EP3899371B1 - Chambre de combustion d'une turbomachine - Google Patents

Chambre de combustion d'une turbomachine Download PDF

Info

Publication number
EP3899371B1
EP3899371B1 EP19845596.6A EP19845596A EP3899371B1 EP 3899371 B1 EP3899371 B1 EP 3899371B1 EP 19845596 A EP19845596 A EP 19845596A EP 3899371 B1 EP3899371 B1 EP 3899371B1
Authority
EP
European Patent Office
Prior art keywords
wall
injector
combustion chamber
passage
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19845596.6A
Other languages
German (de)
English (en)
Other versions
EP3899371C0 (fr
EP3899371A1 (fr
Inventor
Damien FAUVET
Marc NGUYEN
Baptiste Guerin
Jean-Michel Guimbard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Turbotech
Original Assignee
Turbotech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Turbotech filed Critical Turbotech
Publication of EP3899371A1 publication Critical patent/EP3899371A1/fr
Application granted granted Critical
Publication of EP3899371C0 publication Critical patent/EP3899371C0/fr
Publication of EP3899371B1 publication Critical patent/EP3899371B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/46Combustion chambers comprising an annular arrangement of several essentially tubular flame tubes within a common annular casing or within individual casings
    • F23R3/48Flame tube interconnectors, e.g. cross-over tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/283Attaching or cooling of fuel injecting means including supports for fuel injectors, stems, or lances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/005Combined with pressure or heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/54Reverse-flow combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00001Arrangements using bellows, e.g. to adjust volumes or reduce thermal stresses

