EP3931381B1 - Method of ionizing irradiation of textile polyacrylonitrile fibres and use thereof as carbon fibre precursor - Google Patents

Method of ionizing irradiation of textile polyacrylonitrile fibres and use thereof as carbon fibre precursor Download PDF

Info

Publication number
EP3931381B1
EP3931381B1 EP20709517.5A EP20709517A EP3931381B1 EP 3931381 B1 EP3931381 B1 EP 3931381B1 EP 20709517 A EP20709517 A EP 20709517A EP 3931381 B1 EP3931381 B1 EP 3931381B1
Authority
EP
European Patent Office
Prior art keywords
pan
irradiation
temperature
oxidative
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20709517.5A
Other languages
German (de)
French (fr)
Other versions
EP3931381A1 (en
EP3931381C0 (en
Inventor
Simon König
Elisabeth Giebel
Michael R. Buchmeiser
Andreas Jürgen WEGO
Christian Herbert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Institute fuer Textil und Faserforschung Stuttgart
Deutsche Institute fuer Textil und Faserforschung Denkendorf DITF
Original Assignee
Deutsche Institute fuer Textil und Faserforschung Stuttgart
Deutsche Institute fuer Textil und Faserforschung Denkendorf DITF
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Institute fuer Textil und Faserforschung Stuttgart, Deutsche Institute fuer Textil und Faserforschung Denkendorf DITF filed Critical Deutsche Institute fuer Textil und Faserforschung Stuttgart
Publication of EP3931381A1 publication Critical patent/EP3931381A1/en
Application granted granted Critical
Publication of EP3931381C0 publication Critical patent/EP3931381C0/en
Publication of EP3931381B1 publication Critical patent/EP3931381B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • D01F9/225Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles from stabilised polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected

Definitions

  • the invention relates to a method for electron beam irradiation of textile polyacrylonitrile fibers and their use for the production of carbon moldings, in particular carbon fibers.
  • carbon fibers Flexible, elongate molded bodies containing at least 92% by weight of carbon and produced from organic polymeric precursors are referred to as carbon fibers.
  • the primary precursor used in carbon fiber production is polyacrylonitrile, the polymer of acrylonitrile.
  • polyacrylonitrile fibers are first stabilized by oxidation and then carbonized. If necessary, the carbon fiber is then graphitized.
  • the polyacrylonitrile is cyclized and dehydrated, ie converted into a polyaromatic structure at temperatures of 200 to 300° C. in air. This temperature range is referred to below as the cycling temperature.
  • the resulting polyaromatic structure is called Ox-PAN in the following.
  • the polyaromatic structure of the Ox-PAN enables the high carbon yield in the subsequent carbonization. At this will convert the Ox-PAN into a turbostratic modification of the carbon by pyrolysis, with the elimination of CO2 and HCN.
  • polyacrylonitrile not only the homopolymer of acrylonitrile is usually referred to as polyacrylonitrile, but also co- and terpolymers consisting of acrylonitrile and comonomers such as vinyl acetate, methyl acrylate, methyl methacrylate, itaconic acid, acrylic acid, acrylamide and others.
  • high-molecular terpolymers consisting of mostly more than 95% by weight of acrylonitrile and up to 5% by weight of other comonomers, primarily methyl acrylate and itaconic acid, with a number-average molecular weight of about 120,000 to 1,500,000 have proven suitable for carbon fibers g/mol as particularly suitable precursor polymers, which are referred to below as CF-PAN.
  • CF-PAN particularly suitable precursor polymers
  • T onset-Z onset temperature of the cyclization reaction, measured in air, referred to below as T onset-Z , analogous to T ei,r in DIN EN ISO 11357-5:2014-7.
  • Typical values for Tonset -Z for a CF-PAN are 200 to 240°C, depending on the composition of the CF-PAN.
  • T peak Z Another parameter is the temperature of the highest exotherm, measured under air, referred to below as T peak Z , analogous to T p,r in DIN EN ISO 11357-5:2014-7.
  • T peak Z is typically 280-300°C for CF-PANs.
  • the distance between Tonset -Z and T peak-Z should be as large as possible to avoid overheating or even burning of the fiber during the oxidative stabilization. For CF-PAN this is typically >60°C.
  • Polyacrylonitrile is mostly converted into fiber form by wet or dry spinning.
  • the productivity of the spinning plant correlates with molecular weight and comonomer content in such a way that a higher molecular weight or a lower comonomer content reduces productivity.
  • Polyacrylonitrile fibers are currently used not only for carbon fiber production, but also to a significant extent for textiles, especially for home and Outdoor textiles as well as work and sportswear.
  • polyacrylonitrile with a lower number-average molecular weight of about 30,000 to 250,000 g/mol and a comonomer content of up to 15% by weight is usually used in favor of productivity, referred to below as textile PAN.
  • Vinyl acetate, methyl acrylate and others are usually used as comonomers in textile PAN.
  • Comonomers with carboxyl groups are rarely used because, as already mentioned, they lead to a lower Tonset Z.
  • a low T onset Z is usually not desired for textile PAN, since the cyclization reactions are accompanied by a color change.
  • Textile PAN In the case of textile PAN, comonomers containing carboxyl groups would therefore lead to undesirable discolouration at elevated temperatures, for example when ironing. Textile PAN's low molecular weight and high comonomer content enables higher dope concentrations and thus higher productivity. Textile PAN fibers are therefore about 50% cheaper per kilogram than CF PAN fibers. Since the precursor, i.e. CF-PAN fibers, accounts for about half the cost of the resulting carbon fiber in state-of-the-art carbon fiber production, the use of textile PAN fibers would potentially reduce the cost of carbon fiber production by about 25%.
  • Tonset -Z is typically 240 to 300°C.
  • the use of textile PAN leads to higher energy costs when tempering the oxidative stabilization.
  • the distance between Tonset -Z and T peak-Z is smaller. The difference is usually between 10°C and 50°C.
  • This narrower temperature window of the cyclization reaction leads to problems when handling the stabilization step, since even small temperature fluctuations in the stabilization furnace lead to a significantly higher exothermic nature of the cyclization reaction.
  • Overheating of a multifilament with a large overall diameter, such as a "heavy tow" (50,000 filaments) customary in industry, is also conceivable due to precisely that exothermicity.
  • One way of changing the thermal properties of PAN is to irradiate the PAN with high-energy radiation, such as gamma rays or electron beams. Radicals are generated in the backbone of the polymer by this radiation. The amount of radicals generated correlates with the dose of irradiation. This enables shorter stabilization times. This was already 1996 in the JPH0827619A described. In this document, fibers irradiated with electrons are stabilized and carbonized in air, with the stabilization time being shortened compared to stabilization without prior irradiation. A CF-PAN with 0.1-10% by weight of comonomer containing carboxylic acid was used.
  • the resulting carbon fibers achieve the usual tensile strengths of 3.0-3.5 GPa and 220 to 250 GPa modulus of elasticity for CF-PAN. According to the technical teaching disclosed in this document, costs are saved in the stabilization step, but the much more decisive precursor costs are unchanged because of the use of CF-PAN instead of textile PAN.
  • the invention is therefore based on the object of proposing a method which is characterized in that it can be used in a practicable and economical manner, in particular for the production of carbon fibers from textile PAN.
  • the mechanical properties of the carbon fibers produced from textile PAN should clearly surpass those of the prior art and be comparable with carbon fibers made from CF-PAN, so that the savings potential of around 25% of the carbon fiber production costs can be exploited.
  • the object on which the invention is based is achieved by a method for the irradiation and oxidative stabilization of PAN fibers for the production of a precursor fiber of carbon fibers, characterized in that (1) the PAN fibers are based on a homopolymer or copolymer of PAN, wherein the PAN homopolymer or copolymer has a Tonset -z temperature of at least 245° C., measured in air (according to DIN EN ISO 11357-5:2014-07), a number-average molecular weight of 20,000 to 250,000 g/mol polymethyl methacrylate -Molar mass equivalents (determined according to DIN 55672-2:2016-03) and a comonomer content of not more than 15.0% by weight, (2) the PAN fibers are subjected to ionizing radiation with electron beams in an inert gas atmosphere with a radiation dose from 10 to 5000 kGy, (3) the reduced Tonset -z temperature of the E-PAN fibers obtained by irradi
  • the PAN has a number average molecular weight of from 30,000 to 150,000 g/mol, in particular from 50,000 to 120,000 g/mol. It is also considered an advantage that the comonomer content of PAN is 0.0 to 15.0% by weight, in particular 0.0 to 12.0% by weight and particularly preferably 0.0 to 7.5% by weight. -% amounts to.
  • the comonomer of PAN is a vinyl compound, in particular vinyl acetate, vinyl propionate, methyl acrylate, methyl methacrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, tert-butyl acrylate, sodium methallyl sulfonate, sodium vinyl sulfonate, acrylamide, methacrylamide and/or vinyl acetamide. It is particularly preferred if the PAN fibers are textile PAN fibers.
  • the ionizing irradiation takes place with electron beams in an inert gas atmosphere, in particular in a nitrogen atmosphere.
  • an inert gas atmosphere compared to air leads to better mechanical properties of the resulting carbon fibers under otherwise identical process conditions.
  • the radiation dose for the ionizing radiation is 70 to 2500 kGy, in particular 300 to 1000 kGy.
  • the acceleration voltage is preferably 100 to 900 kV, in particular 160 to 600 kV, with the range from 180 to 400 kV being particularly preferred.
  • the current intensity during the ionizing irradiation with electron beams is 0.1 to 100 mA, in particular 1 to 50 mA and particularly preferably 2 to 10 mA.
  • the oxidative heat stabilization to be used in the invention is accessible to a variety of advantageous configurations: It is preferred that the starting temperature in the oxidative heat stabilization Tonset -Z E-PAN is ⁇ 20°C, in particular ⁇ 10°C.
  • the end temperature of the oxidative thermal stabilization T Peak-Z E-PAN is preferably ⁇ 30°C, in particular ⁇ 20°C.
  • the oxidative thermal stabilization is carried out up to a density of the oxidatively thermally stabilized PAN (Ox-PAN) of 1.30 to 1.5 g/cm 3 , in particular of 1.35 to 1.39 g/cm 3 becomes. It has been shown that the end temperature of the oxidative heat stabilization is preferably between 250 and 300.degree. C., in particular between 260 and 290.degree.
  • the oxidative thermal stabilization particularly preferably takes place immediately after the ionizing irradiation. It is preferred that the storage time between ionizing radiation and carbonization is less than one day, preferably less than one hour. In particular, it is preferred that the ionizing radiation occurs immediately before the oxidative thermal stabilization in the case of a continuous thread run.
  • the product obtained according to the invention can be put to advantageous uses.
  • the use of those obtained according to the invention is preferred oxidatively thermally stabilized PAN fibers (Ox-PAN) for the production of carbon fibers by carbonization, optionally with subsequent graphitization.
  • Ox-PAN oxidatively thermally stabilized PAN fibers
  • the object on which the invention is based is therefore achieved by an advantageous method for stabilizing shaped bodies, in particular fibers, consisting in particular of textile PAN.
  • the shaped bodies, in particular the fibers are irradiated with ionizing radiation, preferably with electron beams, preferably in an inert gas atmosphere, particularly preferably in a nitrogen atmosphere, followed by oxidative thermal stabilization, which preferably takes place immediately after the irradiation and which has a temperature profile , which is tailored to the thermal properties of the particularly irradiated textile PAN.
  • the shaped bodies or fibers thus stabilized according to the invention can be carbonized and optionally graphitized by conventional methods.
  • the properties of the carbon fibers produced according to the invention correspond to typical carbon fibers made from CF-PAN.
  • a fiber made of "textile PAN” is used as the starting fiber.
  • the properties of this PAN are explained below in connection with the term “textile PAN”.
  • the textile PAN preferably has a number-average molecular weight of from 20,000 to 250,000 g/mol, in particular from 30,000 to 150,000 g/mol of polymethyl methacrylate molar mass equivalents according to DIN 55672-2:2016-03. Textile PAN with a number-average molecular weight of 50,000 to 120,000 g/mol polymethyl methacrylate molar mass equivalents has proven to be particularly advantageous.
  • the textile PAN used according to the invention is also characterized in that it has a Tonset Z measured in air of greater than 245°C, more preferably greater than 250°C and most preferably from 250 to 300°C.
  • the Tonset Z temperature is preferably up to 320°C, in particular up to 300°C.
  • the Tonset -Z temperature corresponds to T ei,r in DIN EN ISO 11357-5:2014-07 and represents the extrapolated initial temperature of the cyclization reaction of the PAN in air to the Ox-PAN.
  • the textile PAN used according to the invention has a T peak Z , measured in air, corresponding to T p,r in DIN EN ISO 11357-5:2014-7, from 260 to 360°C, in particular from 290 to 320°C.
  • T on-set Z and T peak Z are determined via DSC under air using the temperature sweep method, the heating rate used for the purpose of comparability is 10 K/min.
  • a TA-Instruments Q2000 differential scanning calorimeter with an autosampler unit was used for the measurements, and the "TZero" aluminum pans from TA-Instruments were used as measuring crucibles.
  • comonomers with a vinyl group such as are typically used in textile PAN, can be used as comonomers.
  • the use of a carboxylic acid-containing comonomer is not necessary because of the thermal properties that can be controlled by radiation.
  • Vinyl acetate, vinyl propionate, methyl acrylate, methyl methacrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, tert-butyl acrylate, sodium methallyl sulfonate, sodium vinyl sulfonate, acrylamide, methacrylamide and vinyl acetamide are particularly suitable as comonomers.
  • the comonomers vinyl acetate and methyl acrylate are particularly preferred.
  • the comonomer content in the polymer is between 0 and 15% by weight, in particular between 0 and 7.5% by weight, in view of the productivity when spinning the polymer.
  • the textile PAN of the invention is converted into fiber form via solution spinning processes, in particular via wet, dry, or airgap spinning.
  • solution spinning processes in particular via wet, dry, or airgap spinning.
  • use is generally made here of industrial-scale spinning processes for polyacrylonitrile, which have been optimized over several decades in terms of productivity and economy.
  • the fibers used expediently have an individual filament diameter of 5 to 30 ⁇ m, in particular 8 to 18 ⁇ m and very particularly preferably 8 to 13 ⁇ m. It is also advantageous that the tensile strength of the fiber is between 25 and 80 cN/tex, in particular between 35 and 60 cN/tex.
  • the modulus of elasticity of the fibers is preferably from 500 to 2500 cN/tex, moduli of elasticity from 900 to 1500 cN/tex and in particular from 950 to 1250 cN/tex are particularly preferred.
  • the elongation of the textile PAN fibers is preferably from 5 to 25%, in particular from 8 to 16%.
  • the textile fibers are arranged in a multifilament, ie the fibers are arranged in a potentially endless fiber bundle consisting of several filaments.
  • the multifilament preferably consists of 1000 to 10,000,000 filaments, in particular 3000 to 300,000 filaments.
  • An essential feature of the invention is the ionizing irradiation of the fibers, preferably using an electron beam.
  • the resulting irradiated textile PAN fibers are referred to herein as E-PAN fibers.
  • Electron irradiation can be carried out under various atmospheric conditions. In the prior art, mostly air is used. However, it has surprisingly been shown that an inert gas atmosphere according to the invention, such as nitrogen, leads to better mechanical properties of the carbon fibers leads. In a preferred embodiment of the invention, the use of an inert gas atmosphere in the irradiation of the textile PAN fibers resulted in carbon fibers with 31% better tensile strength compared to the use of air. Various gases such as helium, neon, argon, krypton, xenon, nitrogen and carbon dioxide can be used as the inert gas. Nitrogen is particularly suitable according to the invention. The use of an inert gas during the irradiation also prevents the formation of ozone, which means that it does not have to be removed from the exhaust air.
  • the decisive parameter of electron irradiation for controlling the thermal properties of the E-PAN is the irradiation dose.
  • T onset-Z and T peak-Z are shifted towards lower temperatures in such a way that a higher radiation dose results in lower temperatures T onset-Z and T peak-Z .
  • These reduced T onset Z and T peak Z in the E-PAN compared to the non-irradiated textile PAN are called T onset Z E-PAN and T peak Z E-PAN in the following.
  • the distance between Tonset -Z E-PAN and T peak-Z E-PAN is preferably adjusted to about 40 to 110°C, in particular to 60 to 90°C.
  • the distance between Tonset -Z and T peak-Z is usually 10 to 60°C.
  • the distance between Tonset -E-PAN and T peak-ZE-PAN is thus greater than that between Tonset -Z and T peak-Z . This minimizes the risk of a textile PAN multifilament overheating in an uncontrolled manner or even burning off during exothermic oxidative thermal stabilization.
  • the irradiation dose can preferably be 10 to 10000 kGy, in particular 10 to 5000 kGy. Irradiation doses of from 70 to 1500 kGy, in particular from 300 to 1000 kGy, are particularly preferred.
  • acceleration voltage Another essential parameter of electron irradiation is the acceleration voltage. The higher this is, the deeper a fiber bundle is penetrated by the electron beam. However, radiation protection and the necessary financial outlay for plant construction are all the more complex. It was therefore an aim of the inventors to use the lowest possible acceleration voltage. High acceleration voltages of >1 MV, as used in the prior art, unnecessarily increase the required radiation protection precautions. At 900 kV, electron beam penetration depths of > 3 mm are already achieved in the multifilament, which corresponds to > 250 individual filaments lying one on top of the other.
  • acceleration voltages 100 to 900 kV, in particular 160 to 600 kV and particularly preferably 180 to 400 kV have proven particularly advantageous.
  • the current is another important parameter of the irradiation.
  • the radiation dose results from the current strength, acceleration voltage and time.
  • the current of irradiation with electron beams is preferably 0.1 to 100 mA, with the preferred range being 1 to 15 mA, particularly 2 to 10 mA.
  • the irradiation can be carried out discontinuously or continuously, with regard to a technical, cost-efficient process in which the shortest possible time should also elapse between irradiation and oxidative thermal stabilization, continuous irradiation appears to be more advantageous.
  • the process speed at which the fibers are continuously irradiated is preferably 0.5 to 100 m/min, in particular 5 to 50 m/min.
  • the fiber to be irradiated is subjected to a tensile force which prevents the fiber from shrinking.
  • This tensile force is preferably between 0.001 and 1 cN/filament, in particular between 0.03 and 0.3 cN/filament.
  • the irradiation of the fiber made of textile PAN is followed by the oxidative heat stabilization.
  • the E-PAN fibers can be stored for several weeks. It would therefore be conceivable to carry out continuous irradiation "online" immediately before the oxidative thermal stabilization or to carry out the irradiation continuously but then lay down or wind up the fibers and store them for any desired period of time. Experiments were therefore carried out in which E-PAN fibers were stabilized into Ox-PAN fibers one hour, one day, one week and 6 weeks after irradiation. The Ox-PAN fibers were then carbonized.
  • the fibers are oxidatively thermally stabilized immediately after irradiation. "Immediately” can also mean that stabilization and irradiation are connected by continuous thread guidance and their process speeds are coordinated with one another.
  • the atmosphere during stabilization should have an oxidizing character, so it is particularly advisable to use air.
  • the temperature is not constant during the oxidative thermal stabilization.
  • a continuously increasing temperature during the oxidative thermal stabilization with a defined start and end temperature and a defined stabilization time is advantageous.
  • this is accomplished through the use of a multi-heat zone stabilization oven.
  • the temperature profile over the entirety of the heating zones is characterized in principle by the fact that, starting with the second heating zone, each of the heating zones has a higher temperature than the previous one.
  • Tonset -Z E-PAN and T peak-Z E-PAN must first be determined by DSC under air according to DIN EN ISO 11357-5:2014-07 to find out , in which temperature range the cyclization reactions of the E-PAN occur, which are necessary for the oxidative thermal stabilization. Heating rates of 10 K/min should be used.
  • the starting temperature of the oxidative thermal stabilization should deviate from Tonset -Z E-PAN by a maximum of 30° C., in particular preferably a maximum of 20° C., preferably a maximum of 10° C.
  • the end temperature of the oxidative thermal stabilization should deviate from T Peak-Z E-PAN by a maximum of 30°C, preferably by a maximum of 20°C.
  • the density of the Ox-PAN fiber is at least 1.30 g/cm 3 .
  • the density of the Ox-PAN fiber is preferably in the range from 1.35 to 1.5 g/cm 3 , particularly preferably between 1.35 and 1.39 g/cm 3 . If the density of the resulting Ox-PAN fibers falls outside of this density range, either the temperature in the heating zones of the stabilization furnace or the process speed must be changed. Increasing the temperature in the heating zones or slowing down the process speed leads to a higher density of the Ox-PAN fiber. Decreasing the temperature or increasing the process speed leads to a lower density of the Ox-PAN fiber. This iterative parameter change is carried out until the Ox-PAN fiber reaches the corresponding density range.
  • the oxidative thermal stabilization lasts preferably 10 minutes to 4 hours, in particular 1 hour to 3 hours, particularly preferably 1 hour to 2 hours. However, it has also been shown that the range from 1.5 to 2.5 hours is advantageous.
  • the oxygen content of the Ox-PAN fiber is preferably 5 to 25% by weight, in particular 10 to 15% by weight and very particularly preferably from 11 to 13% by weight.
  • the fibers are preferably subjected to a tensile force during stabilization.
  • a high tensile force during stabilization usually leads to better mechanical properties of the resulting carbon fibers.
  • the magnitude of the tensile force also gives stretching or shrinkage of the fibers during stabilization. It has been shown that it is advantageous, especially at the beginning of the oxidative thermal stabilization, to select the tensile force in such a way that a stretching of 0 to 50%, preferably 0 to 10%, results.
  • the tensile forces that occur are preferably 0.03 to 1 cN per filament, in particular 0.05 to 0.5 cN per filament, with the range from 0.1 to 0.3 cN per filament being particularly preferred. Surprisingly, it was also found that an increase in the radiation dose is accompanied by an increase in the tensile forces for the same stretching.
  • the Ox-PAN fibers are preferably carbonized under an inert gas atmosphere.
  • inert gases are helium, neon, argon, krypton, xenon and nitrogen, with the use of nitrogen being preferred.
  • the final temperature during carbonization is decisive for the degree of carbonization and for the mechanical properties of the resulting carbon fibers.
  • the final temperature of the carbonization can be up to 1800°C.
  • the carbonization can be carried out continuously and discontinuously.
  • the Ox-PAN fiber is heated under an inert gas atmosphere from any desired temperature, usually room temperature, to the final carbonization temperature.
  • the heating rate during carbonization is preferably between 1 and 100 K/min, in particular between 5 and 20 K/min.
  • the Ox-PAN fiber should experience a tensile force in the fiber axis during batchwise carbonization.
  • the Ox-PAN fibers are guided through a carbonization furnace via godets, which in an advantageous embodiment has several heating zones.
  • the use of several carbonization furnaces is particularly preferred. When using two consecutive carbonization furnaces, these become LT (low temperature) and HT (high temperature) furnaces called.
  • the temperature in the LT furnace can be between 200 and 1000°C, preferably between 300 and 750°C. This temperature range should also be completely covered in the furnace over several heating zones.
  • the temperature can be between 800 and 1800°C, preferably between 1000 and 1400°C.
  • the fibers are subjected to a tensile force. This should result in an overall stretching of the fibers of -10 to +10%.
  • positive stretching of 0.1 to 15% is achieved in the LT oven and negative stretching or shrinkage of -0.1 to -15% in the HT oven.
  • the winding speed for continuous carbonization should be between 0.5 and 50 m/min and essentially depends on the size of the carbonization system.
  • the density of the resulting carbon fibers is preferably between 1.65 and 1.9 g/cm 3 , in particular between 1.7 and 1.8 g/cm 3 .
  • a higher density often goes hand in hand with an improvement in mechanical properties.
  • the irradiation of the multifilaments made of textile PAN leads to higher densities of the carbon fibers with a comparable density of the Ox-PAN fiber.
  • a graphitization can also be carried out after the carbonization.
  • an inert gas atmosphere is used here.
  • Helium, neon, argon, krypton and xenon can be used as inert gases.
  • the use of argon is preferred.
  • the graphitization is preferably carried out between 1800 and 3000°C. This is achieved using one or more graphitization furnaces, each of which is preferably equipped with multiple heating zones.
  • the starting temperature of graphitization can be between 1800 and 2200°C.
  • the final temperature can be between 2200 and 3000°C.
  • the graphitization is advantageously carried out continuously.
  • the multifilament should experience a tensile force. This is preferably between 0.01 and 0.5 cN per filament.
  • the stretching resulting therefrom is preferably between -5 and +5%, in particular between -2 and +2%.
  • the invention relates to a simple, inexpensive method for electron beam irradiation of multifilaments consisting of textile PAN and their use as precursors for the production of carbon fibers.
  • the irradiation of the textile PAN multifilaments should preferably be carried out under nitrogen. Surprisingly, this inert gas atmosphere leads to better mechanical properties of the resulting carbon fibers. In addition, it has proven to be advantageous to carry out the oxidative thermal stabilization immediately after the irradiation.
  • the irradiated multifilament can be converted into an Ox-PAN multifilament by means of a defined oxidative thermal stabilization which is advantageous with regard to the thermal properties of the precursor.
  • This can be converted into carbon fibers under an inert gas atmosphere.
  • the resulting carbon fibers have top values for maximum tensile strength (according to DIN EN ISO 5079:1995) of up to 3.1 ⁇ 0.6 GPa on average.
  • the modulus of elasticity is up to 212 ⁇ 9 GPa on average.
  • the core of the present invention relates to the process control during electron irradiation and the oxidative thermal stabilization.
  • a DSC measurement of the irradiated fiber was then used to determine its Tonset Z E-PAN at 204°C and a T Peak Z E-PAN at 282°C.
  • the multifilament was then stabilized in a stabilization oven with 4 heating chambers. Based on the determined Tonset -Z E-PAN, a temperature of 210°C in heating chamber 1 was selected. In the following heating chambers 2 to 4, 225°C, 245°C and 265°C were set. In heating chambers 1 and 2, the fiber was drawn 5% in each case.
  • the tensile force occurring was 426 cN in heating chamber 1, 527 cN in heating chamber 2, 428 cN in heating chamber 3 and 460 cN in heating chamber 4.
  • the density of the resulting Ox-PAN multifilament was 1.36 g/cm 3 .
  • the mechanical properties and the density of the Ox-PAN fibers can be seen in Table 1.
  • Comparative example 1 (Stabilization and carbonization of textile PAN 1, without irradiation)
  • the multifilament from Example 1 was continuously stabilized and carbonized without irradiation. Tonset -Z was determined to be 249°C and T peak-Z to be 299°C by means of DSC measurement.
  • the temperature in heating chamber 1 of the stabilization furnace was 240°C, in heating chambers 2 to 4 250, 265 and 275°C were set. Analogously to example 1, 5% was stretched in heating chambers 1 and 2 in each case.
  • the tensile force occurring was 171 cN in heating chamber 1, 203 cN in heating chamber 2, 255 cN in heating chamber 3, and 370 cN in heating chamber 4.
  • the density of the Ox-PAN multifilament was 1.39 g/cm 3 , the mechanical properties can be seen in Table 5.
  • the carbonization was also carried out analogously to Example 1.
  • the mechanical properties and density of the resulting carbon fibers can be seen in Table 5.
  • ⁇ u>Table 5 ⁇ /u> fiber Tensile strength [MPa] Modulus of elasticity [GPa] Strain [%] diameter [ ⁇ m] Density [g/ml] Ox-PAN 280 ⁇ 40 8.2 ⁇ 1.0 16.8 ⁇ 3.4 10.7 ⁇ 1.2 1.39 carbon fiber 2250 ⁇ 400 196 ⁇ 6 1.12 ⁇ 0.2 6.8 ⁇ 0.4 1.73
  • Comparative example 2 (irradiation in air, stabilization and carbonization analogous to KR 20160140268A)
  • the multifilament from example 1 was irradiated analogously to example 1, but under air instead of nitrogen, so that the irradiation dose and atmosphere correspond to those in KR 101755267 same. Thereafter, an approximately 15 cm long piece of the air-blasted fibers was fixed in graphite boats. The fibers were then oxidatively stabilized in air in a muffle furnace. The heating was from 200 to 240°C within 150 minutes and from 240 to 260°C within 90 minutes. The fibers were then carbonized at a heating rate of 5 K/min up to 1200° C. under nitrogen. The resulting mechanical properties can be seen in Table 6.
  • the tensile strength of these fibers roughly corresponds to the tensile strength of carbon fibers KR 20160140268A , the E modulus is about 50 GPa higher than that of carbon fibers KR 20160140268A .
  • ⁇ u>Table 6 ⁇ /u> dose Tensile strength [MPa] Modulus of elasticity [GPa] Strain [%] diameter [ ⁇ m] Density [g/ml] 1000kGy 1740 ⁇ 500 178 ⁇ 15 0.98 ⁇ 0.28 8.4 ⁇ 0.5 1.75
  • Example 2 (irradiation, stabilization and carbonization of textile PAN 2)
  • heating chambers 2 to 4 225°C, 245°C and 265°C were set.
  • the fiber was drawn 5% in each case.
  • the density of the resulting Ox-PAN multifilament was 1.36 g/cm 3 .
  • Subsequent carbonization was carried out continuously with the aid of an LT and an HT carbonization furnace in a nitrogen atmosphere.
  • the temperature profiles in LT and HT correspond to those in Example 1, the stretch in LT was +2% and in HT -3.5%.
  • the mechanical properties of the carbon fibers can be seen in Table 7.
  • Example 3 (irradiation, stabilization and carbonization of textile PAN 1 with different time intervals between irradiation and stabilization)
  • the multifilament was then tested in four experiments, each after a break of one hour, one day, one week and 6 weeks in one Stabilization oven stabilized with 4 heating chambers.
  • the stretching and temperatures in the stabilization oven correspond to those of example 1.
  • the tensile forces occurring in the stabilization oven can be seen in Table 8.
  • Example 10 shows the mechanical properties and the densities of the resulting carbon fibers. In the LT oven, the stretching was varied between 2 and 7% in the tests. ⁇ u>Table 10 ⁇ /u> Interval Irradiation Stabilization LT stretch [%] Tensile strength [GPa] Modulus of elasticity [GPa] Strain [%] Diameter [dtex] 1 hour 2 2.49 ⁇ 0.89 188 ⁇ 7 1.29 ⁇ 0.4 0.55 ⁇ 0.09 5 3.08 ⁇ 0.64 193 ⁇ 9 1.54 ⁇ 0.29 0.58 ⁇ 0.09 7 2.89 ⁇ 0.89 193 ⁇ 7 1.46 ⁇ 0.43 0.61 ⁇ 0.10 1d 2 2.52 ⁇ 0.66 192 ⁇ 9 1.29 ⁇ 0.31 0.61 ⁇ 0.19 5 2.85 ⁇ 0.60 196 ⁇ 9 1.42 ⁇ 0.29 0.66 ⁇ 0.18 7 2.60 ⁇ 0.62 195 ⁇ 9 1.30 ⁇ 0.29 0.53 ⁇ 0.08 1w 2 2.16 ⁇ 0.63 185 ⁇ 11 1.
  • Example 4 (irradiation, stabilization and carbonization of textile PAN 3)
  • a temperature of 210°C in heating chamber 1 was selected.
  • heating chambers 2 to 4 were 225°C, 245°C and 265°C set.
  • the fibers were each drawn 2%, in heating chambers 3 & 4 the drawing was -0.5%.
  • the density of the resulting Ox-PAN multifilament was 1.37 g/cm 3 .
  • Subsequent carbonization was carried out continuously with the aid of an LT and an HT carbonization furnace in a nitrogen atmosphere.
  • the temperature profiles in LT and HT correspond to those in Example 1, the stretch in LT was +5% and in HT -3.5%.
  • the mechanical properties of the carbon fibers can be seen in Table 11.

