EP3933867B1 - Dispositif de contacteur, système de stockage d'énergie et procédé de commande d'un dispositif de contacteur - Google Patents

Dispositif de contacteur, système de stockage d'énergie et procédé de commande d'un dispositif de contacteur Download PDF

Info

Publication number
EP3933867B1
EP3933867B1 EP20184035.2A EP20184035A EP3933867B1 EP 3933867 B1 EP3933867 B1 EP 3933867B1 EP 20184035 A EP20184035 A EP 20184035A EP 3933867 B1 EP3933867 B1 EP 3933867B1
Authority
EP
European Patent Office
Prior art keywords
actuator
moveable
contact
contactor device
lever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20184035.2A
Other languages
German (de)
English (en)
Other versions
EP3933867A1 (fr
Inventor
Mark Goldman
Georg-Friedrich Graf
Stefan Goede
Sebastian Kleppe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Munich Electrification GmbH
Original Assignee
Munich Electrification GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Munich Electrification GmbH filed Critical Munich Electrification GmbH
Priority to EP20184035.2A priority Critical patent/EP3933867B1/fr
Priority to PCT/EP2021/068212 priority patent/WO2022003117A1/fr
Publication of EP3933867A1 publication Critical patent/EP3933867A1/fr
Application granted granted Critical
Publication of EP3933867B1 publication Critical patent/EP3933867B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • H01H50/62Co-operating movable contacts operated by separate electrical actuating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/50Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position
    • H01H1/54Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position by magnetic force
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/02Operating parts, i.e. for operating driving mechanism by a mechanical force external to the switch
    • H01H3/0253Operating parts, i.e. for operating driving mechanism by a mechanical force external to the switch two co-operating contacts actuated independently
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H39/00Switching devices actuated by an explosion produced within the device and initiated by an electric current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/36Stationary parts of magnetic circuit, e.g. yoke
    • H01H50/42Auxiliary magnetic circuits, e.g. for maintaining armature in, or returning armature to, position of rest, for damping or accelerating movement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H89/00Combinations of two or more different basic types of electric switches, relays, selectors and emergency protective devices, not covered by any single one of the other main groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H39/00Switching devices actuated by an explosion produced within the device and initiated by an electric current
    • H01H2039/008Switching devices actuated by an explosion produced within the device and initiated by an electric current using the switch for a battery cutoff
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/64Driving arrangements between movable part of magnetic circuit and contact
    • H01H50/643Driving arrangements between movable part of magnetic circuit and contact intermediate part performing a rotating or pivoting movement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H89/00Combinations of two or more different basic types of electric switches, relays, selectors and emergency protective devices, not covered by any single one of the other main groups of this subclass
    • H01H89/06Combination of a manual reset circuit with a contactor, i.e. the same circuit controlled by both a protective and a remote control device
    • H01H89/08Combination of a manual reset circuit with a contactor, i.e. the same circuit controlled by both a protective and a remote control device with both devices using the same contact pair
    • H01H89/10Combination of a manual reset circuit with a contactor, i.e. the same circuit controlled by both a protective and a remote control device with both devices using the same contact pair with each device controlling one of the two co-operating contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/32Insulating body insertable between contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/34Stationary parts for restricting or subdividing the arc, e.g. barrier plate
    • H01H9/36Metal parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/44Means for extinguishing or preventing arc between current-carrying parts using blow-out magnet