Definitions

  • the present invention relates to the field of regenerative cycle turbines intended in particular for the production of on-board electrical or mechanical energy from fuels for aeronautical, land, maritime vehicles and light mobile units.
  • the exhaust gases exit the turbine at high temperatures (above 500°C), while the temperature of the air leaving the compressor is lower (typically between 200°C and 400°C). °C), with circulation through a heat exchanger inserted between the exhaust gases and the compressed air allowing the air to be partially heated before entering the combustion chamber, which reduces fuel consumption.
  • the invention relates more particularly to the combustion chamber and the injection of fuel into the combustion chamber.
  • German patent DE1254911 providing hook-shaped injection nozzles mounted in the injection nozzle body, which is fixed in the flame holder with its nozzle tip, so as to be movable relative to the walls of the combustion chamber.
  • the exterior part of the hook-shaped injection nozzle body is slidably mounted in a guide, possibly associated with the exterior wall of the combustion chamber, and a clamping device directed parallel to the tip mouthpiece of the nozzle is designed to hold the front end of the mouthpiece against a stop fixed in a hub of the flame holder.
  • the problem posed by the solutions of the prior art concerns turbines having a combustion chamber isolated from the outside by a double wall, two walls defining an annular conduit for the circulation of a flow of compressed air coming from the compressor and the third wall being the exterior wall of the combustion chamber, allowing the circulation of the same flow of air heated before passing through a heat exchanger.
  • the injector(s) must pass through the three walls in a sealed manner or at the very least with a controlled leak. This results in a hyperstatic assembly which does not make it possible to absorb the longitudinal thermal expansions of the injector, nor the radial and longitudinal thermal expansions of the metal walls subjected to strongly differentiated temperatures.
  • the injector passes through the walls of the combustion chamber through simple holes, referenced 38, 48 and 52.
  • This document of the prior art proposes to position the injector coaxially inside each of the coaxial holes 52, 48 and 38 provided in the housing 50.
  • This solution therefore leads to multiple disadvantages: on the one hand, the radial expansion of the injector is different from the surface expansion of the walls, which leads either to leaks between the periphery of the injector and the edge of the passage holes in the wall, or to tightness of the edges of the holes around the wall of the injector, which limits the possibilities of radial movement and can lead to deformation and fatigue of the walls .
  • the present invention relates to a combustion chamber of a turbomachine according to the subject of claim 1.
  • FIG. 1 describes a configuration not forming part of the invention as defined by the claims and represents a perspective view of the turbomachine, comprising an exchanger (1), a compressor (2), a combustion chamber (3) and a turbine (4).
  • a conical deflector (11) coaxial with the exchanger (1) circulates the hot gases coming from the turbine (4) towards an evacuation outlet (12) after passing through the exchanger (2), crossing two cassettes (5, 6) between the tubes.
  • the exchanger (2) consists of a tube exchanger, comprising two coaxial annular cassettes (5, 6).
  • the outer cassette (5) is made up of an assembly of parallel tubes, made of a metal alloy resistant to high temperatures, for example refractory stainless steel 347.
  • this exterior cassette (5) is made up of 2000 tubes with a length of 300 millimeters, an interior section of 2.8 millimeters and an exterior section of 3 millimeters.
  • the tubes are held in a known manner by spacers to define passages for hot gases coming from the turbine.
  • the tubes form a sleeve with an outer radius of 158 millimeters and an inner radius of 128 millimeters.
  • the inner cassette (6) is made up of 2000 tubes with a length of 300 millimeters, an inner section of 2.8 millimeters and an outer section of 3 millimeters.
  • the tubes form a sleeve with an outer radius of 123 millimeters and an inner radius of 67 millimeters.
  • the two cassettes (5, 6) are coaxial and embedded one inside the other.
  • Each of the cassettes (5, 6) comprises, at each end, a front sealing plate pierced for the passage of the tubes, and ensuring the constant center distance of the tubes.
  • the tubes are brazed or welded to ensure tightness at their connection with the front plates.
  • This closing structure (8) is made up of two coaxial interlocking parts, having the general shape of a rum baba mold, in refractory stainless steel 347 with a thickness of 2 millimeters.
  • the outer part (9) has an outer section corresponding to the outer section of the outer cassette (5) and an inner section corresponding to the inner section of the inner cassette (6).
  • the inner part (10) has an outer section corresponding to the inner section of the outer cassette (5) and an inner section corresponding to the outer section of the inner cassette (6).
  • Each of the parts (9, 10) has a symmetry of revolution along the axis of the turbomachine, with a constant longitudinal section.
  • the closing structure (8) ensures the deflection of gases coming from the outer cassette (5) towards the tubes constituting the inner cassette (6).
  • This solution ensures a double passage of gases in the exchanger (1), which significantly increases its thermal efficiency for a given size, and in particular a length.
  • the annular type combustion chamber (3) has a double inner envelope formed by a sheath (30) (“liner” in English) and a wall (31).
  • the sheath (30) and the wall (31) define a tubular volume for circulation of the air flow coming from the exchanger (1).
  • An outer wall (32) and the wall 31 define a tubular volume of air circulation coming from the compressor (2) and going towards the exchanger (1).
  • the injector (35) passes through these three walls (30 to 32) through three ports.
  • the walls (30 to 32) as well as the tube (35) of the injector are subjected to longitudinal and radial expansions. Fixation is ensured by a combination of connections avoiding hyperstatic situations.
  • connection between the tube (35) of the injector and the interior wall (30) is ensured by a slide connection formed by a calibrated lumen defining with the exterior surface of the tube (35) a calibrated annular clearance.
  • connection between the tube (35) of the injector and the intermediate wall (31) is ensured by a fixed connection.
  • the first alternative embodiment does not conform to the invention as defined by the claims and is illustrated schematically by the figure 2 .
  • the second alternative embodiment does not conform to the invention as defined by the claims and is illustrated schematically by the Figure 3 .
  • the third alternative embodiment does not conform to the invention as defined by the claims and is illustrated schematically by the figure 4 .
  • the fourth alternative embodiment does not conform to the invention as defined by the claims and is illustrated schematically by the figure 5 .
  • connection between said peripheral tube and the intermediate wall (31) of the sheath is constituted by a connection (80) having several degrees of freedom to allow axial movement and tangential movement of the tube, and a tolerance for pivoting.
  • connection between the peripheral tube (30) and the outer wall (32) of the sheath is constituted by a rigid sealed assembly.
  • the outer wall (32) is crossed by a cable gland (37) into which the head (38) of the injector (35) is inserted.
  • This head (38) has a disc collar (38) engaged between the two parts of the gland (37) which ensures tightening and sealing of this disc collar (38).
  • the inner end (40) passes through the inner wall (30) through a simple hole formed in the wall (30).
  • This hole is oblong in this case, to take into account the inclination of the axis of the injector (35) relative to the radial axis.
  • connection between the injector (35) and the intermediate wall (31) is made by a part having a conical upper part (41) flared outwards, extended at its base by a disc flange (42) movable in radial translation in a slot (42) formed in the head (44) of a tubular extension (43) welded to the surface of the interior wall (30).
  • the disc flange (42) is flexible, which also allows slight rotation in relation to this tubular extension (43).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Joints Allowing Movement (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