Description

Die Erfindung betrifft ein Verfahren zur Elektronenbestrahlung von textilen Polyacrylnitrilfasern sowie deren Verwendung zur Herstellung von Carbonformkörpern, insbesondere Carbonfasern.The invention relates to a method for electron beam irradiation of textile polyacrylonitrile fibers and their use for the production of carbon moldings, in particular carbon fibers.

Als Carbonfasern werden mindestens 92 Gew.-% Kohlenstoff enthaltende flexible, längliche Formkörper bezeichnet, die aus organischen polymeren Präkursoren hergestellt werden.Flexible, elongate molded bodies containing at least 92% by weight of carbon and produced from organic polymeric precursors are referred to as carbon fibers.

Nach derzeitigem Stand der Technik ist der vorrangig verwendete Präkursor bei der Carbonfaserherstellung Polyacrylnitril, das Polymer des Acrylnitrils. Zur Herstellung von Carbonfasern werden Polyacrylnitrilfasern zuerst oxidativ stabilisiert und anschließend carbonisiert. Gegebenenfalls wird die Carbonfaser danach noch graphitisiert. Bei der oxidativen Stabilisierung wird das Polyacrylnitril zyklisiert und dehydriert, also bei Temperaturen von 200 bis 300°C unter Luft in eine polyaromatische Struktur überführt. Dieser Temperaturbereich wird im Folgenden Zyklisierungstemperatur genannt. Die resultierende polyaromatische Struktur wird im Folgenden Ox-PAN genannt. Die polyaromatische Struktur des Ox-PAN ermöglicht die hohe Kohlenstoffausbeute bei der anschließenden Carbonisierung. Bei dieser wird das Ox-PAN unter Abspaltung von COz und HCN durch Pyrolyse in eine turbostratische Modifikation des Kohlenstoffs überführt.According to the current state of the art, the primary precursor used in carbon fiber production is polyacrylonitrile, the polymer of acrylonitrile. To produce carbon fibers, polyacrylonitrile fibers are first stabilized by oxidation and then carbonized. If necessary, the carbon fiber is then graphitized. In the case of oxidative stabilization, the polyacrylonitrile is cyclized and dehydrated, ie converted into a polyaromatic structure at temperatures of 200 to 300° C. in air. This temperature range is referred to below as the cycling temperature. The resulting polyaromatic structure is called Ox-PAN in the following. The polyaromatic structure of the Ox-PAN enables the high carbon yield in the subsequent carbonization. At this will convert the Ox-PAN into a turbostratic modification of the carbon by pyrolysis, with the elimination of CO2 and HCN.

