EP3899273A1 - Pumping device, plant and method for supplying liquid hydrogen - Google Patents

Pumping device, plant and method for supplying liquid hydrogen

Info

Publication number
EP3899273A1
EP3899273A1 EP19842379.0A EP19842379A EP3899273A1 EP 3899273 A1 EP3899273 A1 EP 3899273A1 EP 19842379 A EP19842379 A EP 19842379A EP 3899273 A1 EP3899273 A1 EP 3899273A1
Authority
EP
European Patent Office
Prior art keywords
compression
compression member
piston
stage
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19842379.0A
Other languages
German (de)
French (fr)
Inventor
Simon CRISPEL
Anh Thao THIEU
Gaëtan COLEIRO
Fabien Durand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP3899273A1 publication Critical patent/EP3899273A1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/06Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/08Cooling; Heating; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • F04B2015/081Liquefied gases
    • F04B2015/0822Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/02Piston parameters
    • F04B2201/0202Linear speed of the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • F04B23/06Combinations of two or more pumps the pumps being all of reciprocating positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/06Venting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • F04B53/162Adaptations of cylinders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the invention relates to a pumping device as well as an installation and a method for supplying liquid hydrogen.
  • the invention relates more particularly to a device for pumping liquid hydrogen comprising, arranged in series between an inlet for fluid to be compressed and an outlet for compressed fluid, a first compression member, preferably with piston, forming a first compression stage and a second piston compression member forming a second compression stage.
  • a known solution for disposing of hydrogen gas at high pressure from a source of liquefied hydrogen consists in storing liquefied hydrogen then in transferring, evaporating and heating it and finally in compressing it with conventional compression at room temperature.
  • the liquid hydrogen is pumped in two stages (two compression stages in series) cf. US4447195.
  • the pump is immersed in a container filled with liquid hydrogen which allows optimal thermalization and a limitation of the cavitation problems of the pump. This however makes the maintenance of the pump more complex.
  • a pump for liquid hydrogen must be able to meet several constraints: a long required service life (due in particular to the difficulty of its maintenance in a non-industrial environment despite frequent shutdowns / restarting, very good thermal insulation to avoid vaporization gases ("boil-offs") which generate hydrogen gas which is difficult to recover and which contributes to the phenomenon of cavitation in the pump.
  • An object of the present invention is to overcome all or part of the drawbacks of the prior art noted above.
  • the device according to the invention is essentially characterized in that the first compression member is suitable and configured to compress the liquid hydrogen in a supercritical state, the second compression member being able and configured to compress supercritical hydrogen supplied by the first compression member at an increased pressure and in particular at a pressure between 200 and lOOObar.
  • embodiments of the invention may include one or more of the following characteristics:
  • the first compression member is suitable and configured to compress the liquid hydrogen to a pressure of between and 13 and 200 bar, in particular between 14 and 10 Obar,
  • the first compression member comprises at least one assembly comprising a piston movable in translation in a jacket
  • the second compression member comprising at least one assembly comprising a separate piston disposed in a separate jacket
  • the pistons of the first and second compression members being moved in their respective sleeves in alternating movements at determined respective displacement speeds, the displacement speed of the at least one piston of the first compression member being less than the displacement speed of the at least one piston of the second compression member
  • the speed of movement of the at least one piston of the first compression stage 2 is between 0.02 m / s and 0.5 m / s and in particular between 0.02 m / s and 0.2 m / s,
  • the speed of movement of the at least one piston of the second compression stage is for example between 0.02 m / s and lm / s,
  • the at least one piston of the first compression member and / or the at least one piston of the second compression member is moved via a drive mechanism with linear actuator ensuring axial guidance of the piston in its jacket, in particular a screw type mechanism and planetary rollers and powered by electric motor, the first compression member and / or the second compression member is thermally isolated under vacuum, the first compression member and / or the second compression member comprises a heat shield which is thermalized by a cooling fluid,
  • the device comprises a thermalization circuit comprising a first upstream end intended to be connected to a source of liquefied gas and in particular a source of liquid hydrogen intended to be compressed by the pumping device and at least one downstream end ensuring a heat exchange between liquefied gas and heat shield,
  • the thermalization circuit comprises a portion connecting the thermal screen to the compression chamber of the compression member and configured to transfer at least a portion of the liquefied gas having thermally exchanged with the thermal screen in the compression chamber of the compression member, that is to say that the compression member compresses liquefied gas which has been used to cool its heat shield,
  • the device comprises a thermal fluid return circuit comprising one end connected to the thermal screen and one end intended to be connected to a source of liquefied gas and / or to a recovery zone for evacuating at least part of the liquefied gas heated having served to cool the heat shield, the speed of movement of the piston of the first compression member is between 0.02 and 0.05 m per second, the speed of movement of the piston of the second compression member is between 0, 02 and lm / s,
  • the first compression member and / or the second compression member comprises a circuit for collecting the vaporized hydrogen therein, said circuit comprising an evacuation outlet to a recovery zone,
  • the circuit for recovering leaks of fluid passing through the piston or pistons directs at least part of said leaks from the first compression stage towards the source
  • the circuit for recovering leaks of fluid passing through the piston or pistons directs at least a portion of said leaks from the second compression stage to the thermalization circuit and in particular to the thermal screen with a view to cooling it and then, if necessary, its reintroduction into the second compression stage for re-compression,
  • the first compression member is disposed in an envelope forming a heat shield which is thermalised by a cooling fluid, the circuit of fluid to be compressed which transfers the fluid from the source to the first compression stage passing through the envelope of the first compression stage, said envelope of the first compression stage forming a supply chamber for the at least one piston of the first compression stage and a heat shield of the first compression stage.
  • the invention also relates to an installation for supplying pressurized liquid hydrogen comprising a pumping device according to any one of the characteristics above or below, the installation comprising a source of liquefied hydrogen and a transfer circuit comprising a line connecting the source to the inlet of the pumping device capable and configured to supply liquid hydrogen to the pumping device for its compression and delivery at the outlet.
  • the installation comprises at least one return pipe having an upstream end connected to the pumping device and a downstream end connected to the source and suitable and configured to evacuate vaporized gas within the pumping device towards the source,
  • the at least one return line comprises at least one of: a manual or controlled valve, a pressure relief valve.
  • the invention also relates to a method for supplying liquid hydrogen under pressure using a device according to any one of the characteristics above or below or an installation according to any of the characteristics above or below, the method comprising a step of supplying liquid hydrogen to the inlet of the pumping device, a step of compressing this liquid hydrogen in the first compression member at a pressure between 14 and 100 bar and at a temperature between 20 and 40K, then an additional compression step, in the second compression member, of the hydrogen leaving the first compression member up to a pressure between 50 and 100 bar and at a temperature between and 40 and 150K.
  • the invention may also relate to any alternative device or method comprising any combination of the above or below features within the scope of the claims.
  • FIG. 1 represents a schematic and partial view illustrating an example of structure and operation of a pumping device according to a possible embodiment of the invention
  • FIG. 2 represents a schematic and partial view illustrating an example of structure and operation of an installation according to a possible example of embodiment of the invention
  • FIG. 3 shows a schematic and partial view illustrating a detail of an example of the structure and operation of a drive member which can be used according to the invention.
  • the liquid hydrogen pumping device 1 shown in [Fig. 1] comprises, arranged in series between an inlet 12 for fluid to be compressed and an outlet 13 for compressed fluid, a first compression member 2 and a second compression member 3.
  • the first compression member 2 is preferably of the piston type (s) and forms a first compression stage for the fluid admitted by the inlet 12.
  • the second compression member 3 is also preferably of the piston type (s) and forms a second stage of compression of the fluid towards the outlet 13.
  • the two compression members 2, 3 can in particular be housed or not in the same casing or case (cf. [Fig. 2]).
  • the first compression member 2 is able and configured to compress liquid hydrogen in or towards a supercritical state.
  • the first compression member 2 receives liquid hydrogen in a saturated state, for example a pressure between 0 and 10Obarg and a temperature between 20 and 32K.
  • the second compression member 3 is itself suitable and configured to compress the supercritical hydrogen supplied by the first compression member at an increased pressure and in particular at a pressure between 200 and 100 bar.
  • the fluid may have a pressure between 0 and 10 Obarg and a temperature between 20 and 32 K for example.
  • the fluid may have a pressure between 13 and 150 bar (in particular between 14 and 100 bar) and a temperature between 20 and 50 K for example.
  • the fluid may have a pressure between 50 and 1000 bar and a temperature between 40 and 150 K for example.
  • the second compression member 3 performs the main work of compressing the fluid.
  • the first compression member 2 can be adapted and configured to compress liquid hydrogen to a pressure between and 5 and 200 bar and preferably between 13 and 150 barg, in particular between 14 and 100 bar.
  • This architecture makes it possible to avoid compressing in the second compression member 3 a fluid whose properties, in particular the density, are very sensitive and poorly controlled. This makes it possible to limit or manage the cavitation phenomena (boil-off) in dedicated equipment provided for this purpose (first compression member 2). Indeed, by pumping liquid, even a very slight deviation from saturation creates gas in the liquid and strongly modifies the density of the pumped fluid. The supercritical fluid does not change phase and its density varies gradually.
  • the supercritical fluid produced by the first compression stage is thus transmitted to the second compression stage (which is preferably independent of the first compression stage).
  • This second compression stage can thus be designed to produce the main compression work up to the required final pressure level.
  • the supply of fluid from the first compression stage to the second compression stage takes place through the outer casing 16 which houses the piston or pistons of the second compression stage.
  • the casing 16 around the piston or pistons of the second compression stage 3 plays both the role of supply chamber for the compression chamber of said pistons 6 and of thermal screen.
  • thermo-hydraulic design can be determined so as to generate little or no loss (boil-off ) (and low pressure return) at the intake of the second pressure stage.
  • the proposed architecture makes it possible to adjust the speed of movement of the first compression member (piston (s) 4) to control the thermodynamic conditions of the fluid at the inlet of the second compression member (that is to say at the inlet of the piston (s) 6 concerned).
  • a unidirectional valve 32 can be provided between the two compression stages.
  • the relatively different speeds of the two compression stages and the piston drive / control mode facilitate pressure regulation.
  • the first compression member 2 is preferably configured to compress relatively slowly (for example at a displacement speed of the piston of 2 to 5 cm / s, and a frequency of the order of 5 strokes / minute). This will make it possible to bring the fluid into a supercritical state by limiting for example the irreversibilities, thermal inputs, effects of cavitations, and the wear of the components.
