EP3904785B1 - Procédé et chambre d'essai destinés au conditionnement de l'air - Google Patents

Procédé et chambre d'essai destinés au conditionnement de l'air Download PDF

Info

Publication number
EP3904785B1
EP3904785B1 EP21170171.9A EP21170171A EP3904785B1 EP 3904785 B1 EP3904785 B1 EP 3904785B1 EP 21170171 A EP21170171 A EP 21170171A EP 3904785 B1 EP3904785 B1 EP 3904785B1
Authority
EP
European Patent Office
Prior art keywords
temperature
heat exchanger
refrigerant
expansion element
pressure side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21170171.9A
Other languages
German (de)
English (en)
Other versions
EP3904785A1 (fr
Inventor
Johannes Teichmann
Tobias HECKELE
Jürgen Bitzer
Marc Löffler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weiss Technik GmbH
Original Assignee
Weiss Technik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weiss Technik GmbH filed Critical Weiss Technik GmbH
Publication of EP3904785A1 publication Critical patent/EP3904785A1/fr
Application granted granted Critical
Publication of EP3904785B1 publication Critical patent/EP3904785B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the invention relates to a method and a test chamber for conditioning air, with a test space that can be closed off from the environment and is temperature-insulated for receiving test material, and a temperature control device for temperature control of the test space, with the temperature control device being equipped with a cooling device, with a cooling circuit, with a zeotropic refrigerant , a heat exchanger arranged in the test chamber, a compressor, a condenser, a first expansion element and an internal heat exchanger, a temperature in a temperature range from -40 °C to +180 °C is formed inside the test chamber, with the internal heat exchanger being on a high-pressure side of the Cooling circuit in a direction of flow before the first expansion element and then the condenser, and on a low-pressure side of the cooling circuit in the direction of flow after the heat exchanger and before the compressor, is connected, the cooling circuit having a bypass m with at least one second expansion element, the bypass on the high-pressure side in the direction of flow following the condenser and in
  • test chambers are regularly used to check the physical and/or chemical properties of objects, in particular devices.
  • temperature test cabinets or climate test cabinets are known within which temperatures can be set in a range from -70°C to +180°C.
  • additional desired climatic conditions can be set, to which the device or the test material is then exposed over a defined period of time.
  • Such test chambers are regularly or partially designed as a mobile device, which is only connected to a building with the necessary supply lines and includes all the assemblies required for temperature control and air conditioning. Temperature control of a test room accommodating the test material to be tested is regularly carried out in a circulating air duct within the test room.
  • the circulating air duct forms an air treatment space in the test space, in which heat exchangers are arranged for heating or cooling the air flowing through the circulating air duct or the test space.
  • a fan sucks in the air in the test room and directs it in the circulating air duct to the respective heat exchangers.
  • the test material can be tempered in this way or exposed to a defined temperature change. During a test interval, for example, a temperature can repeatedly change between a maximum temperature and a minimum temperature of the test chamber.
  • the refrigerant circulating in the cooling circuit must be such that it can be used in the cooling circuit within the aforementioned temperature difference. Furthermore, as a result of legal regulations, the refrigerant must not contribute significantly to ozone depletion in the atmosphere or global warming, and it must also be non-flammable. These provisions can be affected in particular by refrigerants or Refrigerant mixtures are met, which have a comparatively high mass fraction of carbon dioxide, these refrigerant mixtures have zeotropic properties due to the different substances mixed together, which in turn is undesirable. In a zeotropic refrigerant mixture, a phase transition takes place over a temperature range, the so-called temperature glide. A difference between the boiling temperature and the dew point temperature at constant pressure is considered a temperature glide.
  • the known test chambers therefore regularly have an internal heat exchanger, which can be connected to a high-pressure side of the cooling circuit in a flow direction before the expansion element and then to the condenser, and to a low-pressure side of the cooling circuit in a flow direction before the compressor and then to the heat exchanger.
  • the internal heat exchanger cools or so-called sub-cools the liquefied refrigerant on the high-pressure side.
  • a bypass can be provided, which has a second expansion element and forms a return injection device for refrigerant.
  • Refrigerant can then be conducted via the bypass from the high-pressure side via the second expansion element into the low-pressure side upstream of the internal heat exchanger in the direction of flow, so that cooling of the refrigerant on the high-pressure side of the internal heat exchanger is increased.
  • This lowering of a suction gas temperature upstream of the compressor on the low-pressure side of the internal heat exchanger means that greater subcooling can consequently be achieved.
  • This supercooling is usually not monitored and no temperature is measured upstream of the first expansion device.
  • the second expansion element is set in such a way that refrigerant is continuously metered via the second expansion element and subcooling is thus ensured during operation of the cooling circuit.
  • Such a test chamber is, for example, from DE 10 2017 216 363 A1 known.
  • the disadvantage here is that due to the comparatively wide temperature range, with multi-stage cooling devices from -70 °C to +180 °C and with single-stage cooling devices from -40 °C to +180 °C, the cooling capacity required for supercooling varies greatly. Depending on the operating point of the cooling device, there may be fluctuations so that the supercooling may not be sufficient. If a larger amount of refrigerant is metered to the internal heat exchanger for supercooling the refrigerant on the high-pressure side via the second expansion element, the suction gas temperature before the compressor can drop to an unacceptable level.