Als Polyacrylnitril werden üblicherweise nicht nur das Homopolymer des Acrylnitrils bezeichnet, sondern auch Co- und Terpolymere, bestehend aus Acrylnitril und Comonomeren, wie Vinylacetat, Methylacrylat, Methylmethacrylat, Itaconsäure, Acrylsäure, Acrylamid und weitere. Für Carbonfasern haben sich nach derzeitigem Stand der Technik hochmolekulare Terpolymere, bestehend aus meist über 95 Gew.-% Acrylnitril und bis zu 5 Gew.-% weiterer Comonomere, vorrangig Methylacrylat und Itaconsäure, mit einem zahlenmittleren Molekulargewicht von etwa 120 000 bis 1 500 000 g/mol als besonders geeignete Präkursorpolymere herausgestellt, welche im Folgenden als CF-PAN bezeichnet werden. Die besondere Eignung für Carbonfasern ergibt sich vorrangig aus den thermischen Eigenschaften eines solchen Terpolymers. Insbesondere Comonomere mit einer oder mehreren Carboxylgruppen führen zu einer Erniedrigung der Zyklisierungstemperatur und einem breiteren Temperaturfenster der stattfindenden Zyklisierungsreaktionen. Die Itaconsäure ist deshalb mit ihren zwei Carboxylgruppen ein oft verwendetes Comonomer für CF-PAN. Die thermischen Eigenschaften können über Dynamische Differenzkalorimetrie (DSC) gemäß DIN EN ISO 11357-5:2014-07 verifiziert werden. Wesentliche Kenngröße ist hierbei die Onsettemperatur der Zyklisierungsreaktion, gemessen unter Luft, im Folgenden T onset-Z genannt, analog zu T ei,r in DIN EN ISO 11357-5:2014-7. Typische Werte für T onset-Z bei einem CF-PAN sind 200 bis 240°C, je nach Zusammensetzung des CF-PANs. Eine weitere Kenngröße ist die Temperatur der höchsten Exothermie, gemessen unter Luft, im Folgenden T Peak-Z genannt, analog zu T p,r in DIN EN ISO 11357-5:2014-7. T Peak-Z beträgt für CF-PANs typischerweise 280-300°C. Der Abstand von T onset-Z und T Peak-Z sollte möglichst groß sein, um eine Überhitzung oder gar ein Verbrennen der Faser während der oxidativen Stabilisierung zu vermeiden, für CF-PAN beträgt dieser typischerweise >60°C.Not only the homopolymer of acrylonitrile is usually referred to as polyacrylonitrile, but also co- and terpolymers consisting of acrylonitrile and comonomers such as vinyl acetate, methyl acrylate, methyl methacrylate, itaconic acid, acrylic acid, acrylamide and others. According to the current state of the art, high-molecular terpolymers consisting of mostly more than 95% by weight of acrylonitrile and up to 5% by weight of other comonomers, primarily methyl acrylate and itaconic acid, with a number-average molecular weight of about 120,000 to 1,500,000 have proven suitable for carbon fibers g/mol as particularly suitable precursor polymers, which are referred to below as CF-PAN. The special suitability for carbon fibers results primarily from the thermal properties of such a terpolymer. In particular, comonomers with one or more carboxyl groups lead to a reduction in the cyclization temperature and a broader temperature window for the cyclization reactions that take place. Itaconic acid, with its two carboxyl groups, is therefore a frequently used comonomer for CF-PAN. The thermal properties can be verified using differential scanning calorimetry (DSC) in accordance with DIN EN ISO 11357-5:2014-07. The key parameter here is the onset temperature of the cyclization reaction, measured in air, referred to below as T onset-Z , analogous to T ei,r in DIN EN ISO 11357-5:2014-7. Typical values for Tonset -Z for a CF-PAN are 200 to 240°C, depending on the composition of the CF-PAN. Another parameter is the temperature of the highest exotherm, measured under air, referred to below as T peak Z , analogous to T p,r in DIN EN ISO 11357-5:2014-7. T peak Z is typically 280-300°C for CF-PANs. The distance between Tonset -Z and T peak-Z should be as large as possible to avoid overheating or even burning of the fiber during the oxidative stabilization. For CF-PAN this is typically >60°C.

Polyacrylnitril wird zumeist durch Nass- oder Trockenspinnen in Faserform überführt. Die Produktivität der Spinnanlage korreliert hierbei mit Molekulargewicht und Comonomergehalt dergestalt, dass ein höheres Molekulargewicht oder ein niedrigerer Comonomergehalt die Produktivität senken.Polyacrylonitrile is mostly converted into fiber form by wet or dry spinning. The productivity of the spinning plant correlates with molecular weight and comonomer content in such a way that a higher molecular weight or a lower comonomer content reduces productivity.

Polyacrylnitrilfasern werden derzeit nicht nur zur Carbonfaserherstellung, sondern in deutlichem Maße vorrangig für Textilien verwendet, insbesondere für Heim-und Outdoortextilien sowie Arbeits- und Sportbekleidung. Für diese textilen Anwendungen wird zu Gunsten der Produktivität üblicherweise Polyacrylnitril mit einem niedrigeren zahlenmittleren Molekulargewicht von etwa 30 000 bis 250 000 g/mol und einem Comonomeranteil von bis zu 15 Gew.-% verwendet, im Folgenden Textil-PAN genannt. Als Comonomere werden beim Textil-PAN meist Vinylacetat, Methylacrylat und weitere verwendet. Nur selten werden Comonomere mit Carboxylgruppen eingesetzt, da jene, wie bereits erwähnt, zu einem niedrigeren T onset-Z führen. Ein niedriger T onset-Z ist für Textil-PAN meist nicht gewünscht, da die Zyklisierungsreaktionen mit einer Farbänderung einhergehen. Carboxylgruppen enthaltende Comonomere würden bei Textil-PAN also zu unerwünschten Verfärbungen bei erhöhter Temperatur, zum Beispiel beim Bügeln, führen. Das niedrige Molekulargewicht und der hohe Comonomeranteil des Textil-PANs ermöglicht höhere Spinnlösungskonzentrationen und somit eine höhere Produktivität. Textil-PAN-Fasern sind deshalb pro Kilogramm etwa 50% günstiger als CF-PAN-Fasern. Da bei der Carbonfaserherstellung nach derzeitigem Stand der Technik der Präkursor, also die CF-PAN-Fasern, etwa die Hälfte der Kosten der resultierenden Carbonfaser ausmachen, würde die Verwendung von Textil-PAN-Fasern die Kosten der Carbonfaserherstellung potentiell um etwa 25% reduzieren.Polyacrylonitrile fibers are currently used not only for carbon fiber production, but also to a significant extent for textiles, especially for home and Outdoor textiles as well as work and sportswear. For these textile applications, polyacrylonitrile with a lower number-average molecular weight of about 30,000 to 250,000 g/mol and a comonomer content of up to 15% by weight is usually used in favor of productivity, referred to below as textile PAN. Vinyl acetate, methyl acrylate and others are usually used as comonomers in textile PAN. Comonomers with carboxyl groups are rarely used because, as already mentioned, they lead to a lower Tonset Z. A low T onset Z is usually not desired for textile PAN, since the cyclization reactions are accompanied by a color change. In the case of textile PAN, comonomers containing carboxyl groups would therefore lead to undesirable discolouration at elevated temperatures, for example when ironing. Textile PAN's low molecular weight and high comonomer content enables higher dope concentrations and thus higher productivity. Textile PAN fibers are therefore about 50% cheaper per kilogram than CF PAN fibers. Since the precursor, i.e. CF-PAN fibers, accounts for about half the cost of the resulting carbon fiber in state-of-the-art carbon fiber production, the use of textile PAN fibers would potentially reduce the cost of carbon fiber production by about 25%.

Im Vergleich zu CF-PAN sind die thermischen Eigenschaften des Textil-PANs allerdings für die Carbonfaserherstellung nachteilig. T onset-Z liegt typischerweise bei 240 bis 300°C. Dadurch führt der Einsatz von Textil-PAN zu höheren Energiekosten bei der Temperierung der oxidativen Stabilisierung. Außerdem ist der Abstand von T onset-Z und T Peak-Z kleiner. Die Differenz liegt meist bei 10°C bis 50 °C. Dieses engere Temperaturfenster der Zyklisierungsreaktion führt zu Problemen bei der Handhabung des Stabilisierungsschrittes, da schon kleine Temperaturschwankungen im Stabilisierungsofen zu einer deutlich höheren Exothermie der Zyklisierungsreaktion führen. Auch ein Überhitzen eines Multifilaments mit großem Gesamtdurchmesser, wie beispielsweise eines industrieüblichen "heavy tow" (50 000 Filamente), ist aufgrund eben jener Exothermie denkbar.Compared to CF-PAN, however, the thermal properties of textile PAN are disadvantageous for carbon fiber production. Tonset -Z is typically 240 to 300°C. As a result, the use of textile PAN leads to higher energy costs when tempering the oxidative stabilization. In addition, the distance between Tonset -Z and T peak-Z is smaller. The difference is usually between 10°C and 50°C. This narrower temperature window of the cyclization reaction leads to problems when handling the stabilization step, since even small temperature fluctuations in the stabilization furnace lead to a significantly higher exothermic nature of the cyclization reaction. Overheating of a multifilament with a large overall diameter, such as a "heavy tow" (50,000 filaments) customary in industry, is also conceivable due to precisely that exothermicity.

Dies führt im schlimmsten Fall zu der Entzündung und dem Abbrennen der Faser im Stabilisierungsofen. Außerdem sind die mechanischen Eigenschaften der Carbonfasern aus Textil-PAN meist deutlich schlechter als die der Carbonfasern aus CF-PAN. Aufgrund dessen wurde über lange Zeit trotz des günstigen Preises von der Verwendung eines Textil-PANs zur Carbonfaserherstellung abgesehen.In the worst case, this leads to the ignition and burning of the fiber in the stabilization furnace. In addition, the mechanical properties of the carbon fibers made of textile-PAN are usually significantly worse than those of the carbon fibers made of CF-PAN. Because of this, despite the low price, the use of a textile PAN for carbon fiber production was avoided for a long time.

Eine Möglichkeit der Veränderung der thermischen Eigenschaften von PAN ist die Bestrahlung des PANs mit energiereicher Strahlung, wie Gammastrahlen oder Elektronenstrahlen. Durch diese Strahlung werden Radikale im Backbone des Polymers erzeugt. Die Menge der erzeugten Radikale korreliert mit der Dosis der Bestrahlung. Dadurch sind kürzere Stabilisierungszeiten möglich. Dies wurde bereits 1996 in der JPH0827619A beschrieben. In diesem Dokument werden an Luft mit Elektronen bestrahlte Fasern stabilisiert und carbonisiert, wobei die Stabilisierungszeit im Vergleich zu einer Stabilisierung ohne vorherige Bestrahlung verkürzt wurde. Verwendet wurde ein CF-PAN mit 0,1-10 Gew.-% carbonsäurehaltigem Comonomer. Die resultierenden Carbonfasern erreichen für CF-PAN übliche Zugfestigkeiten von 3,0-3,5 GPa und 220 bis 250 GPa E-Modul. Nach der in diesem Dokument offenbarten technischen Lehre werden zwar beim Stabilisierungsschritt Kosten eingespart, die wesentlich entscheidenderen Präkursorkosten sind aber wegen der Verwendung von CF-PAN statt Textil-PAN unverändert.One way of changing the thermal properties of PAN is to irradiate the PAN with high-energy radiation, such as gamma rays or electron beams. Radicals are generated in the backbone of the polymer by this radiation. The amount of radicals generated correlates with the dose of irradiation. This enables shorter stabilization times. This was already 1996 in the JPH0827619A described. In this document, fibers irradiated with electrons are stabilized and carbonized in air, with the stabilization time being shortened compared to stabilization without prior irradiation. A CF-PAN with 0.1-10% by weight of comonomer containing carboxylic acid was used. The resulting carbon fibers achieve the usual tensile strengths of 3.0-3.5 GPa and 220 to 250 GPa modulus of elasticity for CF-PAN. According to the technical teaching disclosed in this document, costs are saved in the stabilization step, but the much more decisive precursor costs are unchanged because of the use of CF-PAN instead of textile PAN.

Jüngst wurde außerdem in KR 20160140268A eine Möglichkeit aufgezeigt, wie auch Textil-PAN durch Elektronenbestrahlung in seinen thermischen Eigenschaften derart verändert werden kann, dass es für die Carbonfaserherstellung geeignet ist. Die Elektronenbestrahlung führte zu einem niedrigeren T onset-Z und einem breiteren Temperaturfenster der Zyklisierungsreaktion, also einem größeren Abstand von T onset-Z und T Peak-Z von >50°C. Bei der Bestrahlung wurden Beschleunigungsspannungen von >1 MV gewählt. Die Bestrahlungsdosis lag in den Beispielen der bekannten Lehre zwischen 200 und 1500 kGy, beansprucht wurden 50-3000 kGy. Die Atmosphäre bei der Bestrahlung war Luft. Die Stabilisierung und die Carbonisierung wurden diskontinuierlich durchgeführt. In diesem Dokument wurde das große Einsparungspotential bei der Verwendung eines textilen Präkursors beschrieben, die erzielten mechanischen Eigenschaften von maximal 1,9 GPa Zugfestigkeit und 150 GPa E-Modul blieben allerdings deutlich hinter typischen mechanischen Eigenschaften von Carbonfasern aus CF-PAN-Fasern zurück. Der Kostenvorteil des günstigen Textil-PAN-Präkursors wird dadurch aufgewogen. Weitere relevante Informationen finden sich in den Dokumenten US 2016/348283 , WO 2017/194103 und WO 2017/194103 .Recently also in KR 20160140268A a possibility is shown how textile PAN can be modified in its thermal properties by electron beam irradiation in such a way that it is suitable for carbon fiber production. Electron irradiation resulted in a lower T onset Z and a wider temperature window of the cycling reaction, i.e. a larger distance between T onset Z and T peak Z of >50°C. Accelerating voltages of >1 MV were chosen for the irradiation. The radiation dose in the examples of the known teaching was between 200 and 1500 kGy, 50-3000 kGy were claimed. The atmosphere at the irradiation was air. The stabilization and the carbonization were carried out discontinuously. This document describes the great potential for savings when using a textile precursor, but the achieved mechanical properties of maximum 1.9 GPa tensile strength and 150 GPa modulus of elasticity are well below the typical mechanical properties of carbon fibers made from CF-PAN fibers. This outweighs the cost advantage of the inexpensive textile PAN precursor. Further relevant information can be found in the documents US2016/348283 , WO 2017/194103 and WO 2017/194103 .

Ausgehend vom obigen Stand der Technik liegt der Erfindung deshalb die Aufgabe zu Grunde, ein Verfahren vorzuschlagen, das sich dadurch auszeichnet, dass es praktikabel und wirtschaftlich insbesondere zur Herstellung von Carbonfasern aus Textil-PAN anwendbar ist. Die aus Textil-PAN erzeugten Carbonfasern sollten in ihren mechanischen Eigenschaften die des Standes der Technik deutlich übertreffen und mit Carbonfasern aus CF-PAN vergleichbar sein, so dass das Einsparungspotential von etwa 25% der Carbonfaserproduktionskosten ausgeschöpft werden kann.Proceeding from the above prior art, the invention is therefore based on the object of proposing a method which is characterized in that it can be used in a practicable and economical manner, in particular for the production of carbon fibers from textile PAN. The mechanical properties of the carbon fibers produced from textile PAN should clearly surpass those of the prior art and be comparable with carbon fibers made from CF-PAN, so that the savings potential of around 25% of the carbon fiber production costs can be exploited.

Die Aufgabe, von der die Erfindung ausgeht, wird gelöst durch ein Verfahren zur Bestrahlung und oxidativen Stabilisierung von PAN-Fasern zur Herstellung einer Präkursorfaser von Carbonfasern, dadurch gekennzeichnet, dass (1) die PAN-Fasern auf einem Homopolymer oder Copolymer von PAN beruhen, wobei das Homopolymer oder Copolymer vom PAN eine T onset-z-Temperatur von mindestens 245°C, gemessen unter Luft (nach DIN EN ISO 11357-5:2014-07), ein zahlenmittleres Molekulargewicht von 20 000 bis 250 000 g/mol Polymethylmethacrylat-Molmassenäquivalenten (bestimmt nach DIN 55672-2:2016-03) sowie einen Gehalt an Comonomeren von nicht mehr als 15,0 Gew.-% aufweist, (2) die PAN-Fasern einer ionisierenden Bestrahlung mit Elektronenstrahlen in einer Inertgasatmosphäre mit einer Bestrahlungsdosis von 10 bis 5000 kGy unterworfen werden, (3) von den durch Bestrahlung erhaltenen E-PAN-Fasern die herabgesetzte T onset-z-Temperatur unter Luft bestimmt wird (T onset-Z E-PAN) (nach DIN EN ISO 11357-5:2014-07), darauf die oxidative Thermostabilisierung bei einer Starttemperatur von T onset-Z E-PAN ± 30°C eingeleitet wird und die oxidative Thermostabilisierung bei ansteigender Temperatur bis zu einer Mindestdichte der oxidativ stabilisierten PAN-Faser (Ox-PAN) von 1,30 g/cm3 durchgeführt wird.The object on which the invention is based is achieved by a method for the irradiation and oxidative stabilization of PAN fibers for the production of a precursor fiber of carbon fibers, characterized in that (1) the PAN fibers are based on a homopolymer or copolymer of PAN, wherein the PAN homopolymer or copolymer has a Tonset -z temperature of at least 245° C., measured in air (according to DIN EN ISO 11357-5:2014-07), a number-average molecular weight of 20,000 to 250,000 g/mol polymethyl methacrylate -Molar mass equivalents (determined according to DIN 55672-2:2016-03) and a comonomer content of not more than 15.0% by weight, (2) the PAN fibers are subjected to ionizing radiation with electron beams in an inert gas atmosphere with a radiation dose from 10 to 5000 kGy, (3) the reduced Tonset -z temperature of the E-PAN fibers obtained by irradiation is determined in air ( T onset-Z E-PAN ) (according to DIN EN ISO 11357-5 :2014-07), then the oxidative thermal stabilization is initiated at a starting temperature of Tonset -Z E-PAN ± 30°C and the oxidative thermal stabilization with increasing temperature up to a minimum density of the oxidatively stabilized PAN fiber (Ox-PAN) of 1.30 g/cm 3 is carried out.