Definitions

  • the present invention relates to a contactor device, an energy storage system comprising the contactor device and a corresponding method for controlling the contactor device.
  • the safety requirements for contactor devices used to control current flow in an energy storage system are increasing, especially where the energy storage system is used for storing energy to drive a vehicle.
  • the contactor device is capable of carrying large load currents, when the contacts of the contactor device are in contact with each other in an ON state of the contactor device, and of providing high voltage isolation, when the contacts of the contactor device are separated from each other in an OFF state of the contactor device.
  • the contactor device should be capable of withstanding large electromagnetic repulsion forces, which may be induced between the contacts of the contactor device during current flow due to electromagnetic effects including the Lorentz force, as such large electromagnetic repulsion forces may lead to unwanted separation between the contacts of the contactor device.
  • This separation of the contacts can easily lead to high voltage arcs between the contacts, thus causing significant contact degradation or even permanent welding of the contacts, which leads to permanent malfunction of the contactor device and makes it difficult or impossible to break fault currents should they occur.
  • FR 974 161 A discloses an electrical contactor with a main electro-magnetic device, having a movable armature, which cooperates with an operating coil and a fixed magnetic frame thereof.
  • the main electro-magnetic device is not directly integral with the movable contact system, but acts on the latter by means of a stop device allowing the said armature to return independently of the said contact system.
  • An auxiliary electro-magnetic device comprising an auxiliary magnetic frame with an auxiliary magnetic coil, and an auxiliary armature, is provided to retain the moveable contact system in the closed position after the main electro-magnetic device is de-energized.
  • US 6 046 661 A discloses a device for switching an electrical circuit having a contact element, which closes or opens the circuit between a first and a second terminal. One end of the contact element is connected to the first terminal in a conducting fashion. The second free end of the contact element closes the circuit in a first end position and opens the circuit in a second end position. A switchable magnetic field moves by means of an actuator device, the contact element into one of its two end positions.
  • WO 2010/061576 A1 discloses a contactor, which is provided with an actuator having a gas generator and a gas operating mechanism.
  • the gas generator generates a high-pressure gas by having a gas-generating agent react in the case where a movable contactor and a fixed contactor are fused to each other.
  • the gas operating mechanism is driven by the high-pressure gas generated by the gas generator and pulls away the movable contactor from the fixed contactor.
  • the inventors of the present invention have recognized that the conventional approaches for providing high voltage isolation and for enhancing the resilience against large electromagnetic repulsion forces may lead to complicated design and control requirements, which render the fabrication and mounting of the contactor device more complicated or may even introduce new sources for malfunctions.
  • the high voltage isolation may drop dramatically in a hermetically sealed contactor device, as soon as the sealing of the contactor devices becomes leaky or breaks. Accordingly, the performance of the contactor device critically depends on the tightness of the sealing. Similarly, the implementation of larger solenoids consumes precious space and complicates the fabrication process as well as the control of the energization of the solenoid.
  • the present invention provides a contactor device for high voltage applications.
  • the contactor device comprises a stationary part having at least one fixed contact and a moveable part having at least one moveable contact.
  • the contactor device further comprises a first actuator, which is configured to move the at least one moveable contact between an open position and a closed position, wherein in the open position, the at least one moveable contact is electrically separated from the at least one fixed contact, and in the closed position, the at least one moveable contact electrically contacts the at least one fixed contact, and a second actuator, which is adapted to hold the at least one moveable contact in the closed position.
  • the idea underlying the present invention is to provide separate actuators for specific operations of the contactor device, namely one actuator for moving the at least one moveable contact between the open position and the closed position, and one actuator for holding the at least one moveable contact in the closed position. Consequentially, each of the separated actuators can be optimized in view of its respective operation.
  • the advantage of such a configuration can be firstly seen in the fact that the first actuator can be optimized to provide a large contact travel distance for the at least one moveable contact between the open and closed position, so that high voltage isolation between the at least one moveable contact and the at least one fixed contact can be provided, even if the contactor device is used in a voltage range between 400 V and 1 kV or even at larger voltages. Therefore, the need of sealing the contactor device is dispensed, so that the fabrication of the contactor device becomes less complicated and more cheap and the operation of the contactor device is rendered more reliable as it becomes independent from the tightness of the sealing.
  • the second actuator can be optimized in view of a holding force, which can provide low contact resistance and withstand repulsive forces such that the device is capable of supporting continuous currents of 500 A or more, current peaks of up to 5 kA for at least 1 second or up to 10 kA or more for at least 50 ms.
  • a holding force which can provide low contact resistance and withstand repulsive forces such that the device is capable of supporting continuous currents of 500 A or more, current peaks of up to 5 kA for at least 1 second or up to 10 kA or more for at least 50 ms.