  • the present invention is therefore based on the object of proposing a method and a test chamber for conditioning air which ensures stable operating behavior.
  • the method according to the invention for conditioning air is carried out with a test chamber with a test space that can be closed and temperature-insulated from the environment for receiving test material and a temperature control device for temperature control of the test space, with the temperature control device having a cooling device with a cooling circuit with a refrigerant, a Heat exchanger arranged in the test room, a compressor, a condenser, a first expansion element and an internal heat exchanger, a temperature in a temperature range of -40 °C to +180 °C is formed inside the test room, with the internal heat exchanger on a high-pressure side of the cooling circuit in one direction of flow before the first expansion element and then the condenser, and on a low-pressure side of the cooling circuit in the direction of flow following the heat exchanger and before the compressor, the cooling circuit having a bypass has at least one second expansion element, with the bypass being connected on the high-pressure side in the direction of flow downstream of the condenser and upstream of the internal heat exchanger, and on the low-pressure side downstream
  • the side walls, floor walls and ceiling walls of the test room are thermally insulated, so that heat exchange with the surroundings of the test room is largely avoided.
  • the heat exchanger is arranged in the test room, so that the cooling circuit runs at least in sections through the test room.
  • the heat exchanger can be arranged in an air treatment room of the test room.
  • the cooling device further has the Compressor, which can be a compressor, for example, and the compressor arranged downstream in the flow direction of the refrigerant condenser for the compressed refrigerant.
  • the compressed refrigerant which is under high pressure after compression and is essentially in gaseous form, condenses in the condenser and is then essentially in a liquid state.
  • the liquid refrigerant continues through the internal heat exchanger and expansion device, again becoming gaseous through expansion due to a pressure drop. If it is a zeotropic refrigerant, only part of the refrigerant can possibly evaporate in the heat exchanger and an unusable part of a wet vapor component of the refrigerant can be relocated to the internal heat exchanger. The gaseous refrigerant is then sucked in again by the compressor and compressed. In principle, the method can also be carried out with an azeotropic refrigerant.
  • the temperature control device includes the control device with the pressure sensor and the temperature sensor, which are connected to the high-pressure side.
  • a pressure of the refrigerant on the high-pressure side is measured via the pressure sensor.
  • the pressure sensor can therefore be connected to any point in the cooling circuit on the high-pressure side. Since a temperature of the refrigerant in the course of the cooling circuit is regularly different, depending on the section of the cooling circuit, it is provided that the temperature sensor is arranged on the high-pressure side in the direction of flow after the internal heat exchanger and before the first expansion element. Accordingly, a temperature of the refrigerant is then measured immediately before the first expansion element.
  • the control device now controls the second expansion element or a metering of refrigerant via the bypass from the high-pressure side to the low-pressure side to the internal heat exchanger as a function of a pressure measured at the pressure sensor and a temperature measured at the temperature sensor.
  • the method can be carried out particularly easily if a pressure sensor and a temperature sensor are already installed at the appropriate point in the cooling circuit and the temperature control device has a control device. It is then only necessary to modify the control device accordingly in such a way that the second expansion element is controlled by the control device as a function of a pressure measured at the pressure sensor and a temperature measured at the temperature sensor.
  • the high-pressure side refrigerant can be cooled by the internal heat exchanger. Since the internal heat exchanger is connected to the high-pressure side and the low-pressure side of the refrigeration cycle, the high-pressure-side refrigerant can be cooled by the low-pressure-side refrigerant flowing through the internal heat exchanger.
  • Refrigerant can be supplied to the internal heat exchanger via the second expansion element, it being possible for refrigerant to be supplied to the compressor from the low-pressure side of the internal heat exchanger.
  • the bypass is provided with the second expansion element, with the bypass and the second expansion element being connected Refrigerant is dosed on the low-pressure side in front of the internal heat exchanger and so a suction gas temperature can be further reduced.
  • the method can be used particularly advantageously if a refrigerant with a temperature glide of ⁇ 5 K is used as the refrigerant.
  • a zeotropic refrigerant can also be formed by a refrigerant mixture. Depending on the mixture composition of this refrigerant mixture, the refrigerant can have a temperature glide of ⁇ 7 K to ⁇ 15 K. The temperature glide is given here for an evaporation pressure of 1 bar.
  • the refrigerant R469A or a mixture of the refrigerant R469A and the refrigerant R410A or R466A can be used.
  • the refrigerant R469A consists of 35% by weight carbon dioxide, 32.5% by weight difluoromethane and 32.5% by weight pentafluoroethane and has a boiling temperature of -78.5 °C and a dew point temperature of -61.5 °C , so that temperatures down to -70 °C can be reached in a correspondingly adapted cooling circuit, for example in a multi-stage cooling device.
  • the mixture of the refrigerant R469A and the refrigerant R410A or R466 can advantageously be used in a single-stage cooling device with only one cooling circuit.
  • the proportion by mass of R449A in the refrigerant mixture can be 30 to 70 percent by mass, with the proportion by mass of the further refrigerant R410A or R466 in the refrigerant mixture being 30 to 70 percent by mass.