Die Erfindung zeigt vielfältige vorteilhafte Ausgestaltungen, die nachfolgend bezeichnet sind:
Es ist bevorzugt, dass das PAN ein zahlenmittleres Molekulargewicht von 30 000 bis 150 000 g/mol, insbesondere von 50 000 bis 120 000 g/mol, aufweist. Des Weiteren gilt es als Vorteil, dass der Comonomer-Gehalt vom PAN 0,0 bis 15,0 Gew.-%, insbesondere 0,0 bis 12,0 Gew.-% und besonders bevorzugt 0,0 bis 7,5 Gew.-% beträgt. Zudem ist es zweckmäßig, dass das Comonomer vom PAN eine Vinyl-Verbindung, insbesondere Vinylacetat, Propionsäurevinylester, Methylacrylat, Methylmethacrylat, Ethylacrylat, Propylacrylat, n-Butylacrylat, tert-Butylacrylat, Natriummethallylsulfonat, Natriumvinylsulfonat, Acrylamid, Methacrylamid und/oder Vinylacetamid darstellt. Besonders bevorzugt ist es, wenn die PAN-Fasern Textil-PAN-Fasern darstellen.
The invention shows a variety of advantageous configurations, which are identified below:
It is preferred that the PAN has a number average molecular weight of from 30,000 to 150,000 g/mol, in particular from 50,000 to 120,000 g/mol. It is also considered an advantage that the comonomer content of PAN is 0.0 to 15.0% by weight, in particular 0.0 to 12.0% by weight and particularly preferably 0.0 to 7.5% by weight. -% amounts to. In addition, it is expedient that the comonomer of PAN is a vinyl compound, in particular vinyl acetate, vinyl propionate, methyl acrylate, methyl methacrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, tert-butyl acrylate, sodium methallyl sulfonate, sodium vinyl sulfonate, acrylamide, methacrylamide and/or vinyl acetamide. It is particularly preferred if the PAN fibers are textile PAN fibers.

Die ionisierende Bestrahlung erfolgt im erfindungsgemäßen Verfahren mit Elektronenstrahlen in einer Inertgasatmosphäre, insbesondere in einer Stickstoffatmosphäre. In diversen Versuchen zeigte sich überraschenderweise, dass eine Inertgasatmosphäre gegenüber Luft bei ansonsten identischen Prozessbedingungen zu besseren mechanischen Eigenschaften der resultierenden Carbonfasern führt. Dabei ist es bevorzugt, dass die Bestrahlungsdosis bei der ionisierenden Bestrahlung 70 bis 2500 kGy, insbesondere 300 bis 1000 kGy, beträgt. Die Beschleunigungsspannung beträgt bei der ionisierenden Bestrahlung mit Elektronenstrahlen vorzugsweise 100 bis 900 kV, insbesondere 160 bis 600 kV, wobei der Bereich von 180 bis 400 kV besonders bevorzugt ist. Ferner ist es bevorzugt, dass die Stromstärke bei der ionisierenden Bestrahlung mit Elektronenstrahlen 0,1 bis 100 mA, insbesondere 1 bis 50 mA und besonders bevorzugt 2 bis 10 mA beträgt.In the process according to the invention, the ionizing irradiation takes place with electron beams in an inert gas atmosphere, in particular in a nitrogen atmosphere. Surprisingly, various tests showed that an inert gas atmosphere compared to air leads to better mechanical properties of the resulting carbon fibers under otherwise identical process conditions. In this case, it is preferred that the radiation dose for the ionizing radiation is 70 to 2500 kGy, in particular 300 to 1000 kGy. In the case of ionizing irradiation with electron beams, the acceleration voltage is preferably 100 to 900 kV, in particular 160 to 600 kV, with the range from 180 to 400 kV being particularly preferred. Furthermore, it is preferred that the current intensity during the ionizing irradiation with electron beams is 0.1 to 100 mA, in particular 1 to 50 mA and particularly preferably 2 to 10 mA.

Die bei der Erfindung anzuwendende oxidative Thermostabilisierung ist vielfältigen vorteilhaften Ausgestaltungen zugänglich: So ist es bevorzugt, dass die Starttemperatur bei der oxidativen Thermostabilisierung T onset-Z E-PAN ± 20°C, insbesondere ± 10°C, beträgt. Vorzugsweise beträgt die Endtemperatur der oxidativen Thermostabilisierung T Peak-Z E-PAN ± 30°C, insbesondere ± 20°C. Ferner ist es bevorzugt, dass die oxidative Thermostabilisierung bis zu einer Dichte des oxidativ thermostabilisierten PANs (Ox-PAN) von 1,30 bis 1,5 g/cm3, insbesondere von 1,35 bis 1,39 g/cm3, durchgeführt wird. Es hat sich gezeigt, dass die Endtemperatur der oxidativen Thermostabilisierung vorzugsweise zwischen 250 und 300°C, insbesondere zwischen 260 und 290°C, liegt.The oxidative heat stabilization to be used in the invention is accessible to a variety of advantageous configurations: It is preferred that the starting temperature in the oxidative heat stabilization Tonset -Z E-PAN is ±20°C, in particular ±10°C. The end temperature of the oxidative thermal stabilization T Peak-Z E-PAN is preferably ±30°C, in particular ±20°C. Furthermore, it is preferred that the oxidative thermal stabilization is carried out up to a density of the oxidatively thermally stabilized PAN (Ox-PAN) of 1.30 to 1.5 g/cm 3 , in particular of 1.35 to 1.39 g/cm 3 becomes. It has been shown that the end temperature of the oxidative heat stabilization is preferably between 250 and 300.degree. C., in particular between 260 and 290.degree.

Außerdem ist es bevorzugt, dass zwischen der oxidativen Thermostabilisierung und der ionisierenden Bestrahlung, insbesondere Elektronenbestrahlung, möglichst wenig Zeit vergeht, besonders bevorzugt findet die oxidative Thermostabilisierung unmittelbar nach der ionisierenden Bestrahlung statt. Es ist bevorzugt, dass die Lagerungszeit zwischen ionisierender Bestrahlung und Carbonisierung weniger als einen Tag, vorzugsweise weniger als eine Stunde beträgt. Besonders wird es bevorzugt, dass die ionisierende Bestrahlung bei kontinuierlichem Fadenlauf der oxidativen Thermostabilisierung unmittelbar vorgeschaltet ist.In addition, it is preferred that as little time as possible elapses between the oxidative thermal stabilization and the ionizing irradiation, in particular electron irradiation; the oxidative thermal stabilization particularly preferably takes place immediately after the ionizing irradiation. It is preferred that the storage time between ionizing radiation and carbonization is less than one day, preferably less than one hour. In particular, it is preferred that the ionizing radiation occurs immediately before the oxidative thermal stabilization in the case of a continuous thread run.

Das erfindungsgemäß erhaltene Erzeugnis lässt sich vorteilhaften Verwendungen zuführen. Bevorzugt ist allerdings die Verwendung der erfindungsgemäß erhaltenen oxidativ thermostabilisierten PAN-Fasern (Ox-PAN) zur Herstellung von Carbonfasern durch Carbonisierung, gegebenenfalls mit anschließender Graphitisierung.The product obtained according to the invention can be put to advantageous uses. However, the use of those obtained according to the invention is preferred oxidatively thermally stabilized PAN fibers (Ox-PAN) for the production of carbon fibers by carbonization, optionally with subsequent graphitization.

Die der Erfindung zu Grunde liegende Aufgabe wird demzufolge durch ein vorteilhaftes Verfahren zur Stabilisierung von Formkörpern, insbesondere von Fasern, bestehend insbesondere aus Textil-PAN, gelöst. Dabei werden die Formkörper, insbesondere die Fasern, mit einer ionisierenden Bestrahlung, vorzugsweise mit Elektronenstrahlen, bestrahlt, bevorzugt in einer Inertgasatmosphäre, besonders bevorzugt in einer Stickstoffatmosphäre, gefolgt von einer oxidativen Thermostabilisierung, die vorzugsweise unmittelbar nach der Bestrahlung erfolgt, und welche ein Temperaturprofil aufweist, das auf die thermischen Eigenschaften des insbesondere bestrahlten Textil-PANs abgestimmt ist. Die dadurch erfindungsgemäß stabilisierten Formkörper bzw. Fasern können nach gängigen Methoden carbonisiert und gegebenenfalls graphitisiert werden. Die erfindungsgemäß hergestellten Carbonfasern entsprechen in ihren Eigenschaften typischen Carbonfasern aus CF-PAN.The object on which the invention is based is therefore achieved by an advantageous method for stabilizing shaped bodies, in particular fibers, consisting in particular of textile PAN. The shaped bodies, in particular the fibers, are irradiated with ionizing radiation, preferably with electron beams, preferably in an inert gas atmosphere, particularly preferably in a nitrogen atmosphere, followed by oxidative thermal stabilization, which preferably takes place immediately after the irradiation and which has a temperature profile , which is tailored to the thermal properties of the particularly irradiated textile PAN. The shaped bodies or fibers thus stabilized according to the invention can be carbonized and optionally graphitized by conventional methods. The properties of the carbon fibers produced according to the invention correspond to typical carbon fibers made from CF-PAN.

Die Erfindung soll nachfolgend zur weitergehenden Erläuterung im Einzelnen dargestellt werden:The invention is to be presented in detail below for further explanation:

1. Ausgangsfaser1. Output fiber

Als Ausgangsfaser wird gemäß der Erfindung insbesondere eine Faser aus "Textil-PAN" verwendet. Die Eigenschaften dieses PANs werden nachfolgend im Zusammenhang mit dem Begriff "Textil-PAN" erläutert. Selbst wenn eine Faser nicht ausdrücklich für die Herstellung von Textilien herangezogen wird, wird sie im Sinne der Erfindung als "Textil-PAN-Faser" bezeichnet. Das Textil-PAN hat vorzugsweise ein zahlenmittleres Molekulargewicht von 20 000 bis 250 000 g/mol, insbesondere von 30 000 bis 150 000 g/mol Polymethylmethacrylat-Molmassenäquivalenten gemäß DIN 55672-2:2016-03. Insbesondere vorteilhaft zeigt sich Textil-PAN mit einem zahlenmittleren Molekulargewicht von 50 000 bis 120 000 g/mol Polymethylmethacrylat-Molmassenäquivalenten.According to the invention, in particular, a fiber made of "textile PAN" is used as the starting fiber. The properties of this PAN are explained below in connection with the term "textile PAN". Even if a fiber is not expressly used for the production of textiles, it is referred to as "textile PAN fibre" within the meaning of the invention. The textile PAN preferably has a number-average molecular weight of from 20,000 to 250,000 g/mol, in particular from 30,000 to 150,000 g/mol of polymethyl methacrylate molar mass equivalents according to DIN 55672-2:2016-03. Textile PAN with a number-average molecular weight of 50,000 to 120,000 g/mol polymethyl methacrylate molar mass equivalents has proven to be particularly advantageous.

Das erfindungsgemäß verwendete Textil-PAN ist außerdem dadurch gekennzeichnet, dass es einen T onset-Z, gemessen unter Luft, von über 245°C hat, insbesondere über 250°C, und ganz besonders bevorzugt von 250 bis 300°C. Die T onset-Z-Temperatur beträgt erfindungsgemäß vorzugsweise bis zu 320°C, insbesondere bis zu 300°C. Die T onset-Z-Temperatur entspricht T ei,r in DIN EN ISO 11357-5:2014-07 und stellt die extrapolierte Anfangstemperatur der Zyklisierungsreaktion des PANs unter Luft hin zum Ox-PAN dar. Darüber hinaus hat das erfindungsgemäß verwendete Textil-PAN ein T Peak-Z, gemessen unter Luft, entsprechend T p,r in DIN EN ISO 11357-5:2014-7, von 260 bis 360°C, insbesondere von 290 bis 320°C. T on-set-Z und T Peak-Z werden über DSC unter Luft im Temperaturabtastverfahren bestimmt, die zum Zwecke der Vergleichbarkeit verwendete Heizrate beträgt 10 K/min. Für die Messungen wurde ein TA-Instruments Q2000 Differential Scanning Kalorimeter mit Autosamplereinheit verwendet, als Messtiegel wurden die Aluminiumpfännchen "TZero" der Firma TA-Instruments eingesetzt.The textile PAN used according to the invention is also characterized in that it has a Tonset Z measured in air of greater than 245°C, more preferably greater than 250°C and most preferably from 250 to 300°C. According to the invention, the Tonset Z temperature is preferably up to 320°C, in particular up to 300°C. The Tonset -Z temperature corresponds to T ei,r in DIN EN ISO 11357-5:2014-07 and represents the extrapolated initial temperature of the cyclization reaction of the PAN in air to the Ox-PAN. In addition, the textile PAN used according to the invention has a T peak Z , measured in air, corresponding to T p,r in DIN EN ISO 11357-5:2014-7, from 260 to 360°C, in particular from 290 to 320°C. T on-set Z and T peak Z are determined via DSC under air using the temperature sweep method, the heating rate used for the purpose of comparability is 10 K/min. A TA-Instruments Q2000 differential scanning calorimeter with an autosampler unit was used for the measurements, and the "TZero" aluminum pans from TA-Instruments were used as measuring crucibles.

Als Comonomere können diverse Comonomere mit einer Vinylgruppe in Frage kommen, wie sie typischerweise in Textil-PAN verwendet werden. Die Verwendung eines carbonsäurehaltigen Comonomers ist wegen der durch Bestrahlung steuerbaren thermischen Eigenschaften nicht notwendig. Insbesondere als Comonomere geeignet sind Vinylacetat, Propionsäurevinylester, Methylacrylat, Methylmethacrylat, Ethylacrylat, Propylacrylat, n-Butylacrylat, tert-Butylacrylat, Natriummethallylsulfonat, Natriumvinylsulfonat, Acrylamid, Methacrylamid und Vinylacetamid. Besonders bevorzugt sind die Comonomere Vinylacetat und Methylacrylat.Various comonomers with a vinyl group, such as are typically used in textile PAN, can be used as comonomers. The use of a carboxylic acid-containing comonomer is not necessary because of the thermal properties that can be controlled by radiation. Vinyl acetate, vinyl propionate, methyl acrylate, methyl methacrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, tert-butyl acrylate, sodium methallyl sulfonate, sodium vinyl sulfonate, acrylamide, methacrylamide and vinyl acetamide are particularly suitable as comonomers. The comonomers vinyl acetate and methyl acrylate are particularly preferred.

Der Comonomergehalt im Polymer beträgt im Hinblick auf die Produktivität beim Verspinnen des Polymers zwischen 0 und 15 Gew.-%, insbesondere zwischen 0 und 7,5 Gew.-%.The comonomer content in the polymer is between 0 and 15% by weight, in particular between 0 and 7.5% by weight, in view of the productivity when spinning the polymer.

Typischerweise, aber nicht explizit darauf beschränkt, wird das erfindungsgemäße Textil-PAN über Lösungsspinnverfahren in Faserform überführt, insbesondere über Nass-, Trocken-, oder Airgap-Spinnen. Es wird hierbei erfindungsgemäß im Allgemeinen auf großtechnische Spinnverfahren für Polyacrylnitril zurückgegriffen, die über mehrere Jahrzehnte hinweg hinsichtlich Produktivität und Wirtschaftlichkeit optimiert wurden.Typically, but not explicitly limited thereto, the textile PAN of the invention is converted into fiber form via solution spinning processes, in particular via wet, dry, or airgap spinning. According to the invention, use is generally made here of industrial-scale spinning processes for polyacrylonitrile, which have been optimized over several decades in terms of productivity and economy.

Gemäß der Erfindung haben die verwendeten Fasern aus vorzugsweise Textil-PAN zweckmäßigerweise einen Einzelfilamentdurchmesser von 5 bis 30 µm, insbesondere von 8 bis 18 µm und ganz besonders bevorzugt von 8 bis 13 µm. Vorteilhaft ist es auch, dass die Zugfestigkeiten der Faser zwischen 25 und 80 cN/tex liegen, insbesondere zwischen 35 und 60 cN/tex. Der E-Modul der Fasern beträgt vorzugsweise 500 bis 2500 cN/tex, besonders bevorzugt sind E-Moduln von 900 bis 1500 cN/tex und insbesondere von 950 bis 1250 cN/tex. Die Dehnung der Textil-PAN-Fasern beträgt vorzugsweise von 5 bis 25%, insbesondere von 8 bis 16%.According to the invention, the fibers used, preferably made of textile PAN, expediently have an individual filament diameter of 5 to 30 μm, in particular 8 to 18 μm and very particularly preferably 8 to 13 μm. It is also advantageous that the tensile strength of the fiber is between 25 and 80 cN/tex, in particular between 35 and 60 cN/tex. The modulus of elasticity of the fibers is preferably from 500 to 2500 cN/tex, moduli of elasticity from 900 to 1500 cN/tex and in particular from 950 to 1250 cN/tex are particularly preferred. The elongation of the textile PAN fibers is preferably from 5 to 25%, in particular from 8 to 16%.

Für die erfolgreiche Verwirklichung der Erfindung ist es außerdem von Vorteil, wenn die textilen Fasern in einem Multifilament angeordnet sind, also die Fasern in einem potentiell endlosen Faserbündel, bestehend aus mehreren Filamenten, angeordnet sind. Das Multifilament besteht vorzugsweise aus 1000 bis 10 000 000 Filamenten, insbesondere aus 3000 bis 300 000 Filamenten.For the successful implementation of the invention, it is also advantageous if the textile fibers are arranged in a multifilament, ie the fibers are arranged in a potentially endless fiber bundle consisting of several filaments. The multifilament preferably consists of 1000 to 10,000,000 filaments, in particular 3000 to 300,000 filaments.

2. Bestrahlung2. Irradiation

Ein wesentliches Merkmal der Erfindung ist die ionisierende Bestrahlung der Fasern unter bevorzugter Verwendung eines Elektronenstrahls. Die resultierenden bestrahlten Textil-PAN-Fasern werden hier als E-PAN-Fasern bezeichnet.An essential feature of the invention is the ionizing irradiation of the fibers, preferably using an electron beam. The resulting irradiated textile PAN fibers are referred to herein as E-PAN fibers.