  • the second actuator is operated independently from the first actuator. In this manner, it is possible to optimize the first actuator for providing efficient closing transition of the at least one moveable contact between the open position and the closed position, while the second actuator can be simultaneously optimized for holding the at least one moveable contact in the closed position. Overall, the operation complexity of the contactor device can be reduced.
  • the first actuator which is configured for moving the at least one moveable contact
  • the achieved manufacturing tolerance makes it also practical to either exclude a weight of an armature of the first actuator from influences introduced by external accelerations like gravitational shocks or to even use the a weight of the armature of the first actuator as a counterbalance for compensating external accelerations. Accordingly, the shock tolerance of the contactor device and therefore the operation reliability of the contactor device can be further enhanced.
  • the at least one moveable contact is in the open position, when the first actuator and the second actuator are in an idle state, i.e. are not energized.
  • the moveable part comprises a lever, which is adapted to transfer a force from the first actuator to the at least one moveable contact.
  • the moveable part comprises a lever, which is adapted to transfer a force from the first actuator to the at least one moveable contact.
  • the first actuator in a peripheral region of the contactor device, while a transmission force provided by the first actuator, is efficiently transmitted to a contact point or contact part of the at least one moveable contact, which is moved between the open position and the closed position.
  • the principles of the present disclosure can also be applied to a situation, where the transmission force is directly transmitted to the contact point or contact part of the at least one moveable contact by a linearly moveable mechanical element, like a shaft or any equivalent thereof.
  • the lever is rotatable mounted around a hinge, which is fixed to a case of the contactor device or a frame of the moveable part.
  • the lever principle allows to provide especially high efficiency for the force transmission between the first actuator and the at least one moveable contact, while by the rotational movement, a movement path of the at least one moveable contact, which is easy to realize, can be provided.
  • the at least one moveable contact is formed in such a way that it is able to deflect elastically between the open position and the closed position. Accordingly, the transition force generated by the first actuator does not need to move the at least one moveable contact as a whole, but may only move the contact point or contact part of the at least one moveable contact between the open and the closed position. Hence, the complete generated transition force can be used to deflect the at least one moveable contact, and can therefore be used more efficiently.
  • This arrangement is especially advantageous for single-break style contactor devices, which allow to apply the generated transition and holding forces to one or more single contacts, thus allowing to use the limited forces more efficiently than conventional double-break style contactor devices. Accordingly, the contact resistance of single-break style contactor devices can be substantially reduced, so that the thermal performance at higher currents is improved.
  • the elasticity of the at least one moveable contact is achieved by forming the at least one moveable contact of a multi-layer structure, which comprises a plurality of layers of electrically conductive material.
  • the second actuator is an electromagnetic actuator, which comprises an armature, a yoke and at least one coil.
  • the moveable part comprises the armature of the second actuator and the stationary part comprises the yoke and the at least one coil of the second actuator. Consequently, an especially efficient transmission of the holding force between the moveable part and the stationary part of the contact device can be achieved, as the arrangement of the electromagnetic actuator directly holds the moveable part in contact to the stationary part. Since the holding force between the armature and the yoke decreases with the distance between them, the force from the second actuator can be minimized in the open position of the at least one moveable contact, so that only actuation of the first actuator can move the at least one moveable contact between the open and the closed position, i.e. change the state of the contactor device from current breaking to conducting. Consequently, the holding force can be increased for withstanding large repulsion forces in the current carrying state, without affecting the voltage isolation in the current breaking state.
  • the moveable part For transmitting the holding force from the armature to the at least one moveable contact, the moveable part comprises a support element, which is mounted to the armature and the at least one moveable contact. Consequently, the armature and the at least one moveable contact is mechanically connected by the support element to the lever. In this manner, it can be also ensured that the armature is kept away from the yoke of the second actuator, when the at least one moveable contact is in the open position, so that a holding force resulting from the magnetic interaction between the armature and the yoke is minimized in the open position of the at least one moveable contact.
  • the support element may comprise a base portion, which at least partly encompasses the armature and at least one projection for holding the at least one moveable contact.
  • the at least one projection may be formed of a spring element. In this manner, an elastic connection between the armature and the at least one moveable contact can be provided, so that small displacements or vibrations of the at least one moveable contact can be absorbed by the projections without affecting the first actuator or the second actuator.
  • the contactor device comprises a plurality of fixed contacts and a plurality of moveable contacts, and the first actuator is adapted to move the plurality of moveable contacts simultaneously.