  • the proportion by mass of R449A can be 50 percent by mass and the proportion by mass of R410A or R466 can be 50 percent by mass.
  • the refrigerant(s) also meets the requirements of EU Regulation No. 5172014 on refrigerants in the version valid on the priority date. With regard to the designation of refrigerants, reference is made to DIN 8960 in the version last valid on the priority date.
  • the control device controls the second expansion element according to a reference variable
  • the reference variable can be a boiling temperature of the refrigerant or temperature of the subcooled refrigerant at the first expansion element.
  • the control device can consequently form a control circuit or a controller which compares the command variable with a controlled variable or influences the second expansion element with a manipulated variable. Since the refrigerant in the cooling circuit is known in principle, the boiling temperature of the refrigerant at the measured pressure in the high-pressure side is also known, so that the boiling temperature of the refrigerant can advantageously be used as a reference variable.
  • the control device can include means for data processing, for example a PLC control, a computer or the like, with the control device being able to run a computer program product or software that carries out the steps required to carry out the method.
  • the boiling temperature can be determined by the control device, in which case the control device can calculate the boiling temperature of the refrigerant for the pressure measured at the pressure sensor. Accordingly, it can be provided that the control device calculates the boiling temperature of the relevant refrigerant for the respective measured pressure and thus specifically determines the boiling temperature or the control variable.
  • the boiling temperature can be calculated particularly easily using a polynomial or a vapor pressure table.
  • the polynomial or the vapor pressure table can then simulate a phase boundary line that corresponds to the boiling temperature or the saturation temperature at a saturation vapor pressure or boiling pressure.
  • the polynomial or the vapor pressure table can be stored in the control device, so that a value for the boiling temperature can be derived for the measured pressure, which then corresponds to an assumed boiling pressure, or can be calculated by the control device.
  • the control device can calculate the command variable by adding the boiling temperature to a safety value of 5 K to 25 K, preferably 7 K to 15 K.
  • the control device can determine the reference variable in such a way that a safety value is added to the boiling temperature, so that the reference variable is greater than the boiling temperature. If a range of, for example, 7 K to 15 K is assumed for the safety value, a command variable range results within which the control device controls the second expansion element. Adding the safety value to the reference variable can prevent the temperature of the refrigerant at the first expansion element from rising above the boiling temperature, for example as a result of a temperature control jump.
  • the control device can subtract the temperature measured at the temperature sensor as a control variable from the boiling temperature, the control device being able to control the second expansion element with a control variable depending on the control deviation.
  • a control deviation can be determined particularly easily by subtracting the measured temperature from the calculated boiling temperature.
  • the control device can then control the second expansion element with a manipulated variable and thus influence a quantity of refrigerant metered via the second expansion element.
  • the second expansion element can be controlled using the manipulated variable when the measured temperature is higher than the command variable or the boiling temperature, and the manipulated variable cannot be controlled when the measured temperature is lower than the command variable. If there is no control with the manipulated variable, a manipulated variable or an output level is then 0%. However, the second expansion element can still be opened far enough for the coolant to flow through the second expansion element and continuous supercooling is ensured. A further opening of the second expansion organ only occurs if the measured temperature is higher than the reference variable. Otherwise the second expansion element is in normal operation. Deviating from this, it can also be provided that the second expansion element is closed completely when the measured temperature is lower than the reference variable.
  • the control device can limit the manipulated variable to a maximum value. This then ensures that the second expansion element is not opened so far that, in the event of a failure of the temperature sensor or the pressure sensor, the second expansion element is opened so far by the control device that the cooling device is damaged.
  • the second expansion element can be controlled particularly advantageously with a PID controller of the control device.
  • the PID controller may be a PID controller in a series structure or a PID controller in a parallel structure.
  • the PID controller is easy to implement and easy to adapt.
  • the PID controller can be implemented particularly easily within the framework of digital control with the control device.
  • the temperature control device can be used to set a temperature in a temperature range from -50 °C to +180 °C, preferably from -70 °C to +180 °C, particularly preferably from -80 °C to +180 °C, within the Test room are trained.
  • the temperature range from -50 °C to +180 °C can still be achieved by a single-stage cooling device with just one cooling circuit.
  • a multi-stage cooling device with at least two or more cooling circuits connected in the manner of a cascade can be used for the remaining, lower temperature ranges.
  • a temperature in a temperature range from ⁇ +60 °C to +220 °C within the test chamber can also be reduced to a temperature of -70 °C or -80 °C by means of the temperature control device. That Refrigerant is strongly heated in the heat exchanger due to the comparatively high temperature in the test chamber, which is why the cooling circuit can be technically adapted to a refrigerant heated in this temperature range in terms of its design, at least on a low-pressure side of the cooling circuit. Otherwise, a refrigerant heated in this way can no longer be optimally used on the high-pressure side of the cooling circuit.
