EP3920661B1 - Procédé de fonctionnement d'une plaque de cuisson à induction et plaque de cuisson à induction - Google Patents

Procédé de fonctionnement d'une plaque de cuisson à induction et plaque de cuisson à induction Download PDF

Info

Publication number
EP3920661B1
EP3920661B1 EP21176540.9A EP21176540A EP3920661B1 EP 3920661 B1 EP3920661 B1 EP 3920661B1 EP 21176540 A EP21176540 A EP 21176540A EP 3920661 B1 EP3920661 B1 EP 3920661B1
Authority
EP
European Patent Office
Prior art keywords
voltage
oscillating circuit
induction heating
inverter
mains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21176540.9A
Other languages
German (de)
English (en)
Other versions
EP3920661A1 (fr
Inventor
Christian Egenter
Max-Felix Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EGO Elektro Geratebau GmbH
Original Assignee
EGO Elektro Geratebau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EGO Elektro Geratebau GmbH filed Critical EGO Elektro Geratebau GmbH
Publication of EP3920661A1 publication Critical patent/EP3920661A1/fr
Application granted granted Critical
Publication of EP3920661B1 publication Critical patent/EP3920661B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/04Sources of current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices
    • H05B6/1209Cooking devices induction cooking plates or the like and devices to be used in combination with them
    • H05B6/1245Cooking devices induction cooking plates or the like and devices to be used in combination with them with special coil arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/05Heating plates with pan detection means

