EP3917831A1 - Supporting structure with passively adaptable profile - Google Patents
Supporting structure with passively adaptable profileInfo
- Publication number
- EP3917831A1 EP3917831A1 EP20702145.2A EP20702145A EP3917831A1 EP 3917831 A1 EP3917831 A1 EP 3917831A1 EP 20702145 A EP20702145 A EP 20702145A EP 3917831 A1 EP3917831 A1 EP 3917831A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- supporting structure
- state
- wall
- walls
- edge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012530 fluid Substances 0.000 claims abstract description 21
- 230000006355 external stress Effects 0.000 claims abstract description 12
- 238000011144 upstream manufacturing Methods 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 8
- 239000004744 fabric Substances 0.000 claims description 5
- 230000001419 dependent effect Effects 0.000 claims 1
- 239000002131 composite material Substances 0.000 description 6
- 239000003381 stabilizer Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000003000 extruded plastic Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/38—Adjustment of complete wings or parts thereof
- B64C3/44—Varying camber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/18—Spars; Ribs; Stringers
- B64C3/182—Stringers, longerons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/30—Wings comprising inflatable structural components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/38—Adjustment of complete wings or parts thereof
- B64C3/44—Varying camber
- B64C2003/445—Varying camber by changing shape according to the speed, e.g. by morphing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/18—Spars; Ribs; Stringers
- B64C3/187—Ribs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/38—Adjustment of complete wings or parts thereof
- B64C3/52—Warping
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/10—Drag reduction
Definitions
- the present application relates to a supporting structure with a passively adaptable profile.
- a supporting structure 10 positioned in a fluid flow comprises a first wall 12 in contact with the fluid flow, a second wall 14 in contact with the fluid flow , a framework 16 connecting the first and second walls 12 and 14, the latter being connected upstream at a leading edge 18 and downstream at a trailing edge 20.
- each actuator 26 is controlled by a control system in an active manner in order to control the movements of the various sections 22.1 to 22.7 and thus modify the curvature of the supporting structure 10 according to a desired profile.
- the invention relates to a supporting structure positioned in a flow of fluid, the supporting structure comprising a first wall which has a first external surface in contact with the flow of fluid and a first internal surface opposite to the first external surface, a second wall which has a second external surface in contact with the fluid flow and a second internal surface opposite the second external surface, a framework connecting the first and second walls, the first and second external surfaces meeting at a trailing edge located downstream of said first and second walls, the supporting structure being configured to occupy a first state or a second state different from the first state.
- the supporting structure is configured to deform elastically, on at least part of the supporting structure, between the first state in the absence of external stress and the second state in the presence of external stresses induced by fluid flow due to a change in orientation of the supporting structure and / or fluid flow.
- a change in the profile of the supporting structure is obtained passively, without an actuator.
- the profile of the supporting structure is adapted, autonomously and automatically, depending on the orientation of the supporting structure and / or the flow of fluid, without the intervention of a complex control system.
- the supporting structure is configured to deform elastically between the first state and a state of maximum deformation, and it comprises at least one stop system to prevent the deformation of said supporting structure beyond of the state of maximum strain.
- the supporting structure comprises at least one pivoting link, having a pivot axis parallel to a longitudinal direction approximately parallel to the trailing edge, connecting the stop system and the framework.
- the stop system has an elongated shape and includes an upstream end positioned near a leading edge of the supporting structure and a downstream end positioned near the trailing edge.
- the supporting structure comprises a first pivoting link, connecting the stop system and the framework, positioned near the upstream end of the stop system and the leading edge of the supporting structure, as well as a second connection pivoting, connecting the stop system and the framework, positioned near the downstream end of the stop system and the trailing edge of the supporting structure.
- each stop system comprises at least one support supporting first stops, configured to bear against the first internal surface of the first wall when the supporting structure is in the state of maximum deformation , and second stops configured to bear against the second internal surface of the second wall when the supporting structure is in the state of maximum deformation.
- each stop system comprises at least one plate having a first edge and a second edge, each plate being configured so that the first and second edges are in contact respectively with the first and second internal surfaces of the first and second walls when the supporting structure is in the state of maximum deformation.
- the framework comprises several ribs, connecting the first and second walls, spaced apart from upstream to downstream.
- the framework comprises a core, having a corrugated profile in a transverse plane, which comprises first vertices connected to the first wall, second vertices connected to the second wall as well as intermediate portions, located between the first and second peaks, which form the ribs.