  • a temperature constancy of +/-1 K +/-0.3 K to +/-0.5 K is formed in the specified temperature range during a test interval in the test room.
  • a test interval is understood here as a time segment of a complete test period in which the test material is exposed to a substantially constant temperature or climatic condition.
  • An expansion element is understood to mean at least one expansion valve, throttle element, throttle valve or another suitable narrowing of a fluid line.
  • the first expansion element and the second expansion element can each be formed from a throttle element and a magnetic valve, it being possible for refrigerant to be metered by means of the control device via the respective throttle element and the magnetic valve.
  • the throttling element can be an adjustable valve or a capillary, via which refrigerant is then conducted by means of the magnetic valve.
  • the solenoid valve can in turn be actuated by means of the control device. Actuation can take place in such a way that the solenoid valve is actuated via a manipulated variable for dosing refrigerant.
  • the test chamber according to the invention for conditioning air comprises a test space that can be closed and temperature-insulated from the environment for receiving test material, and a temperature control device for temperature control of the test space, the temperature control device comprising a cooling device with a cooling circuit with a refrigerant, a heat exchanger arranged in the test space, a Compressor, a condenser, a first expansion device and an internal one Has a heat exchanger, wherein a temperature in a temperature range from -40 °C to +180 °C can be formed within the test chamber by means of the temperature control device, wherein the internal heat exchanger is on a high-pressure side of the cooling circuit in a flow direction before the first expansion element and subsequently the condenser, and on a low-pressure side of the cooling circuit in the direction of flow downstream of the heat exchanger and upstream of the compressor, the cooling circuit having a bypass with at least one second expansion element, the bypass on the high-pressure side in the flow direction downstream of the condenser and upstream of the internal
  • the cooling device can be designed with just one cooling circuit.
  • the condenser can be designed as a cascade heat exchanger of a further cooling circuit of the cooling device, wherein the further cooling circuit can have a further refrigerant, the cascade heat exchanger, a further compressor, a further condenser and a further expansion element.
  • the test chamber can then have at least two cooling circuits, wherein the cooling circuit can form a second stage of the cooling device and the further cooling circuit, which is then upstream of the cooling circuit, can form a first stage of the cooling device.
  • the condenser then serves as a cascade heat exchanger or heat exchanger for the cooling circuit. In this embodiment of a test chamber, it is possible to develop particularly low temperatures in the test space, for example -70°C.
  • the temperature control device can have a heating device with a heater and a heating heat exchanger in the test chamber.
  • the heating device can be an electrical resistance heater, for example, which heats the heating and heat exchanger in such a way that the heating and heat exchanger allows the temperature in the test chamber to be increased. If the heat exchanger and the heating heat exchanger can be specifically controlled by the control device for cooling or heating the air circulating in the test room, a temperature in the above-mentioned temperature range can be formed inside the test room by means of the temperature control device.
  • the heating heat exchanger can be combined with the heat exchanger of the cooling circuit in such a way that a common heat exchanger body is formed, through which the refrigerant can flow and which has heating elements of an electrical resistance heater.
  • the condenser can be designed with air cooling or water cooling or another cooling liquid if the condenser is not designed as a cascade heat exchanger.
  • the condenser can be cooled with any suitable fluid. It is essential that the heat load occurring at the condenser is dissipated via air cooling or water cooling in such a way that the refrigerant can condense so that it is liquefied.
  • the cooling circuit can have a further bypass with at least one third expansion element, the further bypass on the high-pressure side downstream of the compressor in the direction of flow and upstream of the condenser, and on the low-pressure side downstream of the internal heat exchanger and upstream of the compressor, such that a suction gas temperature and/or a suction gas pressure of the refrigerant can be regulated on the low-pressure side upstream of the compressor, and/or that a pressure difference between the High-pressure side and the low-pressure side can be compensated.
  • the further bypass can additionally be equipped with an adjustable or controllable valve, for example a solenoid valve.
  • a cross section of the third expansion element can be dimensioned in such a way that an overflow of the refrigerant from the high-pressure side to the low-pressure side affects normal operation of the cooling device only insignificantly.
  • the third expansion element can be actuated by the control device, which in turn can be additionally coupled to a further pressure sensor which is arranged in the cooling circuit in a direction of flow directly in front of the compressor. It is particularly advantageous if a suction gas temperature of ⁇ 30° C. can be set via the additional bypass.
  • the refrigerant can also be metered in such a way that the operating time of the compressor can be regulated. In principle, it is disadvantageous if the compressor or compressor is switched on and off many times. A service life of the compressor can be extended if it is operated for longer periods of time.
  • the refrigerant can be routed past the expansion element or the condenser via the further bypass, for example in order to delay an automatic switch-off of the compressor and to extend the service life of the compressor.
  • the internal heat exchanger can be designed as a supercooling section or a heat exchanger, in particular a plate heat exchanger.
  • the sub-cooling section can already be formed by two line sections of the cooling circuit that are in contact with one another.