Die Elektronenbestrahlung kann unter diversen atmosphärischen Bedingungen durchgeführt werden. Im Stand der Technik wird zumeist Luft verwendet. Es hat sich allerdings gezeigt, dass überraschenderweise eine erfindungsgemäße Inertgasatmosphäre, wie Stickstoff, zu besseren mechanischen Eigenschaften der Carbonfasern führt. In einer bevorzugten Ausgestaltung der Erfindung führte die Verwendung einer Inertgasatmosphäre bei der Bestrahlung der Textil-PAN-Fasern im Vergleich zur Verwendung von Luft zu Carbonfasern mit 31 % besserer Zugfestigkeit. Als Inertgas können diverse Gase, wie Helium, Neon, Argon, Krypton, Xenon, Stickstoff und Kohlenstoffdioxid, verwendet werden. Erfindungsgemäß insbesondere geeignet ist Stickstoff. Durch die Verwendung eines Inertgases bei der Bestrahlung wird außerdem die Bildung von Ozon verhindert, wodurch dieses nicht aus der Abluft entfernt werden muss.Electron irradiation can be carried out under various atmospheric conditions. In the prior art, mostly air is used. However, it has surprisingly been shown that an inert gas atmosphere according to the invention, such as nitrogen, leads to better mechanical properties of the carbon fibers leads. In a preferred embodiment of the invention, the use of an inert gas atmosphere in the irradiation of the textile PAN fibers resulted in carbon fibers with 31% better tensile strength compared to the use of air. Various gases such as helium, neon, argon, krypton, xenon, nitrogen and carbon dioxide can be used as the inert gas. Nitrogen is particularly suitable according to the invention. The use of an inert gas during the irradiation also prevents the formation of ozone, which means that it does not have to be removed from the exhaust air.

Die zur Steuerung der thermischen Eigenschaften des E-PANs maßgeblich entscheidende Kenngröße der Elektronenbestrahlung ist die Bestrahlungsdosis. Abhängig von dieser werden T onset-Z und T Peak-Z derart zu niedrigeren Temperaturen hin verschoben, dass eine höhere Bestrahlungsdosis niedrigere Temperaturen T on-set-Z und T Peak-Z zur Folge hat. Diese im Vergleich zum unbestrahlten Textil-PAN beim E-PAN herabgesetzten T onset-Z und T Peak-Z werden im folgenden T onset-Z E-PAN und T Peak-Z E-PAN genannt. Erfindungsgemäß wird der Abstand von T onset-Z E-PAN und T Peak-Z E-PAN vorzugsweise auf etwa 40 bis 110°C, insbesondere auf 60 bis 90°C eingestellt. Bei unbestrahltem Textil-PAN beträgt der Abstand zwischen T onset-Z und T Peak-Z meist 10 bis 60°C. Der Abstand zwischen T onset-E-PAN und T Peak-Z-E-PAN ist also größer als derjenige zwischen T onset-Z und T peak-Z. Das Risiko, dass ein Textil-PAN-Multifilament bei der exothermen oxidativen Thermostabilisierung unkontrolliert überhitzt oder sogar abbrennt, ist dadurch minimiert.The decisive parameter of electron irradiation for controlling the thermal properties of the E-PAN is the irradiation dose. Depending on this, T onset-Z and T peak-Z are shifted towards lower temperatures in such a way that a higher radiation dose results in lower temperatures T onset-Z and T peak-Z . These reduced T onset Z and T peak Z in the E-PAN compared to the non-irradiated textile PAN are called T onset Z E-PAN and T peak Z E-PAN in the following. According to the invention, the distance between Tonset -Z E-PAN and T peak-Z E-PAN is preferably adjusted to about 40 to 110°C, in particular to 60 to 90°C. In the case of non-irradiated textile PAN, the distance between Tonset -Z and T peak-Z is usually 10 to 60°C. The distance between Tonset -E-PAN and T peak-ZE-PAN is thus greater than that between Tonset -Z and T peak-Z . This minimizes the risk of a textile PAN multifilament overheating in an uncontrolled manner or even burning off during exothermic oxidative thermal stabilization.

Im Sinne der erfolgreichen Verwirklichung der Erfindung kann die Bestrahlungsdosis vorzugsweise 10 bis 10000 kGy, insbesondere 10 bis 5000 kGy betragen. Besonders bevorzugt sind Bestrahlungsdosen von 70 bis 1500 kGy, insbesondere von 300 bis 1000 kGy.In terms of the successful realization of the invention, the irradiation dose can preferably be 10 to 10000 kGy, in particular 10 to 5000 kGy. Irradiation doses of from 70 to 1500 kGy, in particular from 300 to 1000 kGy, are particularly preferred.

Ein weiterer wesentlicher Parameter der Elektronenbestrahlung ist die Beschleunigungsspannung. Je höher diese ist, desto tiefer wird ein Faserbündel vom Elektronenstrahl durchdrungen. Desto aufwändiger ist allerdings auch der Strahlenschutz und der nötige finanzielle Aufwand beim Anlagenbau. Ein Bestreben der Erfinder war es deshalb, eine möglichst niedrige Beschleunigungsspannung anzuwenden. Hohe Beschleunigungsspannungen von > 1 MV, wie sie im Stand der Technik verwendet werden, erhöhen unnötigerweise die erforderlichen Strahlenschutzvorkehrungen. Bei 900 kV werden bereits Elektronenstrahleindringtiefen in das Multifilament von > 3 mm erreicht, was > 250 übereinanderliegenden Einzelfilamenten entspricht. In Anbetracht dessen, dass die Multifilamente zur besseren Gasdiffusion typischerweise auf über > 10 Zentimeter aufgespreizt werden, wäre mit einer Beschleunigungsspannung von 900 kV ein Multifilament aus > 2 000 000 Einzelfilamenten bestrahlbar, was bereits um einen Faktor von 40 über den im derzeitigen Stand der Technik typischerweise verwendeten 50 K Multifilamenten liegt. Erfindungsgemäß haben sich deshalb Beschleunigungsspannungen von 100 bis 900 kV, insbesondere von 160 bis 600 kV und insbesondere bevorzugt 180 bis 400 kV als besonders vorteilhaft erwiesen.Another essential parameter of electron irradiation is the acceleration voltage. The higher this is, the deeper a fiber bundle is penetrated by the electron beam. However, radiation protection and the necessary financial outlay for plant construction are all the more complex. It was therefore an aim of the inventors to use the lowest possible acceleration voltage. High acceleration voltages of >1 MV, as used in the prior art, unnecessarily increase the required radiation protection precautions. At 900 kV, electron beam penetration depths of > 3 mm are already achieved in the multifilament, which corresponds to > 250 individual filaments lying one on top of the other. In view of the fact that the multifilaments are typically spread out to > 10 centimeters for better gas diffusion, a multifilament of > 2,000,000 individual filaments could be irradiated with an acceleration voltage of 900 kV, which is already a factor of 40 over the current state of the art typically used 50K multifilaments. According to the invention, therefore, acceleration voltages of 100 to 900 kV, in particular 160 to 600 kV and particularly preferably 180 to 400 kV have proven particularly advantageous.

Außerdem ist die Stromstärke eine weitere wichtige Größe der Bestrahlung. Aus Stromstärke, Beschleunigungsspannung und Zeit ergibt sich die Bestrahlungsdosis. Die Stromstärke bei der Bestrahlung mit Elektronenstrahlen beträgt vorzugsweise 0,1 bis 100 mA, wobei der bevorzugte Bereich 1 bis 15 mA, insbesondere 2 bis 10 mA, beträgt.In addition, the current is another important parameter of the irradiation. The radiation dose results from the current strength, acceleration voltage and time. The current of irradiation with electron beams is preferably 0.1 to 100 mA, with the preferred range being 1 to 15 mA, particularly 2 to 10 mA.

Die Bestrahlung kann diskontinuierlich oder kontinuierlich durchgeführt werden, im Hinblick auf einen technischen, kosteneffizienten Prozess, bei dem außerdem eine möglichst kurze Zeit zwischen Bestrahlung und oxidativer Thermostabilisierung vergehen sollte, erscheint die kontinuierliche Bestrahlung als vorteilhafter. Die Prozessgeschwindigkeit, bei der die Fasern kontinuierlich bestrahlt werden, beträgt vorzugsweise 0,5 bis 100 m/min, insbesondere 5 bis 50 m/min.The irradiation can be carried out discontinuously or continuously, with regard to a technical, cost-efficient process in which the shortest possible time should also elapse between irradiation and oxidative thermal stabilization, continuous irradiation appears to be more advantageous. The process speed at which the fibers are continuously irradiated is preferably 0.5 to 100 m/min, in particular 5 to 50 m/min.

Während der kontinuierlichen Bestrahlung ist es darüber hinaus von Vorteil, wenn die zu bestrahlende Faser einer Zugkraft ausgesetzt ist, welche ein Schrumpfen der Faser verhindert. Diese Zugkraft liegt vorzugsweise zwischen 0,001 bis 1 cN/Filament, insbesondere zwischen 0,03 bis 0,3 cN/Filament.Furthermore, during the continuous irradiation it is advantageous if the fiber to be irradiated is subjected to a tensile force which prevents the fiber from shrinking. This tensile force is preferably between 0.001 and 1 cN/filament, in particular between 0.03 and 0.3 cN/filament.

3. Oxidative Thermostabilisierung3. Oxidative thermal stabilization

An die Bestrahlung der Faser aus Textil-PAN schließt sich erfindungsgemäß die oxidative Thermostabilisierung an. Die E-PAN-Fasern sind über mehrere Wochen lagerbar. Es wäre also denkbar, eine kontinuierliche Bestrahlung unmittelbar vor der oxidativen Thermostabilisierung "online" durchzuführen oder die Bestrahlung kontinuierlich durchzuführen, aber die Fasern danach abzulegen bzw. aufzuwickeln und eine beliebige Zeit zwischenzulagern. Es wurden deshalb Versuche durchgeführt, bei denen E-PAN-Fasern eine Stunde, einen Tag, eine Woche und 6 Wochen nach der Bestrahlung zu Ox-PAN-Fasern stabilisiert wurden. Die Ox-PAN Fasern wurden danach carbonisiert. Dabei zeigte sich, dass die mechanischen Eigenschaften der resultierenden Carbonfasern mit der Lagerungszeit zwischen Bestrahlung und Stabilisierung dahingehend korrelierten, dass eine längere Lagerungszeit die mechanischen Eigenschaften - vor allem die Zugfestigkeit - verschlechterte. Eine Lagerungszeit der E-PAN-Fasern von 6 Wochen reduzierte die Zugfestigkeit von resultierenden Carbonfasern im Schnitt um 18%, verglichen zu Carbonfasern, bei denen die Lagerungszeit etwa eine Stunde betrug.According to the invention, the irradiation of the fiber made of textile PAN is followed by the oxidative heat stabilization. The E-PAN fibers can be stored for several weeks. It would therefore be conceivable to carry out continuous irradiation "online" immediately before the oxidative thermal stabilization or to carry out the irradiation continuously but then lay down or wind up the fibers and store them for any desired period of time. Experiments were therefore carried out in which E-PAN fibers were stabilized into Ox-PAN fibers one hour, one day, one week and 6 weeks after irradiation. The Ox-PAN fibers were then carbonized. It was shown that the mechanical properties of the resulting carbon fibers correlated with the storage time between irradiation and stabilization in such a way that a longer storage time deteriorated the mechanical properties - especially the tensile strength. A storage time of the E-PAN fibers of 6 weeks reduced the tensile strength of resulting carbon fibers by an average of 18% compared to carbon fibers where the storage time was about one hour.

Es ist also vorteilhaft, dass die Fasern unmittelbar nach der Bestrahlung oxidativ thermostabilisiert werden. "Unmittelbar" kann hierbei auch bedeuten, dass Stabilisierung und Bestrahlung durch eine kontinuierliche Fadenführung verbunden und in ihren Prozessgeschwindigkeiten aufeinander abgestimmt sind.It is therefore advantageous for the fibers to be oxidatively thermally stabilized immediately after irradiation. "Immediately" can also mean that stabilization and irradiation are connected by continuous thread guidance and their process speeds are coordinated with one another.

Die Atmosphäre bei der Stabilisierung sollte oxidierenden Charakter besitzen, besonders zweckmäßig ist deshalb die Verwendung von Luft.The atmosphere during stabilization should have an oxidizing character, so it is particularly advisable to use air.

Es hat sich gezeigt, dass es vorteilhaft ist, wenn die Temperatur bei der oxidativen Thermostabilisierung nicht konstant ist. Von Vorteil ist eine fortlaufend ansteigende Temperatur während der oxidativen Thermostabilisierung mit einer definierten Start- und Endtemperatur sowie einer definierten Stabilisierungszeit. Bevorzugt, aber nicht darauf beschränkt, wird dies durch die Verwendung eines Stabilisierungsofens mit mehreren Heizzonen bewältigt. Das Temperaturprofil über die Gesamtheit der Heizzonen zeichnet sich grundsätzlich dadurch aus, dass von der zweiten Heizzone an jede der Heizzonen eine höhere Temperatur als die vorherige hat.It has been shown that it is advantageous if the temperature is not constant during the oxidative thermal stabilization. A continuously increasing temperature during the oxidative thermal stabilization with a defined start and end temperature and a defined stabilization time is advantageous. Preferably, but not limited to, this is accomplished through the use of a multi-heat zone stabilization oven. The temperature profile over the entirety of the heating zones is characterized in principle by the fact that, starting with the second heating zone, each of the heating zones has a higher temperature than the previous one.

Um das Temperaturprofil auf das E-PAN gemäß der Erfindung abzustimmen, müssen zuerst T onset-Z E-PAN und T Peak-Z E-PAN per DSC unter Luft gemäß DIN EN ISO 11357-5:2014-07 ermittelt werden, um herauszufinden, in welchem Temperaturbereich die Zyklisierungsreaktionen des E-PANs auftreten, die für die oxidativ thermische Stabilisierung nötig sind. Dabei sollten Heizraten von 10 K/min angewandt werden. Die Starttemperatur der oxidativen Thermostabilisierung sollte maximal 30°C, insbesondere vorzugsweise maximal 20°C, von T onset-Z E-PAN abweichen, bevorzugt maximal 10°C. Die Endtemperatur der oxidativen Thermostabilisierung sollte maximal 30°C von T Peak-Z E-PAN abweichen, bevorzugt maximal 20°C.In order to match the temperature profile to the E-PAN according to the invention, Tonset -Z E-PAN and T peak-Z E-PAN must first be determined by DSC under air according to DIN EN ISO 11357-5:2014-07 to find out , in which temperature range the cyclization reactions of the E-PAN occur, which are necessary for the oxidative thermal stabilization. Heating rates of 10 K/min should be used. The starting temperature of the oxidative thermal stabilization should deviate from Tonset -Z E-PAN by a maximum of 30° C., in particular preferably a maximum of 20° C., preferably a maximum of 10° C. The end temperature of the oxidative thermal stabilization should deviate from T Peak-Z E-PAN by a maximum of 30°C, preferably by a maximum of 20°C.

Eine erfolgreiche Stabilisierung im Sinne der Erfindung zeichnet sich außerdem dadurch aus, dass die Dichte der Ox-PAN-Faser mindestens 1,30 g/cm3 beträgt. Bevorzugt liegt die Dichte der Ox-PAN-Faser im Bereich von 1,35 bis 1,5 g/cm3, besonders bevorzugt zwischen 1,35 und 1,39 g/cm3. Falls die Dichte der resultierenden Ox-PAN-Fasern außerhalb dieses Dichtebereichs liegt, müssen entweder die Temperatur in den Heizzonen des Stabilisierungsofens oder die Prozessgeschwindigkeit verändert werden. Eine Erhöhung der Temperatur in den Heizzonen oder eine Verlangsamung der Prozessgeschwindigkeit führen zu einer höheren Dichte der Ox-PAN-Faser. Eine Erniedrigung der Temperatur oder eine Erhöhung der Prozessgeschwindigkeit führen zu einer niedrigeren Dichte der Ox-PAN-Faser. Diese iterative Parameterveränderung wird so lange durchgeführt, bis die Ox-PAN-Faser den entsprechenden Dichtebereich erreicht.Successful stabilization within the meaning of the invention is also distinguished by the fact that the density of the Ox-PAN fiber is at least 1.30 g/cm 3 . The density of the Ox-PAN fiber is preferably in the range from 1.35 to 1.5 g/cm 3 , particularly preferably between 1.35 and 1.39 g/cm 3 . If the density of the resulting Ox-PAN fibers falls outside of this density range, either the temperature in the heating zones of the stabilization furnace or the process speed must be changed. Increasing the temperature in the heating zones or slowing down the process speed leads to a higher density of the Ox-PAN fiber. Decreasing the temperature or increasing the process speed leads to a lower density of the Ox-PAN fiber. This iterative parameter change is carried out until the Ox-PAN fiber reaches the corresponding density range.

Die oxidativ thermische Stabilisierung dauert vorzugsweise 10 Minuten bis 4 Stunden, insbesondere 1 Stunde bis 3 Stunden, besonders bevorzugt 1 Stunde bis 2 Stunden. Es hat sich aber auch gezeigt, dass der Bereich von 1,5 bis 2,5 Stunden vorteilhaft ist.The oxidative thermal stabilization lasts preferably 10 minutes to 4 hours, in particular 1 hour to 3 hours, particularly preferably 1 hour to 2 hours. However, it has also been shown that the range from 1.5 to 2.5 hours is advantageous.

Der Sauerstoffgehalt der Ox-PAN-Faser beträgt vorzugsweise 5 bis 25 Gew.-%, insbesondere 10 bis 15 Gew.-% und ganz besonders bevorzugt von 11 bis 13 Gew.-%.The oxygen content of the Ox-PAN fiber is preferably 5 to 25% by weight, in particular 10 to 15% by weight and very particularly preferably from 11 to 13% by weight.