Definitions

  • the invention relates to a method for operating an induction hob and an induction hob.
  • the EP 3 291 643 A1 discloses a method for operating an induction hob, in which a material of a cooking vessel covering an induction heating coil is determined by evaluating a phase difference between an excitation voltage and a current that occurs, with this measurement being repeated at different duty cycles of the excitation voltage.
  • the EP 2 645 814 A1 discloses a method for operating an induction hob, in which a material of a cooking vessel covering an induction heating coil is determined by determining a resonant frequency of an oscillating circuit.
  • the EP 2 360 989 A1 discloses a method for operating an induction hob, in which the degree to which an induction heating coil is covered by a cooking vessel to be heated is determined by determining a phase difference between an excitation voltage and an oscillating circuit current.
  • the invention is based on the object of providing a method for operating an induction hob and an induction hob which enable operating variables of the induction hob to be determined as reliably as possible.
  • the method is used to operate an induction hob.
  • the induction hob has at least one conventional inverter that is supplied from a supply voltage.
  • the supply voltage is preferably a DC voltage.
  • the inverter can, for example, have a conventionally connected inverter branch with two semiconductor switching means. In this respect, reference is also made to the relevant technical literature.
  • the induction hob also has at least one capacitor.
  • the induction hob also has at least one induction heating coil or an inductor, which is associated with a hotplate and is provided for a magnetic To generate an alternating field in a pot base to be heated.
  • at least one induction heating coil or an inductor which is associated with a hotplate and is provided for a magnetic To generate an alternating field in a pot base to be heated.
  • the at least one capacitor and the induction heating coil are connected in such a way that they form an oscillating circuit, for example a parallel or series oscillating circuit.
  • the inverter is intended to generate a pulse width modulated excitation voltage for the resonant circuit from the supply voltage.
  • the pulse-width-modulated excitation voltage is typically a square-wave voltage with a constant or variable duty cycle and duty cycle and a constant or variable period or frequency. In this respect, reference is also made to the relevant technical literature.
  • the procedure has the following steps.
  • Step a) namely generating the pulse width modulated excitation voltage with a predetermined voltage profile.
  • Step b namely measuring a resulting or set resonant circuit current, in particular through the induction heating coil.
  • Step c) namely determining electrical oscillating circuit parameters, in particular in the form of an oscillating circuit impedance, as a function of the voltage profile of the pulse width modulated excitation voltage and the measured oscillating circuit current.
  • the electrical oscillating circuit parameters or the oscillating circuit impedance can designate, for example, the electrical equivalent parameters R and L of the induction heating coil with the pot set up or derivable electrical impedances or variables of the differential oscillation equation, such as quality or damping or natural frequency.
  • the well-known vector calculation can be used, i.e. the amount and phase of the voltage and the amount and phase of the current are related to each other.
  • Step d namely repeating steps a) to c) n times with a changed voltage curve of the excitation voltage to determine voltage curve-dependent oscillating circuit parameters.
  • To change the voltage curve of the excitation voltage preferably only a voltage difference between a low level of the pulse width modulated excitation voltage and a high level of the pulse width modulated excitation voltage is changed.
  • a frequency and a duty cycle of the pulse width modulated excitation voltage preferably remain unchanged.
  • the number n is a natural number and lies, for example, in a number range between 1 and 400.
  • the number n can depend, for example, on a period of the pulse width modulation or the number n can be chosen in such a way that the steps are repeated for the duration of an entire mains half-wave.
  • Step e namely determining (measuring) operating variables of the induction cooktop from the voltage curve-dependent resonant circuit parameters.
  • the supply voltage of the inverter is changed, in particular exclusively, as a result of which, for example, the voltage difference between the high level and the low level of the pulse width modulated excitation voltage is changed accordingly.
  • a duty cycle of the pulse-width-modulated excitation voltage and/or a period of the pulse-width-modulated excitation voltage remains constant during steps a) to e).
  • the operating variables to be determined are selected from: degree of coverage of the induction heating coil by a cooking vessel to be heated, in particular with a ferromagnetic base, material of the cooking vessel covering the induction heating coil or material of the base of the cooking vessel, and temperature of the base of the induction heating coil covering cooking vessel.
  • the degree of coverage can depend, for example, on whether the cooking vessel completely covers the induction heating coil, partially covers it, or does not cover it at all.