  • the physical properties of the fluid are then better controlled and facilitate the production and operation of the second compression stage (dimensions, materials) by ensuring sealing and thermalization.
  • the first compression member 2 may comprise a piston 4 movable in translation in a jacket 5.
  • the piston 4 and the jacket 5 conventionally define a compression chamber.
  • the second compression member 3 may include a separate piston 6 disposed in a separate jacket 7.
  • the pistons 4, 6 of the first and second compression members are moved in their respective sleeves 5, 7 according to reciprocating movements at determined respective displacement speeds.
  • the speed of movement of the piston 5 of the first compression member 2 is preferably less than the speed of movement of the piston 7 of the second compression member 3.
  • the piston 4 of the first compression member 2 and / or the piston 6 of the second compression member 3 can be moved via a respective drive mechanism 8 of the planetary screw and roller type.
  • These mechanisms are preferably actuated by separate respective motors, in particular electric motors.
  • the displacement speeds of the pistons 4, 6 of the two compression stages are distinct and mechanically independent. That is to say that there is no mechanical coupling between the pistons 4, 6 of the two compression stages which would mechanically condition the speed of the pistons of a compression stage as a function of the displacement speed of the pistons of the other compression stage.
  • the speed of the piston (s) 4 of the first compression stage 2 can be calculated in real time to optimize the stability of the thermodynamic conditions at the level of the second compression stage 2.
  • the displacement speeds of the pistons of the two compression stages can be thermodynamically interdependent but mechanically controlled independently.
  • FIG. 3 schematically represents an example of a drive mechanism 8 of the screw 25 and planetary roller 26 type.
  • the nonlimiting example of the complete mechanism illustrated (nut 27, ring 28 guide 29, ring 30, etc.) is not described in detail.
  • This type of drive allows optimal control, especially in position (very reduced clearances), high loads and high reliability of the compression members. This allows flexibility and adaptability making it possible to manage (if necessary in real time) separate displacement speeds for each compression stage.
  • the first compression stage can therefore include or may consist of at least one piston 4 -shirt 5 assembly which is thermalized (that is to say kept cold at a temperature for example between 20 and 30K).
  • the at least one piston 4 and jacket 5 assembly is preferably housed in a sealed envelope 15. This thermalization can be carried out at the level of the casing 15 containing the cryogenic intake fluid.
  • This casing 15 can be isolated under vacuum with an external wall.
  • the envelope 15 houses and thermally insulates the at least one piston assembly 4 - sleeve 5.
  • each piston assembly 4 - sleeve 5 could be housed in a respective respective envelope.
  • This envelope 15 can form a heat shield which is cooled by an internal or external cooling fluid at the device, for example liquid hydrogen supplied by the source 10 of fluid intended to be compressed.
  • the casing 15 can be a volume filled with cooling fluid and / or a mass cooled by the fluid.
  • the device may include a thermalization circuit 9 comprising a first upstream end (pipe 11) connected to a source 10 of liquefied gas and in particular a source of liquid hydrogen intended to be compressed by the pumping device and at least one end ensuring a heat exchange between the liquefied gas and the casing 15.
  • a thermalization circuit 9 comprising a first upstream end (pipe 11) connected to a source 10 of liquefied gas and in particular a source of liquid hydrogen intended to be compressed by the pumping device and at least one end ensuring a heat exchange between the liquefied gas and the casing 15.
  • Source 10 stores, for example, liquid hydrogen at a pressure between 1 and 10 barg.
  • the thermalization circuit 9 may comprise a portion 17 connecting the casing 15 to the compression chamber of the compression member 2.
  • This portion 17 is configured to transfer at least part of the liquefied gas which has thermally exchanged with the casing 15 in the compression chamber of the compression member 2. That is to say that the compression member 2 preferably compresses at least part of the liquefied gas which has been used to cool its envelope 15 forming a heat shield.
  • the hydrogen liquid can pass through the envelope 15 forming a heat shield before being admitted into the compression chamber.
  • the piston 4 / jacket 5 assembly is therefore bathed and cooled in the envelope 15 forming a heat shield.
  • the evaporated liquid very little therefore, can be recirculated in the source 10 via a line 14.
  • the fluid compressed by the first compression member is transferred 19 into the compression chamber of the second compression member 3.
  • the fluid compressed by the first compression member can be used to cool the envelope 16 forming a heat shield 16 for the second compression stage.
  • the supercritical fluid compressed by the first compression member 2 is transferred through and into the envelope 16 (which is preferably a volume and not only a cooled mass). This fluid passes through the volume of the screen 16 forming a heat shield and cools the piston 6-jacket 7 assembly before entering the compression chamber of the second compression member.
  • the leakage of piston (s) can be recirculated in the volume of the casing 16 to be then compressed again.
  • the fluid in the envelope 16 forming a thermal screen being supercritical, it is possible to configure the thermal inputs, the compression heat and the leaks without cavitation, therefore without much degradation of the pump flow rate.
  • the second compression member 3 may in particular have an insulation structure similar to that of the first compression member 2. That is to say that the second compression stage can therefore comprise or may consist of at least one piston 6 -shirt 7 assembly which is thermalized (that is to say kept cold at a temperature between 30 and 50K ).
  • This thermalization can comprise an envelope 16 containing the cryogenic intake fluid, this envelope 16 can be isolated under vacuum with an outer wall.
  • This envelope 16 can form a heat shield which is further cooled by a cooling fluid, for example liquid hydrogen supplied by the source 10 of fluid (fluid coming directly from the source 10 or the fluid having already served in the first stage compression and / or by an external source of cooling fluid or other type of cold supply).
  • a cooling fluid for example liquid hydrogen supplied by the source 10 of fluid (fluid coming directly from the source 10 or the fluid having already served in the first stage compression and / or by an external source of cooling fluid or other type of cold supply).
  • the device 1 preferably comprises a circuit 14, 21, 22 for returning the thermalization fluid comprising an end connected to the casing 15 and an end intended for a recovery zone and in particular the source 10 of liquefied gas. This allows to evacuate and if necessary to recover at least one part of the heated liquefied gas used to cool the casing 15 forming a heat shield.
  • the circulation of the fluid for thermalization is obtained by an effect of the thermosyphon type. That is to say, the thermalization evaporates liquefied fluid which decreases its density and causes the return of cold gas to the source 10, the return line being configured to allow and optimize this operation.
  • one or two pipes 21, 22 can be provided to return the heated fluid to the source 10 directly 22 or via a similar pipe 14 for the first compression member 2.
  • the line (s) 21, 22 may comprise at least one valve 23 and / or a valve 24 forming a valve opening at a determined pressure level.
  • the second compression member 3 In the operating phase (that is to say in the compression phase), the second compression member 3 is cooled by the incoming fluid. Leaks and thermal inputs are therefore absorbed by the fluid before being admitted to the pumping member. In the standby phase (no compression), the second pumping member 3 could be kept cold by the circuit of 21-22 via a circulation of fluid. This operation makes it possible to minimize gas losses from high pressure compression.
  • the two compression members 2, 3 are configured to operate and be able to be controlled independently. That is to say that the speed of movement of each piston 4, 6 can be controlled independently of the speed of movement of the other piston (the two compression stages are mechanically independent). Thus, for example, the displacement speeds of the two pistons 4, 6 are not directly controlled or mechanically dependent on each other.
  • the displacement speeds of one or both pistons can be fixed or modified to respective values which are not directly correlated (with the only reservation that the displacement speed of the piston of the first compression member 5 is preferably less than the speed of movement of the piston of the second compression member).
  • the movements of the two pistons of the two compression stages can be non-synchronized.
  • the two compression members 2, 3 can therefore be regulated in speed and / or in position and / or in displacement travel to respectively control the intermediate thermodynamic conditions, in particular the pressure (at the outlet of the first compression stage 2) and the output pressure of the second compression stage.
  • This intermediate pressure can be controlled at a value between 13 and 150 bar for example.
  • the difference in speed of movement of the pistons 4, 6 between the two compression stages can be chosen large enough to stabilize the pressure between the two compression stages. If necessary, a buffer storage can be provided between the two compression stages to increase this pressure stability.
  • the losses of the second compression stage 3 are limited by the recirculation of fluid at the intake, while the differences in piston speeds make it possible to optimize the service life and the time between two maintenance operations while achieving the required performance. This contributes to limiting or canceling losses at the second compression stage 3. Consequently, a vapor recovery circuit can possibly be omitted for the second compression stage.
  • the first stage is preferably particularly thermally optimized (vacuum chamber and pump thermalised by the intake fluid) to limit thermal inputs. Evaporation of the hydrogen, the residual evaporated gas is preferably returned to source storage 10.
  • the second compression stage can be in thermal equilibrium and generates little or no loss of gas.
  • This second compression stage 3 can in particular be thermally balanced by design. That is to say that the compression and friction energy can be removed to generate a stable temperature of the components within the second compression member 3.
  • the first compression member 2 can be actuated intermittently to keep the device cold and in particular the second compression member 3.
  • cooling may be provided (heat exchanger (s) with a loop for cooling the fluid from / to the source 10 in thermosyphon via the pipes 21-21 for example).
  • the pumping device 1 (and / or the installation) may comprise an electronic data storage and processing member comprising for example a microprocessor for controlling all or part of the components (valve (s) and / or motor and / or motor ).
  • the pumping device can comprise a two-stage pump (two compression stages) of which one of the stages (first stage 2) compresses subcritical fluid while the second stage 3 compresses supercritical fluid .
  • a third high compression stage pressure may possibly be provided downstream.
  • the device can advantageously control the speed or speeds of displacement of the compression pistons 4, 6 making it possible to extend the life of the pistons (and of the seals).
  • first compression member 2 and the second compression member 3 each have a single movable piston in its jacket (compression chamber).
  • first 2 and / or the second 3 compression stage may comprise more than one piston / liner assembly and in particular two movable pistons each in a respective liner (compression chamber). So the first
  • 2 compression stage could comprise a single piston / liner assembly (so-called single head stage) while the second stage 3 could comprise two movable pistons in respectively two compression chambers (compression stage known as “twin heads”).
  • piston / liner assemblies In the case of multiple piston / liner assemblies with one compression stage, these piston / liner assemblies are arranged in parallel.
  • the speed of movement of the at least one piston 5 of the first compression stage can be greater than the speed of movement of the at least one piston 6 of the second compression stage.
  • first compression stage has one or more pistons undersized with respect to the piston (s) of the second compression stage, in this case the piston (s) of the first compression stage compression can move at a higher speed than the displacement of the piston (s) of the second compression stage.
  • each compression stage comprises a single piston 4, 6.
  • each compression stage can comprise one or more piston-liner assemblies.
  • the first and second compression stages may each comprise two piston-liner assemblies in parallel (that is to say two pistons per compression stage).
  • Each compression stage is preferably powered by a separate engine. That is, there are two motors, each of the motors moving the pistons of a respective compression stage.