Des Weiteren ist es für den Erfolg der Erfindung wichtig, dass die Fasern bei der Stabilisierung vorzugsweise einer Zugkraft ausgesetzt sind. Eine hohe Zugkraft bei der Stabilisierung führt üblicherweise zu besseren mechanischen Eigenschaften der resultierenden Carbonfasern. Aus der Höhe der Zugkraft ergibt sich außerdem eine Verstreckung oder ein Schrumpfen der Fasern während der Stabilisierung. Es hat sich gezeigt, dass es vor allem zu Beginn der oxidativ thermischen Stabilisierung von Vorteil ist, die Zugkraft so zu wählen, dass sich eine Verstreckung von 0 bis 50% ergibt, bevorzugt von 0 bis 10%. Die dabei auftretenden Zugkräfte betragen vorzugsweise 0,03 bis 1 cN pro Filament, insbesondere 0,05 bis 0,5 cN pro Filament, wobei der Bereich von 0,1 bis 0,3 cN pro Filament ganz besonders bevorzugt ist. Überraschenderweise zeigte sich außerdem, dass mit einer Erhöhung der Bestrahlungsdosis eine Erhöhung der Zugkräfte bei gleicher Verstreckung einhergeht.Furthermore, it is important for the success of the invention that the fibers are preferably subjected to a tensile force during stabilization. A high tensile force during stabilization usually leads to better mechanical properties of the resulting carbon fibers. The magnitude of the tensile force also gives stretching or shrinkage of the fibers during stabilization. It has been shown that it is advantageous, especially at the beginning of the oxidative thermal stabilization, to select the tensile force in such a way that a stretching of 0 to 50%, preferably 0 to 10%, results. The tensile forces that occur are preferably 0.03 to 1 cN per filament, in particular 0.05 to 0.5 cN per filament, with the range from 0.1 to 0.3 cN per filament being particularly preferred. Surprisingly, it was also found that an increase in the radiation dose is accompanied by an increase in the tensile forces for the same stretching.

4. Carbonisierung4. Carbonation

Um eine Carbonfaser zu erhalten, werden die Ox-PAN-Fasern nach der Stabilisierung vorzugsweise unter einer Inertgasatmosphäre carbonisiert. Als Inertgase kommen Helium, Neon, Argon, Krypton, Xenon und Stickstoff in Frage, bevorzugt wird die Verwendung von Stickstoff.In order to obtain a carbon fiber, after stabilization, the Ox-PAN fibers are preferably carbonized under an inert gas atmosphere. Possible inert gases are helium, neon, argon, krypton, xenon and nitrogen, with the use of nitrogen being preferred.

Für den Grad der Carbonisierung und für die mechanischen Eigenschaften der resultierenden Carbonfasern maßgeblich entscheidend ist die Endtemperatur bei der Carbonisierung. Die Endtemperatur der Carbonisierung kann bis zu 1800°C betragen.The final temperature during carbonization is decisive for the degree of carbonization and for the mechanical properties of the resulting carbon fibers. The final temperature of the carbonization can be up to 1800°C.

Die Carbonisierung kann kontinuierlich und diskontinuierlich durchgeführt werden. Bei der diskontinuierlichen Carbonisierung wird die Ox-PAN-Faser unter Inertgasatmosphäre von einer beliebigen Temperatur, üblicherweise Raumtemperatur, auf die Endtemperatur der Carbonisierung erwärmt. Die Heizrate bei der Carbonisierung liegt vorzugsweise zwischen 1 und 100 K/min, insbesondere zwischen 5 und 20 K/min. Die Ox-PAN-Faser sollte während der diskontinuierlichen Carbonisierung eine Zugkraft in Faserachse erfahren.The carbonization can be carried out continuously and discontinuously. In batchwise carbonization, the Ox-PAN fiber is heated under an inert gas atmosphere from any desired temperature, usually room temperature, to the final carbonization temperature. The heating rate during carbonization is preferably between 1 and 100 K/min, in particular between 5 and 20 K/min. The Ox-PAN fiber should experience a tensile force in the fiber axis during batchwise carbonization.

Außerdem, und in bevorzugter Weise, ist eine kontinuierliche Carbonisierung möglich. Bei der kontinuierlichen Carbonisierung werden die Ox-PAN Fasern über Galetten durch einen Carbonisierungsofen geleitet, welcher in vorteilhafter Ausgestaltung mehrere Heizzonen besitzt. Insbesondere bevorzugt ist die Verwendung mehrerer Carbonisierungsöfen. Bei der Verwendung von zwei konsekutiven Carbonisierungsöfen werden diese LT (low temperature)- und HT (high temperature)-Ofen genannt. Die Temperatur im LT-Ofen kann zwischen 200 und 1000°C betragen, bevorzugt zwischen 300 und 750°C. Dieser Temperaturbereich sollte im Ofen auch über mehrere Heizzonen komplett abgedeckt werden. Im HT-Ofen kann die Temperatur zwischen 800 und 1800°C betragen, bevorzugt zwischen 1000 und 1400°C.In addition, and preferably, continuous carbonization is possible. In the case of continuous carbonization, the Ox-PAN fibers are guided through a carbonization furnace via godets, which in an advantageous embodiment has several heating zones. The use of several carbonization furnaces is particularly preferred. When using two consecutive carbonization furnaces, these become LT (low temperature) and HT (high temperature) furnaces called. The temperature in the LT furnace can be between 200 and 1000°C, preferably between 300 and 750°C. This temperature range should also be completely covered in the furnace over several heating zones. In the HT furnace, the temperature can be between 800 and 1800°C, preferably between 1000 and 1400°C.

Auch während der kontinuierlichen Carbonisierung ist es von Vorteil, wenn die Fasern eine Zugkraft erfahren. Diese sollte zu einer Gesamtverstreckung der Fasern von -10 bis +10% führen. Insbesondere ist es von Vorteil, wenn im LT-Ofen eine positive Verstreckung von 0,1 bis 15 % erreicht wird und im HT-Ofen eine negative Verstreckung bzw. ein Schrumpf von -0,1 bis -15 %. Die Wickelgeschwindigkeit bei der kontinuierlichen Carbonisierung sollte zwischen 0,5 und 50 m/min betragen und ist im Wesentlichen von der Größe der Carbonisierungsanlage abhängig.It is also advantageous during the continuous carbonization if the fibers are subjected to a tensile force. This should result in an overall stretching of the fibers of -10 to +10%. In particular, it is advantageous if positive stretching of 0.1 to 15% is achieved in the LT oven and negative stretching or shrinkage of -0.1 to -15% in the HT oven. The winding speed for continuous carbonization should be between 0.5 and 50 m/min and essentially depends on the size of the carbonization system.

Die Dichte der resultierenden Carbonfasern liegt vorzugsweise zwischen 1,65 und 1,9 g/cm3, insbesondere zwischen 1,7 und 1,8 g/cm3. Eine höhere Dichte geht oft mit einer Verbesserung der mechanischen Eigenschaften einher. Überraschenderweise führt die Bestrahlung der Multifilamente aus Textil-PAN bei vergleichbarer Dichte der Ox-PAN-Faser zu höheren Dichten der Carbonfasern.The density of the resulting carbon fibers is preferably between 1.65 and 1.9 g/cm 3 , in particular between 1.7 and 1.8 g/cm 3 . A higher density often goes hand in hand with an improvement in mechanical properties. Surprisingly, the irradiation of the multifilaments made of textile PAN leads to higher densities of the carbon fibers with a comparable density of the Ox-PAN fiber.

5. Graphitisierung5. graphitization

Optional kann nach der Carbonisierung noch eine Graphitisierung durchgeführt werden. Bei dieser wird wie bei der Carbonisierung eine Inertgasatmosphäre verwendet. Als Inertgase kommen Helium, Neon, Argon, Krypton und Xenon in Frage. Bevorzugt wird die Verwendung von Argon.Optionally, a graphitization can also be carried out after the carbonization. As with carbonization, an inert gas atmosphere is used here. Helium, neon, argon, krypton and xenon can be used as inert gases. The use of argon is preferred.

Die Graphitisierung wird vorzugsweise zwischen 1800 und 3000°C durchgeführt. Erreicht wird dies über einen oder mehrere Graphitisierungsöfen, die jeweils bevorzugt mit mehreren Heizzonen ausgestattet sind. Die Starttemperatur der Graphitisierung kann zwischen 1800 und 2200°C betragen. Die Endtemperatur kann zwischen 2200 und 3000°C betragen.The graphitization is preferably carried out between 1800 and 3000°C. This is achieved using one or more graphitization furnaces, each of which is preferably equipped with multiple heating zones. The starting temperature of graphitization can be between 1800 and 2200°C. The final temperature can be between 2200 and 3000°C.

In vorteilhafter Weise wird die Graphitisierung kontinuierlich durchgeführt. Während der Graphitisierung sollte das Multifilament eine Zugkraft erfahren. Diese liegt vorzugsweise zwischen 0,01 und 0,5 cN pro Filament. Die daraus resultierende Verstreckung liegt vorzugsweise zwischen -5 und +5%, insbesondere zwischen -2 und +2%.The graphitization is advantageously carried out continuously. During the graphitization, the multifilament should experience a tensile force. This is preferably between 0.01 and 0.5 cN per filament. The stretching resulting therefrom is preferably between -5 and +5%, in particular between -2 and +2%.

Zusammenfassend lässt sich feststellen, dass mit der Erfindung, wie oben gezeigt, vielfältige Vorteile verbunden sind:
Die Erfindung betrifft ein einfaches, kostengünstiges Verfahren zur Elektronenbestrahlung von Multifilamenten, bestehend aus Textil-PAN, sowie deren Verwendung als Präkursor zur Herstellung von Carbonfasern.
In summary, it can be stated that the invention, as shown above, is associated with a wide range of advantages:
The invention relates to a simple, inexpensive method for electron beam irradiation of multifilaments consisting of textile PAN and their use as precursors for the production of carbon fibers.

Die Bestrahlung der Textil-PAN-Multifilamente ist in bevorzugter Weise unter Stickstoff durchzuführen. Diese Inertgasatmosphäre führt überraschenderweise zu besseren mechanischen Eigenschaften der resultierenden Carbonfasern. Außerdem erweist es sich als vorteilhaft, die oxidativ thermischer Stabilisierung unmittelbar nach der Bestrahlung durchzuführen. Durch eine definierte, bezüglich der thermischen Eigenschaften des Präkursors vorteilhaft gestaltete oxidativ thermische Stabilisierung kann das bestrahlte Multifilament in ein Ox-PAN-Multifilament überführt werden. Dieses kann unter Inertgasatmosphäre in Carbonfasern umgewandelt werden. Die resultierenden Carbonfasern weisen Bestwerte bei den Höchstzugfestigkeiten (nach DIN EN ISO 5079:1995) von durchschnittlich bis zu 3,1 ± 0,6 GPa auf. Der E-Modul weist im Durchschnitt bis zu 212 ± 9 GPa auf.The irradiation of the textile PAN multifilaments should preferably be carried out under nitrogen. Surprisingly, this inert gas atmosphere leads to better mechanical properties of the resulting carbon fibers. In addition, it has proven to be advantageous to carry out the oxidative thermal stabilization immediately after the irradiation. The irradiated multifilament can be converted into an Ox-PAN multifilament by means of a defined oxidative thermal stabilization which is advantageous with regard to the thermal properties of the precursor. This can be converted into carbon fibers under an inert gas atmosphere. The resulting carbon fibers have top values for maximum tensile strength (according to DIN EN ISO 5079:1995) of up to 3.1 ± 0.6 GPa on average. The modulus of elasticity is up to 212 ± 9 GPa on average.

Demzufolge bezieht sich der Kern der vorliegenden Erfindung auf die Prozessführung bei der Elektronenbestrahlung und der oxidativ thermischen Stabilisierung.Accordingly, the core of the present invention relates to the process control during electron irradiation and the oxidative thermal stabilization.

Die vorliegende Erfindung soll nachfolgend durch verschiedene Beispiele noch näher erläutert werden:The present invention is to be explained in more detail below by means of various examples:

Beispieleexamples Beispiel 1 (Bestrahlung, Stabilisierung und Carbonisierung von Textil-PAN 1) Example 1 (irradiation, stabilization and carbonization of textile PAN 1)

500 m eines nassgesponnenes 3k Multifilaments von Textil-PAN 1 (93,5 Gew.-% Acrylnitril, 6 Gew.-% Methylacrylat, 0,5 Gew.-% Methallylsulfonat, Mn= 72 000 g/mol, PDI= 3,0, T onset-Z = 249°C, T Peak-Z = 299°C) wurde kontinuierlich (Wickelgeschwindigkeit = 6,6 m/min) mit 1000 kGy Elektronenstrahlung bei 200 kV Beschleunigungsspannung und 3,5 mA Stromstärke unter Stickstoff bestrahlt. Die mechanischen Eigenschaften des Multifilaments vor und nach Bestrahlung sind in Tabelle 1 angegeben. Tabelle 1 Faser Zugfestigkeit [MPa] E-Modul [GPa] Dehnung [%] Durchmesser [µm] Dichte [g/cm3] 0 kGy 540 ± 35 11,3 ± 0,9 12,3 ± 0,8 12,1 ± 0,8 1,18 E-PAN 1000 kGy 520 ± 35 12,1 ± 0,8 11,1 ± 0,6 12,8± 0,5 1,18 Ox-PAN 330 ± 40 7,9 ± 1,0 19,3 ± 4,0 11,4 ± 0,9 1,36 Carbonfaser 2650 ± 600 206 ± 9 1,24 ± 0,25 7,0 ± 0,6 1,77 500 m of a wet-spun 3k multifilament of textile PAN 1 (93.5 wt.% acrylonitrile, 6 wt.% methyl acrylate, 0.5 wt.% methallylsulfonate, M n = 72,000 g/mol, PDI= 3, 0, T onset Z = 249°C, T peak Z = 299°C) was irradiated continuously (winding speed = 6.6 m/min) with 1000 kGy electron beams at 200 kV acceleration voltage and 3.5 mA current under nitrogen. The mechanical properties of the multifilament before and after irradiation are given in Table 1 . <u>Table 1</u> fiber Tensile strength [MPa] Modulus of elasticity [GPa] Strain [%] diameter [µm] Density [g/cm 3 ] 0 kGy 540±35 11.3±0.9 12.3±0.8 12.1±0.8 1:18 E-PAN 1000 kGy 520±35 12.1±0.8 11.1±0.6 12.8±0.5 1:18 Ox-PAN 330±40 7.9 ± 1.0 19.3 ± 4.0 11.4±0.9 1.36 carbon fiber 2650±600 206±9 1.24 ± 0.25 7.0 ± 0.6 1.77

Anmerkung: Mechanische Eigenschaften eines nassgesponnenen 3K-Multifilaments bestehend aus Textil-PAN 1, unbestrahlt und elektronenbestrahlt unter Stickstoff mit einer Dosis von 1000 kGy, der resultierenden Ox-PAN Faser und der resultierenden Carbonfaser. Die Werte basieren auf 20 Einzelfasermessungen, bei der Carbonfaser auf 30 Einzelfasermessungen. Note : Mechanical properties of a 3K wet-spun multifilament composed of textile PAN 1, unirradiated and electron irradiated under nitrogen with a dose of 1000 kGy, the resulting Ox-PAN fiber and the resulting carbon fiber. The values are based on 20 individual fiber measurements, for the carbon fiber on 30 individual fiber measurements.

Anschließend wurde über eine DSC-Messung der bestrahlten Faser deren T onset-Z E-PAN mit 204°C und ein T Peak-Z E-PAN mit 282°C bestimmt. Das Multifilament wurde anschließend in einem Stabilisierungsofen mit 4 Heizkammern stabilisiert. Anhand des bestimmten T onset-Z E-PAN wurde eine Temperatur von 210°C in Heizkammer 1 gewählt. In den folgenden Heizkammern 2 bis 4 wurden 225°C, 245°C und 265°C eingestellt. In Heizkammer 1 und 2 wurde die Faser jeweils 5% verstreckt. Die dabei auftretende Zugkraft betrug 426 cN in Heizkammer 1, 527 cN in Heizkammer 2, 428 cN in Heizkammer 3 und 460 cN in Heizkammer 4. Die Dichte des resultierenden Ox-PAN Multifilaments betrug 1,36 g/cm3. Die mechanischen Eigenschaften und die Dichte der Ox-PAN Fasern sind in Tabelle 1 zu sehen.A DSC measurement of the irradiated fiber was then used to determine its Tonset Z E-PAN at 204°C and a T Peak Z E-PAN at 282°C. The multifilament was then stabilized in a stabilization oven with 4 heating chambers. Based on the determined Tonset -Z E-PAN, a temperature of 210°C in heating chamber 1 was selected. In the following heating chambers 2 to 4, 225°C, 245°C and 265°C were set. In heating chambers 1 and 2, the fiber was drawn 5% in each case. The tensile force occurring was 426 cN in heating chamber 1, 527 cN in heating chamber 2, 428 cN in heating chamber 3 and 460 cN in heating chamber 4. The density of the resulting Ox-PAN multifilament was 1.36 g/cm 3 . The mechanical properties and the density of the Ox-PAN fibers can be seen in Table 1.