  • the transition force generated by the first actuator can be efficiently used to simultaneously move a plurality of moveable contacts between the open and the closed position.
  • the present invention also relates to an energy storage system, which comprises at least one energy storage device and the contactor device according to the present invention.
  • the energy storage system may be for example provided in a vehicle for powering the motor of the vehicle.
  • the energy storage system may be a stationary energy storage system, for example used for storing renewable energy.
  • the energy storage system may further comprise a controller, which is adapted to control the first actuator to move the at least one moveable contact between the open position and the closed position and to control the second actuator to hold the at least one moveable contact in the closed position.
  • a controller which is adapted to control the first actuator to move the at least one moveable contact between the open position and the closed position and to control the second actuator to hold the at least one moveable contact in the closed position.
  • the present invention also relates to a method of controlling a contactor device for high voltage applications, wherein the contactor device comprises, a stationary part having at least one fixed contact and a moveable part having at least one moveable contact.
  • the method comprises the steps of:
  • Fig. 1 shows a perspective view of a contactor device 100 according to a first aspect of the present invention, which comprises a stationary part 102 and a moveable part 104.
  • the stationary part 102 and the moveable part 104 are preferably provided unsealed, but may be also housed in a sealed housing.
  • the stationary part 102 has two fixed contact 106 and the moveable part 104 has two moveable contacts 108, so that the contactor device 100 can function as a 2 pole combination contactor, which under normal operating conditions functions as 2 pole single-break style contactor.
  • the functions of each of the fixed contacts 106 and each of the moveable contacts 108 are mirrored.
  • the number two moveable contacts 108 and two fixed contacts 106 is not essential for the present invention, but the present invention is applicable for contactor devices having any number of moveable contacts and fixed contacts.
  • the contactor device 100 may solely comprise one moveable contact and one fixed contact.
  • the present invention may not only be applied to single-break style contactor devices, but may be also applied to double-break style contactor devices, comprising a pair of fixed contacts and one moveable contact or any other break configuration, involving variable numbers of fixed contacts and moveable contacts.
  • the fixed contacts 106 and the moveable contacts 108 can be made from any suitable electrically conducting material, which may comprise for example various metals or metallic materials like copper and its alloys or any electric conducting material that is known in the art.
  • Fig.1 shows the moveable contacts 108 in a closed position, where each of the moveable contacts 108 electrically contacts one of the fixed contacts 106, so that a flow of electric current from each of the terminals 112 of the moveable part 104 to each of the terminals 114 of the stationary part 102 is enabled.
  • the terminals 112 and 114 may be used for conductively coupling the contactor device 100 to external electronic circuits, for example an energy storage device or an electric load, which is driven by the voltage of the energy storage device.
  • the contactor device For reversibly connecting and disconnecting the current path through the contactor device 100, the contactor device comprises a motion actuator 110, which is capable of reversibly moving the at least one moveable contact 108 between the closed position and an open position, for example by use of a solenoid. While the position of the moveable contacts 108 is changed by the motion actuator 110, the fixed contacts 106 remain stationary during activation of the motion actuator 110 and the movement of the moveable contacts 108.
  • the moveable contacts 108 are separated from the fixed contacts 106, so that the flow of electrical current through the contactor device 100 is prevented.
  • the moveable contacts 108 electrically contact the fixed contacts 106, so that the flow of electrical current through the contactor device 100 is enabled.
  • the moveable contacts 108 are formed in such a way that they are able to deflect elastically between the open and closed position.
  • this can be achieved by forming the moveable contacts 108 of a multi-layer structure, which comprises for example 10 to 15 layers of copper or other suitable electrically conducting material.
  • the multi-layered structure may be fabricated by welding, brazing, or diffusion bonding, in order to provide high quality joints between the layers.
  • any other suitable fabrication method may be used.
  • each of the moveable contacts 108 may further comprise a bulge 115, for supporting the deflection capability of the moveable contacts 108
  • the moveable part 104 For transmitting a force applied by the motion actuator 110, the moveable part 104 comprises a lever 116, which is rotatable mounted around a hinge 118. Accordingly, a longitudinal axis of the hinge 118 defines an axis of mechanical motion of the moveable contacts 108 during movement between the closed position and the open position.
  • the contactor device 100 further comprises an electromagnetic actuator 120, which is configured to hold the moveable contacts 108 in the closed position.
  • the electromagnetic actuator 120 comprises a yoke 122, an armature 124 and at least one coil 126 (for example, two coils are shown in Fig. 4 ).
  • Elastic projections 130 or other spring elements can be provided at the sides of the support element 128 for holding the moveable contacts 108. In this manner, it can be ensured that small dislocations or imbalances between the moveable contacts 108 during operation of the contactor device 100 can be absorbed by the support element 128 and do not affect the motion actuator 110 or greatly impact the force applied between the fixed contacts 106 and the moveable contacts 108, when the contactor device 100 is in the closed state. Accordingly, tolerances between the moveable contacts 108 and the fixed contacts 106 introduced during fabrication of the contactor device 100 can be better compensated. As shown in Fig. 1 , the elastic projections may be formed in a U-shaped form to enhance the elasticity and may be fixed to the armature 124 at a peripheral end for enhancing the stability.