Abstract

The invention relates to a device for pumping liquid hydrogen comprising, arranged in series between an inlet (12) for fluid to be compressed and an outlet (13) for compressed fluid, a first compression member (2), preferably with a piston, forming a first compression stage and a second compression member (3) with a piston forming a second compression stage, characterised in that the first compression member (2) is suitable for and configured to compress the liquid hydrogen in a supercritical state and in that the second compression member (3) is suitable for and configured to compress the supercritical hydrogen supplied by the first compression member to an increased pressure and in particular to a pressure of between 200 and 1000 bar.

Description

DESCRIPTION DESCRIPTION
Titre : Dispositif de pompage, installation et procédé de fourniture d' hydrogène liquide Title: Pumping device, installation and method for supplying liquid hydrogen
L'invention concerne un dispositif de pompage ainsi qu'une installation et un procédé de fourniture d'hydrogène liquide. The invention relates to a pumping device as well as an installation and a method for supplying liquid hydrogen.
L' invention concerne plus particulièrement un dispositif de pompage d'hydrogène liquide comprenant, disposés en série entre une entrée pour fluide à comprimer et une sortie de fluide comprimé, un premier organe de compression, de préférence à piston, formant un premier étage de compression et un second organe de compression à piston formant un second étage de compression . The invention relates more particularly to a device for pumping liquid hydrogen comprising, arranged in series between an inlet for fluid to be compressed and an outlet for compressed fluid, a first compression member, preferably with piston, forming a first compression stage and a second piston compression member forming a second compression stage.
Une solution connue pour disposer d'hydrogène gazeux à haute pression à partir d'une source d'hydrogène liquéfié consiste à stocker de l'hydrogène liquéfié puis à le transférer, l'évaporer et le réchauffer et enfin à le comprimer avec des systèmes de compression conventionnels à température ambiante. A known solution for disposing of hydrogen gas at high pressure from a source of liquefied hydrogen consists in storing liquefied hydrogen then in transferring, evaporating and heating it and finally in compressing it with conventional compression at room temperature.
Cependant, le coût énergétique (compression d'un fluide compressible peu dense) et d'investissement de ces dispositifs est trop important. Une solution alternative consiste à comprimer directement l'hydrogène liquide, considéré alors comme un fluide incompressible. However, the energy cost (compression of a sparse compressible fluid) and investment of these devices is too high. An alternative solution consists in directly compressing the liquid hydrogen, considered then as an incompressible fluid.
Plusieurs technologies existent pour le pompage de l'hydrogène liquide. Several technologies exist for pumping liquid hydrogen.
Pour des applications d'hydrogène énergie notamment, il est nécessaire de comprimer l'hydrogène liquide à des hautes pressions. A ces hautes pressions (>300bar) le pompage devient plus complexe en raison par exemple de la présence de gaz à l'aspiration des pompes. Cette présence de gaz peut être due aux entrées thermiques et à la chaleur de compression qui viennent vaporiser le liquide et créent des phénomènes de cavitation. Le gaz créé, comprimé à haute pression, chauffe d'autant plus la pompe. Une autre raison peut être les taux de fuites à travers des segments d'étanchéité de pistons qui augmentent à haute pression. Ces fuites de fluide relativement « chaudes » sont difficilement récupérables. L'aspiration comprenant du gaz devient ainsi peu dense et la pompe subit une baisse de débit et de performance. For hydrogen energy applications in particular, it is necessary to compress the liquid hydrogen at high pressures. At these high pressures (> 300bar) pumping becomes more complex due for example to the presence of gas at the suction of the pumps. This presence of gas may be due to thermal inputs and to the heat of compression which vaporize the liquid and create cavitation phenomena. The gas created, compressed at high pressure, heats the pump all the more. Another reason may be the rates of leakage through piston seal rings which increase at high pressure. These relatively “hot” fluid leaks are difficult to recover. The suction comprising gas thus becomes sparse and the pump undergoes a drop in flow and performance.
Les solutions connues qui re-circulent des fuites à l'entrée de la pompe cumulent tous les inconvénients précités. Le document US20070028628 décrit une pompe bi-étagée dans laquelle les fuites de la haute pression sont réinjectées dans le stockage liquide. Ceci constitue une perte de vaporisation (« boil-off ») considérable . Known solutions which recirculate leaks at the inlet of the pump combine all the aforementioned drawbacks. The document US20070028628 describes a two-stage pump in which the high pressure leaks are reinjected into the liquid storage. This constitutes a considerable loss of vaporization (“boil-off”).
Selon des solutions connues, l'hydrogène liquide est pompé en deux fois (deux étages de compression en série) cf. US4447195. Selon certaines solutions, la pompe est immergée dans un récipient rempli d'hydrogène liquide ce qui permet une thermalisation optimale et une limitation des problèmes de cavitation de la pompe. Ceci rend cependant plus complexe la maintenance de la pompe. According to known solutions, the liquid hydrogen is pumped in two stages (two compression stages in series) cf. US4447195. According to certain solutions, the pump is immersed in a container filled with liquid hydrogen which allows optimal thermalization and a limitation of the cavitation problems of the pump. This however makes the maintenance of the pump more complex.
Une pompe pour l'hydrogène liquide doit pouvoir répondre à plusieurs contraintes : une durée de vie requise importante (du fait notamment de la difficulté de sa maintenance dans un environnement non-industriel malgré des arrêts/redémarrage fréquents, une isolation thermique de très bonne qualité pour éviter les gaz de vaporisation (« boil-offs ») qui génèrent de l'hydrogène gazeux difficile à valoriser et qui contribue au phénomène de cavitation dans la pompe. A pump for liquid hydrogen must be able to meet several constraints: a long required service life (due in particular to the difficulty of its maintenance in a non-industrial environment despite frequent shutdowns / restarting, very good thermal insulation to avoid vaporization gases ("boil-offs") which generate hydrogen gas which is difficult to recover and which contributes to the phenomenon of cavitation in the pump.
Les dispositifs connus ne donnent pas entière satisfaction. The known devices are not entirely satisfactory.
Un but de la présente invention est de pallier tout ou partie des inconvénients de l'art antérieur relevés ci-dessus. An object of the present invention is to overcome all or part of the drawbacks of the prior art noted above.
A cette fin, le dispositif selon l'invention, par ailleurs conforme à la définition générique qu'en donne le préambule ci- dessus, est essentiellement caractérisé en ce que le premier organe de compression est apte et configuré pour comprimer l'hydrogène liquide dans un état supercritique, le second organe de compression étant apte et configuré pour comprimer l'hydrogène supercritique fourni par le premier organe de compression à une pression augmentée et notamment à une pression comprise entre 200 et lOOObar. To this end, the device according to the invention, furthermore in accordance with the generic definition given in the preamble above, is essentially characterized in that the first compression member is suitable and configured to compress the liquid hydrogen in a supercritical state, the second compression member being able and configured to compress supercritical hydrogen supplied by the first compression member at an increased pressure and in particular at a pressure between 200 and lOOObar.
Par ailleurs, des modes de réalisation de l'invention peuvent comporter l'une ou plusieurs des caractéristiques suivantes : Furthermore, embodiments of the invention may include one or more of the following characteristics:
le premier organe de compression est apte et configuré pour comprimer l'hydrogène liquide à une pression comprise entre et 13 et 200 bar, notamment entre 14 et 10 Obar, the first compression member is suitable and configured to compress the liquid hydrogen to a pressure of between and 13 and 200 bar, in particular between 14 and 10 Obar,
le premier organe de compression comprend au moins un ensemble comportant un piston mobile en translation dans une chemise, le second organe de compression comprenant au moins un ensemble comportant un piston distinct disposé dans une chemise distincte, les pistons des premier et second organes de compression étant déplacés dans leur chemise respective selon des mouvements alternatifs à des vitesses de déplacement respectives déterminées, la vitesse de déplacement du au moins un piston du premier organe de compression étant inférieure à la vitesse de déplacement du au moins un piston du second organe de compression, the first compression member comprises at least one assembly comprising a piston movable in translation in a jacket, the second compression member comprising at least one assembly comprising a separate piston disposed in a separate jacket, the pistons of the first and second compression members being moved in their respective sleeves in alternating movements at determined respective displacement speeds, the displacement speed of the at least one piston of the first compression member being less than the displacement speed of the at least one piston of the second compression member,
la vitesse de déplacement du au moins un piston du premier étage 2 de compression est comprise entre 0,02m/s et 0,5m/s et notamment entre 0,02m/s et 0,2 m/s, the speed of movement of the at least one piston of the first compression stage 2 is between 0.02 m / s and 0.5 m / s and in particular between 0.02 m / s and 0.2 m / s,
la vitesse de déplacement du au moins un piston du second étage de compression est comprise par exemple entre 0 , 02m/s et lm/s , the speed of movement of the at least one piston of the second compression stage is for example between 0.02 m / s and lm / s,
le au moins un piston du premier organe de compression et/ou le au moins un piston du second organe de compression est déplacé via un mécanisme d'entraînement a actionneur linéaire assurant guidage axial du piston dans sa chemise, notamment un mécanisme de type à vis et rouleaux planétaires et actionné par moteur électrique, le premier organe de compression et/ou le second organe de compression est isolé (s) thermiquement sous vide, le premier organe de compression et/ou le second organe de compression comprend un écran thermique qui est thermalisé par un fluide de refroidissement, the at least one piston of the first compression member and / or the at least one piston of the second compression member is moved via a drive mechanism with linear actuator ensuring axial guidance of the piston in its jacket, in particular a screw type mechanism and planetary rollers and powered by electric motor, the first compression member and / or the second compression member is thermally isolated under vacuum, the first compression member and / or the second compression member comprises a heat shield which is thermalized by a cooling fluid,
le dispositif comprend un circuit de thermalisation comprenant une première extrémité amont destinée à être raccordée à une source de gaz liquéfié et notamment une source d'hydrogène liquide destiné à être comprimé par le dispositif de pompage et au moins une extrémité aval assurant un échange thermique entre le gaz liquéfié et l'écran thermique, the device comprises a thermalization circuit comprising a first upstream end intended to be connected to a source of liquefied gas and in particular a source of liquid hydrogen intended to be compressed by the pumping device and at least one downstream end ensuring a heat exchange between liquefied gas and heat shield,
le circuit de thermalisation comprend une portion reliant l'écran thermique à la chambre de compression de l'organe de compression et configurée pour transférer au moins une partie du gaz liquéfié ayant échangé thermiquement avec l'écran thermique dans la chambre de compression de l'organe de compression, c'est-à-dire que l'organe de compression comprime du gaz liquéfié qui a été utilisé pour refroidir son écran thermique, the thermalization circuit comprises a portion connecting the thermal screen to the compression chamber of the compression member and configured to transfer at least a portion of the liquefied gas having thermally exchanged with the thermal screen in the compression chamber of the compression member, that is to say that the compression member compresses liquefied gas which has been used to cool its heat shield,
le dispositif comprend un circuit de retour de fluide de thermalisation comprenant une extrémité reliée à l'écran thermique et une extrémité destinée à être reliée à une source de gaz liquéfié et/ou à une zone de récupération pour évacuer au moins une partie du gaz liquéfié réchauffé ayant servi à refroidir l'écran thermique, la vitesse de déplacement du piston du premier organe de compression est comprise 0,02 et 0,05 m par seconde, la vitesse de déplacement du piston du second organe de compression est comprise entre 0,02 et lm/s, the device comprises a thermal fluid return circuit comprising one end connected to the thermal screen and one end intended to be connected to a source of liquefied gas and / or to a recovery zone for evacuating at least part of the liquefied gas heated having served to cool the heat shield, the speed of movement of the piston of the first compression member is between 0.02 and 0.05 m per second, the speed of movement of the piston of the second compression member is between 0, 02 and lm / s,
le premier organe de compression et/ou le second organe de compression comprend un circuit de collecte de l'hydrogène vaporisé en son sein, ledit circuit comprenant d'une sortie d'évacuation vers une zone de récupération, the first compression member and / or the second compression member comprises a circuit for collecting the vaporized hydrogen therein, said circuit comprising an evacuation outlet to a recovery zone,
le circuit de récupération des fuites de fluide transitant au travers du ou des pistons dirige au moins une partie desdites fuites du premier étage de compression vers la source, the circuit for recovering leaks of fluid passing through the piston or pistons directs at least part of said leaks from the first compression stage towards the source,
le circuit de récupération des fuites de fluide transitant au travers du ou des pistons dirige au moins une partie desdites fuites du second étage de compression vers le circuit de thermalisation et notamment vers l'écran thermique en vue de son refroidissement puis le cas échéant de sa réintroduction dans le second étage de compression en vue de sa re-compression, the circuit for recovering leaks of fluid passing through the piston or pistons directs at least a portion of said leaks from the second compression stage to the thermalization circuit and in particular to the thermal screen with a view to cooling it and then, if necessary, its reintroduction into the second compression stage for re-compression,