- each rib comprises a first edge connected by a first articulation to the first wall and a second edge connected by a second articulation to the second wall, each of the first and second articulations being configured to allow each of the ribs to pivot relative to the first or second wall about a pivot axis parallel to a longitudinal direction approximately parallel to the trailing edge.
- the supporting structure comprises a front part, distinct from the first and second walls and connecting them at a leading edge of the supporting structure, in a material more deformable than the first and second walls and / or the framework.
- the subject of the invention is also an aircraft comprising at least one supporting structure according to one of the preceding characteristics.
- FIG. 1 is a cross section of a supporting structure which illustrates an embodiment of the prior art
- FIG. 2 is a perspective view of an aircraft
- FIG. 3 is a cross section of a wing comprising a supporting structure in a first state which illustrates an embodiment of the invention
- FIG. 4 is a cross section of the supporting structure visible in FIG. 3 in a second state
- FIG. 6 is a perspective view of the supporting structure visible in FIG. 5 in an undeformed state
- FIG. 9a is a cross section of a wing comprising a supporting structure which illustrates another embodiment of the invention.
- FIG. 10 is a section through a frame of a supporting structure which illustrates an embodiment of the invention
- FIG. 11 is a section through a framework of a supporting structure which illustrates another embodiment of the invention.
- FIG. 12 is a section through a framework of a supporting structure which illustrates another embodiment of the invention.
- the wings 34, the horizontal stabilizers 38 and the vertical stabilizer 36 each comprise a fixed part 40 and at least one movable part 42 (called flap or rudder depending on the case), positioned in the extension of the fixed part 40.
- the fixed part 40 and the movable part 42 are positioned in an air flow 44.
- the fixed part 40 and the movable part 42 form two supporting structures 46, 46 'separate (as illustrated in Figures 3 and 4) or the fixed part 40 and the movable part 42 form a single supporting structure 46 (as illustrated in FIG. 9).
- the invention is not limited to the aeronautical field. Thus, it can be applied to any supporting structure positioned in a flow of fluid (air, water or others), such as, for example, a ship, a sail or a supporting wing of a boat.
- a flow of fluid air, water or others
- a longitudinal direction is approximately parallel to the trailing edge 54
- a transverse plane is perpendicular to the trailing edge 54
- a longitudinal plane is a plane perpendicular to a transverse plane or to the trailing edge 54.
- the supporting structure 46 is configured to occupy a first state (also called rest state) and have a first profile (also called undeformed profile), visible in Figure 3, or a second state (also called deformed state) different of the first state and present a second profile (also called deformed profile) different from the first profile, visible in FIG. 4.
- the supporting structure 46 occupies relative to the air flow 44 a first orientation in the first state and a second orientation in the second state.
- the supporting structure 46 is configured to deform elastically, over at least a part, between the first state in the absence of external stress and the second state in the presence of external stresses induced by the air flow 44 due to a change in orientation of the supporting structure 46 and / or of the air flow 44.
- the supporting structure 46 comprises a fixed front part 64 and a movable rear part 66 connected to the fixed front part 64 by a hinge 68, the change of orientation being generated by a actuator 70 interposed between the fixed front part 64 and the movable rear part 66.
- the supporting structure 46 is configured to deform elastically, over at least a part, between the first state and a state of maximum deformation visible in Figure 8 in which the supporting structure 46 has a maximum curvature. This maximum curvature is determined in particular as a function of the mechanical resistance of the supporting structure 46.
- the supporting structure 46 can occupy the various intermediate states between the first state and the state of maximum deformation as a function of the external stresses induced by the flow of air 44.
- the stop system 72 comprises at least one support 74 supporting first stops 76 configured to bear against the first internal surface 48.2 of the first wall 48 when the supporting structure 46 is in the state of maximum deformation and second stops 78 configured to bear against the second internal surface 50.2 of the second wall 50 when the supporting structure 46 is in the state of maximum deformation.
- each support 74 can be offset relative to the first and second walls 48, 50 so as not to interfere with the latter during the change of state of the supporting structure 46.
- the first and second edges 80.1, 80.2 are positioned relative to the first and second stops 76, 78 so as not to be in contact with the first and second internal surfaces 48.2, 50.2 when the supporting structure 46 is in the state of maximum deformation or so as to be in contact with the first and second internal surfaces 48.2, 50.2 simultaneously with the first and second stops 76, 78 when the supporting structure 46 is in the state of maximum strain.
