EP3909107A1 - Éolienne - Google Patents

Éolienne

Info

Publication number
EP3909107A1
EP3909107A1 EP20700197.5A EP20700197A EP3909107A1 EP 3909107 A1 EP3909107 A1 EP 3909107A1 EP 20700197 A EP20700197 A EP 20700197A EP 3909107 A1 EP3909107 A1 EP 3909107A1
Authority
EP
European Patent Office
Prior art keywords
network
module
wind turbine
interference
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20700197.5A
Other languages
German (de)
English (en)
Inventor
Jens Fortmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Gamesa Renewable Energy Service GmbH
Original Assignee
Siemens Gamesa Renewable Energy Service GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Gamesa Renewable Energy Service GmbH filed Critical Siemens Gamesa Renewable Energy Service GmbH
Publication of EP3909107A1 publication Critical patent/EP3909107A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0284Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to the state of the electric grid
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Definitions

  • the invention relates to a wind turbine with a generator, a converter connected to the generator, which are seen in the event of detected malfunctions in the electrical network to counteract the disturbances in the network.
  • Wind turbines are an essential energy source for the energy supply in the electrical network and will make an ever greater contribution in the future.
  • the power available from wind turbines can only be planned to a limited extent.
  • the requirements of the operators of electrical networks on the wind energy plants have increased and are being continuously developed.
  • wind turbines must be able to go through voltage drops of up to 0% of the nominal voltage in the grid without disconnection from the grid and at the same time feed reactive power or reactive current into the grid to counteract the drop in the grid voltage. It is also required that wind turbines must also be tolerant of changes in the grid frequency, for example in a range from 46.5 Hz to 53.5 Hz of a 50 Hz grid. At the same time, if a threshold frequency of, for example, 50.1 Hz is exceeded, the active power output of the wind energy installation must be reduced.
  • the object of the present invention is to avoid the above disadvantages.
  • a wind power plant comprising a converter connected to a generator that feeds at least a portion of the energy generated by the electrical generator into an electrical network, sensors for faults in the electrical network, a controller module for controlling the converter and / or the wind power plant, wherein the controller module comprises a network fault module, which is provided in the event of detected faults in the electrical network to counteract the faults, provided that the controller module comprises an override module, which is designed, in the event of a known fault in the network, the network fault module at least partially disable.
  • the invention has recognized that conventional power plants cannot react to rapid disturbances in the network due to their inertia by a rapid change in the active power feed-in.
  • the conventional power plant has only the change in voltage to quickly regulate the active power balance, so that, assuming predominantly ohmic consumers, the consumption can be changed briefly until the active power output of the conventional power plant has reached new setpoints.
  • Wind turbines are designed to keep the voltage at their feed-in point as constant as possible, and this is achieved by means of a voltage-controlled reactive power output. This voltage regulation of the wind energy plants is quick compared to the active power regulation of the power plant.
  • the change in voltage can be at least partially compensated for by the wind turbines in unfavorable situations, so that the control strategy of the power plant is not sufficiently effective and the grid is not stabilized or the grid error is not compensated .
  • the wind power installation according to the invention improves these situations by recognizing from the course of the fault that at least parts of its own network stabilization functions do not counteract the malfunction and in this special situation it deactivates the network stabilization functions which are respectively harmful and / or ineffective in relation to the disturbance (and on effective grid stabilization functions can be activated).
  • the invention starts at the point that for an analysis of whether the respective network stabilization function should remain activated in the particular fault situation in the network, the time The course of the voltage parameters, voltage level and frequency, as well as reactive and active current feed-in of the wind power plant must be evaluated. From the respective courses it can be recognized whether and which network stabilization function must remain deactivated or should remain activated.
  • a grid stabilization function can be, for example, any function that primarily aims to influence the voltage level or voltage frequency at the measuring point.
  • a disturbance in the network means any change in the quantities measured in the electrical network in which the value of the quantity leaves a predefined limit value interval or the change gradient of the quantity exceeds a certain level.
  • the term disturbance should also include the occurrence of a predefined sequence of events or the exceeding of the entry frequency of a predefined event.
  • reactive power can also be understood as the reactive current, the fundamental vibration shift factor, power factor or phase angle.
  • the network interference module preferably comprises at least one frequency interference module for regulating the active power output as a function of the frequency in the network and a reactive power disturbance module for regulating the reactive power as a function of the voltage in the network, the override module being designed to individually and independently of each module of the network interference module deactivate.
  • the controller module comprises a signal input which, when the signal is present, activates the override module in such a way that it at least partially deactivates the network disturbance module.
  • the invention further relates to a method for controlling a wind turbine.
  • the invention is described below with reference to the accompanying drawings using an advantageous embodiment as an example. With regard to all details according to the invention not explained in more detail in the text, reference is expressly made to the drawings. Show it:
  • Figure 1 is a wind turbine
  • FIG. 2 shows the converter controller according to the invention.
  • the structure of the wind turbine is briefly explained with reference to Figure 1.
  • the wind rotor 2 of the wind turbine 1 is rotated by the wind.
  • the wind rotor 2 is mechanically connected to the generator 4 via a gear 3 and rotates the rotor 6 of the generator 4.
  • the stator 5 of the generator is connected to the electrical network 10 via power cables in the tower 13, a transformer 8 and a disconnector 9.
  • the rotor 6 of the generator 4 is connected to a converter 7, which in turn is also connected to the electrical network 10 via power cables in the tower 14, a transformer 8 and a disconnector 9.
  • the converter 7 has a converter control 20 which controls the converter 7.
  • Measuring sensors 31 are arranged on the power cables 13, 14 in order to measure the electrical quantities of the network 10 and to pass them on to the converter control 20 via measuring lines. If a fault in the electrical variables of the network 10 is determined, a network fault module 25 can be activated in the converter control, which can be deactivated by the override module 26.
  • FIG. 2 shows the basic structure of a wind turbine according to the invention.
  • a converter 7 with a generator-side inverter 71, a DC voltage intermediate circuit 73 and a grid-side inverter 72 is connected to the generator 4.
  • the DC voltage intermediate circuit 73 comprises, in a manner known per se, a capacitor 82 as an energy store and a chopper 81 as a safety device.
  • a choke 12 is arranged at the output of the network-side alternator 72.
  • the converter 7 is regulated by a controller 20.
  • the normal control module 24 uses the values measured by the sensors 31, 32 to determine the target values for the reactive and active powers and passes them on to the power controller 27, which regulates the target values via the individual converter controllers 21, 22.
  • the network disturbance module 25 comprises modules 25a, 25b for voltage-dependent reactive power control or frequency-dependent active power control, wherein control modules can be stored in these modules 25a, 25b, which correspond to the specifications of the operator of the network 10 for faults.
  • the override module 26 If there is a malfunction in the network in which the network malfunction module 25 is to be activated by the decision module 41, the override module 26 simultaneously determines whether there is a malfunction in which an activation of the network malfunction module 25 would not stabilize the network. If the override module 26 detects such a malfunction, it can bridge at least parts of the network malfunction module (by means of override switches 42a, 42b) and thus prevent control intervention on the network parameters by the bridged function.
  • the power controller 27 does not receive any new setpoints and the converter 7 does not change its output currents.
  • the override module 26 acts on the decision module 41 in such a way that at least parts of the control loop are controlled by the normal control module 24, so that despite the faults in the network 10, the regulation of the electrical variables is functional.
  • the override module 26 is additionally configured such that it can at least indirectly receive signals from the control of the wind farm 29 or via a signal input 28 from the operator of the network 10.
  • the override module 26 can be activated or deactivated via these signals, so that optimum network support from the wind energy installation 1 is always guaranteed from the outside.
  • the control of the wind farm 29 has its own sensors 32, which are located upstream of the wind energy installation in the network 10 and which detect a malfunction in the network 10 earlier or more directly or the effect of the energy output by the wind energy installation 1 Can control services, so that the control of the wind farm 29 can specifically activate or deactivate the network fault module 25.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