  • the induction hob also has: a rectifier, which is designed to generate the supply voltage from an AC mains voltage, and an intermediate circuit capacitor, which is designed to buffer the supply voltage and filter the inverter reactions.
  • the method then has the following additional steps: before step a), with a decreasing amount of the mains AC voltage, i.e. decreasing half-wave, continuous discharging of the intermediate circuit capacitor down to a voltage value which is in a predetermined voltage range around the amount of the instantaneous mains AC voltage by the inverter is controlled appropriately.
  • the specified voltage range can, for example, be a few volts, for example between 3 V and 10 V, above the magnitude of the instantaneous mains AC voltage.
  • Steps a) through c) are repeated, for example, in a voltage range of the mains AC voltage between approx. 5 V and 80 V, in particular between 10 V and 50 V.
  • the inverter is controlled independently of the heating power setting during steps a) to e) and controlled depending on the heating power setting before and/or after steps a) to e), for example by setting a duty cycle of the pulse width modulation and/or a period of the pulse width modulation of the excitation voltage according to the heating power becomes.
  • step a) the first harmonic and/or higher harmonic of the pulse-width-modulated excitation voltage or a voltage dependent thereon is additionally determined, in step b) the first harmonic and/or higher harmonic of the measured resonant circuit current is also determined, and in step c) the resonant circuit parameters are determined as a function of the determined first harmonic and/or the determined higher harmonic of the pulse width modulated excitation voltage or the voltage dependent thereon and the determined first harmonic and/or the determined higher harmonic of the measured resonant circuit current.
  • the first harmonics and/or the higher harmonics are determined using low-pass filters and/or Fourier analysis.
  • the higher-harmonic voltages and currents can also be determined by Fourier analysis and the corresponding higher-harmonic impedances can be calculated.
  • a period of the pulse-width-modulated excitation voltage is selected in such a way that it is shorter than a period of a self-resonant oscillation of the oscillating circuit.
  • the frequency of the pulse width modulated excitation voltage is higher than the resonant frequency of the oscillating circuit for the majority of commercially available cookware. If the period of the selected excitation voltage is too close to the natural resonance, the period can be shortened in order to limit the resonant circuit current to a relevant level.
  • the induction hob has additional induction heating coils, the additional induction heating coils also being fed from the rectified AC mains voltage with the interposition of associated inverters, wherein during of steps a) to e) in a time range around the zero crossing of the mains AC voltage, the further induction heating coils are not fed from the rectified mains AC voltage.
  • the time range around the zero crossing can begin, for example, 1 ms before the zero crossing and end 2 ms after the zero crossing.
  • the induction hob is designed to carry out the method described above and has: at least one inverter, which is supplied from a supply voltage, at least one capacitor, an induction heating coil, with the at least one capacitor and the induction heating coil being connected in such a way that they form an oscillating circuit, and wherein the inverter is designed to generate a pulse-width-modulated excitation voltage for the resonant circuit from the supply voltage, and a control unit that is designed to control the inverter in such a way that a method described above is carried out.
  • the coverage of the hotplate is also required as an operating variable, preferably resolved continuously from 0% to 100% coverage of the active surface of the induction heating coil.
  • the impedance or the electrical (equivalent) parameters R and L of the induction heating coil can be measured with the pot set up, since these change significantly when the coverage changes.
  • these substitute parameters are also dependent on the pot materials used and the temperature of the bottom of the pot. These parameters are also dependent on the magnetic excitation, or the current through the inductor and the excitation frequency, which is why the measurement is usually carried out with constant excitation.
  • the oscillating circuit parameters are determined at different levels of excitation, ie, for example, at different supply voltages of a half-bridge of a series oscillating circuit or at different current levels in a parallel oscillating circuit.
  • the resonant circuit parameters can be measured before or after the mains zero crossing of a feeding mains AC voltage, whereby the rising or falling mains AC voltage can be used for variable excitation and the voltage profile-dependent or input voltage-dependent difference in the resonant circuit parameters can be used as additional information for pot detection , which makes it easier to distinguish pot materials.
  • excitation or supply voltage of less than 80 V different changes in the resonant circuit parameters depending on the pot material can be seen.
  • the resonant circuit parameters can be switched from measuring mode to power output mode, so that the measurement can take place during operation and the power output does not have to be interrupted significantly for the measurement.
