EP3899081B1 - Procede de fabrication d'un noyau - Google Patents
Procede de fabrication d'un noyau Download PDFInfo
- Publication number
- EP3899081B1 EP3899081B1 EP19848898.3A EP19848898A EP3899081B1 EP 3899081 B1 EP3899081 B1 EP 3899081B1 EP 19848898 A EP19848898 A EP 19848898A EP 3899081 B1 EP3899081 B1 EP 3899081B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- core
- layer
- nickel
- based alloy
- leading edge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 41
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 34
- 229910045601 alloy Inorganic materials 0.000 claims description 24
- 239000000956 alloy Substances 0.000 claims description 24
- 229910052759 nickel Inorganic materials 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 13
- 238000007751 thermal spraying Methods 0.000 claims description 13
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims description 10
- 239000011733 molybdenum Substances 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 239000011651 chromium Substances 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- 229910000531 Co alloy Inorganic materials 0.000 claims description 5
- 239000003570 air Substances 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 4
- 230000008021 deposition Effects 0.000 claims description 4
- 239000012080 ambient air Substances 0.000 claims description 3
- 238000010285 flame spraying Methods 0.000 claims description 2
- 238000007750 plasma spraying Methods 0.000 claims description 2
- 238000005507 spraying Methods 0.000 claims description 2
- 239000011162 core material Substances 0.000 description 43
- 239000010941 cobalt Substances 0.000 description 15
- 229910017052 cobalt Inorganic materials 0.000 description 15
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 15
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 7
- 238000003754 machining Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000000930 thermomechanical effect Effects 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 5
- 238000011109 contamination Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910052752 metalloid Inorganic materials 0.000 description 4
- 150000002738 metalloids Chemical class 0.000 description 4
- 238000007493 shaping process Methods 0.000 description 4
- 229910001069 Ti alloy Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005056 compaction Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000010286 high velocity air fuel Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000005256 carbonitriding Methods 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000009390 chemical decontamination Methods 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910000753 refractory alloy Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/08—Metallic material containing only metal elements
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/073—Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/129—Flame spraying
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/131—Wire arc spraying
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/18—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/134—Plasma spraying
Definitions
- the invention relates to the field of manufacturing the leading edge for Organic Matrix Composite (OMC) fan blades.
- OMC Organic Matrix Composite
- a blade conventionally has a leading edge and a trailing edge.
- the leading edge corresponds to the anterior part of the airfoil which faces the airflow and which divides the airflow into a lower surface flow and an upper surface flow, and a trailing edge which corresponds to the rear part of the airfoil.
- solid debris In the environment of a turbomachine, of an aircraft, it is possible for solid debris to be caught in a flow of air circulating in the turbomachine. This debris will then strike the leading edge of a blade and risk damaging it. Consequently, it is customary to reinforce the leading edge of the blades. This technical arrangement is all the more important in the case of a CMO blade. Indeed, the composite material may poorly resist perforation.
- the document FR1051992 describes a known method of manufacturing such a blade. This method takes place as follows: two sheets, intrados and extrados, formed, are shaped, via a hot isostatic compaction operation, around a refractory alloy core whose geometry corresponds to the internal geometry of the desired leading edge . After shaping, the core, which is a reusable tool, is removed and the leading edge is machined only on its outer surfaces to obtain the final geometry of the part.
- This method makes it possible to control the internal shape of the cavity of the leading edge, which is a replica of the blade on which the leading edge will be placed, thus making it possible to do no re-machining of the internal cavity of the leading edge.
- this technique makes it possible to control and facilitate final machining operations thanks to the presence of the internal core which makes it possible both to stiffen the assembly and to have integrated dimensional references which makes it possible to avoid having recourse , as for the other techniques, to complex machining tools.
- these different arrangements induce a significant reduction in the cost of the manufacturing range due to the reuse of the cores, then considered as tools.
- the first characteristic linked to the choice of core material, makes it possible not to have to machine the internal cavity of the leading edge.
- the second avoids or minimizes the chemical decontamination of the surfaces of the internal cavity of the leading edge.
- the metal alloys selected for the core are nickel-based or cobalt-based alloys in order to be sufficiently rigid not to deform during high-temperature shaping cycles.
- this type of alloy brought into contact at high temperature with the titanium alloys of the part are reactive with each other and form solid solutions or intermetallic compounds, which leads at best to contamination of the titanium alloy, to worse a prohibitive bonding between nickel / cobalt and titanium.
- a technical solution consists of inserting an anti-diffusion barrier between the two metal alloys in contact, namely the nickel or cobalt base alloy of the core and the titanium alloy of the leading edge, which will undergo thermomechanical treatment at high temperature for many hours.