  • the fixed contacts 106 are mechanically connected to the yoke 122 by holding elements 132 (see Fig. 2 ), which for example may be affixed to the yoke 122 by welding or gluing. Alternatively, the holding elements 132 may be an integral part of the yoke 122 and may be formed already, when the yoke 122 is manufactured.
  • the electromagnetic actuator 120 is activated, when the moveable contacts 108 are in the closed position, so that a holding force, which results from the magnetic flux through the yoke 122 and the armature 124 is applied between the moveable contacts 108 and the fixed contacts 106.
  • the magnetic flux is generated by energization of the coil (or coils) 126, so that the strength of the holding force can be determined by the number of wound turns of the coil 126 and the current flowing through the coil 126. Accordingly, the moveable contacts 108 are held in the closed position, when the coil 126 is energized.
  • Fig. 2 shows the contactor device 100 in an unpowered state, where the motion actuator 110 and the electromagnetic actuator 120 are not energized, so that the moveable contacts 108 are in an open position.
  • the moveable contacts 108 are separated from the fixed contacts 106 by a spatial gap 134, which electrically isolates the moveable contacts 108 from the fixed contacts 106. Accordingly, in the open position of the moveable contacts 108, current flow through the contactor device 100 is prevented.
  • the spatial gap 134 can be made large enough, so that sufficient electrical isolation between the contacts can be provided for normal atmosphere.
  • the need for providing a sealed housing or for using an electronegative gas can be dispensed, so that the design of the contactor device 100 can be remarkably simplified.
  • the spatial gap 134 may be chosen large enough, so that even accidental energization of the coil 126, for example due to a short of the coils electronics, does not result in a force large enough, to move the moveable contacts 108 into the closed position, as long as the motion actuator 110 is in the open position. In this manner, operation safety of the contactor device 100 can be further enhanced.
  • Fig. 3 shows the contactor device 100 in a powered state, where the moveable contacts 108 are in the closed position, so that the moveable contacts 108 electrically contact the fixed contacts 106 at least at contact points 136 of the fixed contacts 106.
  • the contact points of the fixed contacts 106 and of the moveable contacts 108 may be formed of silver or any silver alloy. However, also other suitable electrically conducting materials are possible.
  • the motion actuator actuates the lever 116 at an actuation point 135 of the lever 116, which is arranged on an opposite side of the lever from the support element 128.
  • the lever rotatably moves the moveable contacts 108 around the hinge 118 and the spatial gap 134 is reduced.
  • the contactor device 100 preferably comprises a spring (not shown in the Figures), which may be integrated into the motion actuator 110 or may be affixed to the lever 116.
  • the coil 126 is energized. Because of the energization of the coil 126, a magnetic force is generated between the yoke 122 and the armature 124, which presses the armature 124 against the magnetic yoke 122, thereby holding the moveable contacts 108 in the closed position.
  • a direction of the holding force which points in the direction from the moveable contacts 108 to the fixed contacts 106, is indicated in Fig. 3 by the arrow 138.
  • the motion actuator 110 When the coil 126 is fully energized and full holding force is applied to the moveable contacts 108, the motion actuator 110 may be powered off again, so that only the electromagnetic actuator 120 holds the moveable contacts 108 in the closed position. However, the motion actuator 110 may be also further actuated, when the coil 126 is fully energized, so as to additionally support the electromagnetic actuator 120 in holding the moveable contacts 108 in the closed position. Accordingly, the holding force applied in the contactor device 100 can be enhanced, without enlarging the coil 126.
  • the contactor device 100 may also comprises a pyrotechnic actuator 202, which is configured to permanently disconnect the fixed contacts 106 from the moveable contacts 108 when activated. Further details about the function and operation of the pyrotechnic actuator 202 can be found in co-pending patent application publication EP 3 933 878 A1 titled "Contactor device, energy storage system and method for controlling a contactor device", which has been filed by the applicant simultaneously with the present application.
  • the present invention also relates to an energy storage system, which comprises the contactor device 100.
  • the energy storage system may for example be an energy storage apparatus, which comprises the contactor device 100 and at least one energy storage device, like a battery cell or a capacitor.
  • the energy storage system may further comprise a controller or battery management system, which controls the operation of the at least one energy storage device and of the contactor device 100 and may monitor the operation conditions of the energy storage system.
  • the controller or battery management system independently controls the motion actuator 110 and the electromagnetic actuator 120 of the contactor device 100 to reversibly move and hold the moveable contacts 108 between the open position and the closed position, when safe operating conditions are detected.
  • REFERENCE NUMERALS 100 Contactor device 102 Stationary part 104 Moveable part 106 Fixed contact 108 Moveable contact 110 Motion actuator 112 Terminal of the moveable contact 114 Terminal of the fixed contact 115 Bulge 116 Lever 118 Hinge 120 Electromagnetic actuator 122 Yoke 124 Armature 126 Coil 128 Support element 130 Projection 132 Holding element 134 Spatial gap 135 Actuation point 136 Contact point 138 Direction of the holding force 140 Hinge flexure 202 Pyrotechnic actuator