  • the voltage limit for switching to heating mode can vary depending on the current through the induction heating element.
  • the exciting output voltage of the inverter is preferably measured, but alternatively the voltage across the induction heating coil can also be measured directly.
  • Oscillating circuit parameters such as quality Q, damping ⁇ , natural frequency fr or period Tr can also be determined in order to be able to determine the coverage of the pot on the inductor.
  • the input variable voltage (or in general current through the induction heating coil) is changed in order to obtain at least one additional variable for determining the installed load (pot detection), for example the delta of one or more resonant circuit parameters based on a delta of the excitation voltage or the stream.
  • the position of a maximum of an oscillating circuit parameter based on the variable excitation voltage can also be used as a criterion.
  • the resonant circuit parameters can also be evaluated as changing over the current through the induction heating coil instead of over the variable excitation voltage.
  • the changes in the oscillating circuit parameters caused by the voltage change provide additional variables that allow better differentiation of pot material classes despite variable pot coverage on the induction heating coil.
  • the resonant circuit parameters can be measured in a time interval after or before a zero crossing of the AC line voltage.
  • the first harmonic of excitation voltage and current is preferably used to calculate the resonant circuit parameters.
  • a low-pass filter can be provided for this purpose; alternatively, a corresponding Fourier analysis of the measurement data can be carried out using an algorithm.
  • the measurement is started, for example, shortly after the mains zero crossing, for example at 8 V mains AC voltage and ended again at 40-50 V, and the inverter is switched to conventional heating power operation.
  • This voltage range for pot detection allows differences resulting from different permeability curves of pot materials to be distinguished, but on the other hand timely switching to heating mode, so that high outputs can also be transmitted and the specification of limiting the harmonics of the mains current can be met.
  • the determination of the operating variables as a function of the voltage profile or the delta determination can be dispensed with and the heating mode can be switched to even at lower voltages. In this operating case, only a change in the coverage needs to be determined.
  • the inventive approach of implementing pot detection with variable excitation voltage makes it possible to generate additional resonant circuit parameters or measured variables for pot detection (with coverage measurement), which are caused in particular by different permeability characteristics of different pot materials, which means that ambiguities can be distinguished.
  • the stress curve-dependent analysis or the delta analysis allows a better distinction between the pot materials, which then enables a pot-material-specific determination of the coverage of the induction heating coil in a second step.
  • Utilizing the increasing mains AC voltage after a zero crossing allows a cost-effective implementation of a variable supply voltage for the inverter and avoids the need for power supply units with different output voltages for different excitation of pot detection.
  • a pot class in a first step, for example, can be determined and in a subsequent step a degree of coverage can then be determined specifically for the pot material of this pot class.
  • FIG. 1 shows a schematic block diagram of an induction hob 100, which is designed to carry out the method according to the invention.
  • the induction hob 100 has a conventional inverter 1, which is supplied from a supply voltage US.
  • the inverter 1 has two conventional semiconductor switching means 10 and 11 which are looped in series between the supply voltage US.
  • An excitation voltage UA is output at a connection node of the two semiconductor switching means 10 and 11 .
  • the induction hob 100 also has two capacitors 2 and 3, which are looped in series between the supply voltage US.
  • the induction hob 100 also has an induction heating coil 4 (also referred to as an inductor).
  • the induction heating coil 4 is looped in between a connection node of the two capacitors 2 and 3 and the connection node of the two semiconductor switching means 10 and 11 .
  • the two capacitors 2, 3 and the induction heating coil 4 form a series resonant circuit 5.
  • the inverter 1 is designed to generate the pulse width modulated excitation voltage UA for the resonant circuit 5 from the supply voltage US.
  • the inverter 1 is controlled by a microprocessor-based control unit 9 with a downstream driver unit 12, with reference to FIG 2 will be described in detail below.
  • the induction hob 100 also has a rectifier 7 which is designed to generate the supply voltage US from an AC mains voltage UN, for example with 230 V/AC and 50 Hz.
  • the induction hob 100 also has an intermediate circuit capacitor 8, which is designed to buffer the supply voltage US.
  • FIG. 2 shows voltage curves and current curves of the in 1 shown induction hob 100 over time.
  • US designates the supply voltage
  • UA designates the excitation voltage
  • UN designates the mains AC voltage
  • iS designates the oscillating circuit current.
  • the excitation voltage UA is generated in a pulse width modulated manner in such a way that a specified, presently low, heating output is established.
