektiv in den Tapetumzellen in den Staubblättern exprimiert wird. Die Fertilität kann dann durch Expression eines Ribonukleasehemmers wie Barstar in den Tapetumzellen restoriert werden. Pflanzen oder Pflanzensorten (die mit Methoden der Pflanzenbiotechnologie, wie der Gentechnik, erhalten werden), die erfindungsgemäß behandelt werden können, sind herbizidtolerante Pflanzen, d. h. Pflanzen, die gegenüber einem oder mehreren vorgegebenen Herbiziden tolerant gemacht worden sind. Solche Pflanzen können entweder durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solch eine Herbizidtoleranz verleiht, erhalten werden. Herbizidtolerante Pflanzen sind zum Beispiel glyphosatetolerante Pflanzen, d. h. Pflanzen, die gegenüber dem Herbizid Glyphosate oder dessen Salzen tolerant gemacht worden sind. Pflanzen können mit verschiedenen Methoden tolerant gegenüber Glyphosate gemacht werden. So können zum Beispiel glyphosatetolerante Pflanzen durch Transformation der Pflanze mit einem Gen, das für das Enzym 5-Enolpyruvylshikimat-3-phosphatsynthase (EPSPS) kodiert, erhalten werden. Beispiele für solche EPSPS-Gene sind das AroA-Gen (Mutante CT7) des Bakterium Salmonella typhimurium (Comai et al., 1983, Science 221, 370-371), das CP4-Gen des Bakteriums Agrobacterium sp. (Barry et al., 1992, Curr. Topics Plant Physiol. 7, 139-145), die Gene, die für eine EPSPS aus der Petunie (Shah et al., 1986, Science 233, 478-481), für eine EPSPS aus der Tomate (Gasser et al., 1988, J. Biol. Chem. 263, 4280-4289) oder für eine EPSPS aus Eleusine (WO 01/66704) kodieren. Es kann sich auch um eine mutierte EPSPS handeln. Glyphosate-tolerante Pflanzen können auch dadurch erhalten werden, dass man ein Gen exprimiert, das für ein Glyphosate-Oxidoreduktase-Enzym kodiert. Glyphosate-tolerante Pflanzen können auch dadurch erhalten werden, dass man ein Gen exprimiert, das für ein Glyphosate-acetyltransferase-Enzym kodiert. Glyphosatetolerante Pflanzen können auch dadurch erhalten werden, dass man Pflanzen, die natürlich vorkommende Mutationen der oben erwähnten Gene enthalten, selektiert. Pflanzen, die EPSPS Gene, welche Glyphosate- Toleranz verleihen, exprimieren, sind beschrieben. Pflanzen, welche andere Gene, die Glyphosate- Toleranz verleihen, z.B. Decarboxylase-Gene, sind beschrieben. Sonstige herbizidresistente Pflanzen sind zum Beispiel Pflanzen, die gegenüber Herbiziden, die das Enzym Glutaminsynthase hemmen, wie Bialaphos, Phosphinotricin oder Glufosinate, tolerant gemacht worden sind. Solche Pflanzen können dadurch erhalten werden, dass man ein Enzym exprimiert, das das Herbizid oder eine Mutante des Enzyms Glutaminsynthase, das gegenüber Hemmung resistent ist, entgiftet. Solch ein wirksames entgiftendes Enzym ist zum Beispiel ein Enzym, das für ein Phosphinotricin-acetyltransferase kodiert (wie zum Beispiel das bar- oder pat- Protein aus Streptomyces-Arten). Pflanzen, die eine exogene Phosphinotricin-acetyltransferase exprimieren, sind beschrieben. Weitere herbizidtolerante Pflanzen sind auch Pflanzen, die gegenüber den Herbiziden, die das Enzym Hydroxyphenylpyruvatdioxygenase (HPPD) hemmen, tolerant gemacht worden sind. Bei den Hydroxyphenylpyruvatdioxygenasen handelt es sich um Enzyme, die die Reaktion, in der para- Hydroxyphenylpyruvat (HPP) zu Homogentisat umgesetzt wird, katalysieren. Pflanzen, die gegenüber HPPD-Hemmern tolerant sind, können mit einem Gen, das für ein natürlich vorkommendes resistentes HPPD-Enzym kodiert, oder einem Gen, das für ein mutiertes oder chimäres HPPD-Enzym kodiert, transformiert werden, wie in WO 96/38567, WO 99/24585, WO 99/24586, WO 2009/144079, WO 2002/046387 oder US 6,768,044 beschrieben. Eine Toleranz gegenüber HPPD-Hemmern kann auch dadurch erzielt werden, dass man Pflanzen mit Genen transformiert, die für gewisse Enzyme kodieren, die die Bildung von Homogentisat trotz Hemmung des nativen HPPD-Enzyms durch den HPPD-Hemmer ermöglichen. Solche Pflanzen sind in WO 99/34008 und WO 02/36787 beschrieben. Die Toleranz von Pflanzen gegenüber HPPD-Hemmern kann auch dadurch verbessert werden, dass man Pflanzen zusätzlich zu einem Gen, das für ein HPPD- tolerantes Enzym kodiert, mit einem Gen transformiert, das für ein Prephenatdehydrogenase-Enzym kodiert, wie in WO 2004/024928 beschrieben ist. Außerdem können Pflanzen noch toleranter gegen HPPD-Hemmern gemacht werden, indem man ein Gen in ihr Genom einfügt, welches für ein Enzym kodiert, das HPPD-Hemmer metabolisiert oder abbaut, wie z.B. CYP450 Enzyme (siehe WO 2007/103567 und WO 2008/150473). Weitere herbizidresistente Pflanzen sind Pflanzen, die gegenüber Acetolactatsynthase (ALS)- Hemmern tolerant gemacht worden sind. Zu bekannten ALS-Hemmern zählen zum Beispiel Sulfonylharnstoff, Imidazolinon, Triazolopyrimidine, Pyrimidinyloxy(thio)benzoate und/oder Sulfonylaminocarbonyltriazolinon-Herbizide. Es ist bekannt, dass verschiedene Mutationen im Enzym ALS (auch als Acetohydroxysäure-Synthase, AHAS, bekannt) eine Toleranz gegenüber unterschiedlichen Herbiziden bzw. Gruppen von Herbiziden verleihen wie z.B. in Tranel und Wright (Weed Science 2002, 50, 700-712) beschrieben ist. Die Herstellung von sulfonylharnstofftoleranten Pflanzen und imidazolinontoleranten Pflanzen ist beschrieben. Weitere sulfonylharnstoff- und imidazolinontolerante Pflanzen sind auch beschrieben. Weitere Pflanzen, die gegenüber Imidazolinonen und/oder Sulfonylharnstoffen tolerant sind, können durch induzierte Mutagenese, Selektion in Zellkulturen in Gegenwart des Herbizids oder durch Mutationszüchtung erhalten werden (vgl. z.B. für Sojabohne US 5,084,082, für Reis WO 97/41218, für Zuckerrübe US 5,773,702 und WO 99/057965, für Salat US 5,198,599 oder für Sonnenblume WO 01/065922). Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind gegenüber abiotischen Stressfaktoren tolerant. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solch eine Stressresistenz verleiht, erhalten werden. Zu besonders nützlichen Pflanzen mit Stresstoleranz zählen folgende: a. Pflanzen, die ein Transgen enthalten, das die Expression und/oder Aktivität des Gens für die Poly(ADP-ribose)polymerase (PARP) in den Pflanzenzellen oder Pflanzen zu reduzieren vermag. b. Pflanzen, die ein stresstoleranzförderndes Transgen enthalten, das die Expression und/oder Aktivität der für PARG kodierenden Gene der Pflanzen oder Pflanzenzellen zu reduzieren vermag; c. Pflanzen, die ein stresstoleranzförderndes Transgen enthalten, das für ein in Pflanzen funktionelles Enzym des Nicotinamidadenindinukleotid-Salvage-Biosynthesewegs kodiert, darunter Nicotinamidase, Nicotinatphosphoribosyltransferase, Nicotinsäuremononukleotidadenyltransferase, Nicotinamidadenindinukleotidsynthetase oder Nicotinamidphosphoribosyltransferase. Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, weisen eine veränderte Menge, Qualität und/oder Lagerfähigkeit des Ernteprodukts und/oder veränderte Eigenschaften von bestimmten Bestandteilen des Ernteprodukts auf, wie zum Beispiel: 1) Transgene Pflanzen, die eine modifizierte Stärke synthetisieren, die bezüglich ihrer chemisch-phy- sikalischen Eigenschaften, insbesondere des Amylosegehalts oder des Amylose/Amylopektin- Verhältnisses, des Verzweigungsgrads, der durchschnittlichen Kettenlänge, der Verteilung der Seitenketten, des Viskositätsverhaltens, der Gelfestigkeit, der Stärkekorngröße und/oder Stärkekornmorphologie im Vergleich mit der synthetisierten Stärke in Wildtyppflanzenzellen oder - pflanzen verändert ist, so dass sich diese modifizierte Stärke besser für bestimmte Anwendungen eignet. 2) Transgene Pflanzen, die Nichtstärkekohlenhydratpolymere synthetisieren, oder Nichtstärkekohlenhydratpolymere, deren Eigenschaften im Vergleich zu Wildtyppflanzen ohne genetische Modifikation verändert sind. Beispiele sind Pflanzen, die Polyfructose, insbesondere des Inulin- und Levantyps, produzieren, Pflanzen, die alpha-1,4-Glucane produzieren, Pflanzen, die alpha-1,6-verzweigte alpha-1,4-Glucane produzieren und Pflanzen, die Alternan produzieren. 3) Transgene Pflanzen, die Hyaluronan produzieren. 4) Transgene Pflanzen oder Hybridpflanzen wie Zwiebeln mit bestimmten Eigenschaften wie „hohem Anteil an löslichen Feststoffen“ (‚high soluble solids content’), geringe Schärfe (‚low pungency’, LP) und/oder lange Lagerfähigkeit (‚long storage’, LS). Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie Baumwollpflanzen mit veränderten Fasereigenschaften. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solche veränderten Fasereigenschaften verleiht, erhalten werden; dazu zählen: a) Pflanzen wie Baumwollpflanzen, die eine veränderte Form von Cellulosesynthasegenen enthalten, b) Pflanzen wie Baumwollpflanzen, die eine veränderte Form von rsw2- oder rsw3-homologen Nukleinsäuren enthalten, wie Baumwollpflanzen mit einer erhöhten Expression der Saccharosephosphat- synthase; c) Pflanzen wie Baumwollpflanzen mit einer erhöhten Expression der Saccharosesynthase; d) Pflanzen wie Baumwollpflanzen bei denen der Zeitpunkt der Durchlaßsteuerung der Plasmodesmen an der Basis der Faserzelle verändert ist, z. B. durch Herunterregulieren der faserselektiven b-1,3-Glucanase; e) Pflanzen wie Baumwollpflanzen mit Fasern mit veränderter Reaktivität, z. B. durch Expression des N-Acetylglucosamintransferasegens, darunter auch nodC, und von Chitinsynthasegenen. Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie Raps oder verwandte Brassica-Pflanzen mit veränderten Eigenschaften der Ölzusammensetzung. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solche veränderten Öleigenschaften verleiht, erhalten werden; dazu zählen: a) Pflanzen wie Rapspflanzen, die Öl mit einem hohen Ölsäuregehalt produziere; b) Pflanzen wie Rapspflanzen, die Öl mit einem niedrigen Linolensäuregehalt produzieren. c) Pflanzen wie Rapspflanzen, die Öl mit einem niedrigen gesättigten Fettsäuregehalt produzieren. Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten werden können), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie Kartoffeln, welche Virus-resistent sind z.B. gegen den Kartoffelvirus Y (Event SY230 und SY233 von Tecnoplant, Argentinien), oder welche resistent gegen Krankheiten wie die Kraut- und Knollenfäule (potato late blight) (z.B. RB Gen), oder welche eine verminderte kälteinduzierte Süße zeigen (welche die Gene Nt-Inh, II-INV tragen) oder welche den Zwerg-Phänotyp zeigen (Gen A-20 Oxidase). Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie Raps oder verwandte Brassica-Pflanzen mit veränderten Eigenschaften im Samenausfall (seed shattering). Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solche veränderten Eigenschaften verleihen, und umfassen Pflanzen wie Raps mit verzögertem oder vermindertem Samenausfall. Besonders nützliche transgene Pflanzen, die erfindungsgemäß behandelt werden können, sind Pflanzen mit Transformationsevents oder Kombinationen von Transformationsevent, welche in den USA beim Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) Gegenstand von erteilten oder anhängigen Petitionen für den nicht-regulierten Status sind. Die Information hierzu ist jederzeit beim APHIS (4700 River Road Riverdale, MD 20737, USA) erhältlich, z.B. über die Internetseite http://www.aphis.usda.gov/brs/not_reg.html. Am Anmeldetag dieser Anmeldung waren beim APHIS die Petitionen mit folgenden Informationen entweder erteilt oder anhängig: 3,6-dichloro-2-methoxybenzoic acid (Dicamba), 1- (ethoxycarbonyl) ethyl-3,6-dichloro-2-methoxybenzoate (lactidichloro-ethyl). Particularly preferred safeners are Mefenpyr-diethyl, Cyprosulfamid, Isoxadifen-ethyl, Cloquintocet-Mexyl, Dichlormid and Metcamifen. Wettable powders are preparations that are uniformly dispersible in water, which in addition to the active ingredient, in addition to a diluent or inert substance, also surfactants of an ionic and / or nonionic type (wetting agents, dispersants), e.g. polyoxyethylated alkylphenols, polyoxethylated fatty alcohols, polyoxethylated fatty amines, fatty alcohol polyglycol ether sulfates, alkane sulfonates, alkyl benzene sulfonates Sodium lignosulfonic acid, sodium 2,2'-dinaphthylmethane-6,6'-disulfonic acid, sodium dibutylnaphthalene-sulfonic acid or sodium oleoylmethyltauric acid. To produce the wettable powders, the herbicidally active ingredients are finely ground, for example, in customary apparatus such as hammer mills, blower mills and air jet mills, and simultaneously or subsequently mixed with the formulation auxiliaries. Emulsifiable concentrates are produced by dissolving the active ingredient in an organic solvent, e.g. butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons or mixtures of organic solvents with the addition of one or more ionic and / or nonionic surfactants (emulsifiers). Examples of emulsifiers that can be used are: alkylarylsulphonic acid calcium salts such as calcium dodecylbenzenesulphonate or nonionic emulsifiers such as fatty acid polyglycol esters, alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide-ethylene oxide condensation products, alkyl polyethers such as sorbitan oxyethane fatty esters, eg sorbitan oxyethyl fatty esters, sorbitan oxyethyl esters such as sorbitan oxyethyl fatty esters, eg sorbitan oxyethyl fatty esters, sorbitan oxyethylene fatty esters, sorbitan oxyethylene fatty esters, sorbitan oxyethyl esters such as sorbitan oxyethyl fatty esters, sorbitan oxyethyl esters, sorbitan oxyethyl esters . Dusts are obtained by grinding the active ingredient with finely divided solid substances, for example talc, natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth. Suspension concentrates can be water or oil based. They can be produced, for example, by wet grinding using commercially available bead mills and, if necessary, addition of surfactants, such as those already listed above for the other types of formulation. Emulsions, for example oil-in-water emulsions (EW), can be converted, for example, by means of stirrers, colloid mills and / or static mixers using aqueous organic Solvents and optionally surfactants, such as those already listed above for the other types of formulation, for example. Granules can either be produced by spraying the active ingredient onto adsorptive, granulated inert material or by applying active ingredient concentrates using adhesives, e.g. polyvinyl alcohol, sodium polyacrylate or mineral oils, to the surface of carrier materials such as sand, kaolinite or granulated inert material. Suitable active ingredients can also be granulated in the manner customary for the production of fertilizer granules - if desired as a mixture with fertilizers. Water-dispersible granules are generally produced by the customary processes such as spray drying, fluidized bed granulation, plate granulation, mixing with high-speed mixers and extrusion without solid inert material. For the production of plate, fluidized bed, extruder and spray granulates, see, for example, the method in “Spray-Drying Handbook” 3rd ed. 1979, G. Goodwin Ltd., London, JE Browning, “Agglomeration”, Chemical and Engineering 1967, pages 147 ff, Perry's Chemical Engineer's Handbook, 5th Ed., McGraw-Hill, New York 1973, pp. 8-57. For further details on the formulation of crop protection agents see, for example, GC Klingman, “Weed Control as a Science”, John Wiley and Sons, Inc., New York, 1961, pages 81-96 and JD Freyer, SA Evans, “Weed Control Handbook”, 5th Ed., Blackwell Scientific Publications, Oxford, 1968, pp. 101-103. The agrochemical preparations generally contain 0.1 to 99% by weight, in particular 0.1 to 95% by weight, of compounds according to the invention. In wettable powders, the active ingredient concentration is, for example, about 10 to 90% by weight, the remainder to 100% by weight consists of conventional formulation components. In the case of emulsifiable concentrates, the active ingredient concentration can be about 1 to 90, preferably 5 to 80% by weight. Dust-like formulations contain 1 to 30% by weight of active ingredient, preferably mostly 5 to 20% by weight of active ingredient, sprayable solutions contain about 0.05 to 80, preferably 2 to 50% by weight of active ingredient. In the case of water-dispersible granules, the active ingredient content depends in part on whether the active compound is liquid or solid and which granulation aids, fillers, etc. are used. In the case of the water-dispersible granules, the content of active ingredient is, for example, between 1 and 95% by weight, preferably between 10 and 80% by weight. In addition, the active ingredient formulations mentioned may contain the customary adhesive, wetting, dispersing, emulsifying, penetration, preservation, antifreeze and solvent, filler, Carriers and dyes, defoamers, evaporation inhibitors and agents that influence pH and viscosity. On the basis of these formulations, combinations with other pesticidally active substances, such as insecticides, acaricides, herbicides, fungicides, and with safeners, fertilizers and / or growth regulators, for example in the form of a finished formulation or as a tank mix, can also be produced. For use, the formulations which are available in commercially available form are, if appropriate, diluted in the customary manner, for example with wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules using water. Preparations in dust form, soil granules or granules as well as sprayable solutions are usually no longer diluted with other inert substances before use. The required application rate of the compounds of the formula (I) and their salts varies with the external conditions such as temperature, humidity and the type of herbicide used. It can vary within wide limits, for example between 0.001 and 10.0 kg / ha or more of active substance, but is preferably between 0.005 and 5 kg / ha, more preferably in the range from 0.01 to 1.5 kg / ha, in particular preferably in the range from 0.05 to 1 kg / ha g / ha. This applies to both pre-emergence and post-emergence use. Carrier means a natural or synthetic, organic