    Domaine de l'invention
  • La présente invention concerne le domaine des turbines à cycle régénératif destinées notamment à la production d'énergie électrique ou mécanique embarquée à partir de carburants pour véhicules aéronautiques, terrestres, maritimes et unités mobiles légères.
  • Une turbine est composée de trois éléments :
    • un compresseur, qui a pour rôle de comprimer de l'air ambiant à une pression comprise entre 2 et 30 bars environ ;
    • une chambre de combustion, dans laquelle un combustible est injecté sous pression, puis brûlé avec l'air comprimé, avec un fort excès d'air afin de limiter la température des gaz d'échappement ;
    • une turbine axiale dans laquelle sont détendus les gaz qui sortent de la chambre de combustion.
  • Dans une turbine à cycle régénératif, les gaz d'échappement sortent de la turbine à des températures élevées (supérieures à 500°C), alors que la température de l'air sortant du compresseur est plus basse (typiquement entre 200°C et 400°C), avec une circulation à travers un échangeur de chaleur inséré entre les gaz d'échappement et l'air comprimé permettant de réchauffer partiellement l'air avant entrée dans la chambre de combustion, ce qui permet de réduire la consommation de combustible.
  • L'invention concerne plus particulièrement la chambre de combustion et l'injection de combustible dans la chambre de combustion.
  • Etat de la technique
  • Le brevet américain US4453384 décrit un exemple de turbine à gaz comprenant:
    • un boîtier annulaire ayant une pluralité de trous équidistants disposés circonférentiellement; un tube à flamme annulaire positionné coaxialement à l'intérieur et espacé dudit boîtier annulaire,
    • ledit tube à flamme annulaire ayant un nombre correspondant de trous circonférentiellement équidistants alignés coaxialement avec les trous dudit boîtier
    • une pluralité de tubes s'étendant radialement à travers ledit tube de flamme annulaire, chaque tube étant coaxial avec le trou correspondant dans le tube de flamme annulaire et le trou correspondant dans le boîtier annulaire, chaque tube s'étendant perpendiculairement à un axe dudit tube de flamme annulaire, chaque tube ayant un conduit s'étendant à travers celui-ci avec un axe normal à l'axe du tube et parallèle à l'axe dudit tube à flamme annulaire.
  • On connait aussi le brevet allemand DE1254911 proposant des buses d'injection en forme de crochet montées dans le corps de buse d'injection, qui est fixé dans le porte-flamme avec son embout de buse, de manière à être déplaçable par rapport aux parois de la chambre de combustion.
  • Dans un mode de réalisation, la partie extérieure du corps de buse d'injection en forme de crochet est montée coulissante dans un guide, éventuellement associé à la paroi extérieure de la chambre de combustion, et un dispositif de serrage dirigé parallèlement à l'embout buccal de la buse est prévu pour maintenir l'extrémité avant de l'embout buccal contre une butée fixée dans un moyeu du porte-flamme.
  • On connaît enfin la demande de brevet britannique GB2097112 décrivant un rûleur à carburant pour moteur à turbine à gaz comprenant un bras d'alimentation en carburant et un injecteur de carburant, le bras d'alimentation en carburant et l'injecteur de carburant étant réunis, le bras d'alimentation en carburant ayant au moins un passage de carburant, l'injecteur de carburant 65 comprenant un corps ayant un passage dans communication avec l'au moins un passage de carburant dans le bras d'alimentation en carburant, le corps ayant un conduit d'air, l'axe du conduit d'air étant coaxial avec l'axe de l'injecteur de carburant, l'injecteur de carburant ayant un ou plusieurs 70 passages de carburant pour injecter du carburant dans le conduit d'air, le brûleur de carburant ayant des moyens de localisation à l'extrémité adjacente à l'injecteur de carburant, les moyens de localisation étant agencés pour s'engager avec des moyens de localisation correspondants sur un composant de moteur.
  • Inconvénients de l'art antérieur
  • Le problème posé par les solutions de l'art antérieur concerne les turbines présentant une chambre de combustion isolée de l'extérieur par une double paroi, deux parois définissant un conduit annulaire pour la circulation d'un flux d'air comprimé issue du compresseur et la troisième paroi étant la paroi extérieure de la chambre de combustion, permettant la circulation du même flux d'air réchauffé préalablement à la traversée d'un échangeur thermique. Le ou les injecteurs doivent traverser les trois parois de manière étanche ou à tout le moins avec une fuite contrôlée. Cela se traduit par un montage hyperstatique qui ne permet pas d'absorber les dilatations thermiques longitudinales de l'injecteur, ni les dilatations thermiques radiales et longitudinales des parois métalliques soumises à des températures fortement différenciées.