  • test chamber results from the feature descriptions of the subclaims that refer back to claim 1 .
  • the 1 shows a schematic representation of a cooling device 10 with a cooling circuit 11, within which a refrigerant can circulate.
  • the refrigerant is a zeotropic refrigerant with a temperature glide of ⁇ 5 K.
  • the cooling device 10 includes a further cooling circuit 12 which is connected upstream of the cooling circuit 11 .
  • the cooling circuit 11 comprises a heat exchanger 14 arranged in a test space 13 of a test chamber (not shown in detail here), a compressor 15, a condenser 16, a first expansion element 17 and an internal heat exchanger 18.
  • the cooling circuit 11 has a high-pressure side 19, which extends in the direction of flow of the refrigerant runs from the compressor 15 to the first expansion element 17 and a low-pressure side 20, which runs from the first expansion element 17 to the compressor 15.
  • a pipe section 21 from the compressor 15 to the condenser 16 the refrigerant is gaseous and has a comparatively high temperature.
  • the refrigerant compressed by the compressor 15 flows into the cooling circuit 11 via an oil separator 22 to the condenser 16, the gaseous refrigerant being liquefied in the condenser 16.
  • the internal heat exchanger 18 follows the condenser 16 in the cooling circuit 11, the refrigerant therefore being in the liquid state in a pipe section 23 of the cooling circuit 11 between the condenser 16 and the first expansion element 17.
  • Expansion of the refrigerant downstream of the first expansion element 17 cools the heat exchanger 14, with the refrigerant then changing into the gaseous aggregate state in a pipe section 24 between the first expansion element 17 and the heat exchanger 14 and via a pipe section 25 from the heat exchanger 14 to the compressor 15 is conducted.
  • the internal heat exchanger 18 is connected to the tube sections 23 and 25 on the high-pressure side 19 and the low-pressure side 20 of the cooling circuit 11 .
  • the refrigerant on the high-pressure side 19 flows so closely past the refrigerant on the low-pressure side 20 in the internal heat exchanger 18 that an exchange of thermal energy occurs in the internal heat exchanger 18 .
  • the internal heat exchanger 18 is used here to supercool the refrigerant on the high-pressure side 19 with the refrigerant on the low-pressure side 20. This supercooling is ensured by a bypass 26, which is formed from a pipe section 27 with a second expansion element 28.
  • the bypass 26 or the pipe section 27 is connected on the high-pressure side 19 in the direction of flow after the condenser 16 and before the internal heat exchanger 18, and on the low-pressure side 20 after the heat exchanger 14 and before the internal heat exchanger 18.
  • Refrigerant can thus be metered or expanded from the high-pressure side 19 to the low-pressure side 20 via the second expansion element 28 and conducted into the internal heat exchanger 18 .
  • a pressure sensor 29 for measuring the pressure of the low-pressure side 20 is arranged in the pipe section 25 immediately before the compressor 15
  • a pressure sensor 30 for measuring the pressure of the high-pressure side 19 is arranged in the pipe section 21 immediately following the compressor 15 .
  • a temperature sensor 31 is arranged in the pipe section 23, following the internal heat exchanger 18 and directly in front of the first expansion element 17, with which a temperature of the refrigerant is measured.
  • Another bypass 32 with a third expansion element 33 is also connected in the cooling circuit 11 .
  • the further bypass 32 runs from the high-pressure side 19 in the direction of flow after the compressor 15 and before the condenser 16, to the low-pressure side 20 after the internal heat exchanger 18 and before the compressor 15.
  • Via the further bypass 32 or the third expansion element 33 a Suction gas temperature and / or a suction gas pressure of the refrigerant on the low-pressure side 20 before the compressor 15 is regulated and, if necessary, a pressure difference between the high-pressure side 19 and the low-pressure side 20 can be compensated.
  • the other cooling circuit 12 is filled with another refrigerant and includes another compressor 34, another condenser 35 and another expansion element 36.
  • the condenser 16 of the cooling circuit 11 is integrated into the further cooling circuit 12 that a cascade heat exchanger 37 through the Capacitor 16 is formed.
  • the test chamber which is not shown in detail here, has a control device with which the cooling device 10 can be controlled.
  • the control device is coupled to the pressure sensor 29, the pressure sensor 30, the temperature sensor 31, the first expansion element 17 and the second expansion element 28.
  • a pressure is measured by the control device via the pressure sensor 30 and a temperature of the refrigerant is measured via the temperature sensor 31 and the second expansion element 28 is controlled with a manipulated variable.
  • the controller determines a Boiling temperature of the refrigerant at the temperature sensor 31 in that the control device calculates the boiling temperature for the pressure measured at the pressure sensor 30 . This calculation is done using a polynomial or a vapor pressure table.
  • the boiling temperature is a reference variable according to which the control device controls the second expansion element 17 .
  • the control device determines a control deviation by subtracting the temperature measured at the temperature sensor 31 as a control variable from the boiling temperature, the control device controlling the second expansion element 28 as a function of this control deviation using the manipulated variable.
  • the second expansion element By controlling the second expansion element when a control deviation occurs due to a higher temperature at the temperature sensor 31, it can be ensured that the refrigerant is always supercooled upstream of the first expansion element 17 to such an extent that the refrigerant is not heated to the boiling point.
  • the cooling circuit 11 and thus the cooling device 10 can be operated safely and without major temperature fluctuations.
  • the 2 shows a schematic representation of a cooling device 40.
  • the cooling circuit 11 is operated as described above. With the cooling device 40, it is possible to form low temperatures in the test room, for example -40.degree. C. to -50.degree.