or inorganic substance with which the active ingredients are mixed or combined for better applicability, especially for application to plants or plant parts or seeds. The carrier, which can be solid or liquid, is generally inert and should be agriculturally useful. Possible solid or liquid carriers are: for example ammonium salts and natural rock flour such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and synthetic rock flour such as highly disperse silica, aluminum oxide and natural or synthetic silicates, resins, waxes , solid fertilizers, water, alcohols, especially butanol, organic solvents, mineral and vegetable oils and derivatives thereof. Mixtures of such carriers can also be used. Solid carriers for granulates include: broken and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite and synthetic granulates made from inorganic and organic flours and granulates made from organic material such as sawdust, coconut shells, corn cobs and tobacco stalks. Liquids that can be used as liquefied gaseous extenders or carriers are those which are gaseous at normal temperature and under normal pressure, for example aerosol propellants such as halogenated hydrocarbons, as well as butane, propane, nitrogen and carbon dioxide. Adhesives such as carboxymethylcellulose and natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, and also natural phospholipids such as cephalins and lecithins and synthetic phospholipids can be used in the formulations. Further additives can be mineral and vegetable oils. If water is used as an extender, it is also possible, for example, to use organic solvents as auxiliary solvents. The main liquid solvents are: aromatics such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylene or dichloromethane, aliphatic hydrocarbons such as cyclohexane or paraffins, for example petroleum fractions, mineral and vegetable oils, alcohols such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethyl formamide and dimethyl sulfoxide, and water. The agents according to the invention can additionally contain further components, such as surface-active substances. Suitable surface-active substances are emulsifiers and / or foam-generating agents, dispersants or wetting agents with ionic or non-ionic properties or mixtures of these surface-active substances. Examples of these are salts of polyacrylic acid, salts of lignosulphonic acid, salts of phenolsulphonic acid or naphthalenesulphonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, substituted phenols (preferably alkylphenols or arylphenols), salts of sulfosuccinic acid esters (preferably) of sulfosuccinic acid esters, taurine esters polyethoxylated alcohols or phenols, fatty acid esters of polyols and derivatives of the compounds containing sulphates, sulphonates and phosphates, for example alkylaryl polyglycol ethers, alkyl sulphonates, alkyl sulphates, aryl sulphonates, protein hydrolysates, lignin sulphite waste liquors and methyl cellulose. The presence of a surface-active substance is necessary if one of the active substances and / or one of the inert carriers is not soluble in water and if the application takes place in water. The proportion of surface-active substances is between 5 and 40 percent by weight of the agent according to the invention. Dyes such as inorganic pigments, for example iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc can be used. If appropriate, other additional components can also be included, for example protective components Colloids, binders, adhesives, thickeners, thixotropic substances, penetration promoters, stabilizers, sequestering agents, complexing agents. In general, the active ingredients can be combined with any solid or liquid additive commonly used for formulation purposes. In general, the agents and formulations according to the invention contain between 0.05 and 99% by weight, 0.01 and 98% by weight, preferably between 0.1 and 95% by weight, particularly preferably between 0.5 and 90% Active ingredient, very particularly preferably between 10 and 70 percent by weight. The active ingredients or agents according to the invention can be used as such or depending on their respective physical and / or chemical properties in the form of their formulations or the use forms prepared therefrom, such as aerosols, capsule suspensions, cold mist concentrates, hot mist concentrates, encapsulated granules, fine granules, flowable concentrates for the treatment of seeds, ready-to-use solutions, dustable powders, emulsifiable concentrates, oil-in-water emulsions, water-in-oil emulsions, macrogranulates, microgranulates, oil-dispersible powders, oil-miscible flowable concentrates, oil-miscible liquids , Foams, pastes, pesticide-coated seeds, suspension concentrates, suspension-emulsion concentrates, soluble concentrates, suspensions, wettable powders, soluble powders, dusts and granulates, water-soluble granulates or tablets, water-soluble powders for seed treatment, wettable powders, active ingredient-impregnated nature - and synt hetic substances as well as finest encapsulation in polymeric substances and in coating compounds for seeds, as well as ULV cold and warm mist formulations can be used. The formulations mentioned can be prepared in a manner known per se, for example by mixing the active ingredients with at least one customary extender, solvent or diluent, emulsifier, dispersant and / or binding or fixing agent, wetting agent, water repellent, if appropriate Siccatives and UV stabilizers and optionally dyes and pigments, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and other processing aids. The agents according to the invention not only include formulations which are already ready to use and can be applied to the plant or the seed with a suitable apparatus, but also commercial concentrates which have to be diluted with water before use. The active compounds according to the invention can be used as such or in their (commercially available) formulations and in the use forms prepared from these formulations as a mixture with other (known) active compounds, such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides , Fertilizers, safeners or semiochemicals are present. The treatment according to the invention of the plants and plant parts with the active ingredients or agents is carried out directly or by acting on their surroundings, living space or storage room using the customary treatment methods, for example by dipping, spraying, spraying, sprinkling, evaporating, Spraying, misting, scattering, foaming, brushing, spreading, watering (drenching), drip irrigation and, in the case of propagation material, especially seeds, furthermore by dry dressing, wet dressing, slurry dressing, encrusting, single or multi-layer coating, etc. It is also possible to apply the active ingredients according to the ultra-low-volume method or to inject the active ingredient preparation or the active ingredient itself into the soil. As also described further below, the treatment of transgenic seeds with the active ingredients or agents according to the invention is of particular importance. This relates to the seeds of plants which contain at least one heterologous gene that enables the expression of a polypeptide or protein with insecticidal properties. The heterologous gene in transgenic seed can originate, for example, from microorganisms of the species Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium. This heterologous gene is preferably derived from Bacillus sp., The gene product having an effect against the European corn borer and / or Western corn rootworm. The heterologous gene is particularly preferably derived from Bacillus thuringiensis. In the context of the present invention, the agent according to the invention is applied to the seed alone or in a suitable formulation. The seed is preferably treated in a state in which it is so stable that no damage occurs during the treatment. In general, the seed can be treated at any point in time between harvest and sowing. Usually seeds are used that have been separated from the plant and freed from cobs, peels, stems, husks, wool or pulp. For example, seeds can be used that have been harvested, cleaned and dried to a moisture content of less than 15% by weight. Alternatively, seeds can also be used which, after drying, have been treated with water, for example, and then dried again. In general, when treating the seed, care must be taken to ensure that the amount of the agent according to the invention and / or further additives applied to the seed is selected so that the germination of the seed is not impaired or the resulting plant is not damaged. This is particularly important for active ingredients that can show phytotoxic effects when applied in certain amounts. The agents according to the invention can be applied immediately, that is to say without containing further components and without having been diluted. Usually it is preferable to that To apply means in the form of a suitable formulation to the seed. Suitable formulations and methods for seed treatment are known to the person skilled in the art and are described, for example, in the following documents: US 4,272,417 A, US 4,245,432 A, US 4,808,430, US 5,876,739, US 2003/0176428 A1, WO 2002/080675 A1, WO 2002/028186 A2. The active compounds according to the invention can be converted into the customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other coating materials for seeds, and also ULV formulations. These formulations are prepared in a known manner by mixing the active ingredients with customary additives, such as customary extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and also Water. Suitable dyes which can be contained in the seed dressing formulations which can be used according to the invention are all dyes customary for such purposes. Both pigments which are sparingly soluble in water and dyes which are soluble in water can be used here. Examples are the dyes known under the names Rhodamine B, CI Pigment Red 112 and CI Solvent Red 1. Suitable wetting agents which can be contained in the seed dressing formulations which can be used according to the invention are all substances which are customary for the formulation of agrochemical active ingredients and which promote wetting. Alkylnaphthalene sulfonates, such as diisopropyl or diisobutyl naphthalene sulfonates, can preferably be used. Suitable dispersants and / or emulsifiers which can be contained in the seed dressing formulations which can be used according to the invention are all nonionic, anionic and cationic dispersants customary for the formulation of agrochemical active ingredients. Nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants can preferably be used. Suitable nonionic dispersants are, in particular, ethylene oxide-propylene oxide block polymers, alkylphenol polyglycol ethers and tristryrylphenol polyglycol ethers and their phosphated or sulfated derivatives. Suitable anionic dispersants are, in particular, lignin sulfonates, polyacrylic acid salts and aryl sulfonate-formaldehyde condensates. The seed dressing formulations which can be used according to the invention can contain all foam-inhibiting substances customary for the formulation of agrochemical active ingredients as defoamers. Silicone defoamers and magnesium stearate can preferably be used. All substances which can be used for such purposes in agrochemical agents can be present as preservatives in the seed dressing formulations which can be used according to the invention. Examples include dichlorophene and benzyl alcohol hemiformal. Secondary thickeners which can be contained in the seed dressing formulations which can be used according to the invention are all substances which can be used in agrochemical compositions for such purposes. Cellulose derivatives, acrylic acid derivatives, xanthan, modified clays and highly disperse silicic acid are preferred. Suitable adhesives which can be contained in the seed dressing formulations which can be used according to the invention are all conventional binders which can be used in seed dressings. Polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and Tylose may be mentioned as preferred. The seed dressing formulations which can be used according to the invention can be used either directly or after prior dilution with water for the treatment of seeds of the most varied of types, including seeds of transgenic plants. In this context, additional synergistic effects can also occur in cooperation with the substances formed by expression. For the treatment of seeds with the seed dressing formulations which can be used according to the invention or the preparations made therefrom by adding water, all mixing devices which can customarily be used for dressing are suitable. In detail, the process of dressing is to put the seed in a mixer, add the desired amount of dressing formulations either as such or after prior dilution with water and mix until the formulation is evenly distributed on the seed . If necessary, this is followed by a drying process. The active compounds according to the invention are suitable for protecting plants and plant organs, for increasing crop yields and improving the quality of the harvested crop, given good plant tolerance, favorable warm-blooded toxicity and good environmental compatibility. They can preferably be used as crop protection agents. They are effective against normally sensitive and resistant species and against all or individual stages of development. The following main crops may be mentioned as plants which can be treated according to the invention: maize, soybean, cotton, Brassica oil seeds such as Brassica napus (e.g. canola), Brassica rapa, B. juncea (e.g. (field) mustard) and Brassica carinata, rice, Wheat, sugar beet, sugar cane, oats, rye, barley, millet, triticale, flax, wine and various fruits and vegetables from various botanical taxa such as Rosaceae sp. (For example pome fruits like apple and pear, but also stone fruits like apricots, cherries, almonds and Peaches and berries such as strawberries), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp., Actinidaceae sp., Lauraceae sp., Musaceae sp. (e.g. banana trees and plantations), Rubiaceae sp. (e.g. coffee), Theaceae sp., Sterculiceae sp., Rutaceae sp. (e.g. lemons, organs and grapefruit); Solanaceae sp. (for example tomatoes, potatoes, pepper, eggplant), Liliaceae sp., Compositae sp. (e.g., lettuce, artichoke and chicory - including root chicory, endive or common chicory), Umbelliferae sp. (e.g., carrot, parsley, celery and celeriac), Cucurbitaceae sp. (for example, cucumber - including pickles, squash, watermelon, bottle gourd, and melons), Alliaceae sp. (for example leek and onion), Cruciferae sp. (for example white cabbage, red cabbage, broccoli, cauliflower, Brussels sprouts, pak choi, kohlrabi, radishes, horseradish, cress and Chinese cabbage), Leguminosae sp. (for example peanuts, peas, and beans - such as runner beans and field beans), Chenopodiaceae sp. (e.g. chard, fodder beet, spinach, beetroot), Malvaceae (e.g. okra), Asparagaceae (e.g. asparagus); Useful plants and ornamental plants in gardens and forests; as well as genetically modified species of these plants. As mentioned above, all plants and their parts can be treated according to the invention. In a preferred embodiment, plant species and plant cultivars occurring in the wild or obtained by conventional biological breeding methods such as crossing or protoplast fusion, as well as their parts, are treated. In a further preferred embodiment, transgenic plants and plant cultivars obtained by genetic engineering methods, if appropriate in combination with conventional methods (genetically modified organisms), and their parts are treated. The term “parts” or “parts of plants” or “plant parts” has been explained above. According to the invention, it is particularly preferred to treat plants of the plant varieties which are commercially available or in use. Plant cultivars are understood to be plants with new properties (“traits”) that have been bred by conventional breeding, by mutagenesis or by recombinant DNA techniques. These can be varieties, races, bio and genotypes. The treatment method according to the invention can be used for the treatment of genetically modified organisms (GMOs), e.g. B. plants or seeds can be used. Genetically modified plants (or transgenic plants) are plants in which a heterologous gene has been stably integrated into the genome. The term "heterologous gene" means essentially a gene which is provided or assembled outside the plant and which, when introduced into the nucleus genome, the chloroplast genome or the mitochondrial genome of the transformed plant, gives new or improved agronomic or other properties that it gives an interesting Protein or polypeptide expressed or that it is another gene that is present in the plant or others Genes that are present in the plant are downregulated or switched off (for example using antisense technology, cosuppression technology or RNAi technology [RNA interference]). A heterologous gene that is present in the genome is also called a transgene. A transgene that is defined by its specific presence in the plant genome is called a transformation or transgenic event. Depending on the plant species or plant cultivars, their location and their growth conditions (soils, climate, vegetation period, diet), the treatment according to the invention can also lead to superadditive (“synergistic”) effects. For example, the following effects are possible that go beyond the effects that are actually to be expected: reduced application rates and / or expanded spectrum of activity and / or increased effectiveness of the active ingredients and compositions that can be used according to the invention, better plant growth, increased tolerance to high or low levels