  • the mains AC voltage UN decreases sinusoidally.
  • the supply voltage US generated from the mains AC voltage UN by means of rectification remains above the mains AC voltage UN due to the buffering by means of the intermediate circuit capacitor 8 and the low power output.
  • Phase P2 follows phase P1, during which the intermediate circuit capacitor 8 is discharged by suitably controlling the inverter 1 down to the amount of the instantaneous mains voltage UN.
  • phase P2 ends and phase P3 begins, ie the actual measuring operation, during which the operating variables of the induction hob 100 to be determined are determined or measured.
  • the operating variables are a degree of coverage of the induction heating coil 4 by a cooking vessel 6 to be heated, a material or a material class of a pot base of the cooking vessel 6 covering the induction heating coil 4 and a temperature of the base of the cooking vessel 6 covering the induction heating coil 4.
  • the pulse width modulated excitation voltage UA is generated with a specified voltage curve, for example by generating one or two periods of the pulse width modulated excitation voltage UA with a specified period duration, a specified duty cycle and a voltage difference between the low level and high level of the pulse width modulation, which is approximately the current supply voltage US corresponds.
  • the instantaneous supply voltage US in turn corresponds approximately to the instantaneous magnitude of the mains AC voltage UN.
  • a resulting oscillating circuit current iS is then measured through the induction heating coil 4, with the electrical oscillating circuit parameters being calculated as a function of the instantaneous value of the supply voltage US, i.e. the instantaneous voltage curve of the excitation voltage US, and the measured oscillating circuit current iS.
  • the supply voltage US increases accordingly, so that the voltage difference between the low level and high level increases accordingly for corresponding periods of pulse width modulation, i.e. the voltage profile of the pulse width modulated excitation voltage UA changes accordingly.
  • a duty cycle of the pulse-width-modulated excitation voltage UA and a period of the pulse-width-modulated excitation voltage UA remain constant.
  • the resulting oscillating circuit currents iS are measured for a number n of chronologically successive voltage curves of the pulse width modulated excitation voltage UA and for each voltage curve of the n different voltage curves the associated electrical voltage curve-dependent oscillating circuit parameter is determined or calculated, so that n voltage curve-dependent oscillating circuit parameters are determined.
  • n different resonant circuit parameters are determined for n different voltage curves.
  • the operating variables of the induction hob 100 are determined from at least two resonant circuit parameters of the n different electrical resonant circuit parameters that are dependent on the voltage profile.
  • the first harmonic of the respective pulse width modulated excitation voltage UA or a voltage dependent thereon can be determined, the first harmonic of the respectively measured oscillating circuit current iS can be determined, and the respective electrical oscillating circuit parameter can then be determined as a function of the determined first harmonic of the pulse width modulated excitation voltage or the voltage dependent thereon and the first harmonic of the measured resonant circuit current can be determined.
  • the first harmonics can be determined, for example, using low-pass filters and/or Fourier analysis.
  • the inverter 1 is controlled independently of the heating power setting, with a frequency of the pulse width modulation preferably being higher than a natural resonant frequency of the oscillating circuit 5.
  • Phase P3 extends over a voltage magnitude range of the mains AC voltage UN between approx. 10 V and 50 V.
  • Phase P3 is followed by phase P4, during which the inverter 1 is controlled again as a function of the heat output setting.
  • the induction hob 100 can have further induction heating coils, with the further induction heating coils also being fed from the rectified AC mains voltage UN, with the further induction heating coils not being fed from the rectified mains AC voltage UN during phase P3 in order to avoid crosstalk.
  • FIG. 3 shows an example of a changing resonant circuit inductance or a changing inductance of an induction heating coil as a function of the cooking utensil covering.
  • the inductance, but also the change in inductance over the covering, is different for different materials of the bottom of the cookware.
  • FIG. 4 shows the non-linear inductance curve of commercially available cookware as a function of the current through the induction heating coil.
  • the magnetic field strength of the induction heating coil is proportional to the current through the induction heating coil and forms the magnetic modulation of the pot material.
  • the inductance increases due to the increasing permeability of ferritic materials until increasing areas of the bottom of the pot reach ferritic saturation and the inductance decreases more or less strongly with increasing modulation.
  • At least two operating points of the modulation are measured and related to one another in order to be able to use an additional measured variable to determine the operating variables.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)
  • Induction Heating Cooking Devices (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Claims (10)