- a method described by the document EN 1653221 is the realization of a nitriding or nitro-carburizing of the core in nickel or cobalt base. This treatment generates a superficial layer rich in nitrogen and carbon of a few tens of microns on the surface of the core ensuring the role of anti-diffusion barrier.
- the document FR2463191 discloses a nickel base alloy substrate coated with a layer of a cobalt base alloy.
- the thermal spraying of this type of alloy provides a chemical inertia which makes it possible to produce an anti-diffusion barrier between the nickel base alloy core and sheets titanium used for the manufacture of the fan blade.
- this process makes it possible to cover the core with a layer guaranteeing thermomechanical stability, protecting against chemical contamination and avoiding any adhesion of the blade parts to the core.
- the cobalt base alloy may include carbon.
- the cobalt base alloy comprises, as a mass percentage, between 26% and 32% molybdenum, between 7% and 20% chromium, between 1% and 5% silicon and less than 1% carbon.
- the layer can have a hardness between 40 and 65 HRC.
- the deposited layer may have a thickness of between 100 microns and 2 millimeters, preferably 500 microns.
- Step (b) can be performed using a method selected from: supersonic flame spraying, blown arc plasma spraying or plasma torch deposition.
- the method may also comprise, following step (b) of thermal spraying, a step (c) of heat treatment of the layer, carried out between 800 and 1000°C.
- the method may further comprise, following step (b) of thermal spraying, a step (d) of machining by rectification.
- the method may further comprise, following step (b) of thermal spraying, a step (e) of heat treatment in air, comprising a first stage of thirty minutes at a temperature between 300° C. and 400° C. C, a second stage of thirty minutes at a temperature between 500°C and 700°C, a third stage of thirty minutes at a temperature between 800°C and 1000°C, and cooling in ambient air, for oxidize the layer.
- a step (e) of heat treatment in air comprising a first stage of thirty minutes at a temperature between 300° C. and 400° C. C, a second stage of thirty minutes at a temperature between 500°C and 700°C, a third stage of thirty minutes at a temperature between 800°C and 1000°C, and cooling in ambient air, for oxidize the layer.
- a nickel base alloy core according to claim 8.
- Step (a) of supplying the initial core can be carried out by machining a nickel-based alloy block to obtain the initial core 11.
- the initial core 11 can be sandblasted (step (a1)) to increase the roughness of its outer surface.
- This arrangement advantageously facilitates the attachment of the layer 12 projected in step (b).
- step (a2) the initial core 11 can be cleaned and degreased. This step makes it possible to guarantee a surface state, of the initial core 11, that is optimal for the next step (b) of projection.
- the - next - step (b) consists of the thermal spraying on the initial core 11 of a layer 12 of a cobalt-based alloy, comprising chromium and at least one element among tungsten and/or molybdenum.
- tungsten, molybdenum and chromium may be present in the form of carbide.
- molybdenum can be used in an intermetallic mixture.
- an intermetallic mixture is a mixture comprising at least one metalloid.
- Metalloids being chemical elements whose properties are intermediate between those of metals and non-metals, or are a combination of these properties.
- the metalloids are the following elements: Boron, Silicon, Germanium, Arsenic, Antimony, Tellurium and Astate.
- the metalloid preferentially used in combination with molybdenum is silicon.
- the cobalt-based alloy comprises, as a mass percentage, between 26% and 32% molybdenum, between 7% and 20% chromium, between 1% and 5% silicon and less than 1% carbon.
- the cobalt base alloy may comprise 29% molybdenum, 8.5% chromium, 2.6% silicon and less than 0.08% carbon.
- the cobalt base alloy may comprise 28% molybdenum, 18% chromium, 3.4% silicon and less than 0.08% carbon.
- the thermal spraying of these types of alloys provides a chemical inertia which makes it possible to produce an anti-diffusion barrier between the initial core 11 made of nickel base alloy and metal sheets.
- titanium used for the manufacture of the fan blade.
- the thermal spraying can be carried out by supersonic flame, according to a so-called “High Velocity Oxy-Fuel” (HVOF) method or according to a so-called “High Velocity Air-Fuel” (HVAF) method.
- HVOF High Velocity Oxy-Fuel
- HVAC High Velocity Air-Fuel
- the HVOF method is particularly preferred because it consists of spraying the cobalt base alloy at very high speed with a moderate temperature, which generates very little porosity in the layer 12 deposited.
- the layer can be sprayed by blown arc plasma.
- This method leads to a porous layer but having a good mechanical grip on the surface of the core.
- This method can optionally consider vacuum pumping during projection.
- the layer can be deposited by a plasma torch according to the so-called “Plasma Transferred Arc” (PTA) method.
- PTA Plasma Transferred Arc
- the method may comprise a step (c) of heat treatment of layer 12, carried out between 800°C and 1000°C.