Claims (21)

  1. Procédé pour le conditionnement de l'air, ledit procédé étant effectué au moyen d'une chambre d'essai ayant un espace d'essai (13) isolé thermiquement qui est capable d'être étanché à un environnement et qui sert à recevoir du matériau d'essai, et un dispositif de régulation de température pour réguler la température de l'espace d'essai, une température dans une plage de température de -40 °C à +180 °C étant établie à l'intérieur de l'espace d'essai au moyen du dispositif de régulation de température ayant un moyen de refroidissement (10, 40) ayant un circuit de refroidissement (11) comprenant un fluide frigorigène, un échangeur de chaleur (14) disposé dans l'espace d'essai, un compresseur (15), un condenseur (16), un premier élément de détente (17) et un échangeur de chaleur (18) interne, l'échangeur de chaleur interne étant relié au côté haute pression (19) du circuit de refroidissement en amont du premier élément de détente et en aval du condenseur, et au côté basse pression (20) du circuit de refroidissement en aval de l'échangeur de chaleur et en amont du compresseur, le circuit de refroidissement ayant un bipasse (26) ayant au moins un deuxième élément de détente (28), le bipasse étant relié au côté haute pression en aval du condenseur et en amont de l'échangeur de chaleur interne, et au côté basse pression en aval de l'échangeur de chaleur et en amont de l'échangeur de chaleur interne,
    caractérisé en ce
    qu'un système de commande du dispositif de régulation de température régule le deuxième élément de détente au moyen d'un capteur de pression (30) au côté haute pression et au moyen d'un capteur de température (31) au côté haute pression en aval de l'échangeur de chaleur interne dans le circuit de refroidissement en fonction d'une pression mesurée au capteur de pression et d'une température mesurée au capteur de température.
  2. Procédé selon la revendication 1,
    caractérisé en ce que
    le fluide frigorigène du côté haute pression (19) est refroidi au moyen de l'échangeur de chaleur (18) interne.
  3. Procédé selon la revendication 1 ou 2,
    caractérisé en ce que
    du fluide frigorigène est fourni à l'échangeur de chaleur (18) interne via le deuxième élément de détente (28), du fluide frigorigène étant fourni au compresseur (15) du côté basse pression (20) de l'échangeur de chaleur interne.
  4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce
    qu'un fluide frigorigène ayant un glissement de température de ≥ 5 K est utilisé comme fluide frigorigène.
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que
    R469A ou un mélange du fluide frigorigène R469A et le fluide frigorigène R410A ou R466A est utilisé comme fluide frigorigène.
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que
    le système de commande régule le deuxième élément de détente (28) selon une variable de référence, la variable de référence étant une température d'ébullition du fluide frigorigène ou une température du fluide frigorigène sous-refroidi au premier élément de détente (17).
  7. Procédé selon la revendication 6,
    caractérisé en ce que
    la température d'ébullition est déterminée au moyen du système de commande, le système de commande calculant la température d'ébullition du fluide frigorigène pour la pression mesurée au capteur de pression (30).
  8. Procédé selon la revendication 7,
    caractérisé en ce que
    la température d'ébullition est calculée au moyen d'un polynôme ou d'un tableau de pression de vapeur.
  9. Procédé selon l'une quelconque des revendications 6 à 8, caractérisé en ce que
    le système de commande calcule la variable de référence en additionnant une valeur de sécurité de 5 K à 25 K, de préférence 7 K à 15 K, à la température d'ébullition.
  10. Procédé selon l'une quelconque des revendications 6 à 9, caractérisé en ce que
    le système de commande soustrait la température mesurée au capteur de température (31) comme variable commandée de la température d'ébullition pour déterminer un écart de régulation, le système de commande régulant le deuxième élément de détente (28) en fonction de l'écart de régulation au moyen d'une variable réglante.
  11. Procédé selon la revendication 10,
    caractérisé en ce que
    le deuxième élément de détente (28) est régulé au moyen de la variable réglante lorsque la température mesurée est supérieure à la variable de référence, et en ce qu'aucune régulation de la variable réglante n'est effectuée lorsque la température mesurée est inférieure à la variable de référence.
  12. Procédé selon la revendication 10 ou 11,
    caractérisé en ce que
    le système de régulation limite la variable réglante à une valeur maximale.