- the stop system 72 comprises at least one plate 84, positioned in a transverse plane, having a first edge 84.1 and a second edge 84.2 edge, each plate 84 being configured so that the first and second edges 84.1 and 84.2 are in contact respectively with the first and second internal surfaces 48.2, 50.2 when the supporting structure 46 is in the state of maximum deformation.
- first and second stops 76, 78 could be positioned or the first and second edges 80.1, 80.2 could be configured so that the first and second walls 48, 50 each follow one or more concave and / or convex curvature (s). at the state of maximum strain.
- the first and second walls 48, 50 and the frame 52 are configured to deform elastically, at least on some of their parts, so as to occupy the different states.
- the first wall 48 may be continuous from the leading edge 56 to the trailing edge 54.
- the first wall 48 may include several separate parts, distributed from upstream to downstream.
- the first wall 48 may include a fixed upstream part 92.1 and a movable downstream part 92.2 comprising an upstream material strip 92.3 dimensioned so as to ensure the continuity of the external surface between the fixed upstream part 92.1 and the movable downstream part 92.2 when the supporting structure 46 occupies the state of maximum deformation.
- the second wall 50 can be continuous or include several parts separate from the leading edge 56 to the trailing edge 54.
- the first wall 48 may include several separate parts while the second wall 50 may be continuous from the leading edge 56 to the trailing edge 54.
- the first wall 48 may be continuous from the leading edge 56. up to the trailing edge 54 while the second wall 50 can comprise several separate parts.
- the first and second walls 48, 50 can be metallic or made of a composite material or any other material allowing them to deform. Furthermore, in a particular implementation, the first and second walls 48, 50 can be made in one piece from a single material which can be of the composite type or of the type allowing deformation.
- the frame 52 is deformable from the leading edge 56 to the trailing edge 54 and comprises several ribs 94 connecting the first and second walls 48, 50 and spaced apart from upstream to front. According to one configuration, each rib 94 is positioned in a longitudinal plane and extends over the entire length of the supporting structure 46 (dimension taken in a longitudinal plane).
- the ribs 94 have the shape of a parallelogram in the rest state of the supporting structure 46 and have an “S” shape by allowing their ends to flex.
- the ribs 94 can be made of a composite material, such as for example a carbon fiber-epoxy composite.
- the frame 52 comprises a first rigid upstream part 96 and a second deformable downstream part 98 which comprises several ribs 94 connecting the first and second walls 48, 50 and spaced between they from upstream to forward.
- each rib 94 is positioned in a longitudinal plane.
- each rib 94 comprises a first edge 94.1 connected by a first articulation 100.1 to the first wall 48 and a second edge 94.2 connected by a second articulation 100.2 to the second wall 50.
- Each of the first and second articulations 100.1, 100.2 is configured to allow each of the ribs 94 to pivot relative to the first or second wall 48, 50 along a pivot axis parallel to the longitudinal direction.
- each of the first and second joints 100.1, 100.2 comprises a flexible bar 102 having a first edge housed in a groove provided at the first edge 94.1 of the rib 94 and a second edge housed in a groove integral with the first or second wall 48, 50.
- each of the first and second joints 100.1, 100.2 comprises a reduction in thickness 104 of the rib 94.
- the frame 52 comprises a core 108 having a corrugated profile in a transverse plane which comprises first vertices 108.1 connected to the first wall 48, second vertices 108.2 connected to the second wall 50 as well as intermediate portions 108.3, located between the first and second vertices 108.1, 108.2, which form the ribs 94.
- the intermediate portions 108.3 can be flat or curved.
- the first and second vertices 108.1, 108.2 may be curved, as illustrated in Figure 14, or planes as illustrated in Figure 13.
- the core 108 may have a length substantially equal to that of the first and second walls 48, 50.
- the core 108 can be metallic or made of a composite material. It can be obtained by means of various methods, such as for example a filamentous deposition process. Furthermore, in a particular implementation, the core 108 may be made in one piece from a single material which may be of the metallic type, of the composite type or of extruded plastic material.
- the frame 52 may include, instead of or in addition to the ribs 94, a plurality of elongated and flexible links 116 each connecting the first and second walls 48, 50 , and for each link 116 a spacer 118, fitted around the link 116, keeping the first and second walls 48, 50 apart.
- the supporting structure 46 can be inflatable.
- the first and second walls 48, 50 and the links 116 can be formed from three-dimensional fabric, otherwise called double-wall fabric or “drop stitch” fabric (English expression relating to a technique of drop stitch fabric. or dropped stitch designs).
- the links 116 and the first and second walls 48, 50 are configured to resist a predetermined inflation pressure.