- step (c) is carried out between 850°C and 900°C. This heat treatment makes it possible to relax the internal stresses induced by the deposition of the layer 12, in the previous step.
- the method can comprise a step (d) of rectification to reduce a thickness of the layer 12.
- the layer 12 can have a thickness comprised between 100 and 500 microns. This step can also be used as a practical check of deposit adhesion.
- the method may comprise a step (e) of heat treatment in air, comprising a first stage of thirty minutes at a temperature between 300° C. and 400° C., a second stage of thirty minutes at a temperature of between 500° C. and 700° C., a third stage of thirty minutes at a temperature of between 800° C. and 1000° C., and cooling in ambient air.
- step (e) may comprise a first plateau of thirty minutes at 350° C., then a second plateau of thirty minutes at 650° C., then a third plateau of thirty minutes at 900° C., followed by cooling to Ambiant air.
- Step (e), called passivation makes it possible to oxidize the layer 12 on the surface, which makes it possible to reduce the risks of chemical interaction between the layer 12 and the material used to manufacture the blade (most often titanium ).
- the layer 12 can have a hardness of between 35 and 65 HRC, preferably between 45 and 55 HRC. It is specified that the hardness is expressed and measured according to the so-called Rockwell test, using an indenter on which is applied an initial load and then an additional load. The hardness being measured by comparing the depth of penetration of the indenter during the application of the initial load and during the application of the additional load.
- the HRC scale In this case, the test is carried out with an indenter consisting of a diamond cone of circular section with a rounded spherical tip of 0.2 millimeters.
- the initial load applied is 98N and the total load (corresponding to the initial load plus the additional load) is 1471.5N.
- One HRC hardness unit corresponds to a penetration of 0.002 millimeters.
- the HR15N scale is preferred because the initial load applied is only 29N and the total load (corresponding to the initial load plus the additional load) is only 147.1N.
- HV Vickers
- the test is then carried out with an indenter consisting of a square-based diamond pyramid.
- the hardness being determined by measuring the two diagonals of the indentation.
- the load is adapted to the thickness of the layer: 5 to 10 kilograms for thicknesses ⁇ 400 microns and 20 to 30 kilograms maximum for thicknesses greater than 400 microns.
- this process makes it possible to cover the initial core 11 with a layer 12 guaranteeing thermomechanical stability, protecting against chemical contamination and avoiding any adhesion of the blade parts to the core.
- the invention relates to a core 1 of nickel-based alloy obtained by a method according to the invention.
- the core 1 has a layer 12 composed of a cobalt base alloy according to claim 8.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Coating By Spraying Or Casting (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
- L'invention se rapporte au domaine de la fabrication du bord d'attaque pour les aubes de soufflantes en Composite à Matrice Organique (CMO).
- Il est rappelé qu'une aube présente conventionnellement, un bord d'attaque et un bord de fuite. Le bord d'attaque correspond à la partie antérieure du profil aérodynamique qui fait face au flux d'air et qui divise l'écoulement d'air en un écoulement d'intrados et en un écoulement extrados, et un bord de fuite qui correspond à la partie postérieure du profil aérodynamique. Dans l'environnement d'une turbomachine, d'un aéronef, il est possible que des débris solides soient pris dans un flux d'air circulant dans la turbomachine. Ces débris vont alors frapper le bord d'attaque d'une aube et risquent l'endommager. En conséquence, il est usuel de renforcer le bord d'attaque des aubes. Cette disposition technique est d'autant plus importante dans le cas d'une aube en CMO. En effet, le matériau composite peut mal résister à la perforation.
- Il est par exemple connu de l'art antérieur d'avoir une aube de soufflante en CMO présentant un bord d'attaque en titane.
- Le document
FR1051992 - Cette méthode permet de maîtriser la forme intérieure de la cavité du bord d'attaque, qui est une réplique de l'aube sur laquelle sera placé le bord d'attaque, permettant ainsi de ne faire aucune reprise d'usinage de la cavité interne du bord d'attaque. En outre cette technique permet de maitriser et faciliter des opérations d'usinage final grâce à la présence du noyau interne qui permet à la fois de rigidifier l'ensemble et d'avoir des référentiels dimensionnels intégrés ce qui permet d'éviter d'avoir recours, comme pour les autres techniques, à des outillages d'usinage complexes. Ainsi, ces différentes dispositions induisent une réduction de coût important de la gamme de fabrication en raison de la réutilisation des noyaux, considérés alors comme des outillages.