le premier organe de compression est disposé dans une enveloppe formant un écran thermique qui est thermalisé par un fluide de refroidissement, le circuit de fluide à comprimer qui transfère le fluide de la source vers le premier étage de compression transitant à travers l'enveloppe du premier étage de compression, ladite enveloppe du premier étage de compression formant une chambre d'alimentation du au moins un piston du premier étage de compression et un écran thermique du premier étage de compression. the first compression member is disposed in an envelope forming a heat shield which is thermalised by a cooling fluid, the circuit of fluid to be compressed which transfers the fluid from the source to the first compression stage passing through the envelope of the first compression stage, said envelope of the first compression stage forming a supply chamber for the at least one piston of the first compression stage and a heat shield of the first compression stage.
L' invention concerne également une installation de fourniture d'hydrogène liquide sous pression comprenant un dispositif de pompage selon l'une quelconque des caractéristiques ci-dessus ou ci-dessous, l'installation comprenant une source d'hydrogène liquéfiée et un circuit de transfert comprenant une conduite reliant la source à l'entrée du dispositif de pompage apte et configurée pour fournir de l'hydrogène liquide au dispositif de pompage en vue de sa compression et de sa délivrance au niveau de la sortie. The invention also relates to an installation for supplying pressurized liquid hydrogen comprising a pumping device according to any one of the characteristics above or below, the installation comprising a source of liquefied hydrogen and a transfer circuit comprising a line connecting the source to the inlet of the pumping device capable and configured to supply liquid hydrogen to the pumping device for its compression and delivery at the outlet.
Selon d'autres particularités possibles : l'installation comprend au moins une conduite de retour ayant une extrémité amont reliée au dispositif de pompage et une extrémité aval reliée à la source et apte et configurée pour évacuer du gaz vaporisé au sein du dispositif de pompage vers la source, According to other possible particularities: the installation comprises at least one return pipe having an upstream end connected to the pumping device and a downstream end connected to the source and suitable and configured to evacuate vaporized gas within the pumping device towards the source,
la au moins une conduite de retour comprend au moins l'un parmi : une vanne manuelle ou commandée, un clapet de surpression . the at least one return line comprises at least one of: a manual or controlled valve, a pressure relief valve.
L' invention concerne également un procédé de fourniture d'hydrogène liquide sous pression utilisant un dispositif selon l'une quelconque des caractéristiques ci-dessus ou ci-dessous ou une installation selon l'une quelconque des caractéristiques ci- dessus ou ci-dessous, le procédé comprenant une étape d'approvisionnement en hydrogène liquide de l'entrée du dispositif de pompage, une étape de compression de cet hydrogène liquide dans le premier organe de compression à une pression comprise entre 14 et 100 bar et à une température comprise entre 20 et 40K, puis une étape de compression supplémentaire, dans le second organe de compression, de l'hydrogène sortant du premier organe de compression jusqu'à une pression comprise entre 50 et lOOObar et à une température comprise entre et 40 et 150K. The invention also relates to a method for supplying liquid hydrogen under pressure using a device according to any one of the characteristics above or below or an installation according to any of the characteristics above or below, the method comprising a step of supplying liquid hydrogen to the inlet of the pumping device, a step of compressing this liquid hydrogen in the first compression member at a pressure between 14 and 100 bar and at a temperature between 20 and 40K, then an additional compression step, in the second compression member, of the hydrogen leaving the first compression member up to a pressure between 50 and 100 bar and at a temperature between and 40 and 150K.
Selon d'autres particularités possibles : According to other possible particularities:
L' invention peut concerner également tout dispositif ou procédé alternatif comprenant toute combinaison des caractéristiques ci-dessus ou ci-dessous dans le cadre des revendications . The invention may also relate to any alternative device or method comprising any combination of the above or below features within the scope of the claims.
D'autres particularités et avantages apparaîtront à la lecture de la description ci-après, faite en référence aux figures dans lesquelles : Other particularities and advantages will appear on reading the description below, made with reference to the figures in which:
[Fig. 1] représente une vue schématique et partielle illustrant un exemple de structure et de fonctionnement d'un dispositif de pompage selon un exemple possible de réalisation de l'invention, [Fig. 2] représente une vue schématique et partielle illustrant un exemple de structure et de fonctionnement d'une installation selon un exemple possible de réalisation de 1 ' invention, [Fig. 1] represents a schematic and partial view illustrating an example of structure and operation of a pumping device according to a possible embodiment of the invention, [Fig. 2] represents a schematic and partial view illustrating an example of structure and operation of an installation according to a possible example of embodiment of the invention,
[Fig. 3] représente une vue schématique et partielle illustrant un détail d'un exemple de structure et de fonctionnement d'un organe d'entraînement pouvant être utilisé selon l'invention. [Fig. 3] shows a schematic and partial view illustrating a detail of an example of the structure and operation of a drive member which can be used according to the invention.
Le dispositif 1 de pompage d'hydrogène liquide représenté à la [Fig. 1] comprend, disposés en série entre une entrée 12 pour fluide à comprimer et une sortie 13 de fluide comprimé, un premier organe 2 de compression et un second organe 3 de compression . The liquid hydrogen pumping device 1 shown in [Fig. 1] comprises, arranged in series between an inlet 12 for fluid to be compressed and an outlet 13 for compressed fluid, a first compression member 2 and a second compression member 3.
Le premier organe 2 de compression est de préférence du type à piston (s) et forme un premier étage de compression pour le fluide admis par l'entrée 12. The first compression member 2 is preferably of the piston type (s) and forms a first compression stage for the fluid admitted by the inlet 12.
Alternativement à la compression par piston il est possible d'envisager une technologie du type à engrenage ou à lobes (« roots ») , centrifuge ou toute autre technologie appropriée. As an alternative to piston compression, it is possible to envisage a technology of the gear or lobe ("roots"), centrifugal or any other appropriate technology type.
Le second organe 3 de compression est également de préférence du type à piston (s) et forme un second étage de compression du fluide vers la sortie 13. The second compression member 3 is also preferably of the piston type (s) and forms a second stage of compression of the fluid towards the outlet 13.
Les deux organes 2, 3 de compression peuvent notamment être logés ou non dans un même carter ou boîtier (cf. [Fig. 2]) . The two compression members 2, 3 can in particular be housed or not in the same casing or case (cf. [Fig. 2]).
Selon une particularité avantageuse, le premier organe 2 de compression est apte et configuré pour comprimer l'hydrogène liquide dans ou vers un état supercritique. According to an advantageous feature, the first compression member 2 is able and configured to compress liquid hydrogen in or towards a supercritical state.
De préférence le premier organe 2 de compression reçoit de l'hydrogène liquide dans un état saturé, par exemple une pression comprise entre 0 et lObarg et une température comprise entre 20 et 32K . Preferably the first compression member 2 receives liquid hydrogen in a saturated state, for example a pressure between 0 and 10Obarg and a temperature between 20 and 32K.
C'est-à-dire que le premier organe 2 de compression est configuré pour comprimer l'hydrogène liquide vers un état supercritique (au-delà des conditions suivantes : Pc; = 12,98 bar, TC=33K) . Dans cet état, le fluide ne pourra plus coexister sous deux phases (liquide et gaz) . That is to say that the first compression member 2 is configured to compress liquid hydrogen to a supercritical state (beyond the following conditions: Pc; = 12.98 bar, T C = 33K). In this state, the fluid can no longer coexist in two phases (liquid and gas).
Le second organe 3 de compression est quant à lui apte et configuré pour comprimer l'hydrogène supercritique fourni par le premier organe de compression à une pression augmentée et notamment à une pression comprise entre 200 et lOOObar. The second compression member 3 is itself suitable and configured to compress the supercritical hydrogen supplied by the first compression member at an increased pressure and in particular at a pressure between 200 and 100 bar.
Ainsi, en entrée du premier étage 2 de compression le fluide peut avoir une pression comprise entre 0 et lObarg et une température comprise entre 20 et 32K par exemple. Thus, at the input of the first compression stage 2, the fluid may have a pressure between 0 and 10 Obarg and a temperature between 20 and 32 K for example.
A la sortie du premier étage 2 de compression le fluide peut avoir une pression comprise entre 13 et 150barg (notamment entre 14 et lOObarg) et une température comprise entre 20 et 50K par exemple. At the outlet of the first compression stage 2, the fluid may have a pressure between 13 and 150 bar (in particular between 14 and 100 bar) and a temperature between 20 and 50 K for example.
A la sortie du second étage 3 de compression le fluide peut avoir une pression comprise entre 50 et 1000barg et une température comprise entre 40 et 150K par exemple. At the outlet of the second compression stage 3 the fluid may have a pressure between 50 and 1000 bar and a temperature between 40 and 150 K for example.
C'est-à-dire que le deuxième organe de compression 3 assure le principal travail de compression du fluide. That is to say that the second compression member 3 performs the main work of compressing the fluid.
Ainsi, le premier organe 2 de compression peut être apte et configuré pour comprimer l'hydrogène liquide à une pression comprise entre et 5 et 200bar et de préférence entre 13 et 150 barg, notamment entre 14 et lOObarg. Thus, the first compression member 2 can be adapted and configured to compress liquid hydrogen to a pressure between and 5 and 200 bar and preferably between 13 and 150 barg, in particular between 14 and 100 bar.
Cette architecture permet d'éviter de comprimer dans le second organe 3 de compression un fluide dont les propriétés notamment la densité sont très sensibles et mal maîtrisées. Ceci permet de limiter ou gérer les phénomènes de cavitation (boil- off) dans un équipement dédié et prévu à cet effet (premier organe 2 de compression) . En effet, en pompant du liquide, un écart même très léger de la saturation crée du gaz dans le liquide et modifie fortement la densité du fluide pompé. Le fluide supercritique ne change pas de phase et sa densité varie de façon progressive. This architecture makes it possible to avoid compressing in the second compression member 3 a fluid whose properties, in particular the density, are very sensitive and poorly controlled. This makes it possible to limit or manage the cavitation phenomena (boil-off) in dedicated equipment provided for this purpose (first compression member 2). Indeed, by pumping liquid, even a very slight deviation from saturation creates gas in the liquid and strongly modifies the density of the pumped fluid. The supercritical fluid does not change phase and its density varies gradually.
En effet, en s'écartant même très légèrement de la saturation, la densité du fluide est ainsi très fortement modifiée et ce d'autant plus que la pression de fonctionnement est basse. Ainsi, la compression à haute pression est concentrée sur le second étage de compression. Indeed, by deviating even slightly from saturation, the density of the fluid is thus very strongly modified, all the more so when the operating pressure is low. Thus, high pressure compression is concentrated on the second compression stage.
Le fluide supercritique produit par le premier étage de compression est ainsi transmis au deuxième étage de compression (qui est de préférence indépendant du premier étage de compression) . Ce deuxième étage de compression peut ainsi être conçu pour produire le travail de compression principal jusqu'au niveau de pression finale requis. The supercritical fluid produced by the first compression stage is thus transmitted to the second compression stage (which is preferably independent of the first compression stage). This second compression stage can thus be designed to produce the main compression work up to the required final pressure level.
De préférence, l'alimentation en fluide provenant du premier étage de compression vers le deuxième étage de compression se fait à travers l'enveloppe 16 extérieure qui abrite le ou les pistons du second étage de compression. Ainsi, l'enveloppe 16 autour du ou des pistons du second étage 3 de compression joue à la fois le rôle de chambre d'alimentation de la chambre de compression desdits pistons 6 et d'écran thermique. Preferably, the supply of fluid from the first compression stage to the second compression stage takes place through the outer casing 16 which houses the piston or pistons of the second compression stage. Thus, the casing 16 around the piston or pistons of the second compression stage 3 plays both the role of supply chamber for the compression chamber of said pistons 6 and of thermal screen.
Les conditions opératoires intermédiaires, la régulation active de pression entre les deux étages de compression (via par exemple la vitesse de compression du premier étage) et la conception thermo-hydraulique peuvent être déterminées pour ne générer que peu ou pas de perte (boil-off) (et de retour basse pression) à l'admission du deuxième étage de pression. The intermediate operating conditions, the active pressure regulation between the two compression stages (via for example the compression speed of the first stage) and the thermo-hydraulic design can be determined so as to generate little or no loss (boil-off ) (and low pressure return) at the intake of the second pressure stage.
L'architecture proposée permet de régler la vitesse de déplacement du premier organe de compression (piston (s) 4) pour contrôler les conditions thermodynamiques du fluide en entrée du second organe de compression (c'est-à-dire en entrée du ou des piston (s) 6 concernés). The proposed architecture makes it possible to adjust the speed of movement of the first compression member (piston (s) 4) to control the thermodynamic conditions of the fluid at the inlet of the second compression member (that is to say at the inlet of the piston (s) 6 concerned).
Comme illustré à la [Fig. 2], un clapet 32 unidirectionnel peut être prévu entre les deux étages de compression. As illustrated in [Fig. 2], a unidirectional valve 32 can be provided between the two compression stages.
Les vitesses relativement différentes des deux étages de compression et le mode d' entraînement/contrôle des pistons facilitent la régulation de la pression. The relatively different speeds of the two compression stages and the piston drive / control mode facilitate pressure regulation.