- the structure bearing 46 comprises a front part 120 positioned at the leading edge 56, distinct from the first and second walls 48, 50, connecting them, in a material more deformable than the first and second walls 48, 50 and / or the frame 52.
- the front part 120 is made of elastomer. This configuration makes it possible to limit the stiffness of the upstream part of the supporting structure 46.
- the supporting structure 46 occupies a first state of rest, as illustrated in Figure 3.
- the first and second walls 48, 50 and the frame 52 are not elastically deformed.
- the air flow 44 exerts different external stresses on the first and second walls 48, 50. These external stresses generate an elastic deformation of the supporting structure and a change in its profile 57 passively (without an actuator).
- This change in profile 57 is a function of the external constraints exerted by the air flow 44 and its curvature automatically adapts to these external constraints.
- the supporting structure 46 has, autonomously (without a piloting system), a profile adapted to the air flow 44.
- the profile 57 no longer changes, the first and second walls 48, 40 and / or the frame 52 being blocked by the stop system 72.
- the supporting structure 46 Due to its elastic properties, the supporting structure 46 returns to the first state when the air flow 44 does not exert stresses on the supporting structure 46 or exerts substantially identical stresses on the first and second walls 48 , 50, as shown in Figure 3.
- the supporting structure 46 having a profile which adapts according to its orientation with respect to the air flow 44, it makes it possible to increase the lift and to reduce the aerodynamic drag.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Body Structure For Vehicles (AREA)
- Support Of The Bearing (AREA)
- Moulding By Coating Moulds (AREA)
- Actuator (AREA)
- Vibration Prevention Devices (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
- Pivots And Pivotal Connections (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1900981A FR3092314B1 (en) | 2019-02-01 | 2019-02-01 | Supporting structure with passively adaptable profile |
PCT/EP2020/052647 WO2020157341A1 (en) | 2019-02-01 | 2020-02-03 | Supporting structure with passively adaptable profile |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3917831A1 true EP3917831A1 (en) | 2021-12-08 |
Family
ID=67262506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20702145.2A Pending EP3917831A1 (en) | 2019-02-01 | 2020-02-03 | Supporting structure with passively adaptable profile |
Country Status (5)
Country | Link |
---|---|
US (1) | US11958599B2 (en) |
EP (1) | EP3917831A1 (en) |
CN (1) | CN113874284A (en) |
FR (1) | FR3092314B1 (en) |
WO (1) | WO2020157341A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11565787B1 (en) * | 2020-01-06 | 2023-01-31 | United States Of America As Represented By The Secretary Of The Air Force | Morphing airfoil |
CN114291249B (en) * | 2021-12-31 | 2023-08-04 | 中国飞机强度研究所 | Variable-thickness wing structure |
CN115416392B (en) * | 2022-09-22 | 2024-07-26 | 中国航空制造技术研究院 | Method for controlling cementing deformation of composite sandwich structure |
EP4420973A1 (en) * | 2023-02-23 | 2024-08-28 | Forspective | Improved foil for a fin or sail or keel or windmill blade |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB191515290A (en) * | 1915-10-29 | 1916-10-30 | Varioplane Company Ltd | Improvements in and relating to Planes or the like for Aeroplanes. |
US1341758A (en) * | 1919-07-17 | 1920-06-01 | Parker Humphrey Francis | Variable-camber rib for aeroplane-wings |
GB209031A (en) * | 1922-12-30 | 1924-12-19 | Piero Magni | Improvements in or relating to variable fluido-dynamic wings, such as for aeroplanes |
GB509244A (en) * | 1937-12-08 | 1939-07-10 | Phillips And Powis Aircraft Lt | Improvements relating to wings of variable section and control means related thereto for aircraft |
EP0103038A1 (en) * | 1982-09-13 | 1984-03-21 | The Boeing Company | Continuous skin, variable camber airfoil edge actuating mechanism |
US8418967B2 (en) * | 2008-02-21 | 2013-04-16 | Cornerstone Research Group, Inc. | Passive adaptive structures |