Die anschließende Carbonisierung wurde kontinuierlich unter Zuhilfenahme eines LT- und eines HT-Carbonisierungsofens in Stickstoffatmosphäre durchgeführt. Das Temperaturprofil und die Verstreckung im LT-Ofen sind in Tabelle 2 zu sehen, das Temperaturprofil und die Verstreckung im HT-Ofen in Tabelle 3. Die resultierenden mechanischen Eigenschaften sowie die Dichte der Carbonfaser sind in Tabelle 1 zu sehen. Tabelle 2 Heizzone 1 2 3 4 5 6 Temperatur [°C] 300 390 480 570 660 750 Verstreckung [%] +5 Subsequent carbonization was carried out continuously with the aid of an LT and an HT carbonization furnace in a nitrogen atmosphere. The temperature profile and stretching in the LT oven can be seen in Table 2, the Temperature profile and stretching in the HT oven in Table 3. The resulting mechanical properties and the density of the carbon fibers can be seen in Table 1. <u>Table 2</u> heating zone 1 2 3 4 5 6 Temperature [°C] 300 390 480 570 660 750 stretch [%] +5

Anmerkung: Temperaturprofil und Verstreckung im LT-Ofen bei der Carbonisierung in Beispiel 1. Tabelle 3 Heizzone 1 2 3 Temperatur [°C] 1000 1175 1350 Verstreckung [%] -3,5 Note: Temperature profile and stretching in the LT oven during carbonization in Example 1. <u>Table 3</u> heating zone 1 2 3 Temperature [°C] 1000 1175 1350 stretch [%] -3.5

Anmerkung: Temperaturprofil und Verstreckung im HT Ofen bei der Carbonisierung in Beispiel 1. Tabelle 4 Zugfestigkeit [MPa] E-Modul [GPa] Dehnung [%] Durchmesser [µm] 3250 211,23 1,47 6,84 2800 188,85 1,39 7,88 3470 225,68 1,47 6,18 2330 204,28 1,11 7,53 2390 207,99 1,11 7,33 2930 213,84 1,31 6,57 2870 204,10 1,35 7,59 3340 207,88 1,54 6,34 2680 212,53 1,22 8,11 3960 218,22 1,73 6,35 2360 207,74 1,11 6,73 2640 209,00 1,22 7,98 1670 203,82 0,82 7,40 1790 200,58 0,88 6,74 2120 213,07 0,99 6,49 2540 200,40 1,23 6,58 2710 196,56 1,32 5,65 2640 197,62 1,30 6,69 1660 218,81 0,76 6,55 2140 204,31 1,02 7,26 3370 193,09 1,60 7,41 3420 201,74 1,62 7,77 2560 215,99 1,14 6,14 2920 214,81 1,32 7,44 3080 186,63 1,56 7,14 2290 205,56 1,09 6,94 2190 205,65 1,04 7,36 1940 208,91 0,92 6,95 3040 211,56 1,39 6,61 2310 202,89 1,11 7,38 Note: Temperature profile and stretching in the HT oven during carbonization in example 1. <u>Table 4</u> Tensile strength [MPa] Modulus of elasticity [GPa] Strain [%] diameter [µm] 3250 211.23 1.47 6.84 2800 188.85 1.39 7.88 3470 225.68 1.47 6:18 2330 204.28 1:11 7.53 2390 207.99 1:11 7.33 2930 213.84 1.31 6.57 2870 204.10 1.35 7.59 3340 207.88 1.54 6.34 2680 212.53 1.22 8:11 3960 218.22 1.73 6.35 2360 207.74 1:11 6.73 2640 209.00 1.22 7.98 1670 203.82 0.82 7.40 1790 200.58 0.88 6.74 2120 213.07 0.99 6.49 2540 200.40 1.23 6.58 2710 196.56 1.32 5.65 2640 197.62 1.30 6.69 1660 218.81 0.76 6.55 2140 204.31 1.02 7.26 3370 193.09 1.60 7.41 3420 201.74 1.62 7.77 2560 215.99 1.14 6:14 2920 214.81 1.32 7.44 3080 186.63 1.56 7:14 2290 205.56 1.09 6.94 2190 205.65 1.04 7.36 1940 208.91 0.92 6.95 3040 211.56 1.39 6.61 2310 202.89 1:11 7.38

Anmerkung: Einzelfaserwerte der mechanischen Eigenschaften der Carbonfasern aus Beispiel 1. Note: Individual fiber values of the mechanical properties of the carbon fibers from example 1.

Vergleichsbeispiel 1: (Stabilisierung und Carbonisierung von Textil-PAN 1, ohne Bestrahlung) Comparative example 1: (Stabilization and carbonization of textile PAN 1, without irradiation)

Das Multifilament aus Beispiel 1 wurde ohne Bestrahlung kontinuierlich stabilisiert und carbonisiert. Mittels DSC Messung wurde T onset-Z zu 249°C und T Peak-Z zu 299°C bestimmt. Die Temperatur in Heizkammer 1 des Stabilisierungsofens betrug 240°C, in Heizkammer 2 bis 4 wurden 250, 265 und 275°C eingestellt. Analog zu Beispiel 1 wurde in Heizkammer 1 und 2 jeweils 5% verstreckt. Die dabei auftretende Zugkraft betrug 171 cN in Heizkammer 1, 203 cN in Heizkammer 2, 255 cN in Heizkammer 3, und 370 cN in Heizkammer 4. Die Dichte des Ox-PAN-Multifilaments betrug 1,39 g/cm3, die mechanischen Eigenschaften sind in Tabelle 5 zu sehen. Die Carbonisierung wurde ebenfalls analog zu Beispiel 1 durchgeführt. Die mechanischen Eigenschaften und die Dichte der resultierenden Carbonfasern sind in Tabelle 5 zu sehen. Tabelle 5 Faser Zugfestigkeit [MPa] E-Modul [GPa] Dehnung [%] Durchmesser [µm] Dichte [g/ml] Ox-PAN 280 ± 40 8,2 ± 1,0 16,8 ± 3,4 10,7 ± 1,2 1,39 Carbonfaser 2250 ± 400 196 ± 6 1,12 ± 0,2 6,8 ± 0,4 1,73 The multifilament from Example 1 was continuously stabilized and carbonized without irradiation. Tonset -Z was determined to be 249°C and T peak-Z to be 299°C by means of DSC measurement. The temperature in heating chamber 1 of the stabilization furnace was 240°C, in heating chambers 2 to 4 250, 265 and 275°C were set. Analogously to example 1, 5% was stretched in heating chambers 1 and 2 in each case. The tensile force occurring was 171 cN in heating chamber 1, 203 cN in heating chamber 2, 255 cN in heating chamber 3, and 370 cN in heating chamber 4. The density of the Ox-PAN multifilament was 1.39 g/cm 3 , the mechanical properties can be seen in Table 5. The carbonization was also carried out analogously to Example 1. The mechanical properties and density of the resulting carbon fibers can be seen in Table 5. <u>Table 5</u> fiber Tensile strength [MPa] Modulus of elasticity [GPa] Strain [%] diameter [µm] Density [g/ml] Ox-PAN 280±40 8.2 ± 1.0 16.8±3.4 10.7±1.2 1.39 carbon fiber 2250±400 196±6 1.12±0.2 6.8±0.4 1.73

Anmerkung: Mechanische Eigenschaften der Ox-PAN-Fasern und Carbonfasern, resultierend aus einem nassgesponnenen 3K-Multifilament von Textil-PAN 1, ohne Elektronenbestrahlung. Note: Mechanical properties of Ox-PAN fibers and carbon fibers resulting from a 3K wet-spun multifilament of Textile-PAN 1, without electron beam irradiation.

Vergleichsbeispiel 2: (Bestrahlung unter Luft, Stabilisierung und Carbonisierung analog zu KR 20160140268A) Comparative example 2 : (irradiation in air, stabilization and carbonization analogous to KR 20160140268A)

Das Multifilament aus Beispiel 1 wurde analog zu Beispiel 1 bestrahlt, jedoch unter Luft statt Stickstoff, so dass Bestrahlungsdosis und Atmosphäre denjenigen in KR 101755267 gleichen. Danach wurde jeweils ein etwa 15 cm langes Stück der unter Luft bestrahlten Fasern in Graphitschiffchen fixiert. Anschließend wurden die Fasern in einem Muffelofen unter Luft oxidativ stabilisiert. Dabei wurde von 200 auf 240°C innerhalb von 150 Minuten und von 240 bis 260°C innerhalb von 90 Minuten aufgeheizt. Anschließend wurden die Fasern mit einer Heizrate von 5 K/min bis 1200°C unter Stickstoff carbonisiert. Die resultierenden mechanischen Eigenschaften sind in Tabelle 6 zu sehen. Die Zugfestigkeit dieser Fasern entspricht in etwa der Zugfestigkeit der Carbonfasern nach KR 20160140268A , der E Modul liegt etwa 50 GPa über dem der Carbonfasern nach KR 20160140268A . Tabelle 6 Dosis Zugfestigkeit [MPa] E-Modul [GPa] Dehnung [%] Durchmesser [µm] Dichte [g/ml] 1000 kGy 1740 ± 500 178 ± 15 0,98 ± 0,28 8,4 ± 0,5 1,75 The multifilament from example 1 was irradiated analogously to example 1, but under air instead of nitrogen, so that the irradiation dose and atmosphere correspond to those in KR 101755267 same. Thereafter, an approximately 15 cm long piece of the air-blasted fibers was fixed in graphite boats. The fibers were then oxidatively stabilized in air in a muffle furnace. The heating was from 200 to 240°C within 150 minutes and from 240 to 260°C within 90 minutes. The fibers were then carbonized at a heating rate of 5 K/min up to 1200° C. under nitrogen. The resulting mechanical properties can be seen in Table 6. The tensile strength of these fibers roughly corresponds to the tensile strength of carbon fibers KR 20160140268A , the E modulus is about 50 GPa higher than that of carbon fibers KR 20160140268A . <u>Table 6</u> dose Tensile strength [MPa] Modulus of elasticity [GPa] Strain [%] diameter [µm] Density [g/ml] 1000kGy 1740 ± 500 178±15 0.98 ± 0.28 8.4±0.5 1.75

Anmerkung: Mechanische Eigenschaften der Carbonfasern, resultierend aus Textil-PAN 1, bestrahlt in Luft, stabilisiert und carbonisiert analog zu KR 101755267 . Note : Mechanical properties of the carbon fibers resulting from Textile PAN 1, irradiated in air, stabilized and carbonized analogously to KR 101755267 .

Beispiel 2: (Bestrahlung, Stabilisierung und Carbonisierung von Textil-PAN 2) Example 2: (irradiation, stabilization and carbonization of textile PAN 2)

500 m eines nassgesponnenen 3k Multifilaments, bestehend aus Textil-PAN 2 (6,5 Gew.-% Vinylacetat; Mn = 51 000 g/mol, PDI = 4,9, T onset-Z = 256°C, T Peak-Z = 314°C), wurden kontinuierlich (6,6 m/min) mit 1000 kGy Elektronenstrahlung bei 200 kV Beschleunigungsspannung und 3,5 mA Stromstärke unter Stickstoff bestrahlt. Anschließend wurde über eine DSC-Messung der bestrahlten Faser deren T onset-Z E-PAN mit 210°C und T Peak-Z E-PAN mit 291°C bestimmt. Das Multifilament wurde anschließend in einem Stabilisierungsofen mit 4 Heizkammern stabilisiert. Anhand des bestimmten T onset-Z E-PAN wurde eine Temperatur von 210°C in Heizkammer 1 gewählt.500 m of a wet-spun 3k multifilament consisting of textile PAN 2 (6.5% by weight of vinyl acetate; M n = 51,000 g/mol, PDI = 4.9, T onset Z = 256°C, T peak Z =314° C.) were irradiated continuously (6.6 m/min) with 1000 kGy electron beams at an acceleration voltage of 200 kV and a current intensity of 3.5 mA under nitrogen. The Tonset Z E-PAN of the irradiated fiber was then determined at 210° C. and the T Peak Z E-PAN at 291° C. by means of a DSC measurement. The multifilament was then stabilized in a stabilization oven with 4 heating chambers. Based on the determined Tonset -Z E-PAN, a temperature of 210°C in heating chamber 1 was chosen.

In den folgenden Heizkammern 2 bis 4 wurden 225°C, 245°C und 265°C eingestellt. In Heizkammer 1 und 2 wurde die Faser jeweils 5% verstreckt. Die Dichte des resultierenden Ox-PAN-Multifilaments betrug 1,36 g/cm3. Die anschließende Carbonisierung wurde kontinuierlich unter Zuhilfenahme eines LT- und eines HT-Carbonisierungsofens in Stickstoffatmosphäre durchgeführt. Die Temperaturprofile in LT und HT entsprechen denen in Beispiel 1, die Verstreckung im LT betrug +2%, im HT -3,5 %. Die mechanischen Eigenschaften der Carbonfasern sind in Tabelle 7 zu sehen. Tabelle 7 Dosis der EB-Bestrahlung [kGy] Zugfestigkeit [MPa] E-Modul [GPa] Dehnung [%] Durchmesser [µm] Dichte [g/ml] 1000 2600 ± 600 184 ± 6 1,38 ± 0,34 7,0 ± 0,5 1,71 In the following heating chambers 2 to 4, 225°C, 245°C and 265°C were set. In heating chambers 1 and 2, the fiber was drawn 5% in each case. The density of the resulting Ox-PAN multifilament was 1.36 g/cm 3 . Subsequent carbonization was carried out continuously with the aid of an LT and an HT carbonization furnace in a nitrogen atmosphere. The temperature profiles in LT and HT correspond to those in Example 1, the stretch in LT was +2% and in HT -3.5%. The mechanical properties of the carbon fibers can be seen in Table 7. <u>Table 7</u> Dose of EB irradiation [kGy] Tensile strength [MPa] Modulus of elasticity [GPa] Strain [%] diameter [µm] Density [g/ml] 1000 2600±600 184±6 1.38 ± 0.34 7.0 ± 0.5 1.71

Anmerkung: Eigenschaften der Carbonfasern, resultierend aus einem nassgesponnenen 3-K Multifilaments aus Textil-PAN 2, elektronenbestrahlt unter Stickstoff mit einer Dosis von 1000 kGy. Note: Properties of the carbon fibers resulting from a wet-spun 3-component multifilament of textile PAN 2, electron beam irradiated under nitrogen with a dose of 1000 kGy.

Beispiel 3: (Bestrahlung, Stabilisierung und Carbonisierung von Textil-PAN 1 mit verschiedenen Zeitabständen zwischen Bestrahlung und Stabilisierung) Example 3: (irradiation, stabilization and carbonization of textile PAN 1 with different time intervals between irradiation and stabilization)

800 m eines trockengesponnenes 3 K Multifilaments aus Textil-PAN 1 (93,5 Gew.-% Acrylnitril, 6 Gew.-% Methylacrylat, 0,5 Gew.-% Methallylsulfonat, Mn= 72 000 g/mol, PDI= 3,0, T onset-Z = 249°C, T Peak-Z = 299°C) wurden kontinuierlich (Wickelgeschwindigkeit = 6,6 m/min) mit 1000 kGy Elektronenstrahlung bei 200 kV Beschleunigungsspannung und 3,5 mA Stromstärke unter Stickstoff bestrahlt. Der T onset-Z E-PAN und T Peak-Z E-PAN entsprachen dem aus Beispiel 1. Das Multifilament wurde anschließend in vier Versuchen jeweils nach einer Pause mit einer Dauer von einer Stunde, einem Tag, einer Woche und 6 Wochen in einem Stabilisierungsofen mit 4 Heizkammern stabilisiert. Die Verstreckungen und Temperaturen im Stabilisierungsofen entsprechen denen von Beispiel 1. Die dabei auftretenden Zugkräfte im Stabilisierungsofen sind in Tabelle 8 zu sehen. Tabelle 8 Intervall Bestrahlung - Stabilisierung Ofen 1 2 3 4 Temperatur [°C] 210 225 245 265 Verstreckung [%] 5 5 0 0 1 h Zugkraft [cN] 196 268 272 274 1d Zugkraft [cN] 206 267 268 260 1 W Zugkraft [cN] 182 252 257 266 6 W Zugkraft [cN] 188 251 261 240 800 m of a dry-spun 3-component multifilament made of textile PAN 1 (93.5% by weight of acrylonitrile, 6% by weight of methyl acrylate, 0.5% by weight of methallyl sulfonate, M n = 72,000 g/mol, PDI = 3 ,0, T onset Z = 249°C, T peak Z = 299°C) were irradiated continuously (winding speed = 6.6 m/min) with 1000 kGy electron beams at 200 kV acceleration voltage and 3.5 mA current under nitrogen . The T onset Z E-PAN and T Peak Z E-PAN corresponded to that of Example 1. The multifilament was then tested in four experiments, each after a break of one hour, one day, one week and 6 weeks in one Stabilization oven stabilized with 4 heating chambers. The stretching and temperatures in the stabilization oven correspond to those of example 1. The tensile forces occurring in the stabilization oven can be seen in Table 8. <u>Table 8</u> Interval irradiation - stabilization Oven 1 2 3 4 Temperature [°C] 210 225 245 265 stretch [%] 5 5 0 0 1 hour Tensile force [cN] 196 268 272 274 1d Tensile force [cN] 206 267 268 260 1w Tensile force [cN] 182 252 257 266 6 w Tensile force [cN] 188 251 261 240

Anmerkung: Temperaturprofil, Zugkräfte und Verstreckung im Stabilisierungsofen für die bei der oxidativen Stabilisierung der trockengesponnenen und mit 1000 kGy bestrahlten Dralon X Faser nach verschiedenen Zeitintervallen zwischen Bestrahlung und Stabilisierung. Note: Temperature profile, tensile forces and stretching in the stabilization oven for the oxidative stabilization of the dry-spun and 1000 kGy irradiated Dralon X fiber after different time intervals between irradiation and stabilization.