Temperatures, increased tolerance to drought or water or soil salt content, increased flowering performance, ease of harvest, acceleration of ripening, higher yields, larger fruits, greater plant height, more intense green color of the leaf, earlier flowering, higher quality and / or higher nutritional value of the harvested products, higher sugar concentration in the fruits, better storability and / or processability of the harvested products. Plants and plant cultivars which are preferably treated according to the invention include all plants which have genetic material which gives these plants particularly advantageous, useful characteristics (regardless of whether this was achieved by breeding and / or biotechnology). Examples of nematode-resistant plants are described, for example, in the following US patent applications: 11 / 765,491, 11 / 765,494, 10 / 926,819, 10 / 782,020, 12 / 032,479, 10 / 783,417, 10 / 782,096, 11 / 657,964, 12 / 192,904, 11 / 396.808, 12 / 166.253, 12 / 166.239, 12 / 166.124, 12 / 166.209, 11 / 762.886, 12 / 364.335, 11 / 763.947, 12 / 252.453, 12 / 209.354, 12 / 491.396 and 12 / 497.221. Plants which can be treated according to the invention are hybrid plants which already express the properties of heterosis or the hybrid effect, which generally leads to higher yields, higher vigor, better health and better resistance to biotic and abiotic stress factors. Such plants are typically produced by crossing an inbred male sterile parent line (the female cross partner) with another inbred male fertile parent line (the male cross partner). The hybrid seeds are typically harvested from the male-sterile plants and sold to propagators. Male-sterile plants can sometimes (e.g. with maize) by detasseling (ie mechanical removal of the male reproductive organs or the male flowers); however, it is more common that male sterility is due to genetic determinants in the plant genome. In this case, especially if the desired product, since one wants to harvest from the hybrid plants, is the seeds, it is usually beneficial to ensure that the pollen fertility in hybrid plants that contain the genetic determinants responsible for male sterility , will be completely restored. This can be achieved by ensuring that the male mating partners have appropriate fertility restorer genes capable of restoring male fertility in hybrid plants that contain the genetic determinants responsible for male sterility. Genetic determinants of male sterility can be located in the cytoplasm. Examples of cytoplasmic male sterility (CMS) have been described for Brassica species, for example. However, genetic determinants for male sterility can also be located in the nucleus genome. Male-sterile plants can also be obtained using methods of plant biotechnology, such as genetic engineering. A particularly favorable means for producing male-sterile plants is described in WO 89/10396, for example a ribonuclease such as a barnase being selectively expressed in the tapetum cells in the stamens. Fertility can then be restored by expressing a ribonuclease inhibitor such as barstar in the tapetum cells. Plants or plant cultivars (which are obtained using methods of plant biotechnology, such as genetic engineering) which can be treated according to the invention are herbicide-tolerant plants, ie plants which have been made tolerant to one or more specified herbicides. Such plants can be obtained either by genetic transformation or by selection of plants which contain a mutation which confers such herbicide tolerance. Herbicide-tolerant plants are, for example, glyphosate-tolerant plants, ie plants which have been made tolerant to the herbicide glyphosate or its salts. Plants can be made tolerant to glyphosate using various methods. For example, glyphosate-tolerant plants can be obtained by transforming the plant with a gene which codes for the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Examples of such EPSPS genes are the AroA gene (mutant CT7) of the bacterium Salmonella typhimurium (Comai et al., 1983, Science 221, 370-371), the CP4 gene of the bacterium Agrobacterium sp. (Barry et al., 1992, Curr. Topics Plant Physiol. 7, 139-145), the genes necessary for an EPSPS from petunia (Shah et al., 1986, Science 233, 478-481) for an EPSPS from tomato (Gasser et al., 1988, J. Biol. Chem. 263, 4280-4289) or for an EPSPS from Eleusine (WO 01/66704). It can also be a mutated EPSPS. Glyphosate-tolerant plants can also be obtained by expressing a gene which codes for a glyphosate oxidoreductase enzyme. Glyphosate-tolerant plants can also be obtained by having a gene which codes for a glyphosate acetyltransferase enzyme. Glyphosate tolerant plants can also be obtained by selecting plants which contain naturally occurring mutations of the genes mentioned above. Plants expressing EPSPS genes that confer glyphosate tolerance are described. Plants that confer other genes that confer glyphosate tolerance, e.g., decarboxylase genes, are described. Other herbicide-resistant plants are, for example, plants which have been made tolerant to herbicides which inhibit the enzyme glutamine synthase, such as bialaphos, phosphinotricin or glufosinate. Such plants can be obtained by expressing an enzyme that detoxifies the herbicide or a mutant of the enzyme glutamine synthase that is resistant to inhibition. Such an effective detoxifying enzyme is, for example, an enzyme which codes for a phosphinotricin acetyltransferase (such as the bar or pat protein from Streptomyces species). Plants expressing an exogenous phosphinotricin acetyltransferase have been described. Other herbicide-tolerant plants are also plants which have been made tolerant to the herbicides which inhibit the enzyme hydroxyphenylpyruvate dioxygenase (HPPD). The hydroxyphenylpyruvate dioxygenases are enzymes that catalyze the reaction in which para-hydroxyphenylpyruvate (HPP) is converted to homogenate. Plants that are tolerant of HPPD inhibitors can be transformed with a gene encoding a naturally occurring resistant HPPD enzyme or a gene encoding a mutated or chimeric HPPD enzyme, as in WO 96/38567 , WO 99/24585, WO 99/24586, WO 2009/144079, WO 2002/046387 or US 6,768,044. Tolerance to HPPD inhibitors can also be achieved by transforming plants with genes which code for certain enzymes that enable the formation of homogenate despite the inhibition of the native HPPD enzyme by the HPPD inhibitor. Such plants are described in WO 99/34008 and WO 02/36787. The tolerance of plants to HPPD inhibitors can also be improved by transforming plants, in addition to a gene that codes for an HPPD-tolerant enzyme, with a gene that codes for a prephenate dehydrogenase enzyme, as in WO 2004/024928 is described. In addition, plants can be made even more tolerant of HPPD inhibitors by inserting a gene into their genome which codes for an enzyme that metabolizes or breaks down HPPD inhibitors, such as CYP450 enzymes (see WO 2007/103567 and WO 2008/150473 ). Other herbicide-resistant plants are plants that have been made tolerant to acetolactate synthase (ALS) inhibitors. Known ALS inhibitors include, for example, sulfonylurea, imidazolinone, triazolopyrimidines, pyrimidinyloxy (thio) benzoates and / or Sulfonylaminocarbonyltriazolinone herbicides. It is known that various mutations in the enzyme ALS (also known as acetohydroxy acid synthase, AHAS) confer tolerance to different herbicides or groups of herbicides, as described, for example, in Tranel and Wright (Weed Science 2002, 50, 700-712) is. The production of sulfonylurea tolerant plants and imidazolinone tolerant plants is described. Other sulfonylurea and imidazolinone tolerant plants are also described. Further plants that are tolerant to imidazolinones and / or sulfonylureas can be obtained by induced mutagenesis, selection in cell cultures in the presence of the herbicide or by mutation breeding (cf., for example, US Pat. No. 5,084,082 for soybeans, WO 97/41218 for rice, US Pat. No. 5,773,702 for sugar beet and WO 99/057965, for lettuce US 5,198,599 or for sunflower WO 01/065922). Plants or plant varieties (which were obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, are tolerant of abiotic stress factors. Such plants can be obtained by genetic transformation or by selection of plants which contain a mutation which confers such stress resistance. Particularly useful plants with stress tolerance include the following: a. Plants which contain a transgene which is able to reduce the expression and / or activity of the gene for the poly (ADP-ribose) polymerase (PARP) in the plant cells or plants. b. Plants which contain a stress tolerance-promoting transgene which is able to reduce the expression and / or activity of the genes of the plants or plant cells coding for PARG; c. Plants which contain a stress tolerance-promoting transgene which codes for an enzyme of the nicotinamide adenine dinucleotide salvage biosynthetic pathway which is functional in plants, including nicotinamidase, nicotinate phosphoribosyl transferase, nicotinic acid mononucleotide adenyl transferase or nicotinamide adenine phosphide dinucleotide synthase. Plants or plant varieties (which were obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, have a changed quantity, quality and / or shelf life of the harvested product and / or changed properties of certain components of the harvested product, For example: 1) Transgenic plants which synthesize a modified starch which, with regard to their chemical-physical properties, in particular the amylose content or the amylose / amylopectin ratio, the degree of branching, the average chain length, the distribution of the Side chains, the viscosity behavior, the gel strength, the starch grain size and / or starch grain morphology is changed in comparison with the synthesized starch in wild-type plant cells or plants, so that this modified starch is more suitable for certain applications. 2) Transgenic plants that synthesize non-starch carbohydrate polymers or non-starch carbohydrate polymers whose properties are changed compared to wild-type plants without genetic modification. Examples are plants that produce polyfructose, especially of the inulin and levan types, plants that produce alpha-1,4-glucans, plants that produce alpha-1,6-branched alpha-1,4-glucans and plants that produce Produce alternan. 3) Transgenic Plants That Produce Hyaluronan. 4) Transgenic plants or hybrid plants such as onions with certain properties such as “high soluble solids content”, low pungency (LP) and / or long storage life (“long storage”, LS ). Plants or plant cultivars (which were obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, are plants such as cotton plants with modified fiber properties. Such plants can be obtained by genetic transformation or by selection of plants which contain a mutation which confers such altered fiber properties; these include: a) plants such as cotton plants which contain a modified form of cellulose synthase genes, b) plants such as cotton plants which contain a modified form of rsw2- or rsw3-homologous nucleic acids, such as cotton plants with an increased expression of sucrose phosphate synthase; c) Plants such as cotton plants with an increased expression of sucrose synthase; d) Plants such as cotton plants in which the timing of the flow control of the plasmodesmata is changed at the base of the fiber cell, e.g. B. by downregulating the fiber-selective b-1,3-glucanase; e) Plants such as cotton plants with fibers with modified reactivity, e.g. B. by expression of the N-acetylglucosamine transferase gene, including nodC, and of chitin synthase genes. Plants or plant cultivars (which were obtained by methods of plant biotechnology, such as genetic engineering) which can likewise be treated according to the invention are Plants such as rapeseed or related Brassica plants with altered properties of the oil composition. Such plants can be obtained by genetic transformation or by selection of plants which contain a mutation which confers such altered oil properties; these include: a) Plants such as rape plants that produce oil with a high oleic acid content; b) Plants, such as rape plants, that produce oil with a low linolenic acid content. c) Plants such as rape plants that produce oil with a low content of saturated fat. Plants or plant varieties (which can be obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, are plants such as potatoes, which are virus-resistant, e.g. against the potato virus Y (Event SY230 and SY233 from Tecnoplant, Argentina), or which are resistant to diseases such as late blight (potato late blight) (e.g. RB gene), or which show a reduced sweetness induced by cold (which carry the genes Nt-Inh, II-INV) or which the dwarf Show phenotype (gene A-20 oxidase). Plants or plant cultivars (obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, are plants such as oilseed rape or related Brassica plants with changed properties in the case of seed shattering. Such plants can, by genetic transformation or by selection of plants that contain a mutation, confer such altered properties and include plants such as oilseed rape with delayed or reduced seed loss. Particularly useful transgenic plants that can be treated according to the invention are plants with transformation events or combinations of transformation events which are the subject of petitions issued or pending in the USA at the Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) are for the non-regulated status. Information on this is available at any time from APHIS (4700 River Road Riverdale, MD 20737, USA), for example via the website http://www.aphis.usda.gov/brs/not_reg.html. On the filing date of this application, the petitions with the following information were either granted or pending at APHIS:
- Petition: Identifikationsnummer der Petition. Die Technische Beschreibung des Transformationsevents kann im einzelnen Petitionsdokument erhältlich von APHIS auf der Website über die Petitionsnummer gefunden werden. Diese Beschreibungen sind hiermit per Referenz offenbart. - Erweiterung einer Petition: Referenz zu einer frühere Petition, für die eine Erweiterung oder Verlängerung beantragt wird. - Institution: Name der die Petition einreichenden Person. - Regulierter Artikel: die betroffen Pflanzenspecies. - Transgener Phänotyp: die Eigenschaft („Trait“), die der Pflanze durch das Transformationsevent verliehen wird. - Transformationevent oder -linie: der Name des oder der Events (manchmal auch als Linie(n) bezeichnet), für die der nicht-regulierte Status beantragt ist. - APHIS Documente: verschiedene Dokumente, die von APHIS bzgl. der Petition veröffentlicht warden oder von APHIS auf Anfrage erhalten werden können. Besonders nützliche transgene Pflanzen, die erfindungsgemäß behandelt werden können, sind Pflanzen mit einem oder mehreren Genen, die für ein oder mehrere Toxine kodieren, sind die transgenen Pflanzen, die unter den folgenden Handelsbezeichnungen angeboten werden: YIELD GARD ^ (zum Beispiel Mais, Baumwolle, Sojabohnen), KnockOut ^ (zum Beispiel Mais), BiteGard ^ (zum Beispiel Mais), BT-Xtra ^ (zum Beispiel Mais), StarLink ^ (zum Beispiel Mais), Bollgard ^ (Baumwolle), Nucotn ^ (Baumwolle), Nucotn 33B ^ (Baumwolle), NatureGard ^ (zum Beispiel Mais), Protecta ^ und NewLeaf ^ (Kartoffel). Herbizidtolerante Pflanzen, die zu erwähnen sind, sind zum Beispiel Maissorten, Baumwollsorten und Sojabohnensorten, die unter den folgenden Handelsbezeichnungen angeboten werden: Roundup Ready ^ (Glyphosatetoleranz, zum Beispiel Mais, Baumwolle, Sojabohne), Liberty Link ^ (Phosphinotricintoleranz, zum Beispiel Raps), IMI ^ (Imidazolinontoleranz) und SCS ^ (Sylfonylharnstofftoleranz), zum Beispiel Mais. Zu den herbizidresistenten Pflanzen (traditionell auf Herbizidtoleranz gezüchtete Pflanzen), die zu erwähnen sind, zählen die unter der Bezeichnung Clearfield ^ angebotenen Sorten (zum Beispiel Mais). Die nachstehenden Beispiele erläutern die vorliegende Erfindung. A. Chemische Beispiele Bei der Auswertung von NMR-Signalen werden folgende Abkürzungen verwendet: - Petition: identification number of the petition. The technical description of the transformation event can be found in the individual petition document available from APHIS on the website via the petition number. These descriptions are hereby disclosed by reference. - Extension of a petition: reference to a previous petition for which an extension or extension is requested. - Institution: Name of the person submitting the petition. - Regulated article: the plant species concerned. - Transgenic phenotype: the trait given to the plant by the transformation event. - Transformation event or line: the name of the event or events (sometimes referred to as line (s)) for which non-regulated status is requested. - APHIS documents: various documents that are published by APHIS regarding the petition or can be obtained from APHIS on request. Particularly useful transgenic plants which can be treated according to the invention are plants with one or more genes which code for one or more toxins, are the transgenic plants which are sold under the following trade names: YIELD GARD ^ (for example maize, cotton, Soybeans), KnockOut ^ (for example corn), BiteGard ^ (for example corn), BT-Xtra ^ (for example corn), StarLink ^ (for example corn), Bollgard ^ (cotton), Nucotn ^ (cotton), Nucotn 33B ^ (cotton), NatureGard ^ (e.g. maize), Protecta ^ and NewLeaf ^ (potato). Herbicide-tolerant plants to be mentioned are, for example, maize varieties, cotton varieties and soybean varieties, which are sold under the following trade names: Roundup Ready ^ (glyphosate tolerance, e.g. corn, cotton, soybean), Liberty Link ^ (phosphinotricintolerance, e.g. rapeseed) , IMI ^ (imidazolinone tolerance) and SCS ^ (sylphonylurea tolerance), for example corn. The herbicide-resistant plants (plants traditionally bred for herbicide tolerance) to be mentioned include the varieties sold under the name Clearfield ^ (for example maize). The following examples illustrate the present invention. A. Chemical examples The following abbreviations are used when evaluating NMR signals:
s (Singulett), d (Dublett), t (Triplett), q (Quartett), quint (Quintett), sext (Sextett), sept (Septett), m (Multiplett), mc (Multiplett centered). Das verwendete Lösungsmittel wird jeweils in der Tabelle mit angegeben. Beispiel 1.1.01: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), sext (sextet), sept (septet), m (multiplet), mc (multiplet centered). The solvent used is indicated in the table. Example 1.1.01:
3-[2-Brom-6-methoxy-4-(prop-1-in-1-yl)phenyl]-4-hydroxy-8-oxa-1-azaspiro[4.5]dec-3-en-2-on 3- [2-Bromo-6-methoxy-4- (prop-1-yn-1-yl) phenyl] -4-hydroxy-8-oxa-1-azaspiro [4.5] dec-3-en-2-one
Zu 1.95 g (4.59 mmol) Methyl-4-{2-[2-brom-6-methoxy-4-(prop-1-in-1-yl)phenyl]acetamido} tetrahydro-2H-pyran-4-carboxylat in 40 ml DMF wurden innerhalb von 30 min bei To 1.95 g (4.59 mmol) of methyl 4- {2- [2-bromo-6-methoxy-4- (prop-1-yn-1-yl) phenyl] acetamido} tetrahydro-2H-pyran-4-carboxylate in 40 ml of DMF were at within 30 min
Raumtemperatur eine Lösung von 1.16 g (10 mmol) Kalium-t-butylat in 70 ml DMF langsam zugetropft und über Nacht bei Raumtemperatur weitergerührt. Die Reaktionsmischung wurde anschließend vorsichtig auf eine Eis-/Wassermischung gegeben und mit 2N Salzsäure auf pH 4 angesäuert. Der ausgefallene Niederschlag wurde abgesaugt, gründlich mit Wasser nachgewaschen, getrocknet und durch Chromatographie an Kieselgel (Hexan/Essigester) gereinigt. Man erhielt 0.96 g (51 %) der gewünschten Titelverbindung. Beispiel 1.1.02: A solution of 1.16 g (10 mmol) of potassium t-butoxide in 70 ml of DMF was slowly added dropwise to room temperature and the mixture was stirred at room temperature overnight. The reaction mixture was then carefully poured onto an ice / water mixture and acidified to pH 4 with 2N hydrochloric acid. The deposited precipitate was filtered off with suction, washed thoroughly with water, dried and purified by chromatography on silica gel (hexane / ethyl acetate). 0.96 g (51%) of the desired title compound were obtained. Example 1.1.02:
3-[2-Brom-6-methoxy-4-(prop-1-in-1-yl)phenyl]-2-oxo-8-oxa-1-azaspiro[4.5]dec-3-en-4-ylmethyl- carbonat 3- [2-Bromo-6-methoxy-4- (prop-1-yn-1-yl) phenyl] -2-oxo-8-oxa-1-azaspiro [4.5] dec-3-en-4-ylmethyl - carbonate
123.0 mg (0.31 mmol) 3-[2-Brom-6-methoxy-4-(prop-1-in-1-yl) phenyl]-4-hydroxy-8-oxa-1- azaspiro[4.5]dec-3-en-2-on (Beispielverbindung 1.1.01) wurden mit 2 ml Triethylamin in 10 ml Dichlormethan vorgelegt und 15 min bei Raumtemperatur gerührt. Anschließend tropfte man 33 mg (0.32 mmol) Chlorameisensäuremethylester in 3 ml Dichlormethan langsam zu und ließ 123.0 mg (0.31 mmol) 3- [2-bromo-6-methoxy-4- (prop-1-yn-1-yl) phenyl] -4-hydroxy-8-oxa-1-azaspiro [4.5] dec-3 -en-2-one (example compound 1.1.01) were initially charged with 2 ml of triethylamine in 10 ml of dichloromethane and stirred for 15 min at room temperature. Then 33 mg were added dropwise (0.32 mmol) of methyl chloroformate in 3 ml of dichloromethane slowly and left
anschließend über Nacht bei Raumtemperatur rühren. Danach wurde in 20 ml Dichlormethan aufgenommen, mit 10 ml Natriumhydrogencarbonat-Lösung und 2 x10 ml Wasser gewaschen, getrocknet (Magnesiumsulfat) und das Lösemittel abdestilliert. Nach Chromatographie an Kieselgel (Essigsäuremethylester/Hexan) erhielt man 102 mg (69%) der Titelverbindung. then stir overnight at room temperature. It was then taken up in 20 ml of dichloromethane, washed with 10 ml of sodium hydrogen carbonate solution and 2 × 10 ml of water, dried (magnesium sulfate) and the solvent was distilled off. Chromatography on silica gel (methyl acetate / hexane) gave 102 mg (69%) of the title compound.
In Analogie zu den obigen Beispielen sowie gemäß den allgemeinen Angaben zur Herstellung erhält man folgende Verbindungen des Typs (Ib)-(Id): The following compounds of type (Ib) - (Id) are obtained analogously to the above examples and in accordance with the general information on preparation:
H), 1.42 (mc, 2H), 2.02 (s, 3H),H), 1.42 (mc, 2H), 2.02 (s, 3H),
7 (mc, 1H), 3.78 (s, 3H), 4.05 (mc, 8-5.98 (m, 1H), 6.87 und 7.21 (je s, 2.04 (s, 3H), 3.23 (mc, 1H), 3.25 ), 3.68 (s, 3H), 6.98 und 7.20 (je s, B 7 (mc, 1H), 3.78 (s, 3H), 4.05 (mc, 8-5.98 (m, 1H), 6.87 and 7.21 (each s, 2.04 (s, 3H), 3.23 (mc, 1H), 3.25) , 3.68 (s, 3H), 6.98 and 7.20 (each s, B.
C C.
S S.
91 1 2H), 2.02 (s, 3H), 2.19 (mc, 2H), 00 mc, 3H), 3.65 (s, 3H), 3.78 (s, 3H), 4 9 1 1 2H), 2.02 (s, 3H), 2.19 (mc, 2H), 00 mc, 3H), 3.65 (s, 3H), 3.78 (s, 3H), 4
N N
R R.
/ec 2H), 1.79 und 1.92 (je mc, je 2H), A mc, 1H), 3.40 (s, 3H), 3.55 und 3.65 u s 2H), 6.88 und 7.29 (je s, je 1H) la dn H), 2.18 (mc, 2H), 3.37 (mc, 1H), e 2H), 3.79 (s, 3H), 6.88 und 7.29 / ec 2H), 1.79 and 1.92 (each mc, each 2H), A mc, 1H), 3.40 (s, 3H), 3.55 and 3.65 us 2H), 6.88 and 7.29 (each s, each 1H) la d n H ), 2.18 (mc, 2H), 3.37 (mc, 1H), e 2H), 3.79 (s, 3H), 6.88 and 7.29
55 1.60 (m, 4H), 1.85 (mc, 4H), 2.06 5 5 1.60 (m, 4H), 1.85 (mc, 4H), 2.06
3.71 (hept, 1H), 6.98 und 7.20 (je 3.71 (hept, 1H), 6.98 and 7.20 (each
14 -0 2 und 1.91 (je mc, je 2H), 2.03 (s, - 3.63 (s, 3H), 3.72 (hept, 1H), 3.78 2 1 4 - 0 2 and 1.91 (each mc, each 2H), 2.03 (s, - 3.63 (s, 3H), 3.72 (hept, 1H), 3.78 2
20 0 2 0 0
Herstellung von Ausgangsmaterialien Methyl-4-{2-[2-brom-6-methoxy-4-(prop-1-in-1-yl)phenyl]acetamido}tetrahydro-2H-pyran-4- carboxylat Preparation of starting materials Methyl 4- {2- [2-bromo-6-methoxy-4- (prop-1-yn-1-yl) phenyl] acetamido} tetrahydro-2H-pyran-4-carboxylate
2.00 g (7.05 mmol) [2-Brom-6-methoxy-4-(prop-1-in-1-yl)phenyl]essigsäure wurden in 30 ml Dichlormethan gelöst und mit einem Tropfen DMF versetzt. Man gab 1,79 g (14.1 mmol) Oxalylchlorid hinzu und erhitzte bis zum Ende der Gasentwicklung unter Rückfluss zum Sieden. Anschließend engte man die Reaktionslösung ein, versetzte noch zweimal mit je 30 ml Dichlormethan und engte erneut bis zur Trockne ein. Der Rückstand wurde in 20 ml Dichlormethan gelöst und langsam zu einer Lösung von 1.38 g (7.05 mmol) Methyl-4-aminotetrahydro-2H-pyran-4-carboxylat- Hydrochlorid (CAS Registry Nummer 199330-66-0) sowie 4 ml Triethylamin in 20 ml Dichlormethan innerhalb von 20 Min. zugetropft. Nach 18 h Rühren bei Raumtemperatur wurde mit 30 ml Wasser versetzt, die organische Phase abgetrennt, getrocknet (Natriumsulfat) und das Lösungsmittel abdestilliert. Nach säulenchromatographischer Reinigung (Silicagel, Ethylacetat/n- Heptan) erhielt man 205 g (63%) der gewünschten Vorstufe. 1H-NMR (400 MHz, CDCl3): d = 1.82-1.90 (m, 2H), 2.07 (s, 3H), 2,09-2.17 (m, 2H), 3.43 (mc, 2H), 3.70 (s, 3H), 3.72-3.79 (m, 2H), 3.80 (s, 2H), 3.86 (s, 3H), 6.90 und 7.29 (je s, je 1H) 2.00 g (7.05 mmol) [2-bromo-6-methoxy-4- (prop-1-yn-1-yl) phenyl] acetic acid were dissolved in 30 ml dichloromethane, and a drop of DMF was added. 1.79 g (14.1 mmol) of oxalyl chloride were added and the mixture was refluxed until the evolution of gas had ceased. The reaction solution was then concentrated, twice more with 30 ml of dichloromethane each time and again concentrated to dryness. The residue was dissolved in 20 ml of dichloromethane and slowly added to a solution of 1.38 g (7.05 mmol) of methyl 4-aminotetrahydro-2H-pyran-4-carboxylate hydrochloride (CAS Registry number 199330-66-0) and 4 ml of triethylamine in 20 ml of dichloromethane were added dropwise within 20 minutes. After stirring for 18 hours at room temperature, 30 ml of water were added, the organic phase was separated off, dried (sodium sulfate) and the solvent was distilled off. Purification by column chromatography (silica gel, ethyl acetate / n-heptane) gave 205 g (63%) of the desired precursor. 1 H-NMR (400 MHz, CDCl 3 ): d = 1.82-1.90 (m, 2H), 2.07 (s, 3H), 2.09-2.17 (m, 2H), 3.43 (mc, 2H), 3.70 (s , 3H), 3.72-3.79 (m, 2H), 3.80 (s, 2H), 3.86 (s, 3H), 6.90 and 7.29 (each s, each 1H)
In Analogie zu diesem Beispiel sowie gemäß der allgemeinen Angaben zur Herstellung erhält man folgende Verbindungen: In analogy to this example and in accordance with the general information on preparation, the following compounds are obtained:
Herstellung von (2-Brom-4-ethinyl-6-methoxyphenyl)essigsäure Schritt 1: Methyl-(2-brom-6-methoxy-4-nitrophenyl)acetat Preparation of (2-bromo-4-ethynyl-6-methoxyphenyl) acetic acid Step 1: Methyl- (2-bromo-6-methoxy-4-nitrophenyl) acetate
1.547 g (15.0 mmol) tert-Butylnitrit und 1.842 g (13.7 mmol) Kupfer(II)-chlorid wurden in 7.8 ml Acetonitril suspendiert und auf 0°C gekühlt. Dann wurden 16.48 g (170 mmol) Vinylidenchlorid langsam zugetropft und auf Raumtemperatur kommen gelassen. Anschließend wurden 2.470 g (10 mmol) 2-Brom-6-methoxy-4-nitroanilin (CAS Registry Nummer 16618-66-9), gelöst in 10 ml Acetonitril und 25 mL Aceton, langsam zugetropft. Es wurde bei Raumtemperatur nachgerührt, bis keine Gasentwicklung mehr stattfand. Unter Eiskühlung wurde langsam auf 2 ml 10%ige wäßrige Salzsäure gegeben, mit Ethylacetat extrahiert, mit Magnesiumsulfat getrocknet und eingeengt. Man erhielt 3.636 g eines Rohprodukts (1-Brom-3-methoxy-5-nitro-2-(2,2,2-trichlorethyl)benzol), welches noch Kupfersalze enthielt und direkt in der folgenden Reaktion eingesetzt wurde. 1.547 g (15.0 mmol) of tert-butyl nitrite and 1.842 g (13.7 mmol) of copper (II) chloride were suspended in 7.8 ml of acetonitrile and cooled to 0 ° C. Then 16.48 g (170 mmol) vinylidene chloride were slowly added dropwise and allowed to come to room temperature. Then 2,470 g (10 mmol) of 2-bromo-6-methoxy-4-nitroaniline (CAS Registry number 16618-66-9), dissolved in 10 ml of acetonitrile and 25 ml of acetone, were slowly added dropwise. The mixture was stirred at room temperature until there was no more evolution of gas. While cooling with ice, the mixture was slowly added to 2 ml of 10% strength aqueous hydrochloric acid, extracted with ethyl acetate, dried with magnesium sulfate and concentrated. 3,636 g of a crude product (1-bromo-3-methoxy-5-nitro-2- (2,2,2-trichloroethyl) benzene) which still contained copper salts and was used directly in the following reaction were obtained.
3.636 g (10.0 mmol) dieses Zwischenproduktes wurden in 10 ml Methanol gelöst und langsam mit 10 ml (54.4 mol) 30%iger methanolischer Natriummethanolat-Lösung versetzt, wobei eine Wärmeentwicklung auftrat. Anschließend wurde 12 h lang unter Rückfluß erhitzt. Man versetzte vorsichtig mit 1.1 ml konzentrierter Schwefelsäure, erhitzte 1 h unter Rückfluß und destillierte das Lösungsmittel ab. Der Rückstand wurde in Wasser aufgenommen, mit Dichlormethan extrahiert, getrocknet (Magnesiumsulfat) und nach Abdestillieren des Lösungsmittel an Kieselgel mit Hexan/Essigester chromatographiert. Ausbeute 1.45 g (48%) gelbes Öl. 1H-NMR (400 MHz, d in ppm, CDCl3): d = 3.70 (s, 3H), 3.94 (s, 3H), 3.96 (s, 2H), 7.70 (s, 1H), 8.10 (s, 1H) Schritt 2: Methyl-(4-amino-2-brom-6-methoxyphenyl)acetat 3.636 g (10.0 mmol) of this intermediate product were dissolved in 10 ml of methanol and slowly admixed with 10 ml (54.4 mol) of 30% strength methanolic sodium methoxide solution, whereupon heat was generated. The mixture was then refluxed for 12 hours. 1.1 ml of concentrated sulfuric acid were carefully added, the mixture was heated under reflux for 1 h and the solvent was distilled off. The residue was taken up in water, extracted with dichloromethane, dried (magnesium sulfate) and, after the solvent had been distilled off, chromatographed on silica gel with hexane / ethyl acetate. Yield 1.45 g (48%) yellow oil. 1 H-NMR (400 MHz, d in ppm, CDCl3): d = 3.70 (s, 3H), 3.94 (s, 3H), 3.96 (s, 2H), 7.70 (s, 1H), 8.10 (s, 1H ) Step 2: methyl (4-amino-2-bromo-6-methoxyphenyl) acetate
1.45 g (4.76 mmol) Methyl-(2-brom-6-methoxy-4-nitrophenyl)acetat wurden in 11 ml Tetrahydro- furan gelöst und eine Lösung von 2.040 g (38.1 mmol) Ammoniumchlorid in 5.3 ml Wasser sowie 2.494 g (38.1 mmol) Zink zugegeben und 30 min bei Raumtemperatur gerührt. Man filtrierte, verdünnte das Filtrat mit Wasser und extrahierte mit Ethylacetat, wobei der pH-Wert größer als 7 eingestellt wurde. Trocknen der organischen Phase mit Natriumsulfat und Abdestillieren des Lösungsmittels lieferten 1.30g (99%) der gewünschten Verbindung als orangefarbenes Öl. 1H-NMR (400 MHz, d in ppm, CDCl3): d = 3.70 (s, 3H), 3.75 (s, 5H), 6.15 (s, 1H), 6.55 (s, 1H) Schritt 3: Methyl-(2-brom-4-iod-6-methoxyphenyl)acetat 1.45 g (4.76 mmol) of methyl (2-bromo-6-methoxy-4-nitrophenyl) acetate were dissolved in 11 ml of tetrahydro- furan and a solution of 2.040 g (38.1 mmol) ammonium chloride in 5.3 ml water and 2.494 g (38.1 mmol) zinc are added and the mixture is stirred for 30 min at room temperature. It was filtered, the filtrate was diluted with water and extracted with ethyl acetate, the pH being adjusted to greater than 7. Drying the organic phase with sodium sulfate and distilling off the solvent yielded 1.30 g (99%) of the desired compound as an orange-colored oil. 1 H-NMR (400 MHz, d in ppm, CDCl3): d = 3.70 (s, 3H), 3.75 (s, 5H), 6.15 (s, 1H), 6.55 (s, 1H) Step 3: methyl- ( 2-bromo-4-iodo-6-methoxyphenyl) acetate
Eine Suspension von 1.300 g (4.74 mmol) Methyl-(4-amino-2-brom-6-methoxyphenyl)acetat und 2.706 g (14.2 mmol) p-Toluolsulfonsäure in 19 ml Acetonitril wurde auf 10-15°C gekühlt und langsam mit einer Lösung von 0.654 g (9.48 mmol) Natriumnitrit und 1.968 g (11.08 mmol) Kaliumiodid in 1.8 ml Wasser versetzt. Nach 10 min wurde auf Raumtemperatur erwärmt und bei 20°C weitere 30 min gerührt. Es wurden 15 ml Wasser zugegeben, mit gesättigter Natriumhydrogencarbonat-Lösung auf pH 8 eingestellt und anschließend noch gesättigte Natriumthiosulfatlösung zugegeben. Nach Extraktion mit Ethylacetat, Trocknen (Natriumsulfat) und Abdestillieren des Lösungsmittels wurde der Rückstand durch Chromatographie an Kieselgel (Ethylacetat/Hexan) gereinigt. Man erhielt 1.005 g (55%) der Iodverbindung als gelbes Öl. 1H-NMR (400 MHz, d in ppm, CDCl3): d = 3.70 (s, 3H), 3.80 (s, 3H), 3.85 (s, 2H), 7.10 (s, 1H), 7.55 (s, 1H) Schritt 4: Methyl-(2-brom-4-ethinyl-6-methoxyphenyl)acetat A suspension of 1,300 g (4.74 mmol) of methyl (4-amino-2-bromo-6-methoxyphenyl) acetate and 2,706 g (14.2 mmol) of p-toluenesulfonic acid in 19 ml of acetonitrile was cooled to 10-15 ° C. and slowly with a solution of 0.654 g (9.48 mmol) sodium nitrite and 1.968 g (11.08 mmol) potassium iodide in 1.8 ml water. After 10 min the mixture was warmed to room temperature and stirred at 20 ° C. for a further 30 min. 15 ml of water were added, the pH was adjusted to 8 with saturated sodium hydrogen carbonate solution, and then saturated sodium thiosulfate solution was also added. After extraction with ethyl acetate, drying (sodium sulfate) and distilling off the solvent, the residue was purified by chromatography on silica gel (ethyl acetate / hexane). 1,005 g (55%) of the iodine compound were obtained as a yellow oil. 1 H-NMR (400 MHz, d in ppm, CDCl 3 ): d = 3.70 (s, 3H), 3.80 (s, 3H), 3.85 (s, 2H), 7.10 (s, 1H), 7.55 (s, 1H) Step 4: Methyl (2-bromo-4-ethynyl-6-methoxyphenyl) acetate
Zu einer Suspension von 2.18 g (5.66 mmol) Methyl-(2-brom-4-iod-6-methoxyphenyl)acetat, 10.77 mg (0.06 mmol) Kupfer(I)-iodid und 39.80 mg (0.057 mmol) Bis(triphenylphosphine)palladium(II) dichloride in 12 ml Triethylamin wurden 8 ml Dimethylformamid gegeben. Die Lösung wurde mit Argon entgast und mit 610 mg (6.22 mmol) Trimethylsilylacetylen versetzt. Nach erfolgter Umsetzung des Iodids (LCMS-Kontrolle) wurde mit Wasser und Dichlormethan versetzt und die Phasen getrennt. Nach Trocknen und Einengen wurde ein bräunlicher Rückstand erhalten, der chromatographisch gereinigt wurde. Das so erhaltene gereinigte Trimethylsilylderivat wurde in 10 ml Methanol gelöst, mit 1.56 g (11.31 mmol) Kaliumcarbonat versetzt und 2 h nachgerührt. Die Lösung wurde mit Wasser und Ethylacetat versetzt, abgetrennt und die wäßrige Phase noch zweimal mit Ethylacetat extrahiert. Trocknen der vereinigten organischen Phasen (Natriumsulfat), Abdestillieren des Lösungsmittels und Chromatographie des Rückstand an Kieselgel (Ethylacetat/Hexan) lieferte 883 mg (55%) des gewünschten Produkts. 1H-NMR (400 MHz, d in ppm, CDCl3): d = 3.10 (s, 1H), 3.70 (s, 3H), 3.80 (s, 3H), 3.85 (s, 2H), 6.90 (s, 1H), 7.35 (s, 1H) Schritt 5: (2-Brom-4-ethinyl-6-methoxyphenyl)essigsäure To a suspension of 2.18 g (5.66 mmol) methyl (2-bromo-4-iodo-6-methoxyphenyl) acetate, 10.77 mg (0.06 mmol) copper (I) iodide and 39.80 mg (0.057 mmol) bis (triphenylphosphine) palladium (II) dichloride in 12 ml of triethylamine was added to 8 ml of dimethylformamide. The solution was degassed with argon and 610 mg (6.22 mmol) of trimethylsilylacetylene were added. After Conversion of the iodide (LCMS control) was mixed with water and dichloromethane and the phases were separated. After drying and concentration, a brownish residue was obtained which was purified by chromatography. The purified trimethylsilyl derivative obtained in this way was dissolved in 10 ml of methanol, 1.56 g (11.31 mmol) of potassium carbonate were added and the mixture was stirred for a further 2 hours. The solution was mixed with water and ethyl acetate, separated off and the aqueous phase was extracted twice more with ethyl acetate. Drying the combined organic phases (sodium sulfate), distilling off the solvent and chromatography of the residue on silica gel (ethyl acetate / hexane) yielded 883 mg (55%) of the desired product. 1 H-NMR (400 MHz, d in ppm, CDCl 3 ): d = 3.10 (s, 1H), 3.70 (s, 3H), 3.80 (s, 3H), 3.85 (s, 2H), 6.90 (s, 1H), 7.35 (s, 1H) Step 5: (2-Bromo-4-ethynyl-6-methoxyphenyl) acetic acid