- Pour cette technique dite de conformage sur noyau, ce dernier doit présenter trois caractéristiques principales en relation avec le fait que l'étape de conformage s'effectue via un cycle thermomécanique à haute température, de l'ordre de 800 - 1000°C, durant lequel, le noyau est en contact avec les éléments du bord d'attaque en titane pendant plusieurs heures :
- Le noyau doit être indéformable dans la gamme thermomécanique de fabrication du bord d'attaque afin d'assurer la forme de la cavité interne du bord d'attaque
- Le noyau ne doit permettre aucune réaction chimique entre son matériau et le matériau du bord d'attaque
- Le noyau ne doit permettre aucune adhérence ou collage entre son matériau et le matériau du bord d'attaque
- La première caractéristique, liée au choix du matériau de noyau, permet de ne pas avoir à usiner la cavité interne du bord d'attaque.
- La deuxième permet d'éviter ou de réduire au maximum la décontamination chimique des surfaces de la cavité interne du bord d'attaque.
- La troisième conditionne complètement la réutilisation des noyaux et donc la viabilité économique de cette technique.
- Les deux dernières caractéristiques sont liées et nécessitent un traitement particulier du noyau. En effet, les alliages métalliques retenus pour le noyau sont des alliages base nickel ou base cobalt afin d'être suffisamment rigides pour ne pas se déformer lors des cycles de conformage à haute température. Or ce type d'alliages mis en contact à haute température avec les alliages de titane de la pièce sont réactifs entre eux et forment des solutions solides ou des composés intermétalliques, ce qui conduit au mieux à une contamination de l'alliage de titane, au pire un collage rédhibitoire entre le nickel / cobalt et le titane.
- Il est donc indispensable de faire un traitement adapté au noyau pour éviter la contamination et le collage.
- Une solution technique consiste à intercaler une barrière de anti-diffusion entre les deux alliages métalliques en contact que sont l'alliage base nickel ou cobalt du noyau et l'alliage titane du bord d'attaque qui vont subir un traitement thermomécanique à haute température pendant plusieurs heures.
- Pour ce faire, une méthode décrite par le document
FR 1653221 - Cependant, des essais réalisés à échelle un suivant cette technique ont mis en évidence des carences au niveau de l'efficacité de la barrière anti-diffusion générée par la nitruration ou carbo-nitruration du noyau base nickel ou cobalt. Des traces de contamination sont observées sur les zones internes du bord d'attaque en titane et des dégradations de couche nitrurée du noyau sont observables dès le premier cycle de compaction, hypothéquant très fortement la capacité à réutiliser de nombreuses fois le noyau et donc le modèle économique de la technique.
- De plus, le document
FR2463191 - Dans ce contexte, la présente invention a pour objectif de fournir un procédé de fabrication d'un noyau pour la production d'un bord d'attaque d'une aube de soufflante, qui réponde aux trois critères énoncés précédemment : indéformabilité thermomécanique, neutralité chimique vis-à-vis du bord d'attaque et absence d'adhérence au bord d'attaque. Selon un premier aspect, l'invention propose un procédé de fabrication d'un noyau pour la production d'un bord d'attaque d'une aube de soufflante caractérisé en ce qu'il comprend les étapes de :
- (a) fourniture d'un noyau initial en alliage base nickel,
- (b) projection thermique sur le noyau initial d'une couche d'un alliage base cobalt,
- selon la revendication 1. D'une manière particulièrement avantageuse la projection thermique de ce type d'alliage, résistant aux frottements à chaud, apporte une inertie chimique qui permet de réaliser une barrière anti-diffusion entre le noyau en alliage base nickel et des tôles en titane utilisées pour la fabrication de l'aube de soufflante. Ainsi, ce procédé permet de recouvrir le noyau d'une couche garantissant une stabilité thermomécanique, préservant d'une contamination chimique et évitant une éventuelle adhérence des pièces d'aube sur le noyau.
- L'alliage base cobalt peut comprendre du carbone.
- L'alliage base cobalt comprend, en pourcentage massique, entre 26% et 32% de molybdène, entre 7% et 20% de chrome entre 1% et 5% de silicium et moins de 1% de carbone.
- La couche peut présenter une dureté comprise entre 40 et 65 HRC.
- La couche déposée peut présenter une épaisseur comprise entre 100 microns et 2 millimètres, de préférence 500 microns.
- L'étape (b) peut être réalisée en utilisant une méthode choisie parmi : une projection par flamme supersonique, une projection par plasma d'arc soufflé ou un dépôt par torche à plasma.
- Le procédé peut comprendre, en outre, suite à l'étape (b) de projection thermique, une étape (c) de traitement thermique de la couche, réalisée entre 800 et 1000°C.
- Le procédé peut comprendre en outre, suite à l'étape (b) de projection thermique, une étape (d) d'usinage par rectification.
- Le procédé peut comprendre en outre, suite à l'étape (b) de projection thermique, une étape (e) de traitement thermique à l'air, comprenant un premier palier de trente minutes à une température comprise entre 300°C et 400°C, un deuxième palier de trente minutes à une température comprise entre 500°C et 700°C, un troisième palier de trente minutes à une température comprise entre 800°C et 1000°C, et un refroidissement à l'air ambiant, pour oxyder la couche. Selon un deuxième aspect, l'invention propose un noyau en alliage base nickel selon la revendication 8.