  1. Procédé pour faire fonctionner une plaque de cuisson à induction (100),
    la plaque de cuisson à induction (100) possédant :
    - un onduleur (1) qui est alimenté à partir d'une tension d'alimentation (US),
    - au moins un condensateur (2, 3) et
    - une bobine de chauffage par induction (4),
    - l'au moins un condensateur (2, 3) et la bobine de chauffage par induction (4) étant interconnectés de telle sorte qu'ils forment un circuit oscillant (5), et
    - l'onduleur (1) étant configuré pour générer, à partir de la tension d'alimentation (US), une tension d'excitation (UA) modulée en largeur d'impulsions pour le circuit oscillant (5),
    le procédé comprenant les étapes suivantes :
    a) génération de la tension d'excitation (UA) modulée en largeur d'impulsions avec une courbe de tension prédéfinie,
    b) mesure d'un courant de circuit oscillant (iS) qui en résulte, notamment à travers la bobine de chauffage par induction (4),
    c) détermination de paramètres électriques de circuit oscillant en fonction de la courbe de tension de la tension d'excitation (UA) modulée en largeur d'impulsions et du courant de circuit oscillant (iS) mesuré,
    d) répétition n fois des étapes a) à c) en présence d'une courbe de tension modifiée de la tension d'excitation (UA) afin de déterminer des paramètres électriques de circuit oscillant dépendants de la courbe de tension, et
    e) identification de grandeurs de fonctionnement de la plaque de cuisson à induction (100) à partir des paramètres électriques de circuit oscillant dépendants de la courbe de tension,
    caractérisé en ce que
    - la tension d'alimentation (US) de l'onduleur (1) est modifiée pour modifier la courbe de tension de la tension d'excitation (UA).
  2. Procédé selon la revendication 1, caractérisé en ce que
    - un rapport cyclique de la tension d'excitation (UA) modulée en largeur d'impulsions et/ou une durée de période de la tension d'excitation (UA) modulée en largeur d'impulsions reste/restent constant(s) pendant les étapes a) à e) .
  3. Procédé selon l'une des revendications précédentes, caractérisé en ce que
    - les grandeurs de fonctionnement sont sélectionnées parmi :
    - degré de recouvrement de la bobine de chauffage par induction (4) par un récipient de cuisson (6) à chauffer,
    - matériau du récipient de cuisson (6) qui recouvre la bobine de chauffage par induction (4),
    - température d'un fond du récipient de cuisson (6) qui recouvre la bobine de chauffage par induction (4).
  4. Procédé selon l'une des revendications précédentes, caractérisé en ce que la plaque de cuisson à induction (100) possède en outre :
    - un redresseur (7), qui est configuré pour générer la tension d'alimentation (US) à partir d'une tension alternative de réseau (UN), et
    - un condensateur de circuit intermédiaire (8), qui est configuré pour mettre en tampon la tension d'alimentation (US),
    le procédé comprenant les étapes supplémentaires suivantes :
    - avant l'étape a), dans le cas d'une valeur descendante de la tension alternative de réseau (UN), décharge continuelle du condensateur de circuit intermédiaire (8) jusqu'à une valeur de tension qui se trouve dans une plage de tensions prédéfinie autour de la valeur de la tension alternative de réseau (UN) momentanée, en commandant l'onduleur (1) de manière appropriée jusqu'à ce que la tension alternative de réseau (UN) présente un passage par zéro et/ou la tension d'alimentation (US) présente une valeur inférieure à 10 V, notamment inférieure à 5 V, et
    - ensuite répétition des étapes a) à c) dans le cas d'une valeur croissante de la tension alternative de réseau (UN).
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que
    - pendant les étapes a) à e), l'onduleur (1) est commandé indépendamment du réglage de la puissance de chauffage et avant et/ou après les étapes a) à e), l'onduleur (1) est commandé en dépendance du réglage de la puissance de chauffage.
  6. Procédé selon l'une des revendications précédentes, caractérisé en ce que
    - à l'étape a), la première harmonique et/ou des harmoniques supérieures de la tension d'excitation (UA) modulée en largeur d'impulsions ou d'une tension qui en dépend est/sont en plus identifiée(s),
    - à l'étape b), la première harmonique et/ou des harmoniques supérieures du courant de circuit oscillant (iS) mesuré est/sont en plus identifiée(s), et
    - à l'étape c), les paramètres de circuit oscillant sont déterminés en fonction de la première harmonique et/ou des harmoniques supérieures identifiée(s) de la tension d'excitation (UA) modulée en largeur d'impulsions ou de la tension qui en dépend et de la première harmonique et/ou des harmoniques supérieures du courant de circuit oscillant (iS) mesuré.
  7. Procédé selon la revendication 6, caractérisé en ce que
    - la première harmonique et/ou des harmoniques supérieures sont identifiées au moyen de filtres passe-bas et/ou par analyse de Fourier.
  8. Procédé selon l'une des revendications précédentes, caractérisé en ce que
    - une durée de période de la tension d'excitation (UA) modulée en largeur d'impulsions est choisie de telle sorte qu'elle est inférieure à une durée de période d'une oscillation d'auto-résonnance du circuit oscillant (5).
  9. Procédé selon l'une des revendications 4 à 8, caractérisé en ce que
    - la plaque de cuisson à induction (100) possède des bobines de chauffage par induction supplémentaires, les bobines de chauffage par induction supplémentaires étant également alimentées à partir de la tension alternative de réseau (UN) redressée, pendant les étapes a) à e), les bobines de chauffage par induction supplémentaires n'étant pas alimentées à partir de la tension alternative de réseau (UN) redressée dans une plage de temps autour du passage par zéro de la tension alternative de réseau (UN) .
  10. Plaque de cuisson à induction (100), qui est configurée pour mettre en œuvre le procédé selon l'une des revendications précédentes, possédant :
    - un onduleur (1) qui est alimenté à partir d'une tension d'alimentation (US),
    - au moins un condensateur (2, 3),
    - une bobine de chauffage par induction (4),
    - l'au moins un condensateur (2, 3) et la bobine de chauffage par induction (4) étant interconnectés de telle sorte qu'ils forment un circuit oscillant (5), et
    - l'onduleur (1) étant configuré pour générer, à partir de la tension d'alimentation (US), une tension d'excitation (UA) modulée en largeur d'impulsions pour le circuit oscillant (5), et
    - une unité de commande (9) qui est configurée pour commander l'onduleur (1) de telle sorte qu'un procédé selon l'une des revendications précédentes soit mis en oeuvre.
EP21176540.9A 2020-06-05 2021-05-28 Procédé de fonctionnement d'une plaque de cuisson à induction et plaque de cuisson à induction Active EP3920661B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102020207103.9A DE102020207103A1 (de) 2020-06-05 2020-06-05 Verfahren zum Betreiben eines Induktionskochfelds und Induktionskochfeld