Zu einer Lösung von 0.88 g (3.12 mmol) Methyl-(2-brom-4-ethinyl-6-methoxyphenyl)acetat in 5 ml Methanol und 2 ml Wasser wurden bei Raumtemperatur 0.19 g (7.80 mmol) Lithiumhydroxid gegeben, und die Reaktionsmischung 48 h bei Raumtemperatur gerührt, anschließend weitere 0.19 g (7.80 mmol) Lithiumhydroxid zugegeben und weitere 48 h weitergerührt. Das Reaktionsgemisch wurde im Vakuum bis zur Trockne eingeengt und mit 10 ml Wasser versetzt, mit 2N Salzsäure auf pH=1 angesäuert und mit Ethylacetat extrahiert. Waschen mit Wasser, Trocknen (Magnesiumsulfat) und Abdestillieren des Lösungsmittels lieferte 0.82 g (97%) des geünschten Produkts. 1H-NMR (400 MHz, d in ppm, d6-DMSO): d = 3.70 (s, 2H), 3.80 (s, 3H), 4.30 (s, 1H), 7.10 (s, 1H), 7.30 (s, 1H) Herstellung von (2-Brom-4-(prop-1-in-1-yl)-6-methoxyphenyl)essigsäure Schritt 1: Methyl-[2-brom-6-methoxy-4-(prop-1-in-1-yl)phenyl]acetat 0.19 g (7.80 mmol) of lithium hydroxide was added at room temperature to a solution of 0.88 g (3.12 mmol) of methyl (2-bromo-4-ethynyl-6-methoxyphenyl) acetate in 5 ml of methanol and 2 ml of water, and the reaction mixture 48 Stirred at room temperature for h, then a further 0.19 g (7.80 mmol) of lithium hydroxide was added and stirring was continued for a further 48 h. The reaction mixture was concentrated to dryness in vacuo, 10 ml of water were added, the mixture was acidified to pH = 1 with 2N hydrochloric acid and extracted with ethyl acetate. Washing with water, drying (magnesium sulfate) and distilling off the solvent gave 0.82 g (97%) of the desired product. 1 H-NMR (400 MHz, d in ppm, d6-DMSO): d = 3.70 (s, 2H), 3.80 (s, 3H), 4.30 (s, 1H), 7.10 (s, 1H), 7.30 (s , 1H) Preparation of (2-bromo-4- (prop-1-yn-1-yl) -6-methoxyphenyl) acetic acid Step 1: Methyl- [2-bromo-6-methoxy-4- (prop-1-yn-1 -yl) phenyl] acetate
Zu einer Lösung von 3.50 g (25.7 mmol) trockenem Zinkchlorid und 1.09 g (25.7 mmol) trockenem Lithiumchlorid in 300 ml entgastem Tetrahydrofuran wurden unter Stickstoffatmmosphäre bei 0°C unter Rühren tropfenweise 1.5 ml (0.75 mmol) einer 0.5 M Lösung von 1-Propinylmagnesium- bromid in Tetrahydrofuran getropft. Die Lösung wurde unter Rühren innerhalb von 1.5 h auf Raumtemperatur erwärmt (Lösung 1). 2.8 mg (0.01 mmol) Palladium(II)acetat und 10.6 mg (0.02 mmol) 1,4-Bis(diphenylphosphino)-butan in 3 ml trockenem Tetrahydrofuran wurden unter Stickstoffatmosphäre 30 min lang bei Raumtemperatur gerührt (Lösung 2).0.2 g (0.5 mmol) Methyl- (2-brom-6-methoxy-4-iodphenyl)acetat wurden in 2 ml trockenem Tetra-hydrofuran unter Stickstoffatmosphäre gelöst und 30 min bei Raumtemperatur gerührt (Lösung 3). Zu Lösung 1 wurde jeweils bei Raumtemperatur unter Rühren tropfenweise Lösung 2 und anschließend Lösung 3 hinzugefügt und diese Mischung 3.5 h bei 60°C gerührt. Nach dem Abkühlen auf Raumtemperatur wurde vorsichtig mit Wasser und gesättigter Ammoniumchlorid-Lösung versetzt und mit Ethylacetat extrahiert, die organische Phase getrocknet (Natriumsulfat) und das Lösungsmittel abdestilliert. Chromatographie an Kieselgel (Essigsäureethylester/Hexan) lieferte 98 mg der gewünschten Verbindung (Ausbeute 63 %). To a solution of 3.50 g (25.7 mmol) of dry zinc chloride and 1.09 g (25.7 mmol) of dry lithium chloride in 300 ml of degassed tetrahydrofuran were added dropwise 1.5 ml (0.75 mmol) of a 0.5 M solution of 1-propynylmagnesium under a nitrogen atmosphere at 0 ° C. with stirring - bromide dripped in tetrahydrofuran. The solution was warmed to room temperature within 1.5 h with stirring (solution 1). 2.8 mg (0.01 mmol) palladium (II) acetate and 10.6 mg (0.02 mmol) 1,4-bis (diphenylphosphino) butane in 3 ml dry tetrahydrofuran were stirred under a nitrogen atmosphere for 30 min at room temperature (solution 2). 0.2 g ( 0.5 mmol) of methyl (2-bromo-6-methoxy-4-iodophenyl) acetate were dissolved in 2 ml of dry tetrahydrofuran under a nitrogen atmosphere and stirred for 30 min at room temperature (solution 3). Solution 2 and then solution 3 were added dropwise to solution 1 at room temperature with stirring and this mixture was stirred at 60 ° C. for 3.5 h. After cooling to room temperature, water and saturated ammonium chloride solution were carefully added and the mixture was extracted with ethyl acetate, the organic phase was dried (sodium sulfate) and the solvent was distilled off. Chromatography on silica gel (ethyl acetate / hexane) gave 98 mg of the desired compound (yield 63%).
1H-NMR (400 MHz, d in ppm, CDCl3): d = 1.37 (t, 3H), 2.03 (s, 3H), 3.69 (s, 3H), 3.85 (s, 2H), 4.00 (q, 2H), 6.82 und 7.23 (je s, je 1H) Schritt 2: (2-Brom-4-(prop-1-in-1-yl)-6-methoxyphenyl)essigsäure 1H-NMR (400 MHz, d in ppm, CDCl3): d = 1.37 (t, 3H), 2.03 (s, 3H), 3.69 (s, 3H), 3.85 (s, 2H), 4.00 (q, 2H) , 6.82 and 7.23 (each s, each 1H) Step 2: (2-Bromo-4- (prop-1-in-1-yl) -6-methoxyphenyl) acetic acid
2.10 g (7.06 mmol) Methyl-(2-brom-4-(prop-1-in-1-yl)-6-methoxyphenyl)acetat und 0.86 g (35.2 mmol) Lithiumhydroxid in 20 ml Methanol und 5 ml Wasser wurden 4 Tage am Rückfluß erhitzt. Anschließend wurde eingeengt, mit 30 ml Wasser versetzt, mit 2N Salzsäure auf pH=2 angesäuert und mehrfach mit Ethylacetat extrahiert. Trocknen der vereinigten organischen Phasen und Abdestillieren des Lösungsmittels lieferte 1.88g der gewünschten Phenylessigsäure. 1H-NMR (400 MHz, CDCl3): d = 2.05 (s, 3H), 3.80 (s, 3H), 3.90 (s, 2H), 6.80 (s, 1H), 7.25 (s, 1H) Analog wurden folgende Verbindungen hergestellt: 2.10 g (7.06 mmol) of methyl (2-bromo-4- (prop-1-yn-1-yl) -6-methoxyphenyl) acetate and 0.86 g (35.2 mmol) lithium hydroxide in 20 ml of methanol and 5 ml of water were refluxed for 4 days. It was then concentrated, mixed with 30 ml of water, acidified to pH = 2 with 2N hydrochloric acid and extracted several times with ethyl acetate. Drying the combined organic phases and distilling off the solvent yielded 1.88 g of the desired phenylacetic acid. 1H-NMR (400 MHz, CDCl3): d = 2.05 (s, 3H), 3.80 (s, 3H), 3.90 (s, 2H), 6.80 (s, 1H), 7.25 (s, 1H) The following compounds were analogous manufactured:
B. Formulierungsbeispiele a) Ein Stäubemittel wird erhalten, indem man 10 Gew. Teile einer Verbindung der Formel (I) und/oder deren Salze und 90 Gew. Teile Talkum als Inertstoff mischt und in einer Schlagmühle zerkleinert. b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gewichtsteile einer Verbindung der Formel (I) und/oder deren Salze, 64 Gew. Teile kaolinhaltigen Quarz als Inertstoff, 10 Gewichtsteile ligninsulfonsaures Kalium und 1 Gew. Teil oleoylmethyltaurinsaures Natrium als Netz und Dispergiermittel mischt und in einer Stiftmühle mahlt. c) Ein in Wasser leicht dispergierbares Dispersionskonzentrat wird erhalten, indem man 20 Gew. Teile einer Verbindung der Formel (I) und/oder deren Salze mit 6 Gew. Teilen Alkylphenolpolyglykolether (®Triton X 207), 3 Gew. Teilen Isotridecanolpolyglykolether (8 EO) und 71 Gew. Teilen paraffinischem Mineralöl (Siedebereich z.B. ca.255 bis über 277 C) mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt. d) Ein emulgierbares Konzentrat wird erhalten aus 15 Gew. Teilen einer Verbindung der Formel (I) und/oder deren Salze, 75 Gew. Teilen Cyclohexanon als Lösungsmittel und 10 Gew. Teilen oxethyliertes Nonylphenol als Emulgator. e) Ein in Wasser dispergierbares Granulat wird erhalten indem man B. Formulation Examples a) A dusting agent is obtained by mixing 10 parts by weight of a compound of the formula (I) and / or its salts and 90 parts by weight of talc as an inert substance and comminuting it in a hammer mill. b) A wettable powder which is easily dispersible in water is obtained by adding 25 parts by weight of a compound of the formula (I) and / or its salts, 64 parts by weight of kaolin-containing quartz as an inert substance, 10 parts by weight of potassium lignosulfonate and 1 part by weight of sodium oleoylmethyltaurinate as a wetting agent and dispersant and grinds in a pin mill. c) A dispersion concentrate that is easily dispersible in water is obtained by adding 20 parts by weight of a compound of the formula (I) and / or its salts with 6 parts by weight of alkylphenol polyglycol ether (®Triton X 207), 3 parts by weight of isotridecanol polyglycol ether (8 EO ) and 71 parts by weight of paraffinic mineral oil (boiling range for example about 255 to over 277 C) and ground in a friction ball mill to a fineness of less than 5 microns. d) An emulsifiable concentrate is obtained from 15 parts by weight of a compound of the formula (I) and / or their salts, 75 parts by weight of cyclohexanone as solvent and 10 parts by weight of ethoxylated nonylphenol as emulsifier. e) A water-dispersible granulate is obtained by
75 Gew. Teile einer Verbindung der Formel (I) und/oder deren Salze, 75 parts by weight of a compound of the formula (I) and / or its salts,
10 Gew. Teile ligninsulfonsaures Calcium, 10 parts by weight of calcium lignosulfonate,
5 Gew. Teile Natriumlaurylsulfat, 5 parts by weight of sodium lauryl sulfate,
3 Gew. Teile Polyvinylalkohol und 3 parts by weight of polyvinyl alcohol and
7 Gew. Teile Kaolin 7 parts by weight of kaolin
mischt, auf einer Stiftmühle mahlt und das Pulver in einem Wirbelbett durch Aufsprühen von Wasser als Granulierflüssigkeit granuliert. f) Ein in Wasser dispergierbares Granulat wird auch erhalten, indem man mixes, grinds on a pin mill and granulates the powder in a fluidized bed by spraying on water as a granulating liquid. f) A water-dispersible granulate is also obtained by
25 Gew. Teile einer Verbindung der Formel (I) und/oder deren Salze, 25 parts by weight of a compound of the formula (I) and / or its salts,
5 Gew. Teile 2,2' Dinaphthylmethan 6,6' disulfonsaures Natrium, 5 parts by weight of 2,2 'dinaphthylmethane 6,6' disulfonic acid sodium,
2 Gew. Teile oleoylmethyltaurinsaures Natrium, 2 parts by weight of oleoylmethyltaurinate sodium,
1 Gew. Teil Polyvinylalkohol, 1 part by weight of polyvinyl alcohol,
17 Gew. Teile Calciumcarbonat und 17 parts by weight of calcium carbonate and
50 Gew. Teile Wasser 50 parts by weight of water
auf einer Kolloidmühle homogenisiert und vorzerkleinert, anschließend auf einer Perlmühle mahlt und die so erhaltene Suspension in einem Sprühturm mittels einer Einstoffdüse zerstäubt und trocknet. C. Biologische Beispiele 1. Herbizide Wirkung bzw. Kulturpflanzenverträglichkeit im Vorauflauf Samen von mono- bzw. dikotylen Unkraut- bzw. Kulturpflanzen werden in Holzfasertöpfen in sandiger Lehmerde ausgelegt und mit Erde abgedeckt. Die in Form von benetzbaren Pulvern (WP) oder als Emulsionskonzentrate (EC) formulierten erfindungsgemäßen Verbindungen werden dann als wässrige Suspension bzw. Emulsion mit einer Wasseraufwandmenge von umgerechnet 600 bis 800 l/ha unter Zusatz von 0,2% Netzmittel auf die Oberfläche der Abdeckerde appliziert. Nach der Behandlung werden die Töpfe im Gewächshaus aufgestellt und unter guten Wachstumsbedingungen für die Testpflanzen gehalten. Die visuelle Bonitur der Schäden an den Versuchspflanzen erfolgt nach einer Versuchszeit von 3 Wochen im Vergleich zu unbehandelten Kontrollen (herbizide Wirkung in Prozent (%): 100% Wirkung = Pflanzen sind abgestorben, 0 % Wirkung = wie Kontrollpflanzen). Unerwünschte Pflanzen / Weeds: ALOMY: Alopecurus myosuroides SETVI: Setaria viridis AMARE: Amaranthus retroflexus AVEFA: Avena fatua CYPES: Cyperus esculentus ECHCG: Echinochloa crus-galli LOLRI: Lolium rigidum STEME: Stellaria media VERPE: Veronica persica VIOTR: Viola tricolor POLCO: Polygonum convolvulus ABUTH: Abutylon threophrasti HORMU: Hordeum murinum DIGSA: Digitaria sanguinalis 1. Vorauflaufwirksamkeit Wie die Ergebnisse aus der Tabelle 1 zeigen, weisen erfindungsgemäße Verbindungen eine gute herbizide Vorauflaufwirksamkeit gegen ein breites Spektrum von Ungräsern und Unkräutern auf. Beispielsweise zeigen die Verbindungen bei einer Aufwandmenge von 80 g/ha jeweils eine 90-100%- ige Wirkung gegen Alopecurus myosuroides, Avena fatua, Digitaria sanguinalis, Echinochloa crus- galli, Lolium rigidum und Setaria viridis. Die erfindungsgemäßen Verbindungen eignen sich deshalb im Vorauflaufverfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs. Tabelle 1: Vorauflaufwirkung bei 80 g/ha Homogenized and pre-comminuted in a colloid mill, then ground in a bead mill and the suspension thus obtained is atomized in a spray tower using a single-fluid nozzle and dried. C. Biological Examples 1. Herbicidal Action or Crop Plant Tolerance Pre-Emergence Seeds of monocotyledonous or dicotyledonous weed or crop plants are placed in sandy loam soil in wooden fiber pots and covered with soil. The compounds according to the invention, formulated in the form of wettable powders (WP) or as emulsion concentrates (EC), are then applied to the surface of the covering soil as an aqueous suspension or emulsion with a water application rate of the equivalent of 600 to 800 l / ha with the addition of 0.2% wetting agent applied. After the treatment, the pots are placed in the greenhouse and kept under good growth conditions for the test plants. The visual assessment of the damage to the test plants is carried out after a test period of 3 weeks in comparison with untreated controls (herbicidal effect in percent (%): 100% effect = plants have died, 0% Effect = like control plants). Unwanted Plants / Weeds: ALOMY: Alopecurus myosuroides SETVI: Setaria viridis AMARE: Amaranthus retroflexus AVEFA: Avena fatua CYPES: Cyperus esculentus ECHCG: Echinochloa crus-galli LOLRI: Lolium rigidum STEME: Viola persica tricolor VIR convolvulus ABUTH: Abutylon threophrasti HORMU: Hordeum murinum DIGSA: Digitaria sanguinalis 1. Pre-emergence activity As the results from Table 1 show, compounds according to the invention have good herbicidal pre-emergence activity against a broad spectrum of grass weeds and weeds. For example, at an application rate of 80 g / ha, the compounds each show a 90-100% activity against Alopecurus myosuroides, Avena fatua, Digitaria sanguinalis, Echinochloa crusgalli, Lolium rigidum and Setaria viridis. The compounds according to the invention are therefore suitable in the pre-emergence method for combating undesirable vegetation. Table 1: Pre-emergence effect at 80 g / ha
2. Herbizide Wirkung im Nachauflauf 2. Post-emergence herbicidal effect
Samen von mono- bzw. dikotylen Unkraut- bzw. Kulturpflanzen werden in Holzfasertöpfen in sandigem Lehmboden ausgelegt, mit Erde abgedeckt und im Gewächshaus unter guten Wachstumsbedingungen angezogen.2 bis 3 Wochen nach der Aussaat werden die Versuchspflanzen im Einblattstadium behandelt. Die in Form von benetzbaren Pulvern (WP) oder als Emulsionskonzentrate (EC) formulierten erfindungsgemäßen Verbindungen werden dann als wässrige Suspension bzw. Emulsion mit einer Wasseraufwandmenge von umgerechnet 600 bis 800 l/ha unter Zusatz von 0,2% Netzmittel auf die grünen Pflanzenteile gesprüht. Nach ca. 3 Wochen Standzeit der Versuchspflanzen im Gewächshaus unter optimalen Wachstumsbedingungen wird die Wirkung der Präparate visuell im Vergleich zu unbehandelten Kontrollen bonitiert (herbizide Wirkung in Prozent (%): 100% Wirkung = Pflanzen sind abgestorben, 0 % Wirkung = wie Kontrollpflanzen). Unerwünschte Pflanzen / Weeds: ALOMY: Alopecurus myosuroides SETVI: Setaria viridis AMARE: Amaranthus retroflexus AVEFA: Avena fatua CYPES: Cyperus esculentus ECHCG: Echinochloa crus-galli LOLRI: Lolium rigidum STEME: Stellaria media VERPE: Veronica persica VIOTR: Viola tricolor POLCO: Polygonum convolvulus ABUTH: Abutylon threophrasti HORMU: Hordeum murinum DIGSA: Digitaria sanguinalis Seeds of monocotyledonous or dicotyledonous weed or crop plants are laid out in wooden fiber pots in sandy loam soil, covered with soil and grown in the greenhouse under good growth conditions. 2 to 3 weeks after sowing, the test plants are treated in the single-leaf stage. The compounds according to the invention, formulated in the form of wettable powders (WP) or as emulsion concentrates (EC), are then sprayed onto the green plant parts as an aqueous suspension or emulsion with a water application rate of 600 to 800 l / ha with the addition of 0.2% wetting agent . After the test plants have stood in the greenhouse for about 3 weeks under optimal growth conditions, the effect of the preparations is rated visually in comparison to untreated controls (herbicidal effect in percent (%): 100% effect = plants have died, 0% effect = like control plants). Unwanted Plants / Weeds: ALOMY: Alopecurus myosuroides SETVI: Setaria viridis AMARE: Amaranthus retroflexus AVEFA: Avena fatua CYPES: Cyperus esculentus ECHCG: Echinochloa crus-galli LOLRI: Lolium rigidum STEME: Viola persica tricolor VIR.Verica tricolum: POLCO convolvulus ABUTH: Abutylon threophrasti HORMU: Hordeum murinum DIGSA: Digitaria sanguinalis
Wie die Ergebnisse aus den Tabellen 2 bis 4 zeigen, weisen die erfindungsgemäßen Verbindungen eine gute herbizide Nachauflaufwirksamkeit gegen ein breites Spektrum von Ungräsern und Unkräutern auf. Tabelle 2: Nachauflaufwirkung gegen ALOMY, ECHCG, LOLRI und SETVI As the results from Tables 2 to 4 show, the compounds according to the invention have good herbicidal post-emergence activity against a broad spectrum of grass weeds and Weeds on. Table 2: Post-emergence effects against ALOMY, ECHCG, LOLRI and SETVI
Tabelle 3: Nachauflaufwirkung gegen DIGSATable 3: Post-emergence effects against DIGSA
Tabelle 4: Nachauflaufwirkung gegen HORMU Table 4: Post-emergence effects against HORMU
Beispielsweise zeigen die Verbindungen in Tabelle 2-4 bei einer Aufwandmenge von 80 g/ha jeweils eine 80 - 100%-ige Wirkung gegen Alopecurus myosuroides, Echinochloa crus-galli, Setaria viridis, Lolium multiflorum, Digitaria sanguinalis und Hordeum murinum. Die erfindungsgemäßen Verbindungen eignen sich deshalb im Nachauflaufverfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs. For example, at an application rate of 80 g / ha, the compounds in Table 2-4 each show an 80-100% activity against Alopecurus myosuroides, Echinochloa crus-galli, Setaria viridis, Lolium multiflorum, Digitaria sanguinalis and Hordeum murinum. The compounds according to the invention are therefore suitable for combating undesirable vegetation by the post-emergence method.