- D'autres caractéristiques, buts et avantages de l'invention ressortiront de la description qui suit, qui est purement illustrative et non limitative, et qui doit être lue en regard des dessins annexés sur lesquels :
- La
figure 1 est une vue en coupe, microscopique de la surface d'un noyau selon l'invention. - La
figure 2 est un schéma bloc d'un procédé selon l'invention. - Sur l'ensemble des figures, les éléments similaires portent des références identiques.
- Selon un premier aspect, l'invention concerne un procédé de fabrication d'un noyau 1 pour la production d'un bord d'attaque d'une aube de soufflante le procédé comprend essentiellement les étapes de :
- (a) fourniture d'un noyau initial 11 en alliage base nickel,
- (b) projection thermique sur le noyau initial 11 d'une couche 12 d'un alliage base cobalt, selon la revendication 1.
- L'étape (a) de fourniture du noyau initial peut être réalisée en usinant un bloc en alliage base nickel pour obtenir le noyau initial 11.
- Ensuite, le noyau initial 11 peut être sablé (étape (a1)) pour augmenter la rugosité de sa surface extérieure. Cette disposition permet avantageusement de faciliter l'accrochage de la couche 12 projetée à l'étape (b).
- Enfin, le noyau initial 11 peut être nettoyé et dégraissé (étape (a2)). Cette étape permet de garantir un état de surface, du noyau initial 11, optimal pour l'étape suivante (b) de projection.
- Comme énoncé précédemment, l'étape - suivante - (b) consiste en la projection thermique sur le noyau initial 11 d'une couche 12 d'un alliage base cobalt, comprenant du chrome et au moins un élément parmi du tungstène et/ou du molybdène.
- Il est précisé que le tungstène, le molybdène et le chrome peuvent être présents sous forme de carbure.
- De plus le molybdène peut être utilisé dans un mélange intermétallique. On rappelle qu'un mélange intermétallique est un mélange comprenant au moins un métalloïde. Les métalloïdes étant des éléments chimiques dont les propriétés sont intermédiaires entre celles des métaux et des non-métaux, ou sont une combinaison de ces propriétés. Les métalloïdes sont les éléments suivants : Bore, Silicium, Germanium, Arsenic, Antimoine, Tellure et Astate. En l'espèce, le métalloïde préférentiellement utilisé en association avec du molybdène est le silicium.
- Selon l'invention l'alliage base cobalt comprend, en pourcentage massique, entre 26% et 32% de molybdène, entre 7% et 20% de chrome entre 1% et 5% de silicium et moins de 1% de carbone.
- D'une manière préférée, l'alliage base cobalt peut comprendre 29% de molybdène, 8,5% de chrome, 2,6% de silicium et moins de 0,08% de carbone.
- D'une autre manière préférée, l'alliage base cobalt peut comprendre 28% de molybdène, 18% de chrome, 3,4% de silicium et moins de 0,08% de carbone.
- Ainsi, d'une manière particulièrement avantageuse la projection thermique de ces types d'alliages, résistants aux frottements à chaud, apporte une inertie chimique qui permet de réaliser une barrière anti-diffusion entre le noyau initial 11 en alliage base nickel et des tôles en titane utilisées pour la fabrication de l'aube de soufflante.
- Selon une première disposition technique préférée, la projection thermique peut être réalisée par flamme supersonique, selon une méthode dite « High Velocity Oxy-Fuel » (HVOF) ou selon une méthode dite « High Velocity Air-Fuel » (HVAF). La méthode HVOF est particulièrement préférée car, elle consiste à projeter l'alliage base cobalt à très haute vitesse avec une température modérée, ce qui engendre très peu de porosité dans la couche 12 déposée.
- Selon une autre disposition technique, la couche peut être projetée par plasma d'arc soufflé. Cette méthode conduit à une couche poreuse mais présentant une bonne accroche mécanique sur la surface du noyau. Cette méthode peut optionnellement envisager un pompage sous vide au cours de la projection.
- Selon une autre disposition technique, la couche peut être déposée par une torche à plasma selon la méthode dite « Plasma Transferred Arc » (PTA). Cette méthode permet d'obtenir une couche 12 plus épaisse, compacte et liée métallurgiquement au substrat qu'avec les méthodes précédemment décrites qui sera ensuite reprise en usinage.
- Suite au dépôt de la couche 12 par projection thermique, le procédé peut comprendre une étape (c) de traitement thermique de la couche 12, réalisée entre 800°C et 1000°C. Préférentiellement, l'étape (c) est réalisée entre 850°C et 900°C. Ce traitement thermique permet de relaxer les contraintes internes induites par le dépôt de la couche 12, à l'étape précédente.