Publications (2)

Publication Number Publication Date
EP3920661A1 EP3920661A1 (fr) 2021-12-08
EP3920661B1 true EP3920661B1 (fr) 2023-08-23

Family

ID=76180960

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21176540.9A Active EP3920661B1 (fr) 2020-06-05 2021-05-28 Procédé de fonctionnement d'une plaque de cuisson à induction et plaque de cuisson à induction

Country Status (6)

Country Link
US (1) US11903114B2 (fr)
EP (1) EP3920661B1 (fr)
KR (1) KR20210151711A (fr)
DE (1) DE102020207103A1 (fr)
ES (1) ES2964022T3 (fr)
PL (1) PL3920661T3 (fr)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0129233B1 (ko) 1994-05-17 1998-04-09 이헌조 고주파 가열 장치의 인버터 제어회로
DE102005050038A1 (de) 2005-10-14 2007-05-24 E.G.O. Elektro-Gerätebau GmbH Verfahren zum Betrieb einer Induktionsheizeinrichtung
DE102009047185B4 (de) 2009-11-26 2012-10-31 E.G.O. Elektro-Gerätebau GmbH Verfahren und Induktionsheizeinrichtung zum Ermitteln einer Temperatur eines mittels einer Induktionsheizspule erwärmten Kochgefäßbodens
TWI565366B (zh) * 2010-02-12 2017-01-01 台達電子工業股份有限公司 具偵測食材容器位置功能之加熱裝置
ES2688748T3 (es) * 2010-11-22 2018-11-06 Mitsubishi Electric Corporation Sistema de cocción de calentamiento por inducción
KR102629987B1 (ko) * 2016-09-01 2024-01-29 삼성전자주식회사 조리 장치 및 그 제어 방법