Le premier organe 2 de compression est configuré de préférence pour comprimer relativement lentement (par exemple à une vitesse de déplacement du piston de 2 à 5 cm/s, et une fréquence de l'ordre de 5 coups/minute) . Ceci permettra d'amener le fluide dans un état supercritique en limitant par exemple les irréversibilités, entrées thermiques, effets de cavitations, et l'usure des composants. Les propriétés physiques du fluide (viscosité, densité) sont alors mieux maîtrisées et facilitent la réalisation et le fonctionnement du second étage de compression (dimensions, matériaux) en assurant l'étanchéité et la thermalisation. The first compression member 2 is preferably configured to compress relatively slowly (for example at a displacement speed of the piston of 2 to 5 cm / s, and a frequency of the order of 5 strokes / minute). This will make it possible to bring the fluid into a supercritical state by limiting for example the irreversibilities, thermal inputs, effects of cavitations, and the wear of the components. The physical properties of the fluid (viscosity, density) are then better controlled and facilitate the production and operation of the second compression stage (dimensions, materials) by ensuring sealing and thermalization.
Comme illustré à la [Fig. 1], le premier organe 2 de compression peut comprendre un piston 4 mobile en translation dans une chemise 5. Le piston 4 et la chemise 5 délimitent classiquement une chambre de compression. As illustrated in [Fig. 1], the first compression member 2 may comprise a piston 4 movable in translation in a jacket 5. The piston 4 and the jacket 5 conventionally define a compression chamber.
De même, le second organe 3 de compression peut comprendre un piston 6 distinct disposé dans une chemise 7 distincte. Les pistons 4, 6 des premier et second organes de compression sont déplacés dans leur chemise 5, 7 respective selon des mouvements alternatifs à des vitesses de déplacement respectives déterminées. Avantageusement, la vitesse de déplacement du piston 5 du premier organe 2 de compression est de préférence inférieure à la vitesse de déplacement du piston 7 du second organe 3 de compression. Similarly, the second compression member 3 may include a separate piston 6 disposed in a separate jacket 7. The pistons 4, 6 of the first and second compression members are moved in their respective sleeves 5, 7 according to reciprocating movements at determined respective displacement speeds. Advantageously, the speed of movement of the piston 5 of the first compression member 2 is preferably less than the speed of movement of the piston 7 of the second compression member 3.
Comme schématisé à la [Fig. 1], le piston 4 du premier organe 2 de compression et/ou le piston 6 du second organe 3 de compression peuvent être déplacés via un mécanisme 8 d'entraînement respectif de type à vis et rouleaux planétaires. Ces mécanismes sont actionnés de préférence par des moteurs 20 respectifs distincts, notamment des moteurs électriques. As shown schematically in [Fig. 1], the piston 4 of the first compression member 2 and / or the piston 6 of the second compression member 3 can be moved via a respective drive mechanism 8 of the planetary screw and roller type. These mechanisms are preferably actuated by separate respective motors, in particular electric motors.
Bien entendu un moteur commun pourrait être envisagé Of course a common engine could be envisaged
De préférence, les vitesses de déplacement des pistons 4, 6 des deux étages de compression sont distinctes et mécaniquement indépendantes. C'est-à-dire qu'il n'y a pas de couplage mécanique entre les pistons 4, 6 des deux étages de compression qui conditionnerait mécaniquement la vitesse des pistons d'un étage de compression en fonction de la vitesse de déplacement des pistons de l'autre étage de compression. Preferably, the displacement speeds of the pistons 4, 6 of the two compression stages are distinct and mechanically independent. That is to say that there is no mechanical coupling between the pistons 4, 6 of the two compression stages which would mechanically condition the speed of the pistons of a compression stage as a function of the displacement speed of the pistons of the other compression stage.
La vitesse du ou des pistons 4 du premier étage 2 de compression peut être calculée en temps réel pour optimiser la stabilité des conditions thermodynamiques au niveau du deuxième étage 2 de compression. Ainsi, les vitesses de déplacement des pistons des deux étages de compression peuvent être interdépendantes thermodynamiquement mais contrôlées mécaniquement de façon indépendante. The speed of the piston (s) 4 of the first compression stage 2 can be calculated in real time to optimize the stability of the thermodynamic conditions at the level of the second compression stage 2. Thus, the displacement speeds of the pistons of the two compression stages can be thermodynamically interdependent but mechanically controlled independently.
La [Fig. 3] représente schématiquement un exemple de mécanisme 8 d'entraînement de type à vis 25 et rouleaux 26 planétaires. Par soucis de simplification l'exemple non limitatif du mécanisme complet illustré (écrou 27, anneau 28 guide 29, bague 30...) n'est pas décrit en détail. The [Fig. 3] schematically represents an example of a drive mechanism 8 of the screw 25 and planetary roller 26 type. For the sake of simplification, the nonlimiting example of the complete mechanism illustrated (nut 27, ring 28 guide 29, ring 30, etc.) is not described in detail.
Ce type d'entraînement permet un contrôle optimal, notamment en position (jeux très réduits), des charges élevées et une grande fiabilité des organes de compression. Ceci permet une souplesse et une adaptabilité permettant de gérer (le cas échéant en temps réel) des vitesses de déplacement distinctes pour chaque étage de compression. This type of drive allows optimal control, especially in position (very reduced clearances), high loads and high reliability of the compression members. This allows flexibility and adaptability making it possible to manage (if necessary in real time) separate displacement speeds for each compression stage.
Le premier étage de compression peut donc comporter ou peut consister en au moins un ensemble piston 4 -chemise 5 qui est thermalisé (c'est-à-dire maintenu froid à une température par exemple comprise entre 20 et 30K) . Le au moins un ensemble piston 4 et chemise 5 est de préférence logé dans une enveloppe 15 étanche. Cette thermalisation peut réalisée au niveau de l'enveloppe 15 contenant le fluide cryogénique d'admission Cette enveloppe 15 peut être isolée sous vide avec une paroi extérieure. L'enveloppe 15 abrite et isole thermiquement le au moins un ensemble piston 4 -chemise 5. Bien entendu, chaque ensemble piston 4 -chemise 5 pourrait être logé dans une enveloppe respective distincte. The first compression stage can therefore include or may consist of at least one piston 4 -shirt 5 assembly which is thermalized (that is to say kept cold at a temperature for example between 20 and 30K). The at least one piston 4 and jacket 5 assembly is preferably housed in a sealed envelope 15. This thermalization can be carried out at the level of the casing 15 containing the cryogenic intake fluid. This casing 15 can be isolated under vacuum with an external wall. The envelope 15 houses and thermally insulates the at least one piston assembly 4 - sleeve 5. Of course, each piston assembly 4 - sleeve 5 could be housed in a respective respective envelope.
Cette enveloppe 15 peut former un écran thermique qui est refroidi par un fluide de refroidissement interne ou externe au dispositif, par exemple de l'hydrogène liquide fourni par la source 10 de fluide destiné à être comprimé. This envelope 15 can form a heat shield which is cooled by an internal or external cooling fluid at the device, for example liquid hydrogen supplied by the source 10 of fluid intended to be compressed.
Ainsi l'enveloppe 15 peut être un volume rempli de fluide de refroidissement et/ou une masse refroidie par le fluide. Thus the casing 15 can be a volume filled with cooling fluid and / or a mass cooled by the fluid.
Le dispositif peut comprendre un circuit 9 de thermalisation comprenant une première extrémité amont (conduite 11) raccordée à une source 10 de gaz liquéfié et notamment une source d'hydrogène liquide destiné à être comprimé par le dispositif de pompage et au moins une extrémité assurant un échange thermique entre le gaz liquéfié et l'enveloppe 15. The device may include a thermalization circuit 9 comprising a first upstream end (pipe 11) connected to a source 10 of liquefied gas and in particular a source of liquid hydrogen intended to be compressed by the pumping device and at least one end ensuring a heat exchange between the liquefied gas and the casing 15.
La source 10 stocke par exemple de l'hydrogène liquide à une pression comprise entre 1 et 10 barg. Source 10 stores, for example, liquid hydrogen at a pressure between 1 and 10 barg.
Le circuit 9 de thermalisation peut comprendre une portion 17 reliant l'enveloppe 15 à la chambre de compression de l'organe de compression 2. Cette portion 17 est configurée pour transférer au moins une partie du gaz liquéfié ayant échangé thermiquement avec l'enveloppe 15 dans la chambre de compression de l'organe de compression 2. C'est-à-dire que l'organe de compression 2 comprime de préférence au moins une partie du gaz liquéfié qui a été utilisé pour refroidir son enveloppe 15 formant écran thermique . The thermalization circuit 9 may comprise a portion 17 connecting the casing 15 to the compression chamber of the compression member 2. This portion 17 is configured to transfer at least part of the liquefied gas which has thermally exchanged with the casing 15 in the compression chamber of the compression member 2. That is to say that the compression member 2 preferably compresses at least part of the liquefied gas which has been used to cool its envelope 15 forming a heat shield.
Ainsi, le liquide hydrogène peut transiter par l'enveloppe 15 formant écran thermique avant d'être admis dans la chambre de compression. L'ensemble piston 4/chemise 5 est donc baigné et refroidi dans l'enveloppe 15 formant écran thermique. Le liquide évaporé, très peu donc, pourra être recirculé dans la source 10 via un ligne 14. Thus, the hydrogen liquid can pass through the envelope 15 forming a heat shield before being admitted into the compression chamber. The piston 4 / jacket 5 assembly is therefore bathed and cooled in the envelope 15 forming a heat shield. The evaporated liquid, very little therefore, can be recirculated in the source 10 via a line 14.
Le fluide comprimé par le premier organe de compression est transféré 19 dans la chambre de compression du second organe 3 de compression. Avant d'entrer dans la chambre de compression du second organe 3 de compression, comme précédemment, le fluide comprimé par le premier organe de compression peut être utilisé pour refroidir l'enveloppe 16 formant un écran thermique 16 pour le second étage de compression. De préférence, le fluide supercritique comprimé par le premier organe 2 de compression est transféré au travers et dans l'enveloppe 16 (qui est de préférence un volume et pas uniquement une masse refroidie) . Ce fluide transite dans le volume de l'écran 16 formant écran thermique et refroidit l'ensemble piston 6-chemise 7 avant de rentrer dans la chambre de compression du second organe de compression. Les fuites de piston (s) peuvent être recirculées dans le volume de l'enveloppe 16 pour être ensuite comprimées à nouveau. The fluid compressed by the first compression member is transferred 19 into the compression chamber of the second compression member 3. Before entering the compression chamber of the second compression member 3, as before, the fluid compressed by the first compression member can be used to cool the envelope 16 forming a heat shield 16 for the second compression stage. Preferably, the supercritical fluid compressed by the first compression member 2 is transferred through and into the envelope 16 (which is preferably a volume and not only a cooled mass). This fluid passes through the volume of the screen 16 forming a heat shield and cools the piston 6-jacket 7 assembly before entering the compression chamber of the second compression member. The leakage of piston (s) can be recirculated in the volume of the casing 16 to be then compressed again.
Le fluide dans l'enveloppe 16 formant écran thermique étant supercritique, il est possible de configurer les entrées thermiques, la chaleur de compression et les fuites sans cavitation, donc sans grande dégradation de débit de la pompe. The fluid in the envelope 16 forming a thermal screen being supercritical, it is possible to configure the thermal inputs, the compression heat and the leaks without cavitation, therefore without much degradation of the pump flow rate.
Le second organe 3 de compression peut en particulier posséder une structure d' isolation similaire à celle du premier organe 2 de compression. C'est-à-dire que le second étage de compression peut donc comporter ou peut consister en au moins un ensemble piston 6 -chemise 7 qui est thermalisé (c'est-à-dire maintenu froid à une température comprise entre 30 et 50K) . Cette thermalisation peut comporter une enveloppe 16 contenant le fluide cryogénique d'admission, cette enveloppe 16 peut être isolée sous vide avec une paroi extérieure. Cette enveloppe 16 peut former un écran thermique qui est refroidi davantage par un fluide de refroidissement, par exemple de l'hydrogène liquide fourni par la source 10 de fluide (fluide provenant directement de la source 10 ou du fluide ayant déjà servi dans le premier étage de compression et/ou par une source externe de fluide de refroidissement ou d'un autre type d'apport de froid) . The second compression member 3 may in particular have an insulation structure similar to that of the first compression member 2. That is to say that the second compression stage can therefore comprise or may consist of at least one piston 6 -shirt 7 assembly which is thermalized (that is to say kept cold at a temperature between 30 and 50K ). This thermalization can comprise an envelope 16 containing the cryogenic intake fluid, this envelope 16 can be isolated under vacuum with an outer wall. This envelope 16 can form a heat shield which is further cooled by a cooling fluid, for example liquid hydrogen supplied by the source 10 of fluid (fluid coming directly from the source 10 or the fluid having already served in the first stage compression and / or by an external source of cooling fluid or other type of cold supply).
Le dispositif 1 comprend de préférence un circuit 14, 21, 22 de retour de fluide de thermalisation comprenant une extrémité reliée à l'enveloppe 15 et une extrémité destinée à une zone de récupération et notamment à la source 10 de gaz liquéfié. Ceci permet d'évacuer et le cas échéant de récupérer au moins une partie du gaz liquéfié réchauffé ayant servi à refroidir l'enveloppe 15 formant écran thermique. The device 1 preferably comprises a circuit 14, 21, 22 for returning the thermalization fluid comprising an end connected to the casing 15 and an end intended for a recovery zone and in particular the source 10 of liquefied gas. This allows to evacuate and if necessary to recover at least one part of the heated liquefied gas used to cool the casing 15 forming a heat shield.
De préférence, la circulation du fluide pour la thermalisation est obtenue par un effet de type thermosiphon. C'est-à-dire que la thermalisation évapore du fluide liquéfié ce qui diminue sa densité et entraîne le retour du gaz froid vers la source 10, la ligne de retour étant configurée pour permettre et optimiser ce fonctionnement. Preferably, the circulation of the fluid for thermalization is obtained by an effect of the thermosyphon type. That is to say, the thermalization evaporates liquefied fluid which decreases its density and causes the return of cold gas to the source 10, the return line being configured to allow and optimize this operation.