Éolienne (1), comprenant un convertisseur (7) connecté à un générateur (4), lequel alimente au moins une partie de l'énergie produite par le générateur (4) électrique dans un réseau électrique (10), des capteurs (31, 32) pour des perturbations dans le réseau électrique (10), ainsi qu'un module de régulation (20) pour la commande du convertisseur (7) et/ou de l'éolienne (1). Le module de régulation (20) comprend un module de perturbation de réseau (25) qui, en cas de perturbations détectées dans le réseau électrique (10), contrecarre les perturbations. Selon l'invention, le module de régulation (20) comprend un module de surcommande (26) qui, dans le cas d'une perturbation détectée dans le réseau (10), est conçu pour désactiver au moins partiellement le module de perturbation de réseau (25). L'invention améliore ainsi le comportement dans des situations de perturbations, par la reconnaissance dans l'évolution de la perturbation qu'au moins des parties des fonctions propres de stabilisation de réseau ne contrecarrent pas la perturbation et par la désactivation, dans ces situations spéciales, des fonctions de stabilisation de réseau nuisibles respectives. L'invention concerne en outre un procédé correspondant.
EP20700197.5A 2019-01-07 2020-01-07 Éolienne Pending EP3909107A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019000025.0A DE102019000025A1 (de) 2019-01-07 2019-01-07 Windenergieanlage
PCT/EP2020/050193 WO2020144169A1 (fr) 2019-01-07 2020-01-07 Éolienne