  13. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que
    le deuxième élément de détente (28) est régulé au moyen d'une commande du type PID du système de régulation.
  14. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce
    qu'une température d'une plage de température de -50 °C à +180 °C, de préférence de -70 °C à +180 °C, de préférence particulière de -80 °C à +180 °C, est établie à l'intérieur de l'espace d'essai.
  15. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que
    le premier élément de détente (17) et le deuxième élément de détente (28) sont chacun formés d'un élément d'étranglement et une électrovalve, du fluide frigorigène étant dosé au moyen du système de régulation via l'élément d'étranglement respectif et l'électrovalve.
  16. Chambre d'essai pour le conditionnement de l'air, ladite chambre d'essai comprenant un espace d'essai (13) isolé thermiquement qui est capable d'être étanché à un environnement et qui sert à recevoir du matériau d'essai, et un dispositif de régulation de température pour réguler la température de l'espace d'essai, le dispositif de régulation de température ayant un moyen de refroidissement (10, 40) ayant un circuit de refroidissement (11) comprenant un fluide frigorigène, un échangeur de chaleur (14) disposé dans l'espace d'essai, un compresseur (15), un condenseur (16), un premier élément de détente (17) et un échangeur de chaleur (18) interne, une température dans une plage de température de -40 °C à +180 °C étant capable d'être établie à l'intérieur de l'espace d'essai au moyen du dispositif de régulation de température, l'échangeur de chaleur interne étant relié au côté haute pression (19) du circuit de refroidissement en amont du premier élément de détente et en aval du condenseur, et au côté basse pression (20) du circuit de refroidissement en aval de l'échangeur de chaleur et en amont du compresseur, le circuit de refroidissement ayant un bipasse (26) ayant au moins un deuxième élément de détente (28), le bipasse étant relié au côté haute pression en aval du condenseur et en amont de l'échangeur de chaleur interne, et au côté basse pression en aval de l'échangeur de chaleur et en amont de l'échangeur de chaleur interne,
    caractérisée en ce que
    le dispositif de régulation de température comprend un système de commande ayant un capteur de pression (30) au côté haute pression et un capteur de température (31) au côté haute pression en aval de l'échangeur de chaleur interne dans le circuit de refroidissement, le deuxième élément de détente étant régulé au moyen du système de commande en fonction d'une pression mesurée au capteur de pression et d'une température mesurée au capteur de température.
  17. Chambre d'essai selon la revendication 16,
    caractérisée en ce que
    le moyen de refroidissement (40) est réalisé avec seulement un circuit de refroidissement (12).
  18. Chambre d'essai selon la revendication 16,
    caractérisée en ce que
    le condenseur (16) est réalisé comme échangeur de chaleur (37) en cascade d'un autre circuit de refroidissement (12) du moyen de refroidissement (10), l'autre circuit de refroidissement ayant un autre fluide frigorigène, l'échangeur de chaleur en cascade, un autre compresseur (34), un autre condenseur (35) et un autre élément de détente (36).
  19. Chambre d'essai selon l'une quelconque des revendications 16 à 18, caractérisée en ce que
    le dispositif de régulation de température a un moyen chauffant ayant un chauffage et un échangeur de chaleur chauffant dans l'espace d'essai.
  20. Chambre d'essai selon l'une quelconque des revendications 16 à 19, caractérisée en ce que
    le circuit de refroidissement (11) a un autre bipasse (32) ayant au moins un troisième élément de détente (33), l'autre bipasse étant relié au côté haute pression (19) en aval du compresseur (15) et en amont du condenseur (16), et au côté basse pression (20) en aval de l'échangeur de chaleur (18) interne et en amont du compresseur de manière qu'une température de gaz d'aspiration et/ou une pression de gaz d'aspiration du fluide frigorigène sont capables d'être régulées au côté basse pression en amont du compresseur, et/ou de manière qu'une différence de pression entre le côté haute pression et le côté basse pression est compensable.
  21. Chambre d'essai selon l'une quelconque des revendications 16 à 20, caractérisée en ce que
    l'échangeur de chaleur (18) interne est réalisé comme section de sous-refroidissement ou comme échangeur thermique, notamment comme échangeur thermique à plaques.
EP21170171.9A 2020-04-27 2021-04-23 Procédé et chambre d'essai destinés au conditionnement de l'air Active EP3904785B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20171621 2020-04-27