Claims

Patentansprüche 1. Spirocyclopentylpyrrolin-2-one der allgemeinen Formel (I), Claims 1. Spirocyclopentylpyrrolin-2-ones of the general formula (I),
W Sauerstoff, die Gruppe S(O)n oder eine Gruppe CR4R5 bedeutet; W is oxygen, the group S (O) n or a group CR 4 R 5 ;
R1 Wasserstoff, (C1-C6)-Alkyl, (C1-C4)-Alkoxy-(C1-C4)-Alkyl, (C1-C6)-Halogenalkyl, (C3- C6)-Cycloalkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C1-C6)-Alkoxy oder (C1-C6)- Halogenalkoxy bedeutet; R 1 is hydrogen, (C 1 -C 6) alkyl, (C 1 -C 4) alkoxy- (C 1 -C 4) alkyl, (C 1 -C 6) -haloalkyl, (C 3 - C 6 ) -Cycloalkyl, (C 2 -C 6 ) -alkenyl, (C 2 -C 6 ) -alkynyl, (C 1 -C 6 ) -alkoxy or (C 1 -C 6 ) -haloalkoxy;
R2 (C1-C6)-Alkyl oder (C1-C6)-Halogenalkyl bedeutet; R 2 is (C 1 -C 6 ) -alkyl or (C 1 -C 6 ) -haloalkyl;
R3 Wasserstoff, (C1-C4)-Alkyl, (C1-C4)-Halogenalkyl, (C3-C6)-Cycloalkyl oder Halogen bedeutet; R 3 is hydrogen, (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -haloalkyl, (C 3 -C 6 ) -cycloalkyl or halogen;
R4 (C1-C6)-Alkyl, (C3-C6)-Cycloalkyl, (C3-C6)-Alkoxy, (C1-C4)-Alkoxy-(C1-C6)-Alkoxy, R 4 (C 1 -C 6 ) -alkyl, (C 3 -C 6 ) -cycloalkyl, (C 3 -C 6 ) -alkoxy, (C 1 -C 4 ) -alkoxy- (C 1 -C 6 ) - Alkoxy,
(C1-C4)-Halogenalkoxy-(C1-C6)-Alkoxy, (C2-C6)-Alkenyloxy oder (C2-C6)- Halogenalkenyloxy bedeutet; Is (C 1 -C 4 ) haloalkoxy (C 1 -C 6 ) alkoxy, (C 2 -C 6 ) alkenyloxy or (C 2 -C 6 ) haloalkenyloxy;
R5 Wasserstoff oder Methyl bedeutet; oder R 5 is hydrogen or methyl; or
R4 und R5 bilden gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, eine Ketogruppe oder einen spirocyclischen (C3-C7)-Cycloalkyl- oder (C5-C7)-Cycloalkenyl-Ring, bei dem gegebenenfalls ein oder zwei Ringkohlenstoffe durch Sauerstoffatome ersetzt sein können und der gegebenenfalls ein- bis zweifach und unabhängig voneinander mit (C1-C2)-Alkyl oder (C1-C2)-Alkoxy substituiert sein kann; R 4 and R 5 together with the carbon atom to which they are attached form a keto group or a spirocyclic (C 3 -C 7 ) -cycloalkyl or (C 5 -C 7 ) -cycloalkenyl ring, in which optionally one or two ring carbons can be replaced by oxygen atoms and which can optionally be substituted one to two times and independently of one another by (C 1 -C 2 ) -alkyl or (C 1 -C 2 ) -alkoxy;
n 0, 1 oder 2 bedeutet; n is 0, 1 or 2;
G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E bedeutet; wobei L einer der folgenden Reste G denotes hydrogen, a removable group L or a cation E; where L is one of the following radicals
ist, worin R6 (C1-C4)-Alkyl oder (C1-C3)-Alkoxy-(C2-C4)-Alkyl bedeutet; R7 (C1-C4)-Alkyl bedeutet; wherein R 6 is (C 1 -C 4 ) alkyl or (C 1 -C 3 ) alkoxy- (C 2 -C 4 ) alkyl; R 7 is (C 1 -C 4 ) -alkyl;
R8 ein unsubstituiertes Phenyl oder ein einfach oder mehrfach mit Halogen, R 8 is an unsubstituted phenyl or one or more times with halogen,
(C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C1-C4)-Alkoxy, (C1-C4)-Haloalkoxy, Nitro oder Cyano substituiertes Phenyl bedeutet; (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -haloalkyl, (C 1 -C 4 ) -alkoxy, (C 1 -C 4 ) -haloalkoxy, nitro or cyano-substituted phenyl;
R9, R9' unabhängig voneinander Methoxy oder Ethoxy bedeuten; R 9 , R 9 'independently of one another denote methoxy or ethoxy;
R10, R11 jeweils unabhängig voneinander Methyl, Ethyl, Phenyl bedeuten oder gemeinsam einen gesättigten 5-, 6- oder 7-gliedrigen Ring bilden, oder gemeinsam einen gesättigten 5-, 6-, oder 7-gliedrigen Heterozyklus mit einem Sauerstoff- oder Schwefelatom bilden, E ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent R 10 , R 11 each independently represent methyl, ethyl, phenyl or together form a saturated 5-, 6- or 7-membered ring, or together form a saturated 5-, 6- or 7-membered heterocycle with an oxygen or Form a sulfur atom, E an alkali metal ion, an ion equivalent of an alkaline earth metal, an ion equivalent
Aluminium, ein Ionenäquivalent eines Übergangsmetalls, ein Magnesium-Halogen- Kation oder ein Ammoniumion bedeutet, bei dem gegebenenfalls ein, zwei, drei oder alle vier Wasserstoffatome durch gleiche oder verschiedene Reste aus den Gruppen (C1-C10)- Alkyl oder (C3-C7)-Cycloalkyl ersetzt sein können, wobei diese unabhängig voneinander jeweils ein- oder mehrfach mit Fluor, Chlor, Brom, Cyano, Hydroxy substituiert oder durch ein- oder mehrere Sauerstoff- oder Schwefelatome unterbrochen sein können; ein cyclisches sekundäres oder tertiäres aliphatisches oder heteroaliphatisches Ammoniumion bedeutet, beispielsweise jeweils Morpholinium, Thiomorpholinium, Piperidinium, Pyrrolidinium, oder jeweils protoniertes 1,4-Diazabicyclo[1.1.2]octane (DABCO) oder 1,5-Diazabicyclo[4.3.0]undec-7-en (DBU); ein heteroaromatisches Ammoniumkation bedeutet, beispielsweise jeweils protoniertes Pyridin, 2-Methylpyridin, 3-Methylpyridin, 4-Methylpyridin, 2,4- Dimethylpyridin, 2,5-Dimethylpyridin, 2,6-Dimethylpyridin, 5- Ethyl-2-methylpyridin, Collidin , Pyrrol, Imidazol, Chinolin, Chinoxalin, 1,2- Dimethylimidazol, 1,3-Dimethylimidazolium-methylsulfat oder weiterhin auch für ein Trimethylsulfoniumion stehen kann. Aluminum, an ion equivalent of a transition metal, a magnesium-halogen cation or an ammonium ion, in which optionally one, two, three or all four hydrogen atoms are replaced by identical or different radicals from the groups (C 1 -C 10 ) - alkyl or (C 3 -C 7 ) -cycloalkyl, which independently of one another can each be substituted one or more times with fluorine, chlorine, bromine, cyano, hydroxy or interrupted by one or more oxygen or sulfur atoms; denotes a cyclic secondary or tertiary aliphatic or heteroaliphatic ammonium ion, for example morpholinium, thiomorpholinium, piperidinium, pyrrolidinium, or protonated 1,4-diazabicyclo [1.1.2] octane (DABCO) or 1,5-diazabicyclo [4.3.0] undec -7-en (DBU); denotes a heteroaromatic ammonium cation, for example in each case protonated pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2,4-dimethylpyridine, 2,5-dimethylpyridine, 2,6-dimethylpyridine, 5-ethyl-2-methylpyridine, collidine, Pyrrole, imidazole, quinoline, quinoxaline, 1,2-dimethylimidazole, 1,3-dimethylimidazolium methyl sulfate or can also stand for a trimethyl sulfonium ion.
2. Verbindungen der Formel (I) gemäß Anspruch 1, worin die Reste folgende Bedeutungen aufweisen: W Sauerstoff, die Gruppe S(O)n oder eine Gruppe CR4R5 bedeutet; 2. Compounds of the formula (I) according to claim 1, in which the radicals have the following meanings: W is oxygen, the group S (O) n or a group CR 4 R 5 ;
R1 Wasserstoff, (C1-C4)-Alkyl, (C1-C4)-Alkoxy-(C1-C4)-Alkyl, (C1-C4)-Halogenalkyl, (C3- C6)-Cycloalkyl, (C2-C4)-Alkenyl, (C2-C4)-Alkinyl, (C1-C4)-Alkoxy oder (C1-C4)- Halogenalkoxy bedeutet; R 1 is hydrogen, (C 1 -C 4) alkyl, (C 1 -C 4) alkoxy- (C 1 -C 4) alkyl, (C 1 -C 4) -haloalkyl, (C 3 - C 6 ) -Cycloalkyl, (C 2 -C 4 ) -alkenyl, (C 2 -C 4 ) -alkynyl, (C 1 -C 4 ) -alkoxy or (C 1 -C 4 ) -haloalkoxy;
R2 (C1-C4)-Alkyl oder (C1-C4)-Halogenalkyl bedeutet; R 2 is (C 1 -C 4 ) -alkyl or (C 1 -C 4 ) -haloalkyl;
R3 Wasserstoff, (C1-C4)-Alkyl, (C1-C4)-Halogenalkyl, (C3-C6)-Cycloalkyl oder Halogen bedeutet; R 3 is hydrogen, (C 1 -C 4) -alkyl, (C 1 -C 4 ) -haloalkyl, (C 3 -C 6 ) -cycloalkyl or halogen;
R4 (C1-C4)-Alkyl, (C3-C4)-Cycloalkyl, (C3-C6)-Alkoxy, (C1-C4)-Alkoxy-(C1-C4)-Alkoxy, (C1-C4)-Halogenalkoxy-(C1-C4)-Alkoxy, (C2-C4)-Alkenyloxy oder (C2-C4)- Halogenalkenyloxy bedeutet; R 4 (C 1 -C 4 ) -alkyl, (C 3 -C 4 ) -cycloalkyl, (C 3 -C 6 ) -alkoxy, (C 1 -C 4 ) -alkoxy- (C 1 -C 4 ) - Alkoxy, (C 1 -C 4) -haloalkoxy (C 1 -C 4) -alkoxy, (C 2 -C 4) alkenyloxy or (C 2 -C 4) - haloalkenyloxy group;
R5 Wasserstoff oder Methyl bedeutet; oder R 5 is hydrogen or methyl; or
R4 und R5 bilden gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, eine Ketogruppe oder einen spirocyclischen (C3-C7)-Cycloalkyl- oder (C5-C7)-Cycloalkenyl-Ring, bei dem gegebenenfalls ein oder zwei Ringkohlenstoffe durch Sauerstoffatome ersetzt sein können und der gegebenenfalls ein- bis zweifach und unabhängig voneinander mit (C1-C2)-Alkyl oder (C1-C2)-Alkoxy substituiert sein kann; R 4 and R 5 together with the carbon atom to which they are attached form a keto group or a spirocyclic (C 3 -C 7 ) -cycloalkyl or (C 5 -C 7 ) -cycloalkenyl ring, in which optionally one or two ring carbons can be replaced by oxygen atoms and which can optionally be substituted one to two times and independently of one another by (C 1 -C 2 ) -alkyl or (C 1 -C 2 ) -alkoxy;
n 0, 1 oder 2 bedeutet; n is 0, 1 or 2;
G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E bedeutet, wobei L einer der folgenden Reste G denotes hydrogen, a removable group L or a cation E, where L is one of the following radicals
ist, worin R6 (C1-C4)-Alkyl oder (C1-C3)-Alkoxy-(C2-C4)-Alkyl bedeutet; wherein R 6 is (C 1 -C 4 ) alkyl or (C 1 -C 3 ) alkoxy- (C 2 -C 4 ) alkyl;
R7 (C1-C4)-Alkyl bedeutet; R 7 is (C 1 -C 4 ) -alkyl;
R8 ein unsubstituiertes Phenyl oder ein einfach oder mehrfach mit Halogen, R 8 is an unsubstituted phenyl or one or more times with halogen,
(C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C1-C4)-Alkoxy, (C1-C4)-Haloalkoxy, Nitro oder Cyano substituiertes Phenyl bedeutet; E ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -haloalkyl, (C 1 -C 4 ) -alkoxy, (C 1 -C 4 ) -haloalkoxy, nitro or cyano-substituted phenyl; E is an alkali metal ion, an ion equivalent of an alkaline earth metal, an ion equivalent
Aluminium, ein Ionenäquivalent eines Übergangsmetalls, ein Magnesium-Halogen- Kation oder ein Ammoniumion bedeutet, bei dem gegebenenfalls ein, zwei, drei oder alle vier Wasserstoffatome durch gleiche oder verschiedene Reste aus den Gruppen (C1-C10)- Alkyl oder (C3-C7)-Cycloalkyl ersetzt sein können, wobei diese unabhängig voneinander jeweils ein- oder mehrfach mit Fluor, Chlor, Brom, Cyano, Hydroxy substituiert oder durch ein- oder mehrere Sauerstoff- oder Schwefelatome unterbrochen sein können. Aluminum, an ion equivalent of a transition metal, a magnesium-halogen cation or an ammonium ion, in which optionally one, two, three or all four hydrogen atoms are replaced by identical or different radicals from the groups (C 1 -C 10 ) - alkyl or (C 3 -C 7 ) -cycloalkyl, which, independently of one another, can each be substituted one or more times with fluorine, chlorine, bromine, cyano, hydroxy or interrupted by one or more oxygen or sulfur atoms.