  • Par ailleurs, dans la solution décrite dans le brevet US4453384 , l'injecteur traverse les parois de la chambre de combustion par des trous simples, référencés 38, 48 et 52. Ce document de l'art antérieur propose de positionner l'injecteur coaxialement à l'intérieur de chacun des trous coaxiaux 52, 48 et 38 prévus dans le boîtier 50. Cette solution conduit donc à de multiples inconvénients : d'une part, la dilatation radiale de l'injecteur est différente de la dilatation surfacique des parois, ce qui conduit soit à des fuites entre la périphérie de l'injecteur et le bord des trous de passage dans la paroi, soit à des serrements du bords des trous autour de la paroi de l'injecteur, ce qui limite les possibilités de déplacement radiaux et peut conduire à des déformations et à une fatigue des parois.
  • Solution apportée par l'invention
  • Afin de répondre à ce problème, la présente invention concerne une chambre de combustion d'une turbomachine selon l'objet de la revendication 1.
  • Des variantes de réalisation sont décrites par les revendications dépendantes.
  • L'invention sera mieux comprise à la lecture de la description qui suit, concernant un exemple non limitatif de réalisation illustré par les dessins annexés où :
    • les figures 1 à 5 représentent des vues schématiques de variantes de réalisation qui ne sont pas conformes à l'invention telle que définie par les revendications;
    • les figures 6-8 représentent des vues schématique d'une chambre de combustion selon l'invention telle que définie par les revendications.
  • La figure 1 décrit une configuration ne faisant pas partie de l'invention telle que définie par les revendications et représente une vue en perspective de la turbomachine, comprenant un échangeur (1), un compresseur (2), une chambre de combustion (3) et une turbine (4). Un déflecteur conique (11) coaxial avec l'échangeur (1) fait circuler les gaz chauds issus de la turbine (4) en direction d'une sortie d'évacuation (12) après avoir traversé l'échangeur (2), en traversant deux cassettes (5, 6) entre les tubes.
  • Les parties constituées par le compresseur (2), la chambre de combustion (3) et la turbine (4) sont connues de l'homme du métier, et conformes à l'état des connaissances en matière de turbomachines.
  • L'échangeur (2) est constitué par un échangeur à tubes, comprenant deux cassettes annulaires (5, 6) coaxiales.
  • La cassette extérieure (5) est constituée par un assemblage de tubes parallèles, en alliage métallique résistant aux hautes températures, par exemple de l'acier inoxydable réfractaire 347.
  • A titre d'exemple, cette cassette extérieure (5) est constituée de 2000 tubes d'une longueur de 300 millimètres, d'une section intérieure de 2,8 millimètres et de section extérieure de 3 millimètres. Les tubes sont maintenus de manière connue par des intercalaires pour définir des passages des gaz chauds provenant de la turbine.
  • Les tubes forment un manchon d'un rayon extérieur de 158 millimètres et d'un rayon intérieur de 128 millimètres.
  • La cassette intérieure (6) est constituée de 2000 tubes d'une longueur de 300 millimètres, d'une section intérieure de 2,8 millimètres et de section extérieure de 3 millimètres.
  • Les tubes forment un manchon d'un rayon extérieur de 123 millimètres et d'un rayon intérieur de 67 millimètres.
  • Les deux cassettes (5, 6) sont coaxiales et encastrée l'une dans l'autre.
  • Ces deux cassettes (5, 6) sont réunies, à l'extrémité opposées au compresseur (1), par une structure de fermeture annulaire (8).
  • Chacune des cassettes (5, 6) comporte, à chaque extrémité, une plaque d'étanchéité frontale percée pour le passage des tubes, et assurant l'entraxe constant des tubes. Les tubes sont brasés ou soudés pour assurer l'étanchéité au niveau de leur raccordement avec les plaques frontales.
  • Cette structure de fermeture (8) est constituée de deux pièces coaxiales emboîtées, présentant la forme générale d'un moule à baba au rhum, en acier inoxydable réfractaire 347 d'une épaisseur de 2 millimètres.
  • La pièce extérieure (9) présente une section extérieure correspondant à la section extérieure de la cassette extérieure (5) et une section intérieure correspondant à la section intérieure de la cassette intérieure (6).
  • La pièce intérieure (10) présente une section extérieure correspondant à la section intérieure de la cassette extérieure (5) et une section intérieure correspondant à la section extérieure de la cassette intérieure (6).
  • Chacune des pièces (9, 10) présente une symétrie de révolution selon l'axe de la turbomachine, avec une section longitudinale constante.
  • La structure de fermeture (8) assure la déflexion des gaz provenant de la cassette extérieure (5) vers les tubes constituant la cassette intérieure (6).
  • Cette solution assure un double passage des gaz dans l'échangeur (1), ce qui augmente significativement son efficacité thermique pour un encombrement, et notamment une longueur, donné.
  • La chambre de combustion (3) de type annulaire présente une doubleenveloppe intérieure formée par un fourreau (30) (« liner » en anglais ») et une paroi (31). Le fourreau (30) et la paroi (31) définissent un volume tubulaire de circulation du flux d'air issue de l'échangeur (1). Une paroi extérieure (32) et la paroi 31 définissent un volume tubulaire de circulation d'air issue du compresseur (2) et allant vers l'échangeur (1).