Publications (2)

Publication Number Publication Date
EP3904785A1 EP3904785A1 (fr) 2021-11-03
EP3904785B1 true EP3904785B1 (fr) 2022-08-24

Family

ID=70470916

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21170171.9A Active EP3904785B1 (fr) 2020-04-27 2021-04-23 Procédé et chambre d'essai destinés au conditionnement de l'air

Country Status (1)

Country Link
EP (1) EP3904785B1 (fr)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7178353B2 (en) * 2004-02-19 2007-02-20 Advanced Thermal Sciences Corp. Thermal control system and method
DE102017012211A1 (de) * 2017-09-08 2019-03-14 Technische Universität Dresden Kältemittel
DE102018215026B4 (de) * 2018-09-04 2021-08-26 Audi Ag Kälteanlage für ein Fahrzeug mit einem einen zweiflutigen Wärmeübertrager aufweisenden Kältemittelkreislauf sowie Wärmeübertrager und Verfahren zum Betreiben der Kälteanlage

Also Published As

Publication number Publication date
EP3904785A1 (fr) 2021-11-03

Similar Documents

Publication Publication Date Title
EP3430325B1 (fr) Chambre d'essai
EP3679109B1 (fr) Fluide frigorigène
EP3511695B1 (fr) Chambre d'essai
DE102019105676B4 (de) Kältemittel und dessen Verwendung
WO2019052761A1 (fr) Procédé et dispositif pour conditionner de l'air
DE102019105682B4 (de) Kältemittel und dessen Verwendung
EP3686261B1 (fr) Agent réfrigérant
EP3705551A1 (fr) Réfrigérant
DE112019007078T5 (de) Klimagerät
DE69823990T2 (de) Kältemaschine und verfahren zum füllen von kühlmittel
EP3699515A1 (fr) Chambre de mise en température et procédé
EP3584512A1 (fr) Chambre d'essai et procédé
EP3859235A1 (fr) Chambre d'essai et procédé de commande
EP3865788A1 (fr) Dispositif de refroidissement, chambre d'essai et procédé
EP3904785B1 (fr) Procédé et chambre d'essai destinés au conditionnement de l'air
EP3686260B1 (fr) Agent réfrigérant
EP3910043A1 (fr) Réfrigérant
DE102013203240A1 (de) Kältemaschine und Verfahren zum Betreiben einer Kältemaschine
EP3730587B1 (fr) Agent réfrigérant
EP4317841A1 (fr) Chambre d'essai et procédé de commande
EP4317843A1 (fr) Chambre d'essai et procédé de fonctionnement
EP3922929A1 (fr) Procédé de régulation d'une installation de réfrigération à compression et installation de réfrigération à compression
EP3922932A1 (fr) Procédé de fonctionnement d'une installation de réfrigération à compression et installation de réfrigération à compression
EP4317857A1 (fr) Chambre d'essai et procédé
DE102020115274A1 (de) Verfahren zum Betrieb einer Kompressionskälteanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

B565 Issuance of search results under rule 164(2) epc

Effective date: 20210902

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211129

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 9/00 20060101ALN20220310BHEP

Ipc: F25B 49/02 20060101ALI20220310BHEP

Ipc: F25B 40/00 20060101ALI20220310BHEP

Ipc: F25B 7/00 20060101AFI20220310BHEP

INTG Intention to grant announced

Effective date: 20220323

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WEISS TECHNIK GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1513909

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220915

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021000113

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221226

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221124

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221224

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502021000113

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230501

Year of fee payment: 3

Ref country code: FR

Payment date: 20230421

Year of fee payment: 3

Ref country code: DE

Payment date: 20230427

Year of fee payment: 3

26N No opposition filed

Effective date: 20230525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230423

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230423