3. Verbindungen der Formel (I) gemäß Anspruch 1 oder 2, worin die Reste folgende Bedeutungen aufweisen: W Sauerstoff oder eine Gruppe CR4R5 bedeutet; 3. Compounds of the formula (I) according to claim 1 or 2, in which the radicals have the following meanings: W is oxygen or a group CR 4 R 5 ;
R1 Wasserstoff, (C1-C4)-Alkyl, (C1-C4)-Halogenalkyl, Cyclopropyl, (C2-C4)-Alkenyl, (C2- C4)-Alkinyl bedeutet; R 1 is hydrogen, (C 1 -C 4) -alkyl, (C 1 -C 4) haloalkyl, cyclopropyl, (C 2 -C 4) alkenyl, (C 2 - C 4) alkynyl means;
R2 (C1-C4)-Alkyl oder (C1-C4)-Halogenalkyl bedeutet; R3 Wasserstoff, (C1-C4)-Alkyl, (C1-C2)-Halogenalkyl, Cyclopropyl oder Halogen bedeutet; R4 (C1-C2)-Alkyl, Cyclopropyl, (C3-C6)-Alkoxy, (C1-C4)-Alkoxy-(C1-C2)-Alkoxy (C1-C4)- Halogenalkoxy-(C1-C2)-Alkoxy, (C2-C4)-Alkenyloxy oder (C2-C4)-Halogenalkenyloxy bedeutet; R 2 is (C 1 -C 4 ) -alkyl or (C 1 -C 4 ) -haloalkyl; R 3 is hydrogen, (C 1 -C 4 ) -alkyl, (C 1 -C 2 ) -haloalkyl, cyclopropyl or halogen; R 4 (C 1 -C 2 ) -alkyl, cyclopropyl, (C 3 -C 6 ) -alkoxy, (C 1 -C 4 ) -alkoxy- (C 1 -C 2 ) -alkoxy (C 1 -C 4 ) - is haloalkoxy- (C 1 -C 2 ) -alkoxy, (C 2 -C 4 ) -alkenyloxy or (C 2 -C 4 ) -haloalkenyloxy;
R5 Wasserstoff oder Methyl bedeutet; oder R 5 is hydrogen or methyl; or
R4 und R5 bilden gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, eine Ketogruppe oder einen spirocyclischen (C5-C7)-Cycloalkyl- oder (C5-C7)-Cycloalkenyl-Ring, bei dem gegebenenfalls ein oder zwei Ringkohlenstoffe durch Sauerstoffatome ersetzt sein können und der gegebenenfalls ein- bis zweifach und unabhängig voneinander mit Methyl oder Methoxy substituiert sein kann; R 4 and R 5 together with the carbon atom to which they are attached form a keto group or a spirocyclic (C 5 -C 7 ) -cycloalkyl or (C 5 -C 7 ) -cycloalkenyl ring, in which optionally one or two ring carbons can be replaced by oxygen atoms and which can optionally be substituted one to two times and independently of one another by methyl or methoxy;
G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E bedeutet, wobei G denotes hydrogen, a removable group L or a cation E, where
L einer der folgenden Reste L one of the following residues
ist, worin is where
R6 (C1-C4)-Alkyl oder (C1-C3)-Alkoxy-(C2-C4)-Alkyl bedeutet; R 6 is (C 1 -C 4 ) -alkyl or (C 1 -C 3 ) -alkoxy- (C 2 -C 4 ) -alkyl;
R7 (C1-C4)-Alkyl bedeutet; R 7 is (C 1 -C 4 ) -alkyl;
E ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent E is an alkali metal ion, an ion equivalent of an alkaline earth metal, an ion equivalent
Aluminium, ein Ionenäquivalent eines Übergangsmetalls oder ein Magnesium-Halogen- Kation bedeutet. Means aluminum, an ion equivalent of a transition metal or a magnesium-halogen cation.
4. Verbindungen der Formel (I) gemäß Anspruch 1 bis 3, worin die Reste folgende Bedeutungen aufweisen: W Sauerstoff oder eine Gruppe CR4R5 bedeutet; 4. Compounds of the formula (I) according to Claims 1 to 3, in which the radicals have the following meanings: W is oxygen or a group CR 4 R 5 ;
R1 Wasserstoff oder Methyl bedeutet; R 1 is hydrogen or methyl;
R2 Methyl oder Ethyl bedeutet; R 2 is methyl or ethyl;
R3 Wasserstoff, Methyl, Ethyl, Difluormethyl, Trifluormethyl, Chlor oder Brom bedeutet; R4 Methyl, Ethyl, n-Propoxy, i-Propoxy, Methoxyethoxy, Ethoxyethoxy oder Allyloxy bedeutet; R 3 is hydrogen, methyl, ethyl, difluoromethyl, trifluoromethyl, chlorine or bromine; R 4 denotes methyl, ethyl, n-propoxy, i-propoxy, methoxyethoxy, ethoxyethoxy or allyloxy;
R5 Wasserstoff oder Methyl bedeutet; oder R 5 is hydrogen or methyl; or
R4 und R5 bilden gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen R 4 and R 5 together with the carbon atom to which they are attached form one
Dioxolanring; Dioxolane ring;
G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E bedeutet, wobei L einer der folgenden Reste G denotes hydrogen, a removable group L or a cation E, where L is one of the following radicals
ist, worin is where
R6 Methyl, Ethyl, i-Propyl oder t-Butyl bedeutet; R 6 is methyl, ethyl, i-propyl or t-butyl;
R7 Methyl oder Ethyl bedeutet; R 7 is methyl or ethyl;
E ein Natriumion oder ein Kaliumion bedeutet. E means a sodium ion or a potassium ion.
5. Verbindungen der Formel (XIV), worin die Reste folgende Bedeutungen aufweisen: 5. Compounds of the formula (XIV) in which the radicals have the following meanings:
R2 ist Methyl, Ethyl; R 2 is methyl, ethyl;
R3 ist Chlor, Brom, Difluormethyl, Trifluormethyl; R 3 is chlorine, bromine, difluoromethyl, trifluoromethyl;
R14 ist H, Methyl. R 14 is H, methyl.
6. Verfahren zur Herstellung der Verbindungen der Formel (I) oder ein agrochemisch akzeptables Salz davon gemäß einem der Ansprüche 1 bis 4, indem eine Verbindung der allgemeinen Formel (II) 6. A process for the preparation of the compounds of the formula (I) or an agrochemically acceptable salt thereof according to any one of claims 1 to 4, by using a compound of the general formula (II)
in welcher R1, R2, R3 und W die oben angegebene Bedeutung haben, und R12 für Alkyl, bevorzugt für Methyl oder Ethyl steht, gegebenenfalls in Anwesenheit eines geeigneten Lösungs- oder Verdünnungsmittels, mit einer geeigneten Base unter formaler Abspaltung der Gruppe R12OH cyclisiert wird. in which R 1 , R 2 , R 3 and W have the meaning given above, and R 12 is alkyl, preferably methyl or ethyl, optionally in the presence of a suitable solvent or diluent, with a suitable base with formal splitting off of the group R 12 OH is cyclized.
7. Agrochemisches Mittel, enthaltend a) mindestens eine Verbindung der Formel (I) oder ein agrochemisch akzeptables Salz davon, wie in einem oder mehreren der Ansprüche 1 bis 4 definiert, und b) im Pflanzenschutz übliche Hilfs- und Zusatzstoffe. 7. Agrochemical agent containing a) at least one compound of the formula (I) or an agrochemically acceptable salt thereof, as defined in one or more of claims 1 to 4, and b) auxiliaries and additives customary in crop protection.
8. Agrochemisches Mittel, enthaltend a) mindestens eine Verbindung der Formel (I) oder ein agrochemisch akzeptables Salz davon, wie in einem oder mehreren der Ansprüche 1 bis 4 definiert, b) einen oder mehrere von Komponente a) verschiedene agrochemische Wirkstoffe, und optional c) im Pflanzenschutz übliche Hilfs- und Zusatzstoffe. 8. Agrochemical agent containing a) at least one compound of the formula (I) or an agrochemically acceptable salt thereof, as defined in one or more of claims 1 to 4, b) one or more agrochemical active ingredients different from component a), and optionally c) auxiliaries and additives customary in crop protection.
9. Verfahren zur Bekämpfung von unerwünschten Pflanzen oder zur Wachstumsregulierung von Pflanzen, wobei eine wirksame Menge mindestens einer Verbindung der Formel (I) oder ein agrochemisch akzeptables Salz davon, wie in einem oder mehreren der Ansprüche 1 bis 4 definiert, auf die Pflanzen, das Saatgut oder die Fläche, auf der die Pflanzen wachsen, appliziert wird. 9. A method for controlling undesirable plants or for regulating the growth of plants, wherein an effective amount of at least one compound of the formula (I) or an agrochemically acceptable salt thereof, as defined in one or more of claims 1 to 4, is applied to the plants, the Seed or the area on which the plants grow is applied.
10. Verwendung von Verbindungen der Formel (I) oder ein agrochemisch akzeptables Salz davon, wie in einem oder mehreren der Ansprüche 1 bis 4 definiert, als Herbizide oder Pflanzenwachstumsregulatoren. 10. Use of compounds of the formula (I) or an agrochemically acceptable salt thereof, as defined in one or more of claims 1 to 4, as herbicides or plant growth regulators.
11. Verwendung nach Anspruch 11, wobei die Verbindungen der Formel (I) oder ein agrochemisch akzeptables Salz davon zur Bekämpfung von Schadpflanzen oder zur Wachstumsregulierung in Pflanzenkulturen eingesetzt werden. 11. Use according to claim 11, wherein the compounds of the formula (I) or an agrochemically acceptable salt thereof are used for combating harmful plants or for regulating growth in plant crops.
12. Verwendung nach Anspruch 12, wobei die Kulturpflanzen transgene oder nicht transgene Kulturpflanzen sind. 12. Use according to claim 12, wherein the crop plants are transgenic or non-transgenic crop plants.
EP20707680.3A 2019-03-15 2020-03-09 Novel 3-(2-brom-4-alkynyl-6-alkoxyphenyl)-3-pyrrolin-2-ones and their use as herbicides Withdrawn EP3938348A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19163150 2019-03-15
PCT/EP2020/056205 WO2020187627A1 (en) 2019-03-15 2020-03-09 Novel 3-(2-brom-4-alkynyl-6-alkoxyphenyl)-3-pyrrolin-2-ones and their use as herbicides

Publications (1)

Publication Number Publication Date
EP3938348A1 true EP3938348A1 (en) 2022-01-19

Family

ID=65817914

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20707680.3A Withdrawn EP3938348A1 (en) 2019-03-15 2020-03-09 Novel 3-(2-brom-4-alkynyl-6-alkoxyphenyl)-3-pyrrolin-2-ones and their use as herbicides

Country Status (10)

Country Link
US (1) US20220056040A1 (en)
EP (1) EP3938348A1 (en)
JP (1) JP2022525173A (en)
CN (1) CN113557231A (en)
AR (1) AR118348A1 (en)
AU (1) AU2020242211A1 (en)
CA (1) CA3133187A1 (en)
EA (1) EA202192470A1 (en)
IL (1) IL286164A (en)
WO (1) WO2020187627A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022253700A1 (en) 2021-06-01 2022-12-08 Bayer Aktiengesellschaft Specifically substituted pyrroline-2-ones and their use as herbicides