  • L'injecteur (35) traverse ces trois parois (30 à 32) à travers trois lumières. Les parois (30 à 32) ainsi que le tube (35) de l'injecteur sont soumis à des dilatations longitudinales et radiales. La fixation est assurée par une combinaison de liaisons évitant les situations hyperstatiques.
  • La liaison entre le tube (35) de l'injecteur et la paroi extérieure (32) est assurée par un soufflet (36) cylindrique.
  • La liaison entre le tube (35) de l'injecteur et la paroi intérieure (30) est assurée par un liaison glissière formée par une lumière calibrée définissant avec la surface extérieure du tube (35) un jeu annulaire calibrée.
  • La liaison entre le tube (35) de l'injecteur et la paroi intermédiaire (31) est assurée par une liaison fixe.
  • Première variante de réalisation
  • La première variante de réalisation n'est pas conforme à l'invention telle que définie par les revendications et est illustrée schématiquement par la figure 2.
  • Le tube (35) de l'injecteur traverse les trois parois (30 à 31), avec des liaisons respectivement :
    • Une liaison rotule (42) pour le passage à travers la paroi extérieure (32)
    • Une liaison rotule-glissière (41) pour le passage à travers la paroi intermédiaire (31)
    • Une liaison libre avec un jeu périphérique calibré (40) pour le passage à travers la paroi intérieure (30).
    Deuxième variante de réalisation
  • La deuxième variante de réalisation n'est pas conforme à l'invention telle que définie par les revendications et est illustrée schématiquement par la figure 3.
  • Le tube (35) de l'injecteur traverse les trois parois (30 à 31), avec des liaisons respectivement :
    • Une liaison rotule-glissière (52) pour le passage à travers la paroi extérieure (32)
    • Une liaison rotule (51) pour le passage à travers la paroi intermédiaire (31)
    • Une liaison libre avec un jeu périphérique calibré (50) pour le passage à travers la paroi intérieure (30).
    Troisième variante de réalisation
  • La troisième variante de réalisation n'est pas conforme à l'invention telle que définie par les revendications et est illustrée schématiquement par la figure 4.
  • Le tube (35) de l'injecteur traverse les trois parois (30 à 31), avec des liaisons respectivement :
    • Un soufflet (62) pour le passage à travers la paroi extérieure (32)
    • Une liaison soudée (61) pour le passage à travers la paroi intermédiaire (31)
    • Une liaison libre avec un jeu périphérique calibré (60) pour le passage à travers la paroi intérieure (30).
    Quatrième variante de réalisation
  • La quatrième variante de réalisation n'est pas conforme à l'invention telle que définie par les revendications et est illustrée schématiquement par la figure 5.
  • Le tube (35) de l'injecteur traverse les trois parois (30 à 31), avec des liaisons respectivement :
    • Une liaison soudée (72) pour le passage à travers la paroi extérieure (32)
    • Un soufflet tronconique métallique (71) pour le passage à travers la paroi intermédiaire (31)
    • Une liaison libre avec un jeu périphérique calibré (70) pour le passage à travers la paroi intérieure (30).
    Réalisation selon l'invention
  • La configuration selon l'invention telle que définie par les revendications est illustrée schématiquement par les figures 6 à 8.
  • Le tube de l'injecteur (35) traverse les trois parois (30 à 31), avec des liaisons respectivement :
    • Une liaison soudée (72) pour le passage à travers la paroi extérieure (32)
    • Une liaison multidirectionnelle (80) pour le passage à travers la paroi intermédiaire (31)
    • Une liaison libre avec un jeu périphérique calibré (70) pour le passage à travers la paroi intérieure (30).
  • La liaison entre ledit tube périphérique et la paroi intermédiaire (31) du fourreau est constituée par une liaison (80) présentant plusieurs degrés de liberté pour permettre un déplacement axial et un déplacement tangentiel du tube, et une tolérance pour un rotulage.
  • La liaison entre le tube périphérique (30) et la paroi extérieure (32) du fourreau est constituée par assemblage étanche rigide.
  • La paroi extérieure (32) est traversée par un presse-étoupe (37) dans lequel est inséré la tête (38) de l'injecteur (35). Cette tête (38) présente une collerette discale (38) engagée entre les deux parties du presse-étoupe (37) qui assure un serrage et une étanchéité de cette collerette discale (38).
  • L'extrémité intérieure (40) traverse la paroi intérieure (30) par le passage dans un simple trou formé dans la paroi (30). Ce trou est oblong dans le cas d'espèce, pour prendre en compte l'inclinaison de l'axe de l'injecteur (35) par rapport à l'axe radial.
  • La liaison entre l'injecteur (35) et la paroi intermédiaire (31) est réalisée par une pièce présente une partie supérieure (41) conique évasée vers l'extérieur, prolongée à sa base par une collerette discale (42) mobile en translation radiale dans une fente (42) formée dans la tête (44) d'un prolongement tubulaire (43) soudé à la surface de la paroi intérieure (30).
  • La collerette discale (42) est flexible, ce qui permet par ailleurs un léger rotulage par rapport à ce prolongement tubulaire (43).