- Ensuite, le procédé peut comprendre une étape (d) de rectification pour réduire une épaisseur de la couche 12. Suite à cette étape, la couche 12 peut présenter une épaisseur comprise en 100 et 500 microns. Cette étape peut également servir de vérification pratique de l'adhérence du dépôt.
- Après l'étape de rectification, le procédé peut comprendre une étape (e) de traitement thermique à l'air, comprenant un premier palier de trente minutes à une température comprise entre 300°C et 400°C, un deuxième palier de trente minutes à une température comprise entre 500°C et 700°C, un troisième palier de trente minutes à une température comprise entre 800°C et 1000°C, et un refroidissement à l'air ambiant.
- Préférentiellement, l'étape (e) peut comprendre un premier palier de trente minutes à 350°C, puis un deuxième palier de trente minutes à 650°C, puis un troisième palier de trente minutes 900°C, suivi d'un refroidissement à l'air ambiant.
- L'étape (e), dite de passivation, permet d'oxyder la couche 12 en surface ce qui permet de réduire les risques d'interaction chimique entre la couche 12 et le matériau utilisé pour fabriquer l'aube (le plus souvent du titane).
- A l'issu de ce procédé de fabrication, la couche 12 peut présenter une dureté comprise entre 35 et 65 HRC, de préférence entre 45 et 55 HRC. Il est précisé que la dureté est exprimée et mesurée selon le test dit de Rockwell, en utilisant un pénétrateur sur lequel est appliquée une charge initiale puis une charge supplémentaire. La dureté étant mesurée en comparant la profondeur d'enfoncement du pénétrateur lors de l'application de la charge initiale et lors de l'application de la charge supplémentaire. Pour l'échelle HRC, En l'espèce, le test est réalisé avec un pénétrateur constitué d'un cône de diamant de section circulaire à pointe arrondie sphérique de 0,2 millimètres. De plus, la charge initiale appliquée est de 98N et la charge totale (correspondant à la charge initiale plus la charge supplémentaire) est de de 1471,5N. Une unité de dureté HRC correspond à une pénétration de 0,002 millimètres.
- Pour les épaisseurs inférieures à 400 microns, l'échelle HR15N est préférée car la charge initiale appliquée n'est que de 29N et la charge totale (correspondant à la charge initiale plus la charge supplémentaire) n'est que de 147,1N.
- Il est possible d'utiliser également la méthode Vickers (HV). Le test est alors réalisé avec un pénétrateur constitué d'une pyramide en diamant à base carrée. La dureté étant déterminée en mesurant les deux diagonales de l'empreinte. La charge est adaptée à l'épaisseur de la couche : 5 à 10 kilogrammes pour les épaisseurs ≤ 400 microns et 20 à 30 kilogrammes maximum pour les épaisseurs supérieures à 400 microns.
- Dans ces deux derniers cas (HR15N et HV) la valeur HRC est déduite des tables de conversion exprimées dans les normes ISO et ASTM en vigueur.
- Ainsi, ce procédé permet de recouvrir le noyau initial 11 d'une couche 12 garantissant une stabilité thermomécanique, préservant d'une contamination chimique et évitant une éventuelle adhérence des pièces d'aube sur le noyau.
- Selon un deuxième aspect, l'invention concerne un noyau 1 en alliage base nickel obtenu par un procédé selon l'invention. Le noyau 1 présente une couche 12 composée d'un alliage base cobalt selon la revendication 8.
Claims (8)
- Procédé de fabrication d'un noyau (1) pour la production d'un bord d'attaque d'une aube de soufflante caractérisé en ce qu'il comprend les étapes de :(a) fourniture d'un noyau initial (11) en alliage base nickel,(b) projection thermique sur le noyau initial d'une couche (12) d'un alliage base cobalt, comprenant en pourcentage massique, entre 26% et 32% de molybdène, entre 7% et 20% de chrome entre 1% et 5% de silicium et moins de 1% de carbone.
- Procédé selon la revendication 1, dans lequel la couche (12) présente une dureté comprise entre 40 et 65 HRC.
- Procédé selon la revendication 1 ou la revendication 2, dans lequel la couche (12) déposée présente une épaisseur comprise entre 100 microns et 2 millimètres, de préférence 500 microns.
- Procédé selon l'une quelconque des revendications 1 à 3, dans lequel l'étape (b) est réalisée en utilisant une méthode choisie parmi : une projection par flamme supersonique, une projection par plasma d'arc soufflé ou un dépôt par torche à plasma.
- Procédé selon l'une quelconque des revendications 1 à 4 comprenant en outre, suite à l'étape (b) de projection thermique, une étape (c) de traitement thermique de la couche (12), réalisée entre 800 et 1000°C.