Family Cites Families (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272417A (en) 1979-05-22 1981-06-09 Cargill, Incorporated Stable protective seed coating
US4245432A (en) 1979-07-25 1981-01-20 Eastman Kodak Company Seed coatings
MA19709A1 (en) 1982-02-17 1983-10-01 Ciba Geigy Ag APPLICATION OF QUINOLEIN DERIVATIVES TO THE PROTECTION OF CULTIVATED PLANTS.
DE3382743D1 (en) 1982-05-07 1994-05-11 Ciba Geigy Use of quinoline derivatives to protect crops.
EP0131624B1 (en) 1983-01-17 1992-09-16 Monsanto Company Plasmids for transforming plant cells
BR8404834A (en) 1983-09-26 1985-08-13 Agrigenetics Res Ass METHOD TO GENETICALLY MODIFY A PLANT CELL
JPS6087254A (en) 1983-10-19 1985-05-16 Japan Carlit Co Ltd:The Novel urea compound and herbicide containing the same
DE3525205A1 (en) 1984-09-11 1986-03-20 Hoechst Ag, 6230 Frankfurt PLANT PROTECTIVE AGENTS BASED ON 1,2,4-TRIAZOLE DERIVATIVES AND NEW DERIVATIVES OF 1,2,4-TRIAZOLE
BR8600161A (en) 1985-01-18 1986-09-23 Plant Genetic Systems Nv CHEMICAL GENE, HYBRID, INTERMEDIATE PLASMIDIO VECTORS, PROCESS TO CONTROL INSECTS IN AGRICULTURE OR HORTICULTURE, INSECTICIDE COMPOSITION, PROCESS TO TRANSFORM PLANT CELLS TO EXPRESS A PLANTINIDE TOXIN, PRODUCED BY CULTURES, UNITED BY BACILLA
DE3680212D1 (en) 1985-02-14 1991-08-22 Ciba Geigy Ag USE OF CHINOLINE DERIVATIVES FOR PROTECTING CROPS.
ATE80182T1 (en) 1985-10-25 1992-09-15 Monsanto Co PLANT VECTORS.
ATE57390T1 (en) 1986-03-11 1990-10-15 Plant Genetic Systems Nv PLANT CELLS OBTAINED BY GENOLOGICAL TECHNOLOGY AND RESISTANT TO GLUTAMINE SYNTHETASE INHIBITORS.
JPH01503663A (en) 1986-05-01 1989-12-07 ハネウエル・インコーポレーテツド Multiple integrated circuit interconnection equipment
IL83348A (en) 1986-08-26 1995-12-08 Du Pont Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
DE3633840A1 (en) 1986-10-04 1988-04-14 Hoechst Ag PHENYLPYRAZOLIC CARBONIC ACID DERIVATIVES, THEIR PRODUCTION AND USE AS PLANT GROWTH REGULATORS AND SAFENERS
US5078780A (en) 1986-10-22 1992-01-07 Ciba-Geigy Corporation 1,5-diphenylpyrazole-3-carboxylic acid derivatives for the protection of cultivated plants
US4808430A (en) 1987-02-27 1989-02-28 Yazaki Corporation Method of applying gel coating to plant seeds
DE3733017A1 (en) 1987-09-30 1989-04-13 Bayer Ag Stilbene synthase gene
DE3808896A1 (en) 1988-03-17 1989-09-28 Hoechst Ag PLANT PROTECTION AGENTS BASED ON PYRAZOL CARBON SEA DERIVATIVES
GB8810120D0 (en) 1988-04-28 1988-06-02 Plant Genetic Systems Nv Transgenic nuclear male sterile plants
DE3817192A1 (en) 1988-05-20 1989-11-30 Hoechst Ag PLANT-PROTECTIVE AGENTS CONTAINING 1,2,4-TRIAZOLE DERIVATIVES AND NEW DERIVATIVES OF 1,2,4-TRIAZOLE
US4985063A (en) 1988-08-20 1991-01-15 Bayer Aktiengesellschaft 3-aryl-pyrrolidine-2,4-diones
US5084082A (en) 1988-09-22 1992-01-28 E. I. Du Pont De Nemours And Company Soybean plants with dominant selectable trait for herbicide resistance
DE58903221D1 (en) 1988-10-20 1993-02-18 Ciba Geigy Ag Sulfamoylphenylharnstoffe.
ES2063108T3 (en) 1989-01-07 1995-01-01 Bayer Ag DERIVATIVES OF 3-ARYL-PIRROLIDIN-2,4-DIONA.
DE3929087A1 (en) 1989-09-01 1991-03-07 Bayer Ag 3-ARYL-PYRROLIDIN-2,4-DION DERIVATIVES
DE3939010A1 (en) 1989-11-25 1991-05-29 Hoechst Ag ISOXAZOLINE, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE AS A PLANT PROTECTIVE AGENT
DE3939503A1 (en) 1989-11-30 1991-06-06 Hoechst Ag NEW PYRAZOLINE FOR THE PROTECTION OF CULTURAL PLANTS AGAINST HERBICIDES
DE4004496A1 (en) 1990-02-14 1991-08-22 Bayer Ag New 3-aryl-pyrrolidine -2,4-di:one deriv(s) - useful as insecticides, acaricides and herbicides, esp. effective against tetranychus urticae
ATE241007T1 (en) 1990-03-16 2003-06-15 Calgene Llc DNAS CODING FOR PLANT DESATURASES AND THEIR APPLICATIONS
US5198599A (en) 1990-06-05 1993-03-30 Idaho Resarch Foundation, Inc. Sulfonylurea herbicide resistance in plants
JP3325022B2 (en) 1990-06-18 2002-09-17 モンサント カンパニー Increased starch content in plants
DK0536330T3 (en) 1990-06-25 2002-04-22 Monsanto Technology Llc Glyphosate tolerant plants
DE4107396A1 (en) 1990-06-29 1992-01-02 Bayer Ag STYLE SYNTHASE GENES FROM VINEYARD
SE467358B (en) 1990-12-21 1992-07-06 Amylogene Hb GENETIC CHANGE OF POTATISE BEFORE EDUCATION OF AMYLOPECT TYPE STARCH
EP0492366B1 (en) 1990-12-21 1997-03-26 Hoechst Schering AgrEvo GmbH New 5-chloroquinolin-8-oxyalkanecarbonic acid derivatives, process for their preparation and their use as antidotes for herbicides
DE4104782B4 (en) 1991-02-13 2006-05-11 Bayer Cropscience Gmbh Novel plasmids containing DNA sequences that cause changes in carbohydrate concentration and carbohydrate composition in plants, as well as plants and plant cells containing these plasmids
TW259690B (en) 1992-08-01 1995-10-11 Hoechst Ag
DE4331448A1 (en) 1993-09-16 1995-03-23 Hoechst Schering Agrevo Gmbh Substituted isoxazolines, processes for their preparation, compositions containing them and their use as safeners
FR2734842B1 (en) 1995-06-02 1998-02-27 Rhone Poulenc Agrochimie DNA SEQUENCE OF A HYDROXY-PHENYL PYRUVATE DIOXYGENASE GENE AND OBTAINING PLANTS CONTAINING A HYDROXY-PHENYL PYRUVATE DIOXYGENASE GENE, TOLERANT TO CERTAIN HERBICIDES
US5773704A (en) 1996-04-29 1998-06-30 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Herbicide resistant rice
DE19621522A1 (en) 1996-05-29 1997-12-04 Hoechst Schering Agrevo Gmbh New N-acylsulfonamides, new mixtures of herbicides and antidots and their use
US5876739A (en) 1996-06-13 1999-03-02 Novartis Ag Insecticidal seed coating
US5773702A (en) 1996-07-17 1998-06-30 Board Of Trustees Operating Michigan State University Imidazolinone herbicide resistant sugar beet plants
DK1277751T3 (en) 1996-08-05 2007-02-26 Bayer Cropscience Ag 2- and 2,5-substituted phenylketoenols
AR009811A1 (en) 1996-09-26 2000-05-03 Novartis Ag HERBICIDE COMPOUNDS, PROCESS FOR ITS PRODUCTION, PROCESS FOR THE PRODUCTION OF INTERMEDIARIES, INTERMEDIARY COMPOUNDS FOR ITS EXCLUSIVE USE IN SUCH PROCESS, COMPOSITION THAT HAS A SELECTIVE HERBICIDE ACTIVITY AND A PROCESS FOR THE SELECTIVE CONTROL OF GRASSES AND GRASSES
DE19652961A1 (en) 1996-12-19 1998-06-25 Hoechst Schering Agrevo Gmbh New 2-fluoroacrylic acid derivatives, new mixtures of herbicides and antidots and their use
US6071856A (en) 1997-03-04 2000-06-06 Zeneca Limited Herbicidal compositions for acetochlor in rice
DE19727410A1 (en) 1997-06-27 1999-01-07 Hoechst Schering Agrevo Gmbh 3- (5-tetrazolylcarbonyl) -2-quinolones and crop protection agents containing them
DE19742951A1 (en) 1997-09-29 1999-04-15 Hoechst Schering Agrevo Gmbh Acylsulfamoylbenzoic acid amides, crop protection agents containing them and process for their preparation
FR2770854B1 (en) 1997-11-07 2001-11-30 Rhone Poulenc Agrochimie DNA SEQUENCE OF A GENE OF HYDROXY-PHENYL PYRUVATE DIOXYGENASE AND PRODUCTION OF PLANTS CONTAINING SUCH A GENE, HERBICIDE TOLERANT
FR2772789B1 (en) 1997-12-24 2000-11-24 Rhone Poulenc Agrochimie PROCESS FOR THE ENZYMATIC PREPARATION OF HOMOGENTISATE
DE19821614A1 (en) 1998-05-14 1999-11-18 Hoechst Schering Agrevo Gmbh Sugar beet mutants which are tolerant to sulfonylurea herbicides
JP2000053670A (en) 1998-08-10 2000-02-22 Ube Ind Ltd Alkoxymethylfranone derivative and pest control agent
US6503904B2 (en) 1998-11-16 2003-01-07 Syngenta Crop Protection, Inc. Pesticidal composition for seed treatment
BR0109118A (en) 2000-03-09 2002-11-26 Monsanto Technology Llc Methods for producing glyphosate tolerant plants and compositions thereof
DK1261252T3 (en) 2000-03-09 2013-07-29 Du Pont Sulfonylurea-tolerant sunflower plants
DE10016544A1 (en) 2000-04-03 2001-10-11 Bayer Ag New phenyl-substituted cyclic keto-enol compounds useful e.g. as insecticides, acaricides, nematocides, acaricides, herbicides, ectoparasiticides, antifouling agents or intermediates
US6768044B1 (en) 2000-05-10 2004-07-27 Bayer Cropscience Sa Chimeric hydroxyl-phenyl pyruvate dioxygenase, DNA sequence and method for obtaining plants containing such a gene, with herbicide tolerance
US6660690B2 (en) 2000-10-06 2003-12-09 Monsanto Technology, L.L.C. Seed treatment with combinations of insecticides
AR031027A1 (en) 2000-10-23 2003-09-03 Syngenta Participations Ag AGROCHEMICAL COMPOSITIONS
FR2815969B1 (en) 2000-10-30 2004-12-10 Aventis Cropscience Sa TOLERANT PLANTS WITH HERBICIDES BY METABOLIC BYPASS
JP2004528821A (en) 2000-12-07 2004-09-24 シンジェンタ リミテッド Herbicide resistant plants
US20020134012A1 (en) 2001-03-21 2002-09-26 Monsanto Technology, L.L.C. Method of controlling the release of agricultural active ingredients from treated plant seeds
DE10239479A1 (en) 2002-08-28 2004-03-04 Bayer Cropscience Ag New pyrrole or furan derivative spiro-cyclic ketoenol compounds, useful as pesticides, e.g. insecticides, acaricides, nematocides, ectoparasiticides, fungicides, herbicides or bactericides
FR2844142B1 (en) 2002-09-11 2007-08-17 Bayer Cropscience Sa TRANSFORMED PLANTS WITH ENHANCED PRENYLQUINON BIOSYNTHESIS
EA014910B1 (en) 2003-03-26 2011-02-28 Байер Кропсайенс Аг Use of aromatic hydroxy compounds as safeners as a protection composition for useful or crop plants, a method for protecting useful or crop plants against phytotoxic side effects of agrochemicals and a crop protection composition based thereon
DE10335725A1 (en) 2003-08-05 2005-03-03 Bayer Cropscience Gmbh Safener based on aromatic-aliphatic carboxylic acid derivatives
DE10335726A1 (en) 2003-08-05 2005-03-03 Bayer Cropscience Gmbh Use of hydroxyaromatics as safener
DE10351646A1 (en) 2003-11-05 2005-06-09 Bayer Cropscience Ag 2-halo-6-alkyl-phenyl substituted spirocyclic tetramic acid derivatives
DE102004023332A1 (en) 2004-05-12 2006-01-19 Bayer Cropscience Gmbh Quinoxaline-2-one derivatives, crop protection agents containing them, and processes for their preparation and their use
WO2007023719A1 (en) 2005-08-22 2007-03-01 Kumiai Chemical Industry Co., Ltd. Agent for reducing chemical injury and herbicide composition with reduced chemical injury
JPWO2007023764A1 (en) 2005-08-26 2009-02-26 クミアイ化学工業株式会社 Pesticide mitigation agent and herbicide composition with reduced phytotoxicity
US20070214515A1 (en) 2006-03-09 2007-09-13 E.I.Du Pont De Nemours And Company Polynucleotide encoding a maize herbicide resistance gene and methods for use
DE102006050148A1 (en) 2006-10-25 2008-04-30 Bayer Cropscience Ag New trifluoromethoxy-phenyl substituted tetramic acid-derivatives useful to combat parasites including insects, arachnid, helminth, nematode and mollusk and/or undesirable plant growth and in hygienic sectors
EP1987718A1 (en) 2007-04-30 2008-11-05 Bayer CropScience AG Utilisation of pyridine-2-oxy-3-carbon amides as safener
EP1987717A1 (en) 2007-04-30 2008-11-05 Bayer CropScience AG Pyridon carboxamides, agents containing these but not impacting useful plants and method for their manufacture and application
CA2688682A1 (en) 2007-05-30 2008-12-11 Syngenta Participations Ag Cytochrome p450 genes conferring herbicide resistance
CN101998993A (en) 2008-04-14 2011-03-30 拜耳生物科学股份有限公司 New mutated hydroxyphenylpyruvate dioxygenase, DNA sequence and isolation of plants which are tolerant to hppd inhibitor herbicides
US8389443B2 (en) * 2008-12-02 2013-03-05 Bayer Cropscience Ag Geminal alkoxy/alkylspirocyclic substituted tetramate derivatives
GB0906164D0 (en) 2009-04-08 2009-05-20 Syngenta Participations Ag Chemical compounds
CN101838227A (en) 2010-04-30 2010-09-22 孙德群 Safener of benzamide herbicide
WO2015032702A1 (en) 2013-09-06 2015-03-12 Syngenta Limited Herbicidally active 2-halogen-4-alkynyl- phenyl-pyrazolidine-dione or pyrrolidine-dione derivatives
EP3046907A1 (en) 2013-09-20 2016-07-27 Syngenta Limited Herbicidally active 2-halogen-4-alkynyl-phenyl-pyrazolidine-dione or pyrrolidine-dione derivatives

Also Published As

Publication number Publication date
AU2020242211A1 (en) 2021-10-07
WO2020187627A1 (en) 2020-09-24
IL286164A (en) 2021-10-31
CA3133187A1 (en) 2020-09-24
AR118348A1 (en) 2021-09-29
JP2022525173A (en) 2022-05-11
EA202192470A1 (en) 2022-02-11
CN113557231A (en) 2021-10-26
US20220056040A1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
EP3638665A1 (en) Herbicidally active 3-phenylisoxazoline-5-carboxamides of tetrahydro and dihydrofuran carboxylic acids and esters
EP3793977A1 (en) 2-bromo-6-alkoxyphenyl-substituted pyrrolin-2-ones and their use as herbicides
WO2019219584A1 (en) New spiro cyclohexyl pyrrolin-2-ones and their use as herbicides
EP3853219B1 (en) Herbicidally active substituted phenylpyrimidine hydrazides
WO2020245044A1 (en) 1-phenyl-5-azinyl pyrazolyl-3-oxyalkyl acids and their use for controlling undesired plant growth
EP3580216A1 (en) Substituted benzyl-4-aminopicolinic esters and pyrimidino-4-carboxylic esters, methods for the production thereof, and use thereof as herbicides and plant growth regulators
WO2020187627A1 (en) Novel 3-(2-brom-4-alkynyl-6-alkoxyphenyl)-3-pyrrolin-2-ones and their use as herbicides
WO2021204884A1 (en) 3-(4-alkenyl-phenyl)-3-pyrrolin-2-ones and their use as herbicides
WO2019228788A1 (en) 2-bromo-6-alkoxyphenyl-substituted pyrrolin-2-ones and their use as herbicides
WO2019228787A1 (en) Specifically substituted 2-alkyl-6-alkoxyphenyl-3-pyrrolin-2-ones and their use as herbicides
EP3898612B1 (en) Substituted pyridinyloxybenzenes, their salts and use of said compounds as herbicidal agents
WO2020187628A1 (en) Specifically substituted 3-(2-alkoxy-6-alkyl-4-propinylphenyl)-3-pyrrolin-2-ones and their use as herbicides
EP3938350A1 (en) 3-(2-brom-4-alkynyl-6-alkoxyphenyl)-substituted 5-spirocyclohexyl-3-pyrrolin-2-ones and their use as herbicides
WO2020187626A1 (en) Specifically substituted 3-phenyl-5-spirocyclopentyl-3-pyrrolin-2-ones and their use as herbicides
WO2020187623A1 (en) Specifically substituted 3-(2-halogen-6-alkyl-4-propinylphenyl)-3-pyrrolin-2-ones and to the use thereof as herbicides
WO2023274869A1 (en) 3-(4-alkenyl-phenyl)-3-pyrrolino-2-ones and their use as herbicides
WO2019219588A1 (en) Specifically substituted 2-alkyl-6-alkoxyphenyl-3-pyrrolin-2-ones and their use as herbicides
WO2019219585A1 (en) New 3-(4-alkynyl-6-alkoxy-2-chlorophenyl)-3-pyrrolin-2-ones and their use as herbicides
WO2022253700A1 (en) Specifically substituted pyrroline-2-ones and their use as herbicides
WO2024078871A1 (en) 1-pyridyl-5-phenylpyrazolyl-3-oxy- and -3-thioalkyl acids and derivatives and their use for controlling undesired plant growth
WO2023280772A1 (en) N-(1,3,4-oxadiazol-2-yl)phenylcarboxamides as herbicides
WO2022084278A1 (en) 1-(pyridyl)-5-azinylpyrazole derivatives, and their use for control of undesired plant growth
WO2019233862A1 (en) Herbicidally active substituted phenylpyrimidines
WO2019110398A1 (en) 3-amino-[1,2,4]-triazole derivatives and their use for controlling undesired plant growth
EP3360417A1 (en) Use of sulfonylindol as herbicide

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211015

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230522

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20231003