Die Dichte und die mechanischen Eigenschaften des resultierenden Ox-PAN-Multifilaments sind in Tabelle 9 dargestellt. Tabelle 9 Intervall Bestrahlung - Stabilisierung Zugfestigkeit [cN/tex] E-Modul [cN/tex] Dehnung [%] Durchmesser [dtex] Dichte [g/ml] 1 h 20,8 ± 1,8 550 ± 30 23 ± 5 1,1 ± 0,3 1,36 1 d 18,4 ± 2,0 530 ± 20 23 ± 5 1,2 ± 0,3 1,36 1 W 19,9 ± 2,2 560 ± 30 20 ± 6 1,1 ± 0,3 1,36 6 W 16,2 ± 1,1 500 ± 30 23 ± 5 1,2 ± 0,3 1,37 The density and mechanical properties of the resulting Ox-PAN multifilament are shown in Table 9. <u>Table 9</u> Interval irradiation - stabilization Tensile strength [cN/tex] Modulus of elasticity [cN/tex] Strain [%] Diameter [dtex] Density [g/ml] 1 hour 20.8±1.8 550±30 23±5 1.1±0.3 1.36 1d 18.4 ± 2.0 530±20 23±5 1.2±0.3 1.36 1w 19.9±2.2 560±30 20±6 1.1±0.3 1.36 6 w 16.2±1.1 500±30 23±5 1.2±0.3 1.37

Anmerkung: Eigenschaften der stabilisierten Fasern, die aus mit 1000 kGy bestrahlten, trockengesponnenen Dralon X Fasern resultieren. Die Zeit zwischen Bestrahlung und der Stabilisierung wurde zwischen etwa einer Stunde und 6 Wochen variiert. Note: Properties of the stabilized fibers resulting from 1000 kGy irradiated dry-spun Dralon X fibers. The time between irradiation and stabilization was varied between about one hour and 6 weeks.

Die Carbonisierung wurde anschließend wie in Beispiel 1 durchgeführt. In Tabelle 10 sind die mechanischen Eigenschaften sowie die Dichten der resultierenden Carbonfasern dargestellt. Im LT-Ofen wurde bei den Versuchen die Verstreckung zwischen 2 und 7 % variiert. Tabelle 10 Intervall BestrahlungStabilisierung LT Verstreckung [%] Zugfestigkeit [GPa] E-Modul [GPa] Dehnung [%] Durchmesser [dtex] 1 h 2 2,49 ± 0,89 188 ± 7 1,29 ± 0,4 0,55 ± 0,09 5 3,08 ± 0,64 193 ± 9 1,54 ± 0,29 0,58 ± 0,09 7 2,89 ± 0,89 193 ± 7 1,46 ± 0,43 0,61 ± 0,10 1 d 2 2,52 ± 0,66 192 ± 9 1,29 ± 0,31 0,61 ± 0,19 5 2,85 ± 0,60 196 ± 9 1,42 ± 0,29 0,66 ± 0,18 7 2,60 ± 0,62 195 ± 9 1,30 ± 0,29 0,53 ± 0,08 1 W 2 2,16 ± 0,63 185 ± 11 1,15 ± 0,32 0,67 ± 0,25 5 2,67 ± 0,52 192 ± 10 1,35 ± 0,23 0,58 ± 0,09 7 2,46 ± 0,53 197 ± 9 1,23 ± 0,25 0,61 ± 0,16 6 W 2 2,72 ± 0,64 184 ± 8 1,44 ± 0,33 0,59 ± 0,07 5 2,17 ± 0,59 191 ± 14 1,12 ± 0,27 0,63 ± 0,16 7 2,07 ± 0,38 192 ± 11 1,07 ± 0,21 0,58 ± 0,13 The carbonization was then carried out as in Example 1. Table 10 shows the mechanical properties and the densities of the resulting carbon fibers. In the LT oven, the stretching was varied between 2 and 7% in the tests. <u>Table 10</u> Interval Irradiation Stabilization LT stretch [%] Tensile strength [GPa] Modulus of elasticity [GPa] Strain [%] Diameter [dtex] 1 hour 2 2.49 ± 0.89 188±7 1.29±0.4 0.55 ± 0.09 5 3.08 ± 0.64 193±9 1.54 ± 0.29 0.58 ± 0.09 7 2.89 ± 0.89 193±7 1.46±0.43 0.61 ± 0.10 1d 2 2.52 ± 0.66 192±9 1.29 ± 0.31 0.61 ± 0.19 5 2.85 ± 0.60 196±9 1.42±0.29 0.66 ± 0.18 7 2.60 ± 0.62 195±9 1.30 ± 0.29 0.53 ± 0.08 1w 2 2.16 ± 0.63 185±11 1.15 ± 0.32 0.67 ± 0.25 5 2.67±0.52 192±10 1.35 ± 0.23 0.58 ± 0.09 7 2.46 ± 0.53 197±9 1.23 ± 0.25 0.61 ± 0.16 6 w 2 2.72 ± 0.64 184±8 1.44 ± 0.33 0.59 ± 0.07 5 2.17 ± 0.59 191±14 1.12±0.27 0.63 ± 0.16 7 2.07 ± 0.38 192±11 1.07±0.21 0.58 ± 0.13

Anmerkung: Mechanische Eigenschaften der Carbonfasern aus einem trockengesponnenen, mit 1000 kGy bestrahlten 3K-Textil-PAN-1 Multifilament. Die Zeit zwischen Bestrahlung und Stabilisierung wurde zwischen 1 h und 6 W variiert. Die Dichte betrug bei allen Carbonfasern 1,77 g/ml. Note : Mechanical properties of the carbon fibers from a dry-spun, 1000 kGy irradiated 3K textile PAN-1 multifilament. The time between irradiation and stabilization was varied between 1 h and 6 W. The density of all carbon fibers was 1.77 g/ml.

Beispiel 4: (Bestrahlung, Stabilisierung und Carbonisierung von Textil-PAN 3) Example 4: (irradiation, stabilization and carbonization of textile PAN 3)

500 m eines nassgesponnenen 3k Multifilaments, bestehend aus Textil-PAN 3 (100 % Acrylnitril, Mn = 84 000 g/mol, PDI = 5,6, T onset-Z = 298°C, T Peak-Z = 313°C), wurden kontinuierlich (6,6 m/min) mit 1000 kGy Elektronenstrahlung bei 200 kV Beschleunigungsspannung und 3,5 mA Stromstärke unter Stickstoff bestrahlt. Anschließend wurde über eine DSC-Messung der bestrahlten Faser deren T onset-Z E-PAN zu 217°C und T Peak-Z E-PAN zu 279°C bestimmt. Das Multifilament wurde anschließend in einem Stabilisierungsofen mit 4 Heizkammern stabilisiert. Anhand des bestimmten T onset-Z E-PAN wurde eine Temperatur von 210°C in Heizkammer 1 gewählt. In den folgenden Heizkammern 2 bis 4 wurden 225°C, 245°C und 265°C eingestellt. In Heizkammer 1 und 2 wurde die Faser jeweils 2% verstreckt, in Heizkammer 3 & 4 betrug die Verstreckung -0,5 %. Die Dichte des resultierenden Ox-PAN-Multifilaments betrug 1,37 g/cm3. Die anschließende Carbonisierung wurde kontinuierlich unter Zuhilfenahme eines LT- und eines HT-Carbonisierungsofens in Stickstoffatmosphäre durchgeführt. Die Temperaturprofile in LT und HT entsprechen denen in Beispiel 1, die Verstreckung im LT betrug +5%, im HT -3,5 %. Die mechanischen Eigenschaften der Carbonfasern sind in Tabelle 11 zu sehen. Tabelle 11 Dosis der EB-Bestrahlung [kGy] Zugfestigkeit [MPa] E-Modul [GPa] Dehnung [%] Durchmesser [µm] Dichte [g/ml] 1000 2980 ± 660 212 ± 9 1,38 ± 0,30 7,0 ± 0,5 1,78 500 m of a wet-spun 3k multifilament consisting of textile PAN 3 (100% acrylonitrile, M n = 84,000 g/mol, PDI = 5.6, T onset Z = 298°C, T peak Z = 313°C ), were irradiated continuously (6.6 m/min) with 1000 kGy electron beams at 200 kV acceleration voltage and 3.5 mA current under nitrogen. Subsequently, the Tonset Z E-PAN of the irradiated fiber was determined as 217° C. and the T peak Z E-PAN as 279° C. via a DSC measurement of the irradiated fiber. The multifilament was then stabilized in a stabilization oven with 4 heating chambers. Based on the determined Tonset -Z E-PAN, a temperature of 210°C in heating chamber 1 was selected. In the following heating chambers 2 to 4 were 225°C, 245°C and 265°C set. In heating chambers 1 and 2, the fibers were each drawn 2%, in heating chambers 3 & 4 the drawing was -0.5%. The density of the resulting Ox-PAN multifilament was 1.37 g/cm 3 . Subsequent carbonization was carried out continuously with the aid of an LT and an HT carbonization furnace in a nitrogen atmosphere. The temperature profiles in LT and HT correspond to those in Example 1, the stretch in LT was +5% and in HT -3.5%. The mechanical properties of the carbon fibers can be seen in Table 11. <u>Table 11</u> Dose of EB irradiation [kGy] Tensile strength [MPa] Modulus of elasticity [GPa] Strain [%] diameter [µm] Density [g/ml] 1000 2980±660 212±9 1.38 ± 0.30 7.0 ± 0.5 1.78

Anmerkung: Eigenschaften der Carbonfasern, resultierend aus einem nassgesponnenen 3K Multifilaments aus Textil-PAN 3, elektronenbestrahlt unter Stickstoff mit einer Dosis von 1000 kGy. Note: Properties of the carbon fibers resulting from a wet-spun 3K multifilament of textile PAN 3, electron beam irradiated under nitrogen with a dose of 1000 kGy.

Claims (15)

  1. A method for the irradiation and oxidative stabilisation of PAN fibres for the production of a precursor fibre of carbon fibres, characterised in that
    (1) the PAN fibres are based on a homopolymer or copolymer of PAN, the homopolymer or copolymer of PAN having a T onset-Z temperature of at least 245°C, measured under air (according to DIN EN ISO 11357-5:2014-07), a number-average molecular weight of 20,000 to 250,000 g/mol polymethyl methacrylate molar mass equivalents (determined according to DIN 55672-2:2016-03), and a content of comonomers of not more than 15.0 wt.%,
    (2) the PAN fibres are subjected to ionising irradiation with electron beams in an inert gas atmosphere with an irradiation dose of 10 to 5,000 kGy,
    (3) the reduced T onset-Z temperature under air is determined from the E-PAN fibres obtained by irradiation (T onset-Z E-PAN) (according to DIN EN ISO 11357-5: 2014-07), thereupon the oxidative thermostabilisation is initiated at a starting temperature of T onset-Z E-PAN ± 30°C, and the oxidative thermostabilisation is carried out at increasing temperature up to a minimum density of the oxidatively stabilised PAN fibre (ox-PAN) of 1.30 g/cm3.
  2. The method according to claim 1, characterised in that the PAN has a number-average molecular weight of from 30,000 to 150,000 g/mol, especially from 50,000 to 120,000 g/mol.
  3. The method according to claim 1 or claim 2, characterised in that the comonomer content of PAN is 0.0 to 12.0 wt.%, especially 0.0 to 9.0 wt.%, and especially preferably 0.0 to 7.5 wt.%.
  4. The method according to at least one of the preceding claims, characterised in that the comonomer of the PAN is a vinyl compound, especially vinyl acetate, propionic acid vinyl ester, methyl acrylate, methyl methacrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, tert-butyl acrylate, sodium methallyl sulphonate, sodium vinyl sulphonate, acrylamide, methacrylamide and/or vinyl acetamide.
  5. The method according to at least one of the preceding claims, characterised in that the irradiation dose of the ionising irradiation is 70 to 2,500 kGy, especially 300 to 1,000 kGy.
  6. The method according to at least one of the preceding claims, characterised in that the ionising irradiation is carried out with electron beams in a nitrogen atmosphere.
  7. The method according to claim 6, characterised in that the acceleration voltage during the ionising irradiation with electron beams is 100 to 900 kV, especially 160 to 600 kV and especially preferably 180 to 400 kV.
  8. The method according to claim 6 or claim 7, characterised in that the current intensity during ionising irradiation with electron beams is 0.1 to 100 mA, especially 1 to 50 mA, and especially preferably 2 to 10 mA.
  9. The method according to at least one of claims 6 to 8, characterised in that the storage time between irradiation and oxidative thermostabilisation is less than one day, preferably less than one hour.
  10. The method according to at least one of claims 6 to 9, characterised in that the ionising irradiation is carried out immediately upstream of the oxidative thermostabilisation in the case of continuous filament running.
  11. The method according to at least one of the preceding claims, characterised in that the starting temperature in the oxidative thermostabilisation T onset-Z E-PAN is ± 20°C,
    especially ± 10°C.
  12. The method according to at least one of the preceding claims, characterised in that the end temperature of the oxidative thermostabilisation T Peak-Z E-PAN is ± 30°C,
    especially ± 20°C.
  13. The method according to at least one of the preceding claims, characterised in that the oxidative thermostabilisation is carried out up to a density of the oxidatively thermostabilised PAN (ox-PAN) of 1.30 to 1.5 g/cm3, especially of 1.35 to 1.39 g/cm3.
  14. The method according to at least one of the preceding claims, characterised in that the T onset-Z temperature is up to 320°C, especially up to 300°C.
  15. Use of the ox-PAN fibres obtained by a method according to at least one of the preceding claims for the production of carbon fibres by carbonisation, optionally with subsequent graphitisation.
EP20709517.5A 2019-03-01 2020-02-27 Method of ionizing irradiation of textile polyacrylonitrile fibres and use thereof as carbon fibre precursor Active EP3931381B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019105292.0A DE102019105292A1 (en) 2019-03-01 2019-03-01 Process for the ionizing irradiation of textile polyacrylonitrile fibers and their use as a carbon fiber precursor
PCT/EP2020/055203 WO2020178149A1 (en) 2019-03-01 2020-02-27 Method of ionizing irradiation of textile polyacrylonitrile fibres and use thereof as carbon fibre precursor

Publications (3)

Publication Number Publication Date
EP3931381A1 EP3931381A1 (en) 2022-01-05
EP3931381C0 EP3931381C0 (en) 2023-06-21
EP3931381B1 true EP3931381B1 (en) 2023-06-21

Family

ID=69770873

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20709517.5A Active EP3931381B1 (en) 2019-03-01 2020-02-27 Method of ionizing irradiation of textile polyacrylonitrile fibres and use thereof as carbon fibre precursor

Country Status (3)

Country Link
EP (1) EP3931381B1 (en)
DE (1) DE102019105292A1 (en)
WO (1) WO2020178149A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020119592A1 (en) 2020-07-24 2022-01-27 Technische Universität Dresden Process for the production of porous carbon fibers and their use
CN113215684A (en) * 2021-05-20 2021-08-06 北京化工大学 Method for preparing polyacrylonitrile-based thermo-oxidative stabilized fiber

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827619A (en) 1994-05-10 1996-01-30 Toray Ind Inc Acrylic precursor for carbon fiber and production of carbon fiber
CN104790070A (en) * 2015-04-17 2015-07-22 东华大学 Method for preparing polyacrylonitrile carbon fiber with gamma ray irradiation
KR101689861B1 (en) * 2015-05-26 2016-12-26 한국과학기술연구원 Nanocarbon composite carbon fiber with low cost and high performance and their preparation method
KR101755267B1 (en) * 2015-05-29 2017-07-10 한국과학기술연구원 Carbon fiber using electron beam cross-linked polyacrylonitrile fiber and method for preparing the same
WO2017194103A1 (en) * 2016-05-11 2017-11-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a multifilament yarn and multifilament yarn

Also Published As

Publication number Publication date
EP3931381A1 (en) 2022-01-05
EP3931381C0 (en) 2023-06-21
WO2020178149A1 (en) 2020-09-10
DE102019105292A1 (en) 2020-09-03

Similar Documents

Publication Publication Date Title
DE3540444C2 (en)
EP3931381B1 (en) Method of ionizing irradiation of textile polyacrylonitrile fibres and use thereof as carbon fibre precursor
US4284615A (en) Process for the production of carbon fibers
DE2614415A1 (en) METHOD FOR MANUFACTURING CARBON FIBER
EP2475812B1 (en) Stabilisation of polyacrylonitrile precursor yarn
DE1939390A1 (en) Process for the thermal stabilization of acrylic fiber material
DE2504593C3 (en)
DE2504593B2 (en) METHOD FOR MANUFACTURING CARBON FIBERS
DE2128907A1 (en) Process for graphitizing fiber material
DE2013913A1 (en) Process for oxidizing acrylic fibers
DE1946473A1 (en) Process for producing a stabilized acrylic fiber material
DE2542060C3 (en) Process for the production of carbon fibers
DE2506344B2 (en) METHOD FOR MANUFACTURING CARBON FIBERS
DE3138893C2 (en)
DE2211639C3 (en) Process for the production of carbon threads
EP3455396A1 (en) Method for producing a multifilament yarn and multifilament yarn
DE2251320B2 (en) Process for the production of flame retardant fiber materials
DE2305191C3 (en) Process for the production of a heat-resistant thread
DE2432042C3 (en) Process for producing a carbonaceous fibrous material
DE2130600C3 (en) Process for the production of carbonized and optionally graphitized fiber material
EP3568509A1 (en) Continuous method for producing a thermally stabilized multifilament thread, multifilament thread, and fiber
DE202012013359U1 (en) Carbon fibers and carbon fiber precursors
DE1939388A1 (en) Stabilized continuous, highly oriented acrylic fibers and methods of making them
DE2158798A1 (en) Process for the production of carbon fibers
JP4307233B2 (en) Flame resistant fiber and carbon fiber manufacturing method

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210930

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230104

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020003870

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1580955

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20230720

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230727

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231021

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

U20 Renewal fee paid [unitary effect]

Year of fee payment: 5

Effective date: 20240228