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Switch Cases, Indication, And Locking (AREA)

Claims (10)

  1. Dispositif contacteur (100) pour des applications à haute tension, le dispositif contacteur comprenant :
    une partie stationnaire (102) comportant au moins un contact fixe (106) ;
    une partie mobile (104) comportant au moins un contact mobile (108) ;
    un premier actionneur (110) qui est configuré pour déplacer ledit au moins un contact mobile (108) entre une position ouverte et une position fermée, dans lequel, dans la position ouverte, ledit au moins un contact mobile (108) est séparé électriquement dudit au moins un contact fixe (106), et dans la position fermée, ledit au moins un contact mobile (108) est en contact électrique avec ledit au moins un contact fixe (106) ; et
    un deuxième actionneur (120) qui est commandé indépendamment du premier actionneur (110) et qui est adapté pour maintenir ledit au moins un contact mobile (108) dans la position fermée ;
    dans lequel le deuxième actionneur (120) est un actionneur électromagnétique qui comporte un induit (124), une culasse (122) et au moins une bobine (126),
    dans lequel la partie mobile (104) comprend l'induit (124) du deuxième actionneur (120), un levier (116) qui est adapté pour transférer une force du premier actionneur (110) audit au moins un contact mobile (108), et un élément de support (128) qui est monté sur l'induit (124) et ledit au moins un contact mobile (108),
    dans lequel le levier (116) est monté de manière rotative autour d'une charnière (118) qui est fixée à un boîtier du dispositif contacteur (100) ou à une monture de la partie mobile (104), et le premier actionneur (110) est configuré pour actionner le levier (116) à un point d'actionnement (135) du levier (116),
    dans lequel l'élément de support (128) connecte mécaniquement l'induit (124) et ledit au moins un contact mobile (108) au levier (116) sur un côté du levier (116) opposé au point d'actionnement (135) du levier (116), et
    dans lequel la partie stationnaire (102) comprend la culasse (122) et ladite au moins bobine (126) du deuxième actionneur (120), et ledit au moins un contact fixe (106) est connecté mécaniquement à la culasse (122) par un élément de maintien (132).
  2. Dispositif contacteur (100) selon la revendication 1, dans lequel ledit au moins un contact mobile (108) est dans la position ouverte quand le premier actionneur (110) et le deuxième actionneur (120) sont dans état inactif.
  3. Dispositif contacteur (100) selon l'une des revendications 1 ou 2, dans lequel ledit au moins un contact mobile (108) est conformé de manière à être capable de fléchir élastiquement entre la position ouverte et la position fermée.
  4. Dispositif contacteur selon la revendication 3, dans lequel ledit au moins un contact mobile (108) est constitué d'une structure multicouche qui comprend une pluralité de couches de matériau électroconducteur.
  5. Dispositif contacteur (100) selon l'une des revendications 1 à 4, dans lequel l'élément de support (128) comprend une portion de base qui englobe au moins partiellement l'induit (124), et au moins une projection (130) pour maintenir ledit au moins un contact mobile (108) .
  6. Dispositif contacteur (100) selon la revendication 5, dans lequel ladite au moins une projection (130) est constituée d'un élément de ressort.
  7. Dispositif contacteur (100) selon l'une quelconque des revendications 1 à 6, dans lequel le dispositif contacteur comprend une pluralité de contacts fixes (106) et une pluralité de contacts mobiles (108), et dans lequel le premier actionneur (110) est adapté pour déplacer simultanément la pluralité de contacts mobiles (108).