- Procédé selon l'une quelconque des revendications 1 à 5 comprenant en outre, suite à l'étape (b) de projection thermique, une étape (d) d'usinage par rectification.
- Procédé selon l'une quelconque des revendications 1 à 6, comprenant en outre, suite à l'étape (b) de projection thermique, une étape (e) de traitement thermique à l'air, comprenant un premier palier de trente minutes à une température comprise entre 300°C et 400°C, un deuxième palier de trente minutes à une température comprise entre 500° C et 700° C, un troisième palier de trente minutes à une température comprise entre 800°C et 1000°C, et un refroidissement à l'air ambiant, pour oxyder la couche (12).
- Noyau en alliage base nickel obtenu à partir d'un noyau initial (11) en alliage base nickel ledit noyau présentant une couche (12) composée d'un alliage base cobalt, comprenant en pourcentage massique, entre 26% et 32% de molybdène, entre 7% et 20% de chrome entre 1% et 5% de silicium et moins de 1% de carbone.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1873958A FR3090427B1 (fr) | 2018-12-21 | 2018-12-21 | Procede de fabrication d’un noyau |
PCT/FR2019/053241 WO2020128391A1 (fr) | 2018-12-21 | 2019-12-20 | Procede de fabrication d'un noyau |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3899081A1 EP3899081A1 (fr) | 2021-10-27 |
EP3899081B1 true EP3899081B1 (fr) | 2022-06-15 |
Family
ID=67001904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19848898.3A Active EP3899081B1 (fr) | 2018-12-21 | 2019-12-20 | Procede de fabrication d'un noyau |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220064776A1 (fr) |
EP (1) | EP3899081B1 (fr) |
CN (1) | CN113260731B (fr) |
FR (1) | FR3090427B1 (fr) |
WO (1) | WO2020128391A1 (fr) |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1051992A (fr) | 1952-03-03 | 1954-01-20 | Mécanisme de commande de la barre faucheuse sur tracteurs de voirie | |
GB933406A (en) * | 1960-11-17 | 1963-08-08 | Deloro Stellite Ltd | A cobalt-chromium base alloy |
US3642519A (en) * | 1969-03-21 | 1972-02-15 | Us Air Force | Method for the development of hard coat seal surfaces |
US4339509A (en) * | 1979-05-29 | 1982-07-13 | Howmet Turbine Components Corporation | Superalloy coating composition with oxidation and/or sulfidation resistance |
US4837389A (en) * | 1984-06-04 | 1989-06-06 | Turbine Components Corporation | Composite alloy structures |
DE10041974B4 (de) * | 2000-08-25 | 2008-02-14 | Daimler Ag | Beschichtungsverfahren für Zylinderköpfe und Verwendung |
DE10334703A1 (de) * | 2003-07-30 | 2005-02-24 | Daimlerchrysler Ag | Ventilsitzringe aus Co oder Co/Mo-Basislegierungen und deren Herstellung |
US6933052B2 (en) * | 2003-10-08 | 2005-08-23 | General Electric Company | Diffusion barrier and protective coating for turbine engine component and method for forming |
WO2006060434A2 (fr) * | 2004-11-30 | 2006-06-08 | Deloro Stellite Holdings Corporation | Alliage soudable a base de co resistant a la fissuration |
EP1715140A1 (fr) * | 2005-04-21 | 2006-10-25 | Siemens Aktiengesellschaft | Aube de turbine ayant une bande couvrante et une couche de protection sur la bande couvrante |
JP5529366B2 (ja) * | 2007-03-29 | 2014-06-25 | 三菱重工業株式会社 | コーティング材料及びその製造方法並びにコーティング方法並びにシュラウド付き動翼 |
FR2920440B1 (fr) * | 2007-08-31 | 2010-11-05 | Commissariat Energie Atomique | Procede de traitement anti-corrosion d'une piece par depot d'une couche de zirconium et/ou d'alliage de zirconium |
DE102009043097A1 (de) * | 2009-09-25 | 2011-03-31 | Siemens Aktiengesellschaft | Laufschaufel zur Verwendung in Zweiphasenströmungen sowie Verfahren zum Herstellen einer solchen Laufschaufel |
FR2957545B1 (fr) * | 2010-03-19 | 2012-07-27 | Snecma | Procede de realisation d'un insert metallique pour la protection d'un bord d'attaque en materiau composite |
US20130180432A1 (en) * | 2012-01-18 | 2013-07-18 | General Electric Company | Coating, a turbine component, and a process of fabricating a turbine component |
JP5842772B2 (ja) * | 2012-09-11 | 2016-01-13 | Jfeスチール株式会社 | 継目無鋼管圧延用プラグおよびその製造方法 |
ITUB20152136A1 (it) * | 2015-07-13 | 2017-01-13 | Nuovo Pignone Srl | Pala di turbomacchina con struttura protettiva, turbomacchina, e metodo per formare una struttura protettiva |
CN107083502B (zh) * | 2016-02-12 | 2023-10-13 | 肯纳金属公司 | 耐磨且耐蚀的钴基合金粉末及其施加方法 |
-
2018
- 2018-12-21 FR FR1873958A patent/FR3090427B1/fr active Active
-
2019
- 2019-12-20 US US17/416,139 patent/US20220064776A1/en active Pending
- 2019-12-20 WO PCT/FR2019/053241 patent/WO2020128391A1/fr unknown
- 2019-12-20 CN CN201980084161.4A patent/CN113260731B/zh active Active