De cette façon, les défauts d'étanchéité réduits au maximum par ce fonctionnement dédié du premier étage 2 de compression (puissance moindre, pression moindre, vitesse moindre, et parfaitement thermalisé) peuvent cependant être repris et renvoyés au réservoir source 10. In this way, the sealing defects reduced to the maximum by this dedicated operation of the first compression stage 2 (lower power, lower pressure, lower speed, and perfectly thermalized) can however be taken up and returned to the source tank 10.
Comme illustré à la [Fig. 2], il est possible de prévoir également une ou des conduites de récupération de gaz vaporisé au niveau du deuxième organe 3 de compression. As illustrated in [Fig. 2], it is also possible to provide one or more vapor vapor recovery pipes at the second compression member 3.
Par exemple, une ou deux conduites 21, 22 peuvent être prévues pour retourner du fluide réchauffé vers la source 10 directement 22 ou via une conduite 14 similaire pour le premier organe 2 de compression. La ou les conduites 21, 22 peuvent comprendre au moins une vanne 23 et/ou un clapet 24 formant une soupape s'ouvrant à un niveau de pression déterminé. For example, one or two pipes 21, 22 can be provided to return the heated fluid to the source 10 directly 22 or via a similar pipe 14 for the first compression member 2. The line (s) 21, 22 may comprise at least one valve 23 and / or a valve 24 forming a valve opening at a determined pressure level.
En phase de fonctionnement (c'est-à-dire en phase de compression) , le second organe 3 de compression est refroidi par le fluide entrant. Les défauts d'étanchéité et les entrées thermiques sont donc absorbés par le fluide avant d'être admis dans l'organe de pompage. En phase d'attente (pas de compression) , le second organe 3 de pompage pourrait être maintenu en froid par le circuit des 21-22 via une circulation de fluide. Ce fonctionnement permet de réduire au maximum les pertes gazeuses de la compression à haute pression. De préférence les deux organes 2, 3 de compression sont configurés pour fonctionner et pouvoir être pilotés de façon indépendante. C'est-à-dire que la vitesse de déplacement de chaque piston 4, 6 peut être commandée de façon indépendante de la vitesse de déplacement de l'autre piston (les deux étages de compression sont mécaniquement indépendants) . Ainsi, par exemple les vitesses de déplacement des deux pistons 4, 6 ne sont pas directement asservies ou dépendantes mécaniquement l'une de l'autre. Il est possible ainsi de modifier la vitesse de déplacement du ou des pistons d'un étage de compression sans que cela modifie automatiquement la vitesse de déplacement du ou des pistons de l'autre étage de compression. Les vitesses de déplacement d'un ou des deux pistons peuvent être fixées ou modifiées à des valeurs respectives qui ne sont pas directement corrélées (à la seule réserve que la vitesse de déplacement du piston du premier organe 5 de compression, est de préférence inférieure à la vitesse de déplacement du piston du second organe de compression) . De même les déplacements des deux pistons des deux étages de compression peuvent être non synchronisés. In the operating phase (that is to say in the compression phase), the second compression member 3 is cooled by the incoming fluid. Leaks and thermal inputs are therefore absorbed by the fluid before being admitted to the pumping member. In the standby phase (no compression), the second pumping member 3 could be kept cold by the circuit of 21-22 via a circulation of fluid. This operation makes it possible to minimize gas losses from high pressure compression. Preferably the two compression members 2, 3 are configured to operate and be able to be controlled independently. That is to say that the speed of movement of each piston 4, 6 can be controlled independently of the speed of movement of the other piston (the two compression stages are mechanically independent). Thus, for example, the displacement speeds of the two pistons 4, 6 are not directly controlled or mechanically dependent on each other. It is thus possible to modify the speed of movement of the piston (s) of one compression stage without this automatically modifying the speed of movement of the piston (s) of the other compression stage. The displacement speeds of one or both pistons can be fixed or modified to respective values which are not directly correlated (with the only reservation that the displacement speed of the piston of the first compression member 5 is preferably less than the speed of movement of the piston of the second compression member). Likewise, the movements of the two pistons of the two compression stages can be non-synchronized.
Les deux organes de compression 2, 3 peuvent donc être régulés en vitesse et/ou en position et/ou en course de déplacement pour contrôler respectivement les conditions thermodynamiques intermédiaires, notamment la pression (à la sortie du premier étage de compression 2) et la pression de sortie du second étage de compression. Cette pression intermédiaire peut être contrôlée à une valeur entre 13 et 150 bar par exemple. The two compression members 2, 3 can therefore be regulated in speed and / or in position and / or in displacement travel to respectively control the intermediate thermodynamic conditions, in particular the pressure (at the outlet of the first compression stage 2) and the output pressure of the second compression stage. This intermediate pressure can be controlled at a value between 13 and 150 bar for example.
La différence de vitesse de déplacement des pistons 4, 6 entre les deux étages de compression peut être choisie suffisamment grande pour stabiliser la pression entre les deux étages de compression. Le cas échéant, un stockage tampon peut être prévu entre les deux étages de compression pour augmenter cette stabilité de pression. The difference in speed of movement of the pistons 4, 6 between the two compression stages can be chosen large enough to stabilize the pressure between the two compression stages. If necessary, a buffer storage can be provided between the two compression stages to increase this pressure stability.
Les pertes du second étage 3 de compression sont limitées par la recirculation de fluide à l'admission, tandis que les différences de vitesses des pistons permettent d'optimiser la durée de vie et le temps entre deux maintenances tout en atteignant la performance requise. Ceci concourt à limiter ou annuler les pertes au niveau du second étage de compression 3. Dès lors, un circuit de récupération de vapeur peut éventuellement être omis pour le second étage de compression. The losses of the second compression stage 3 are limited by the recirculation of fluid at the intake, while the differences in piston speeds make it possible to optimize the service life and the time between two maintenance operations while achieving the required performance. This contributes to limiting or canceling losses at the second compression stage 3. Consequently, a vapor recovery circuit can possibly be omitted for the second compression stage.
Le premier étage est de préférence particulièrement optimisé thermiquement (enceinte sous vide et pompe thermalisée par le fluide d'admission) pour limiter les entrées thermiques. L'évaporation de l'hydrogène, le résiduel de gaz évaporé est renvoyé de préférence au stockage source 10. The first stage is preferably particularly thermally optimized (vacuum chamber and pump thermalised by the intake fluid) to limit thermal inputs. Evaporation of the hydrogen, the residual evaporated gas is preferably returned to source storage 10.
De cette façon, le deuxième étage de compression peut être à l'équilibre thermique et ne génère pas ou peu de perte de gaz. Ce deuxième étage 3 de compression peut notamment être équilibré thermiquement par conception. C'est-à-dire que l'énergie de compression et de frottement peut être évacuée pour engendrer une température stable des composants au sein du second organe 3 de compression. In this way, the second compression stage can be in thermal equilibrium and generates little or no loss of gas. This second compression stage 3 can in particular be thermally balanced by design. That is to say that the compression and friction energy can be removed to generate a stable temperature of the components within the second compression member 3.
En cas de non utilisation (entre deux utilisations du dispositif de pompage) , le premier organe 2 de compression peut être mis en action de façon intermittente pour maintenir en froid le dispositif et notamment le second organe 3 de compression. En variante ou en combinaison, un refroidissement peut être prévu (échangeur ( s ) de chaleur avec une boucle de refroidissement du fluide depuis/vers la source 10 en thermosiphon via les conduites 21-21 par exemple) . In the event of non-use (between two uses of the pumping device), the first compression member 2 can be actuated intermittently to keep the device cold and in particular the second compression member 3. As a variant or in combination, cooling may be provided (heat exchanger (s) with a loop for cooling the fluid from / to the source 10 in thermosyphon via the pipes 21-21 for example).
Le dispositif 1 de pompage (et/ou l'installation) peut comporter un organe électronique de stockage et de traitement de données comprenant par exemple un microprocesseur pour piloter tout ou partie des composants (vanne (s) et/ou moteur et/ou moteur...) . The pumping device 1 (and / or the installation) may comprise an electronic data storage and processing member comprising for example a microprocessor for controlling all or part of the components (valve (s) and / or motor and / or motor ...).
Ainsi, selon l'invention le dispositif de pompage peut comprendre une pompe bi-étagée (deux étages de compression) dont l'un des étages (premier étage 2) comprime du fluide sous- critique tandis que le second étage 3 comprime du fluide supercritique. Un troisième étage de compression à haute pression peut être éventuellement prévu en aval. Le dispositif peut avantageusement contrôler la ou les vitesses de déplacement des pistons 4, 6 de compression permettant d'étendre la durée de vie des pistons (et des joints d'étanchéité). Thus, according to the invention, the pumping device can comprise a two-stage pump (two compression stages) of which one of the stages (first stage 2) compresses subcritical fluid while the second stage 3 compresses supercritical fluid . A third high compression stage pressure may possibly be provided downstream. The device can advantageously control the speed or speeds of displacement of the compression pistons 4, 6 making it possible to extend the life of the pistons (and of the seals).
Dans l'exemple décrit ci-dessus, le premier organe 2 de compression et le second organe 3 de compression comportent chacun un seul piston mobile dans sa chemise (chambre de compression) . Bien entendu, le premier 2 et/ou le second 3 étage de compression peuvent comporter plus d'un ensemble piston/chemise et notamment deux pistons mobiles chacun dans une chemise (chambre de compression) respective. Ainsi, le premier In the example described above, the first compression member 2 and the second compression member 3 each have a single movable piston in its jacket (compression chamber). Of course, the first 2 and / or the second 3 compression stage may comprise more than one piston / liner assembly and in particular two movable pistons each in a respective liner (compression chamber). So the first
2 étage de compression pourrait comporter un seul ensemble piston/chemise (étage dit mono-tête ») tandis que le second étage 3 pourrait comprendre deux pistons mobiles dans respectivement deux chambres de compression (étage de compression dit à « bi-têtes ») . 2 compression stage could comprise a single piston / liner assembly (so-called single head stage) while the second stage 3 could comprise two movable pistons in respectively two compression chambers (compression stage known as “twin heads”).
Dans le cas de multiples ensembles piston/chemise à un étage de compression, ces ensembles pistons/chemises sont disposés en parallèle . In the case of multiple piston / liner assemblies with one compression stage, these piston / liner assemblies are arranged in parallel.
L'invention a été décrite dans un exemple à deux organes 2, The invention has been described in an example with two members 2,
3 de compression pour atteindre la pression cible (lOOObar par exemple) . Bien entendu il peut être envisagé de prévoir une architecture dans laquelle au moins un troisième étage de compression intermédiaire est utilisé entre le premier étage 2 (qui comprime par exemple jusqu'à une pression de 200bar) et le dernier étage 3 de compression (qui comprime jusqu'à la pression cible, notamment lOOObar) . 3 compression to reach the target pressure (lOOObar for example). Of course it can be envisaged to provide an architecture in which at least a third intermediate compression stage is used between the first stage 2 (which compresses for example up to a pressure of 200bar) and the last compression stage 3 (which compresses up to the target pressure, in particular lOOObar).
Dans certaines configurations d'utilisation, la vitesse de déplacement du au moins un piston 5 du premier étage de compression peut être supérieure à la vitesse de déplacement du au moins un piston 6 du second étage de compression. In certain configurations of use, the speed of movement of the at least one piston 5 of the first compression stage can be greater than the speed of movement of the at least one piston 6 of the second compression stage.
Ceci peut être utilisé par exemple lorsque la pompe est dans un mode d'attente (deuxième piston à l'arrêt et que le premier piston a un mouvement très lent) . Dans une autre configuration, si le premier étage de compression a un ou des pistons sous-dimensionnés par rapport au (x) piston (s) du second étage de compression, dans ce cas le (s) piston (s) du premier étage de compression peuvent se déplacer à une vitesse supérieure à celle du déplacement du ou des pistons du second étage de compression. This can be used for example when the pump is in a standby mode (second piston stopped and the first piston has a very slow movement). In another configuration, if the first compression stage has one or more pistons undersized with respect to the piston (s) of the second compression stage, in this case the piston (s) of the first compression stage compression can move at a higher speed than the displacement of the piston (s) of the second compression stage.
Par soucis de simplification, dans les exemples représentés, chaque étage de compression comprend un seul piston 4, 6. Bien entendu chaque étage de compression peut comporter un ou plusieurs ensembles piston-chemise. Par exemple le premier et le second étage de compression peuvent comporter chacun deux ensembles piston-chemise en parallèle (c'est-à-dire deux pistons par étage de compression) . Chaque étage de compression est de préférence alimenté par un moteur propre distinct. C'est-à-dire qu'il y a deux moteurs, chacun des moteurs déplaçant les pistons d'un étage de compression respectif. For the sake of simplification, in the examples shown, each compression stage comprises a single piston 4, 6. Of course, each compression stage can comprise one or more piston-liner assemblies. For example, the first and second compression stages may each comprise two piston-liner assemblies in parallel (that is to say two pistons per compression stage). Each compression stage is preferably powered by a separate engine. That is, there are two motors, each of the motors moving the pistons of a respective compression stage.