  8. Système de stockage d'énergie comprenant au moins un dispositif de stockage d'énergie et le dispositif contacteur (100) selon l'une quelconque des revendications 1 à 7.
  9. Système de stockage d'énergie selon la revendication 8, comprenant en outre un contrôleur qui est adapté pour contrôler le premier actionneur (110) afin de déplacer ledit au moins un contact mobile (108) entre la position ouverte et la position fermée, et pour contrôler le deuxième actionneur (120) afin de maintenir ledit au moins un contact mobile (108) dans la position fermée.
  10. Procédé de contrôle d'un dispositif contacteur (100) pour des applications à haute tension, dans lequel le dispositif contacteur comprend une partie stationnaire (102) comportant au moins un contact fixe (106) et une partie mobile (104) comportant au moins un contact mobile (108), le procédé comprenant les étapes suivantes :
    contrôle d'un premier actionneur (110) pour déplacer ledit au moins un contact mobile (108) entre une position ouverte et une position fermée, dans lequel, dans la position ouverte, ledit au moins un contact mobile (108) est séparé électriquement dudit au moins un contact fixe (106), et dans la position fermée, ledit au moins un contact mobile (108) est en contact électrique avec ledit au moins un contact fixe (106) ; et
    contrôle d'un deuxième actionneur (120) qui est commandé indépendamment du premier actionneur (110), pour maintenir ledit au moins un contact mobile (108) dans la position fermée ;
    dans lequel le deuxième actionneur (120) est un actionneur électromagnétique qui comporte un induit (124), une culasse (122) et au moins une bobine (126),
    dans lequel la partie mobile (104) comprend l'induit (124) du deuxième actionneur (120), un levier (116) qui est adapté pour transférer une force du premier actionneur (110) audit au moins un contact mobile (108), et un élément de support (128) qui est monté sur l'induit (124) et ledit au moins un contact mobile (108),
    dans lequel le levier (116) est monté de manière rotative autour d'une charnière (118) qui est fixée à un boîtier du dispositif contacteur (100) ou à une monture de la partie mobile (104), et le premier actionneur (110) est configuré pour actionner le levier (116) à un point d'actionnement (135) du levier (116),
    dans lequel l'élément de support (128) connecte mécaniquement l'induit (124) et ledit au moins un contact mobile (108) au levier (116) sur un côté du levier opposé au point d'actionnement du levier (116), et
    dans lequel la partie stationnaire (102) comprend la culasse (122) et ladite au moins bobine (126) du deuxième actionneur (120), et ledit au moins un contact fixe (106) est connecté mécaniquement à la culasse (122) par un élément de maintien (132).
EP20184035.2A 2020-07-03 2020-07-03 Dispositif de contacteur, système de stockage d'énergie et procédé de commande d'un dispositif de contacteur Active EP3933867B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20184035.2A EP3933867B1 (fr) 2020-07-03 2020-07-03 Dispositif de contacteur, système de stockage d'énergie et procédé de commande d'un dispositif de contacteur
PCT/EP2021/068212 WO2022003117A1 (fr) 2020-07-03 2021-07-01 Dispositif contacteur, système de stockage d'énergie et procédé de commande de dispositif contacteur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20184035.2A EP3933867B1 (fr) 2020-07-03 2020-07-03 Dispositif de contacteur, système de stockage d'énergie et procédé de commande d'un dispositif de contacteur