Claims (4)

  1. - Chambre de combustion d'une turbomachine, comprenant deux parois de révolution coaxiales comprenant une paroi intérieure (30) et une paroi intermédiaire (31) s'étendant l'une à l'intérieur de l'autre et délimitant entre elles un espace annulaire (33) de circulation d'air, et une paroi extérieure (32), et un au moins un injecteur (35) traversant lesdites parois intérieure (30), intermédiaire (31) et extérieure (32) par des lumières, caractérisée en ce que ledit au moins un injecteur (35) comporte un tube périphérique reliés auxdites parois (30 à 32) par trois liaisons, dans laquelle une liaison entre le tube périphérique et la paroi extérieure (32) est constituée par assemblage étanche rigide, dans laquelle une liaison entre le tube périphérique et la paroi intermédiaire (31) est réalisée par une pièce présentant une partie supérieure (41) conique évasée vers l'extérieur, prolongée à sa base par une collerette discale (42) mobile en translation radiale dans une fente (42) formée dans la tête (44) d'un prolongement tubulaire (43) soudé à la surface de la paroi intermédiaire (31), deux liaisons au moins étant des liaisons souples étanches.
  2. - Chambre de combustion d'une turbomachine selon la revendication 1 caractérisée en ce que la liaison entre ledit tube périphérique (35) et la paroi intérieure (30) est constituée par une liaison linéaire annulaire avec une fuite contrôlée par section annulaire calibrante.
  3. - Chambre de combustion d'une turbomachine selon la revendication 1 caractérisée en ce que ladite paroi extérieure (32) est traversée par un presse-étoupe (37) dans lequel est inséré la tête (38) de l'injecteur (35), ladite tête (38) présentant une collerette discale (38) engagée entre les deux parties du presse-étoupe (37).
  4. - Chambre de combustion d'une turbomachine selon la revendication 1 caractérisée en ce que l'extrémité intérieure (40) de l'injecteur (35) traverse la paroi intérieure (30) par le passage dans un trou oblong formé dans la paroi intérieure (30).
EP19845596.6A 2018-12-21 2019-12-17 Chambre de combustion d'une turbomachine Active EP3899371B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1874016A FR3090747B1 (fr) 2018-12-21 2018-12-21 Chambre de combustion d'une turbomachine
PCT/FR2019/053108 WO2020128292A1 (fr) 2018-12-21 2019-12-17 Chambre de combustion d'une turbomachine