Claims

REVENDICATIONS
1. Dispositif de pompage d'hydrogène liquide comprenant, disposés en série entre une entrée (12) pour fluide à comprimer et une sortie (13) de fluide comprimé, un premier organe (2) de compression, de préférence à piston (s), formant un premier étage de compression et un second organe (3) de compression à piston (s) formant un second étage de compression, le premier organe (2) de compression étant apte et configuré pour comprimer l'hydrogène liquide dans un état supercritique, le second organe (3) de compression étant apte et configuré pour comprimer l'hydrogène supercritique fourni par le premier organe de compression à une pression augmentée et notamment à une pression comprise entre 200 et lOOObar, caractérisé en ce que le premier organe (2) de compression comprend au moins un ensemble comportant un piston (4) mobile en translation dans une chemise (5), le second organe (3) de compression comprenant au moins un ensemble comportant un piston (6) distinct disposé dans une chemise (7) distincte, les pistons (4, 6) des premier et second organes de compression étant déplacés dans leur chemise (5, 7) respective par des mécanismes respectifs selon des mouvements alternatifs à des vitesses de déplacement respectives déterminées indépendantes, c'est-à-dire que les pistons (4, 6) des premier et second organes de compression sont déplacés à des vitesses de déplacement respectives mécaniquement indépendantes . 1. A liquid hydrogen pumping device comprising, arranged in series between an inlet (12) for fluid to be compressed and an outlet (13) for compressed fluid, a first compression member (2), preferably with piston (s) , forming a first compression stage and a second piston compression member (3) forming a second compression stage, the first compression member (2) being able and configured to compress liquid hydrogen in a supercritical state , the second compression member (3) being able and configured to compress the supercritical hydrogen supplied by the first compression member at an increased pressure and in particular at a pressure between 200 and 100 bar, characterized in that the first member (2 ) of compression comprises at least one assembly comprising a piston (4) movable in translation in a jacket (5), the second compression member (3) comprising at least one assembly comprising a piston (6) distinct disposed in a jacket (7 ) distinct, the pistons (4, 6) of the first and second compression members being moved in their respective sleeves (5, 7) by respective mechanisms according to reciprocating movements at respective determined independent displacement speeds, that is to say say that the pistons (4, 6) of the first and second compression members are moved at respective mechanically independent travel speeds.
2. Dispositif selon la revendication 1, caractérisé en ce qu' il est configuré pour maintenir, en configuration de fonctionnement, la vitesse de déplacement du au moins un piston (5) du premier organe (2) de compression à une valeur inférieure à la vitesse de déplacement du au moins un piston (7) du second organe (3) de compression. 2. Device according to claim 1, characterized in that it is configured to maintain, in operating configuration, the speed of movement of the at least one piston (5) of the first compression member (2) at a value less than the speed of movement of the at least one piston (7) of the second compression member (3).
3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que le premier organe (2) de compression est apte et configuré pour comprimer l'hydrogène liquide à une pression comprise entre et 13 et 200 bar, notamment entre 14 et 10 Obar . 3. Device according to claim 1 or 2, characterized in that the first compression member (2) is adapted and configured to compress the liquid hydrogen at a pressure between and 13 and 200 bar, in particular between 14 and 10 Obar.
4. Dispositif selon l'une quelconque des revendication 1 à 3, caractérisé en ce que la vitesse de déplacement du au moins un piston (4) du premier étage 2 de compression est comprise entre 0,02m/s et 0,5 m/s et la vitesse de déplacement du au moins un piston du second étage de compression est inférieure à 2m/s et notamment inférieure à lm/s. 4. Device according to any one of claims 1 to 3, characterized in that the speed of movement of the at least one piston (4) of the first stage 2 of compression is between 0.02m / s and 0.5 m / s and the speed of movement of the at least one piston of the second stage of compression is less than 2m / s and in particular less than lm / s.
5. Dispositif selon l'une quelconque des revendications5. Device according to any one of the claims
1 à 4, caractérisé en ce que le au moins un piston (4) du premier organe (2) de compression et/ou le au moins un piston (6) du second organe (3) de compression est déplacé via un mécanisme (8) d'entraînement à actionneur linéaire assurant guidage axial du piston dans sa chemise, notamment un mécanisme de type à vis et rouleaux planétaires et actionné par moteur (20) électrique. 1 to 4, characterized in that the at least one piston (4) of the first compression member (2) and / or the at least one piston (6) of the second compression member (3) is moved via a mechanism (8 ) drive with linear actuator ensuring axial guidance of the piston in its jacket, in particular a mechanism of the planetary screw and roller type and actuated by an electric motor (20).
6. Dispositif selon l'une quelconque des revendications 1 à6. Device according to any one of claims 1 to
5, caractérisé en ce que le premier organe (2) de compression et/ou le second organe (3) de compression est isolé (s) thermiquement sous vide. 5, characterized in that the first compression member (2) and / or the second compression member (3) is thermally insulated under vacuum.
7. Dispositif selon l'une quelconque des revendications 1 à7. Device according to any one of claims 1 to
6, caractérisé en ce que le premier organe (2) de compression et/ou le second organe (3) de compression est disposé dans une enveloppe (15, 16) formant un écran thermique qui est thermalisé par un fluide de refroidissement . 6, characterized in that the first compression member (2) and / or the second compression member (3) is arranged in an envelope (15, 16) forming a heat shield which is thermalized by a cooling fluid.
8. Dispositif selon la revendication 7, caractérisé en ce que le second organe (3) de compression est disposé dans une enveloppe (16) formant un écran thermique qui est thermalisé par un fluide de refroidissement, le circuit de fluide à comprimer qui transfère le fluide du premier étage de compression (2) vers le deuxième étage (3) de compression transitant à travers l'enveloppe (16) du second étage de compression, ladite enveloppe (16) du second étage de compression formant une chambre d'alimentation du au moins un piston (6) du second étage de compression et un écran thermique du second étage de compression. 8. Device according to claim 7, characterized in that the second compression member (3) is disposed in an envelope (16) forming a heat shield which is thermalized by a cooling fluid, the circuit of fluid to be compressed which transfers the fluid from the first compression stage (2) to the second compression stage (3) passing through the casing (16) of the second compression stage, said casing (16) of the second compression stage forming a supply chamber for the at least one piston (6) of the second compression stage and a heat shield of the second compression stage.
9. Dispositif selon la revendication 7 ou 8 caractérisé en ce qu'il comprend un circuit (9) de thermalisation comprenant une première extrémité amont destinée à être raccordée à une source de gaz liquéfié et notamment une source (10) d'hydrogène liquide destiné à être comprimé par le dispositif de pompage et au moins une extrémité aval assurant un échange thermique entre le gaz liquéfié et l'enveloppe (15, 16). 9. Device according to claim 7 or 8 characterized in that it comprises a thermalization circuit (9) comprising a first upstream end intended to be connected to a source of liquefied gas and in particular a source (10) of liquid hydrogen intended to be compressed by the pumping device and at least one downstream end ensuring a heat exchange between the liquefied gas and the casing (15, 16).
10. Dispositif selon la revendication 9, caractérisé en ce que le circuit (9) de thermalisation comprend une portion (17, 18) reliant l'enveloppe (15, 16) à la chambre de compression de l'organe de compression (2, 3) et configurée pour transférer au moins une partie du gaz liquéfié ayant échangé thermiquement avec l'enveloppe (15, 16) dans la chambre de compression de l'organe de compression (2, 3), c'est-à-dire que l'organe de compression (2, 3) comprime du gaz liquéfié qui a été utilisé pour refroidir son enveloppe formant écran thermique . 10. Device according to claim 9, characterized in that the thermalization circuit (9) comprises a portion (17, 18) connecting the envelope (15, 16) to the chamber of compression of the compression member (2, 3) and configured to transfer at least a portion of the liquefied gas having heat exchanged with the envelope (15, 16) in the compression chamber of the compression member (2, 3), that is to say that the compression member (2, 3) compresses liquefied gas which has been used to cool its envelope forming a heat shield.
11. Dispositif selon la revendication 9 ou 10, caractérisé en ce qu'il comprend un circuit (14, 21, 22) de retour de fluide de thermalisation comprenant une extrémité reliée à l'enveloppe (15, 16) et une extrémité destinée à être reliée à une source de gaz liquéfié et/ou à une zone de récupération pour évacuer au moins une partie du gaz liquéfié réchauffé ayant servi à refroidir l'enveloppe (15, 16) . 11. Device according to claim 9 or 10, characterized in that it comprises a circuit (14, 21, 22) for return of thermalization fluid comprising an end connected to the envelope (15, 16) and an end intended for be connected to a source of liquefied gas and / or to a recovery zone to evacuate at least part of the reheated liquefied gas used to cool the casing (15, 16).
12. Dispositif selon l'une quelconque des revendications12. Device according to any one of claims
7 à 11, caractérisé en ce qu'il comprend un circuit7 to 11, characterized in that it comprises a circuit
(33) de récupération des fuites de fluide transitant au travers du ou des pistons vers un volume (10) de récupération et/ou le circuit de thermalisation. (33) for recovering fluid leaks passing through the piston (s) to a recovery volume (10) and / or the thermalization circuit.
13. Installation de fourniture d'hydrogène liquide sous pression comprenant un dispositif (1) de pompage selon l'une quelconque des revendications précédentes, l'installation comprenant une source (10) d'hydrogène liquéfiée et un circuit (9, 17, 19, 18) de transfert comprenant une conduite (11) reliant la source (10) à l'entrée (12) du dispositif (1) de pompage apte et configurée pour fournir de l'hydrogène liquide au dispositif (1) de pompage en vue de sa compression et de sa délivrance au niveau de la sortie (13) . 13. Installation for supplying pressurized liquid hydrogen comprising a pumping device (1) according to any one of the preceding claims, the installation comprising a source (10) of liquefied hydrogen and a circuit (9, 17, 19 , 18) transfer comprising a line (11) connecting the source (10) to the inlet (12) of the pumping device (1) able and configured to supply liquid hydrogen to the pumping device (1) in view compression and delivery at the outlet (13).
14. Installation selon la revendication 13, caractérisée en ce qu'elle comprend au moins une conduite (14, 21, 22) de retour ayant une extrémité amont reliée au dispositif (1) de pompage et une extrémité aval reliée à la source (10) et apte et configurée pour évacuer du gaz vaporisé au sein du dispositif (1) de pompage vers la source (10) . 14. Installation according to claim 13, characterized in that it comprises at least one return pipe (14, 21, 22) having an upstream end connected to the pumping device (1) and a downstream end connected to the source (10 ) and adapted and configured to evacuate vaporized gas within the pumping device (1) towards the source (10).
15. Procédé de fourniture d'hydrogène liquide sous pression utilisant un dispositif selon l'une quelconque des revendications l à 12 ou une installation selon l'une quelconque des revendications 13 ou 14, le procédé comprenant une étape d'approvisionnement en hydrogène liquide de l'entrée (12) du dispositif (1) de pompage, une étape de compression de cet hydrogène liquide dans le premier organe (2) de compression à une pression comprise entre 14 et 100 bar et à une température comprise entre 20 et 40K, puis une étape de compression supplémentaire, dans le second organe (3) de compression, de l'hydrogène sortant du premier organe (2) de compression jusqu'à une pression comprise entre 50 et 1000bar et à une température comprise entre et 40 et 150K. 15. A method of supplying liquid hydrogen under pressure using a device according to any one of claims 1 to 12 or an installation according to any one of claims 13 or 14, the method comprising a step of supplying liquid hydrogen to the inlet (12) of the pumping device (1), a step of compressing this liquid hydrogen in the first compression member (2) at a pressure between 14 and 100 bar and at a temperature between 20 and 40K, then an additional compression step, in the second compression member (3), of the hydrogen leaving the first compression member (2) to a pressure between 50 and 1000bar and at a temperature between and 40 and 150K.
EP19842379.0A 2018-12-19 2019-12-03 Pumping device, plant and method for supplying liquid hydrogen Pending EP3899273A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1873280A FR3090756B1 (en) 2018-12-19 2018-12-19 Pumping device, installation and method of supplying liquid hydrogen
PCT/FR2019/052899 WO2020128197A1 (en) 2018-12-19 2019-12-03 Pumping device, plant and method for supplying liquid hydrogen