US9809001B2 (en) * | 2010-10-19 | 2017-11-07 | Massachusetts Institute Of Technology | Flexural digital material construction and transduction |
ES2528110T3 (en) * | 2012-10-30 | 2015-02-04 | C.I.R.A. (Centro Italiano Ricerche Aerospaziali) - S.C.P.A. | Device to modify the geometry of an aerodynamic surface |
GB201412159D0 (en) * | 2014-07-08 | 2014-08-20 | Univ Swansea | Morphable structure |
FR3025176B1 (en) * | 2014-09-03 | 2018-02-09 | Seabubbles | REMOVABLE PORTABLE FENDER |
US10843416B2 (en) * | 2015-05-11 | 2020-11-24 | Gulfstream Aerospace Corporation | Composite reinforcement structures and aircraft assemblies comprising composite reinforcement structures |
FR3055307B1 (en) * | 2016-08-24 | 2018-09-14 | Airbus | EXTENSION OF SAIL FOR AN AIRCRAFT WING |
EP3323716B1 (en) * | 2016-11-21 | 2020-01-01 | Airbus Operations GmbH | Aircraft airflow modification device and vortex generator arrangement for an aircraft |
GB2559132A (en) * | 2017-01-25 | 2018-08-01 | Broers Christopher | Fluid foil |
-
2019
- 2019-02-01 FR FR1900981A patent/FR3092314B1/en active Active
-
2020
- 2020-02-03 US US17/427,675 patent/US11958599B2/en active Active
- 2020-02-03 CN CN202080026515.2A patent/CN113874284A/en active Pending
- 2020-02-03 EP EP20702145.2A patent/EP3917831A1/en active Pending
- 2020-02-03 WO PCT/EP2020/052647 patent/WO2020157341A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
US11958599B2 (en) | 2024-04-16 |
US20220126979A1 (en) | 2022-04-28 |
CN113874284A (en) | 2021-12-31 |
FR3092314A1 (en) | 2020-08-07 |
WO2020157341A1 (en) | 2020-08-06 |
FR3092314B1 (en) | 2022-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3917831A1 (en) | Supporting structure with passively adaptable profile | |
EP1957361B1 (en) | Aircraft ventral fairing partition wall and aircraft equipped with a ventral fairing | |
CA2714433C (en) | Unitary, self-stiffened, and pivoting composite panel, in particular for a mobile part of an aircraft | |
EP0088696A1 (en) | Aircraft provided with a superposed multiple-wing lift structure | |
WO1998022343A1 (en) | Automotive, self-locking and damping articulated joint and articulation equipped with same | |
FR2937302A1 (en) | PLANE AIRCRAFT TAIL-OF-COD. | |
CA2674264A1 (en) | Section of aircraft fuselage and aircraft including one such section | |
FR3000529A1 (en) | FLEXIBLE BONDING DEVICE FOR AN AIRCRAFT PROPULSIVE ASSEMBLY | |
FR3014410A1 (en) | AIRCRAFT HINGE BETWEEN A MOBILE PANEL AND A CARRIER STRUCTURE | |
WO2011064519A2 (en) | Aircraft comprising an internal partition | |
EP3757012B1 (en) | Aircraft propeller assembly comprising improved primary mast structure and front engine mount | |
FR2953158A1 (en) | METHOD FOR REALIZING SEAL JUNCTION BETWEEN AIRCRAFT PARTS | |
EP3366955B1 (en) | Flexible seal for an aircraft | |
FR3003233A1 (en) | PANEL FOR AIRCRAFT FOR AIRCRAFT | |
EP3287363B1 (en) | Aerofoil extension for an aircraft wing | |
FR3099464A1 (en) | REACTOR MAT FOR COUPLING A TURBOREACTOR TO A WING OF AN AIRCRAFT | |
EP2435301B1 (en) | Method for manufacturing a composite structuring panel for the trailing edge of an aircraft element | |
FR3069185A1 (en) | OBLONG ROUND CORE AERODYNAMIC PROFILE IN COMPOSITE MATERIAL STRENGTHENED WITH A ONE-WAY FIBER TEXTILE | |
EP2072368B1 (en) | Articulation with cavities, in particular for a drive rod | |
WO1998040618A1 (en) | Bypass turbojet thrust reverser having doors with streamlined external structure | |
EP2512915A2 (en) | Method for the production of a composite trailing edge panel for an aircraft element | |
EP3674205B1 (en) | Leading edge slat with optimised structure | |
EP4067227B1 (en) | Aircraft nacelle comprising a joint system with spring for a cap of said nacelle | |
FR3134797A1 (en) | Aircraft comprising at least one flexible profile made of composite material forming at least one element among a coupling shaft of a movable surface and a movable surface | |
EP3023306B1 (en) | A bumper assembly comprising a core formed by two half-cores and a shell formed by two half-shells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210901 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20230726 |
|
17Q | First examination report despatched |
Effective date: 20230808 |