Publications (1)

Publication Number Publication Date
EP3909107A1 true EP3909107A1 (fr) 2021-11-17

Family

ID=69143602

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20700197.5A Pending EP3909107A1 (fr) 2019-01-07 2020-01-07 Éolienne

Country Status (5)

Country Link
US (1) US11920568B2 (fr)
EP (1) EP3909107A1 (fr)
CN (1) CN113261170A (fr)
DE (1) DE102019000025A1 (fr)
WO (1) WO2020144169A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019000025A1 (de) 2019-01-07 2020-07-09 Senvion Gmbh Windenergieanlage
CN112510979B (zh) * 2020-11-25 2022-11-01 上海电气风电集团股份有限公司 变流器容错控制方法、系统及风力发电机组

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010056457A1 (de) * 2010-12-29 2012-07-05 Repower Systems Ag Windpark und Verfahren zum Betreiben eines Windparks
EP2859638B1 (fr) * 2012-06-12 2020-05-06 Vestas Wind Systems A/S Commande de centrale éolienne en cas de défaillance basse tension du réseau
DE102013001173A1 (de) * 2013-01-24 2014-08-07 Ernst Manner Sensortelemetrie mit integriertem Komplettmonitoring und Remotesteuerfunktion für Anwendung zur kontaktlosen Sensordatenübertragung
US9570916B2 (en) * 2013-10-15 2017-02-14 Siemens Aktiengesellschaft Inertial response function for grids with high turbine penetration
EP3012938A1 (fr) * 2014-10-24 2016-04-27 Siemens Aktiengesellschaft Procédé pour stabiliser une grille électrique
WO2016062316A1 (fr) * 2014-10-24 2016-04-28 Vestas Wind Systems A/S Procédé d'exploitation d'une centrale éolienne dans un environnement de réseau faible et centrale éolienne
PL3157161T3 (pl) * 2015-10-12 2019-09-30 Siemens Aktiengesellschaft Sposób sterowania instalacją energii wiatrowej
CN107785909B (zh) 2016-08-24 2021-07-06 成都阜特科技股份有限公司 一种风电场无功电压协调控制方法
DK3318751T3 (da) * 2016-11-08 2021-08-30 Siemens Gamesa Renewable Energy As Dæmpning af mekaniske svingninger hos en vindmølle
KR102577911B1 (ko) * 2018-11-16 2023-09-14 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 전력변환장치, 이를 구비하는 태양광 모듈, 및 태양광 시스템
DE102019000025A1 (de) 2019-01-07 2020-07-09 Senvion Gmbh Windenergieanlage

Also Published As

Publication number Publication date
US11920568B2 (en) 2024-03-05
CN113261170A (zh) 2021-08-13
DE102019000025A1 (de) 2020-07-09
WO2020144169A1 (fr) 2020-07-16
US20220069584A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
EP2245728B1 (fr) Éolienne à régulation du convertisseur
EP2872777B1 (fr) Procédé pour commander un générateur électrique
EP2875562B1 (fr) Procédé de commande d'un parc éolien
EP2989708B1 (fr) Procédé pour injecter de l'énergie électrique dans un réseau d'alimentation électrique
EP3639338A1 (fr) Éolienne ou parc éolien servant à injecter une puissance électrique
EP2659138B1 (fr) Parc éolien et procédé d'exploitation d'un parc éolien
WO2013160486A2 (fr) Parc éolien permettant une régulation locale rapide de la puissance réactive
EP2873129A1 (fr) Procédé et dispositif pour injecter de l'énergie électrique dans un réseau d'alimentation électrique
WO2014180781A1 (fr) Procédé d'injection d'une puissance électrique dans un réseau de distribution électrique
EP3420222B1 (fr) Procédé et module de régulation de parc éolien pour la régulation d'un parc éolien
DE102018105483A1 (de) Verfahren zum Betrieb einer Energieerzeugungsanlage und Wechselrichter für eine Energieerzeugungsanlage
DE102016120700A1 (de) Verfahren zum Betreiben einer Windenergieanlage
WO2020144169A1 (fr) Éolienne
EP2971757B1 (fr) Éolienne à mesure de fréquence
EP2893629A2 (fr) Procédé et dispositif permettant de faire fonctionner un appareil de production de courant pourvu d'un onduleur
EP3046204A1 (fr) Éolienne
EP3068006B1 (fr) Commande d'éolienne /de parc éolien et procédé de commande
DE102017108637A1 (de) Verfahren zum Erfassen einer Inselnetzbildung
WO2020011675A1 (fr) Procédé de commande d'un ensemble d'injection
EP3125398B1 (fr) Gestion des besoins d'autoconsommation pour une eolienne

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210802

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS GAMESA RENEWABLE ENERGY SERVICE GMBH

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)