Publications (3)

Publication Number Publication Date
EP3899371A1 EP3899371A1 (fr) 2021-10-27
EP3899371C0 EP3899371C0 (fr) 2024-02-07
EP3899371B1 true EP3899371B1 (fr) 2024-02-07

Family

ID=67441198

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19845596.6A Active EP3899371B1 (fr) 2018-12-21 2019-12-17 Chambre de combustion d'une turbomachine

Country Status (6)

Country Link
US (1) US20220074595A1 (fr)
EP (1) EP3899371B1 (fr)
CN (1) CN113454390B (fr)
CA (1) CA3124209A1 (fr)
FR (1) FR3090747B1 (fr)
WO (1) WO2020128292A1 (fr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160334102A1 (en) * 2015-05-13 2016-11-17 Solar Turbines Incorporated Controlled-leak combustor grommet

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB859805A (en) * 1958-07-21 1961-01-25 Gen Motors Corp Improvements relating to gas turbine engine combustion systems
DE1254911B (de) * 1965-09-23 1967-11-23 Daimler Benz Ag Anordnung des Einspritzduesenkoerpers an bzw. in der Brennkammer von Gasturbinentriebwerken
GB2093584B (en) * 1981-02-21 1984-12-19 Rolls Royce Improvements in or relating to fuel burners and combustion equipment for use in gas turbine engines
GB2097112B (en) * 1981-04-16 1984-12-12 Rolls Royce Fuel burners and combustion equipment for use in gas turbine engines
US4903476A (en) * 1988-12-27 1990-02-27 General Electric Company Gas turbine igniter with ball-joint support
US5966926A (en) 1997-05-28 1999-10-19 Capstone Turbine Corporation Liquid fuel injector purge system
US6438940B1 (en) * 1999-12-21 2002-08-27 General Electric Company Methods and apparatus for providing uniform ignition in an augmenter
US6438936B1 (en) 2000-05-16 2002-08-27 Elliott Energy Systems, Inc. Recuperator for use with turbine/turbo-alternator
US6442929B1 (en) * 2001-06-04 2002-09-03 Power Systems Mfg., Llc Igniter assembly having spring biasing of a semi-hemispherical mount
US7024863B2 (en) * 2003-07-08 2006-04-11 Pratt & Whitney Canada Corp. Combustor attachment with rotational joint
GB2433984B (en) * 2006-01-04 2007-11-21 Rolls Royce Plc A combustor assembly
FR2921463B1 (fr) * 2007-09-26 2013-12-06 Snecma Chambre de combustion d'une turbomachine
CN103649642B (zh) 2011-06-30 2016-05-04 通用电气公司 燃烧器及向燃烧器供应燃料的方法
US9032735B2 (en) * 2012-04-26 2015-05-19 General Electric Company Combustor and a method for assembling the combustor
FR3000522B1 (fr) * 2012-12-27 2018-11-02 Safran Aircraft Engines Dispositif de liaison a double tube
US9803555B2 (en) 2014-04-23 2017-10-31 General Electric Company Fuel delivery system with moveably attached fuel tube
FR3038699B1 (fr) * 2015-07-08 2022-06-24 Snecma Chambre de combustion coudee d'une turbomachine
GB2543803B (en) * 2015-10-29 2019-10-30 Rolls Royce Plc A combustion chamber assembly
GB2548585B (en) * 2016-03-22 2020-05-27 Rolls Royce Plc A combustion chamber assembly
FR3059363B1 (fr) 2016-11-25 2019-04-05 Turbotech Turbomachine, notamment turbogenerateur et echangeur pour une telle turbomachine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160334102A1 (en) * 2015-05-13 2016-11-17 Solar Turbines Incorporated Controlled-leak combustor grommet