Publications (2)

Publication Number Publication Date
EP3933867A1 EP3933867A1 (fr) 2022-01-05
EP3933867B1 true EP3933867B1 (fr) 2023-06-07

Family

ID=71514968

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20184035.2A Active EP3933867B1 (fr) 2020-07-03 2020-07-03 Dispositif de contacteur, système de stockage d'énergie et procédé de commande d'un dispositif de contacteur

Country Status (2)

Country Link
EP (1) EP3933867B1 (fr)
WO (1) WO2022003117A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR919488A (fr) * 1945-12-28 1947-03-10 Système de contact en particulier pour disjoncteur à courant de forte intensité
JPS47898Y1 (fr) * 1970-09-28 1972-01-13
US4647737A (en) * 1982-09-10 1987-03-03 Ranco Incorporated Snap-action switch for alternating current

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR974161A (fr) * 1941-12-23 1951-02-19 L App Electro Ind Petrier Contacteur électrique à coupure accélérée
DE19715261C1 (de) * 1997-04-12 1998-12-10 Gruner Ag Relais
WO2010061576A1 (fr) * 2008-11-25 2010-06-03 ダイキン工業株式会社 Dispositif de commutation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR919488A (fr) * 1945-12-28 1947-03-10 Système de contact en particulier pour disjoncteur à courant de forte intensité
JPS47898Y1 (fr) * 1970-09-28 1972-01-13
US4647737A (en) * 1982-09-10 1987-03-03 Ranco Incorporated Snap-action switch for alternating current

Also Published As

Publication number Publication date
WO2022003117A1 (fr) 2022-01-06
EP3933867A1 (fr) 2022-01-05

Similar Documents

Publication Publication Date Title
US6489868B1 (en) Electromagnetic relay
CN110783147B (zh) 一种直流接触器及汽车
US9142371B2 (en) Actuator for contactor
EP3846195B1 (fr) Relais à courant continu
JP7518217B2 (ja) コンタクタデバイス、エネルギー貯蔵システム、及びコンタクタデバイスを制御する方法
JP2018181495A (ja) 電磁継電器
CN101939809A (zh) 开关装置、组装或操作此开关装置的方法及包括此开关装置的电子装置
EP3933867B1 (fr) Dispositif de contacteur, système de stockage d'énergie et procédé de commande d'un dispositif de contacteur
KR19990047296A (ko) 마그네틱 액튜에이터를 이용한 지중선로용 다회로자동 차단기
KR101310849B1 (ko) 차단기
JP6062734B2 (ja) 継電器
US12009171B2 (en) Switching device
JP4356013B2 (ja) 電磁操作式開閉装置
KR102211349B1 (ko) 개선된 단락 내량을 갖는 직류 접점 장치
EP4287444B1 (fr) Dispositif de contacteur et système de stockage d'énergie
CN111712892A (zh) 继电器
CN112740349B (zh) 短路装置、转换器和短路方法
CN103329223B (zh) 具有低压释放的电磁驱动器
EP3511969B1 (fr) Dispositif de contact
WO2023168388A1 (fr) Ensemble contacteur à commutateurs multiples
CN113675039A (zh) 抗破裂继电器
WO2024085977A1 (fr) Contacteur haute tension à point unique fusionné à déconnexion rapide
CN114520132A (zh) 断路器

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17P Request for examination filed

Effective date: 20210910

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

B565 Issuance of search results under rule 164(2) epc

Effective date: 20201218

RIC1 Information provided on ipc code assigned before grant

Ipc: H01H 9/30 20060101ALI20221130BHEP

Ipc: H01H 89/00 20060101ALI20221130BHEP

Ipc: H01H 39/00 20060101ALI20221130BHEP

Ipc: H01H 50/62 20060101ALI20221130BHEP

Ipc: H01H 50/42 20060101ALI20221130BHEP

Ipc: H01H 1/54 20060101AFI20221130BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1577483

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020011592

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230907

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1577483

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231009

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602020011592

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230703

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

26N No opposition filed

Effective date: 20240308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230703

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240729

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240723

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240724

Year of fee payment: 5