Publications (1)

Publication Number Publication Date
EP3899273A1 true EP3899273A1 (en) 2021-10-27

Family

ID=66776457

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19842379.0A Pending EP3899273A1 (en) 2018-12-19 2019-12-03 Pumping device, plant and method for supplying liquid hydrogen

Country Status (8)

Country Link
US (1) US20220074397A1 (en)
EP (1) EP3899273A1 (en)
JP (1) JP7451529B2 (en)
KR (1) KR20210105928A (en)
CN (1) CN113167257B (en)
CA (1) CA3121594A1 (en)
FR (1) FR3090756B1 (en)
WO (1) WO2020128197A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6781795B2 (en) * 2019-04-09 2020-11-04 株式会社Ihi回転機械エンジニアリング Reciprocating compressor
EP4212026A1 (en) 2020-08-14 2023-07-19 Seoul National University Hospital Protein food composition having ultra-low calories and high bioabsorption rate and method for providing diet information using same
FR3115348A1 (en) * 2020-10-19 2022-04-22 F2M Process and system for cryogenic hydrogen transfer

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2439958A (en) * 1943-10-21 1948-04-20 Air Prod Inc Pump for liquefied gases
US4692673A (en) * 1982-02-22 1987-09-08 Sanford D. DeLong Electromagnetic reciprocating pump and motor means
US4559786A (en) * 1982-02-22 1985-12-24 Air Products And Chemicals, Inc. High pressure helium pump for liquid or supercritical gas
US4447195A (en) * 1982-02-22 1984-05-08 Air Products And Chemicals, Inc. High pressure helium pump for liquid or supercritical gas
JP2559414B2 (en) * 1987-07-10 1996-12-04 株式会社日立製作所 Pulseless pump controller
US5108264A (en) * 1990-08-20 1992-04-28 Hewlett-Packard Company Method and apparatus for real time compensation of fluid compressibility in high pressure reciprocating pumps
US6640556B2 (en) * 2001-09-19 2003-11-04 Westport Research Inc. Method and apparatus for pumping a cryogenic fluid from a storage tank
GB0400986D0 (en) * 2004-01-16 2004-02-18 Cryostar France Sa Compressor
JP5107390B2 (en) * 2005-01-07 2012-12-26 三菱重工業株式会社 Booster for cryogenic fluid
US20060156742A1 (en) * 2005-01-20 2006-07-20 Farese David J Cryogenic fluid supply method and apparatus
US7410348B2 (en) 2005-08-03 2008-08-12 Air Products And Chemicals, Inc. Multi-speed compressor/pump apparatus
DE102012003446A1 (en) * 2012-02-21 2013-08-22 Linde Aktiengesellschaft Compacting a cryogenic medium
KR101277844B1 (en) * 2013-03-28 2013-06-21 현대중공업 주식회사 A fuel gas supply system of liquefied natural gas and driving method thereof
DE102015222286A1 (en) * 2015-11-12 2017-05-18 Robert Bosch Gmbh Hydraulic block and hydraulic unit

Also Published As

Publication number Publication date
KR20210105928A (en) 2021-08-27
FR3090756A1 (en) 2020-06-26
CN113167257A (en) 2021-07-23
JP7451529B2 (en) 2024-03-18
CN113167257B (en) 2023-08-15
FR3090756B1 (en) 2021-04-09
WO2020128197A1 (en) 2020-06-25
CA3121594A1 (en) 2020-06-25
US20220074397A1 (en) 2022-03-10
JP2022511486A (en) 2022-01-31

Similar Documents

Publication Publication Date Title
EP3899273A1 (en) Pumping device, plant and method for supplying liquid hydrogen
EP1672270B1 (en) System for compressing and evaporating liquefied gases
EP2034134B1 (en) Actuator device, use of it and turboengine comprising such a device
BE1024081B1 (en) COOLING TURBOMACHINE BY EVAPORATION
EP4107450B1 (en) Dilution refrigeration device and method
EP3414498A1 (en) Cryogenic refrigeration device
WO2022023648A1 (en) Circuit for supplying fuel to an aeronautical cryogenic turbomachine and associated method
WO2021023457A1 (en) Cooling and/or liquefying method and system
FR3056641A1 (en) SYSTEM FOR COOLING A CIRCUIT OF A FIRST FLUID OF A TURBOMACHINE
WO2018229368A1 (en) Expansion machine and methods for using such a machine
WO2021023456A1 (en) Refrigeration device and system
EP4103837B1 (en) Compression device, installation, filling station and method using such a device
EP3189224B1 (en) Engine with differential evaporation pressures
FR3068108A1 (en) STATION AND METHOD FOR FILLING PRESSURE GAS TANKS
WO2022189154A1 (en) Fuel conditioning system and method configured to supply an aircraft turbine engine using fuel from a cryogenic tank
FR2904401A1 (en) Gaseous fluid e.g. helium, feeding method for installation, involves feeding downstream chamber maintained at temperature higher than evaporation point of fluid and having part delimited by end of piston
WO2024017549A1 (en) Facility and method for the liquefaction of hydrogen
FR3059355B1 (en) INSTALLATION FOR THE PRODUCTION OF ELECTRIC ENERGY, MECHANICAL ENERGY AND / OR COLD
WO2014139799A1 (en) Diphasic fluid loop with mechanical pumping
FR3140655A3 (en) Cryogenic fluid compression apparatus and method
FR3042538A1 (en) ENGINE ASSEMBLY WITH OPTIMIZED COOLING CIRCUIT
FR3009580A1 (en) PNEUMATIC THERMAL HYBRID ENGINE WITH THERMAL ENERGY STORAGE ELEMENTS

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210719

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: MICHALSKI, ERIC

Inventor name: DURAND, FABIEN

Inventor name: COLEIRO, GAETAN

Inventor name: THIEU, ANH THAO

Inventor name: CRISPEL, SIMON

19A Proceedings stayed before grant

Effective date: 20230328