Also Published As

Publication number Publication date
EP3899371C0 (fr) 2024-02-07
WO2020128292A1 (fr) 2020-06-25
FR3090747A1 (fr) 2020-06-26
US20220074595A1 (en) 2022-03-10
CN113454390B (zh) 2023-02-24
FR3090747B1 (fr) 2021-01-22
EP3899371A1 (fr) 2021-10-27
CA3124209A1 (fr) 2020-06-25
CN113454390A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
EP0967364B1 (fr) Anneau de stator de turbine haute pression d'une turbomachine
EP1265035B1 (fr) Liaison de chambre de combustion CMC de turbomachine en deux parties
EP3318725B1 (fr) Ensemble de raccordement pour le refroidissement d'une turbine de turbomachine
EP2488792B1 (fr) Injecteur multi-point pour une chambre de combustion de turbomachine
CA2646959A1 (fr) Systeme d'injection d'un melange d'air et de carburant dans une chambre de combustion de turbomachine
FR2997997A1 (fr) Support de tube d'evacuation d'air dans une turbomachine
CA2613268C (fr) Fond de chambre, procede de realisation de celui-ci, chambre de combustion le comportant et turboreacteur en etant equipe
FR2998038A1 (fr) Chambre de combustion pour une turbomachine
EP3052861B1 (fr) Injecteur de carburant dans une turbomachine
WO2009144408A2 (fr) Chambre de combustion annulaire de moteur a turbine a gaz
EP3899371B1 (fr) Chambre de combustion d'une turbomachine
FR2912466A1 (fr) Dispositif de decharge pour un turboreacteur,et turboreacteur le comportant
FR2997996A1 (fr) Support de tube d'evacuation d'air dans une turbomachine
EP3638886B1 (fr) Dispositif de refroidissement d'un carter annulaire externe de turbine
FR3064050A1 (fr) Chambre de combustion d'une turbomachine
FR3111666A1 (fr) Turbomachine d’aeronef a cycle recupere
WO2018083403A1 (fr) Dispositif de refroidissement pour une turbine d'une turbomachine
EP4136327A1 (fr) Dispositif de refroidissement d'un carter de turbine
EP3803062A1 (fr) Dispositif de refroidissement d'un carter de turbomachine
FR3068732A1 (fr) Dispositif de refroidissement
FR3061739A1 (fr) Ensemble pour turbomachine
EP3568638B1 (fr) Chambre de combustion pour turbomachine
WO2021069816A1 (fr) Distributeur de turbine à aubage en composite à matrice céramique traversé par un circuit de ventilation métallique
FR3113419A1 (fr) Distributeur d’une turbine de turbomachine
WO2021069808A1 (fr) Canne de prevaporisation pour une chambre de combustion de turbomachine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210618

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20221201

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230929

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019046294

Country of ref document: DE

U01 Request for unitary effect filed

Effective date: 20240305

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240313