Also Published As

Publication number Publication date
PL3920661T3 (pl) 2024-02-19
ES2964022T3 (es) 2024-04-03
US11903114B2 (en) 2024-02-13
KR20210151711A (ko) 2021-12-14
DE102020207103A1 (de) 2021-12-09
EP3920661A1 (fr) 2021-12-08
US20210385912A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
EP1258978B1 (fr) Système d'alimentation en courant
EP3560279B1 (fr) Dispositif pour appareil de cuisson
EP2330866B1 (fr) Procédé et dispositif de chauffage à induction destiné à établir une température d'un fond de récipient de cuisine chauffé à l'aide d'une bobine de chauffage à induction
EP2574144B1 (fr) Procédé de chauffage d'un récipient de cuisson au moyen d'un dispositif de chauffage à induction et dispositif de chauffage à induction
DE3612707C2 (fr)
EP2574143B1 (fr) Procédé de chauffage d'un liquide contenu dans un récipient de cuisson et dispositif de chauffage à induction
EP2574145B1 (fr) Procédé de préparation d'aliments au moyen d'un dispositif de chauffage à induction et dispositif de chauffage à induction
DE102017006952A1 (de) Verfahren zur Erfassung der Temperatur des Läufers mit induktiver Energieversorung einer fremderrregten Synchronmaschine und System
WO2007122050A1 (fr) Appareil de transmission inductive d'énergie avec circuit oscillant
EP3920661B1 (fr) Procédé de fonctionnement d'une plaque de cuisson à induction et plaque de cuisson à induction
WO2009071438A1 (fr) Procédé de détection de courts-circuits entre les tôles dans le noyau magnétique du stator de machines électriques
EP4046268A1 (fr) Détermination de paramètres de filtre dans un onduleur
DE102005044466B4 (de) Anregungsanordnung für Induktionsöfen
DE2559519C3 (de) Vorrichtung zur Überwachung der Belastung eines Induktionskochgerates
WO2012084329A2 (fr) Chercheur de lignes
EP1645885A1 (fr) Procédé pour la détermination du passage de courant par zéro
DE102004033115A1 (de) Verfahren und Vorrichtung zur thermostatischen Kochgeschirrregelung
EP2854480B1 (fr) Four à micro-ondes avec contrôle du chauffage dependant aux fluctuations
DE102009048490A1 (de) Verfahren zum Einstellen einer Heizleistungsabgabe einer Induktionsheizeinrichtung sowie zugehörige Induktionsheizeinrichtung
DE102008062949A1 (de) Verfahren zur adaptiven Regelung eines Induktionserwärmungs- oder Plasmaprozesses
EP1880788B1 (fr) Appareil de soudure à arc électrique
EP3606284B1 (fr) Procédé et dispositif de transmission inductive d'énergie
DE102013108963B4 (de) Verfahren und Vorrichtung zur Messung der Temperatur eines metallischen Bauteils anhand einer Impedanz einer Induktionsspule
EP3273749B1 (fr) Procédé de fonctionnement d'un dispositif de chauffage par induction et plaque de cuisson à induction
EP4073920B1 (fr) Procédé d'identification d'une inductance d'un filtre de réseau d'un onduleur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

B565 Issuance of search results under rule 164(2) epc

Effective date: 20211015

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220510

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 6/06 20060101AFI20230125BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230307

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021001289

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231226

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231123

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231223

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2964022

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823