- 2019-12-20 EP EP19848898.3A patent/EP3899081B1/fr active Active
Also Published As
Publication number | Publication date |
---|---|
CN113260731B (zh) | 2023-07-28 |
FR3090427B1 (fr) | 2023-11-10 |
EP3899081A1 (fr) | 2021-10-27 |
CN113260731A (zh) | 2021-08-13 |
FR3090427A1 (fr) | 2020-06-26 |
US20220064776A1 (en) | 2022-03-03 |
WO2020128391A1 (fr) | 2020-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9511436B2 (en) | Composite composition for turbine blade tips, related articles, and methods | |
JP4799302B2 (ja) | タービン・ブレードのチップを処理する方法およびその方法で処理したタービン・ブレード | |
CH634356A5 (fr) | Piece metallique portant un revetement dur a base de carbure. | |
EP0884403A1 (fr) | Materiau multicouches à revetement anti-erosion, anti-abrasion, et anti-usure sur substrat en aluminium, en magnesium ou en leurs alliages. | |
FR2967204A1 (fr) | Procede de fabrication d'un composant utilisant un revetement fugitif | |
WO2006095799A1 (fr) | Methode de traitement de surface et methode de reparation | |
EP3377680B1 (fr) | Pièce de moteur d'aéronef comportant un revêtement de protection contre l'érosion et procédé de fabrication d'une telle pièce | |
EP3899081B1 (fr) | Procede de fabrication d'un noyau | |
EP3442741B1 (fr) | Noyau de conformation à chaud d'une pièce métallique et procédé de fabrication | |
JP6842165B2 (ja) | 積層被覆膜とその製造方法およびピストンリング | |
Bagade et al. | Effect of laser surface texturing on coating adherence and tribological properties of CuNiIn and MoS 2 coating | |
FR3072717A1 (fr) | Piece de turbine en superalliage comprenant du rhenium et procede de fabrication associe | |
EP3685018B1 (fr) | Pièce de turbine en superalliage comprenant du rhénium et/ou du ruthénium et procédé de fabrication associé | |
CA2886926C (fr) | Procede de fabrication d'une piece couverte d'un revetement abradable | |
WO2011144860A1 (fr) | Procede de fabrication et/ou reparation de pieces multicouches comportant des trous inclines et devant resister a des contraintes thermiques elevees | |
FR3055820A1 (fr) | Procede d'assemblage de coques en metal dont une est realisee par depot laser | |
EP3532653B1 (fr) | Pièce comprenant un substrat en superalliage monocristallin à base de nickel et son procédé de fabrication | |
JP2011012336A (ja) | 多層皮膜被覆部材およびその製造方法 | |
EP3990214B1 (fr) | Noyau de conformation à chaud d'une pièce métallique et procédé de fabrication, de régénération et de conformation | |
US11612947B2 (en) | Method of diffusion bonding utilizing vapor deposition | |
EP1428609B1 (fr) | Procédé pour réaliser un revetement sur un article et/ou un substrat métallique | |
Villegas | Effect of Si and Si-Pt Reservoirs on the Growth of Multilayer Coatings for the Oxidation Protection of Γ-TiAl Turbine Blades | |
FR2682400A1 (fr) | Materiau multicouche, procedes de fabrication de ce materiau multicouche et de l'une des couches de ce materiau et revetement anti-erosion et anti-abrasion comprenant ce materiau multicouche. | |
FR3098849A1 (fr) | Carter amélioré de module d’aéronef |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210709 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
INTG | Intention to grant announced |
Effective date: 20220422 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602019016025 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1498457 Country of ref document: AT Kind code of ref document: T Effective date: 20220715 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220915 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220916 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220915 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1498457 Country of ref document: AT Kind code of ref document: T Effective date: 20220615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221017 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221015 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602019016025 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |
|
26N | No opposition filed |
Effective date: 20230316 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20221231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221231 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221220 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221231 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231124 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231122 Year of fee payment: 5 Ref country code: DE Payment date: 20231121 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20191220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |