EP3898406B1 - Zykloidisches dynamisches antriebs- oder positionierungssystem für ein schiff - Google Patents

Zykloidisches dynamisches antriebs- oder positionierungssystem für ein schiff Download PDF

Info

Publication number
EP3898406B1
EP3898406B1 EP19817344.5A EP19817344A EP3898406B1 EP 3898406 B1 EP3898406 B1 EP 3898406B1 EP 19817344 A EP19817344 A EP 19817344A EP 3898406 B1 EP3898406 B1 EP 3898406B1
Authority
EP
European Patent Office
Prior art keywords
blade
cycloidal
arm
positioning system
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19817344.5A
Other languages
English (en)
French (fr)
Other versions
EP3898406A1 (de
Inventor
Thomas DAMAY
Frédéric HAUVILLE
Jacques-André ASTOLFI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecole National Superieure dArts et Metiers ENSAM
Original Assignee
Ecole National Superieure dArts et Metiers ENSAM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecole National Superieure dArts et Metiers ENSAM filed Critical Ecole National Superieure dArts et Metiers ENSAM
Publication of EP3898406A1 publication Critical patent/EP3898406A1/de
Application granted granted Critical
Publication of EP3898406B1 publication Critical patent/EP3898406B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/04Propulsive elements directly acting on water of rotary type with rotation axis substantially at right angles to propulsive direction
    • B63H1/06Propulsive elements directly acting on water of rotary type with rotation axis substantially at right angles to propulsive direction with adjustable vanes or blades
    • B63H1/08Propulsive elements directly acting on water of rotary type with rotation axis substantially at right angles to propulsive direction with adjustable vanes or blades with cyclic adjustment
    • B63H1/10Propulsive elements directly acting on water of rotary type with rotation axis substantially at right angles to propulsive direction with adjustable vanes or blades with cyclic adjustment of Voith Schneider type, i.e. with blades extending axially from a disc-shaped rotary body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/04Propulsive elements directly acting on water of rotary type with rotation axis substantially at right angles to propulsive direction
    • B63H1/06Propulsive elements directly acting on water of rotary type with rotation axis substantially at right angles to propulsive direction with adjustable vanes or blades
    • B63H1/08Propulsive elements directly acting on water of rotary type with rotation axis substantially at right angles to propulsive direction with adjustable vanes or blades with cyclic adjustment
    • B63H1/10Propulsive elements directly acting on water of rotary type with rotation axis substantially at right angles to propulsive direction with adjustable vanes or blades with cyclic adjustment of Voith Schneider type, i.e. with blades extending axially from a disc-shaped rotary body
    • B63H2001/105Propulsive elements directly acting on water of rotary type with rotation axis substantially at right angles to propulsive direction with adjustable vanes or blades with cyclic adjustment of Voith Schneider type, i.e. with blades extending axially from a disc-shaped rotary body with non-mechanical control of individual blades, e.g. electric or hydraulic control

Definitions

  • a Voith-Schneider type propulsion system is arranged under the hull of a ship, and it comprises a rotor with a vertical axis which is rotated around a main axis by a motor, and a plurality of vertical blades where each is movably mounted on the rotor at a distance from the main axis.
  • Each blade is movable in rotation around a secondary axis which is also vertical.
  • the propulsion system also includes a mechanical system, usually consisting of connecting rods, which is configured to move each blade according to the degree of rotation of the rotor.
  • the movement of each blade is cyclical and, depending on the position of the rotor, each blade takes a particular position which it finds at each revolution.
  • An object of the present invention is to propose a cycloidal dynamic propulsion or positioning system which comprises means for moving the blades independently of each other based on the forces experienced by at least one blade.
  • the force sensor is arranged on a shaft between the secondary motor and the blade.
  • the main engine operates as an electric generator.
  • Fig. 1 shows a ship represented by part of its hull 10.
  • the ship is immersed in water.
  • the ship can be a ship having a direction of advancement 12 parallel to the axis of the ship and sailing on the surface or underwater.
  • the vessel may also be a vessel which seeks to maintain its position in currents, such as a platform. In either case, the ship is immersed in water which has a direction of flow relative to the ship which is due to the speed of the ship or the water current. In the case of a ship with a direction of advance 12, the direction of flow is opposite to the direction of advance 12.
  • the main axis 104 is vertical or with a small angle relative to the vertical.
  • the main axis 104 can take another orientation in a plane perpendicular to the flow direction.
  • the rotor 102 is equipped with a plurality of arms 108, here three in number. Each arm extends radially relative to the main axis 104.
  • Each arm 108 carries a blade 110 which is mounted to move in rotation on the arm 108 around a secondary axis 112 parallel to the main axis 104, that is to say here vertical.
  • the secondary axes 112 and the main axis 104 do not coincide, that is to say that each secondary axis 112 is at a distance from the main axis 104.
  • the blades 110 are located outside the shell 10, and in particularly under hull 10.
  • Each blade 110 is rotated by a secondary motor 114 equipped with a rotary encoder making it possible to know the angular position of the secondary motor 114.
  • the cycloidal dynamic propulsion or positioning system 100 also includes a control unit 150 which receives information from the rotary encoders and controls the rotation in angle and speed of each motor 106, 114.
  • At least the blades 110 are outside the shell 10.
  • other elements may be entirely or partially in the water or in a fairing above the water.
  • the control unit 150 comprises, conventionally connected by a communication bus: a processor or CPU (“Central Processing Unit” in English); RAM (“Random Access Memory” in English); a ROM (“Read Only Memory” in English); a storage unit such as a hard disk or storage media drive; at least one communication interface, allowing the control unit 150 to communicate with the rotary encoders, the motors 106, 114 and at least one force sensor 202 as explained below.
  • a communication bus a processor or CPU (“Central Processing Unit” in English); RAM (“Random Access Memory” in English); a ROM (“Read Only Memory” in English); a storage unit such as a hard disk or storage media drive; at least one communication interface, allowing the control unit 150 to communicate with the rotary encoders, the motors 106, 114 and at least one force sensor 202 as explained below.
  • the processor is capable of executing instructions loaded into RAM from ROM, external memory (not shown), storage media (such as an SD card), or an array of communication.
  • the processor is capable of reading instructions from RAM and executing them.
  • control unit 150 can control the position of each blade 110 independently of each other as a function of the position of the rotor 102 indicated by the rotary encoder of the main motor 106 and in a simpler manner than using a mechanical system. Depending on the position of the rotor 102, each blade 110 takes a particular position which therefore varies with the rotation of the rotor 102.
  • the cycloidal dynamic propulsion or positioning system 100 also comprises, for at least one blade 110, a force sensor 202 connected to the control unit 150.
  • the force sensor 202 is arranged so as to be able to evaluate the forces which are practicing on the blade 110.
  • the force sensor 202 is arranged on the shaft 204 between the secondary motor 114 and the blade 110.
  • the shaft 204 is here the motor shaft of the secondary motor 114 and the blade 110 is fixed to this shaft 204.
  • the force sensor 202 measures the forces undergone by the shaft 204 which are representative of the forces exerted on the blade 110 and which the blade 110 therefore undergoes due to the water, in particular the forces traction and/or compression and/or flexion undergone by the blade 110.
  • the force sensor 202 is a sensor which comprises at least one strain gauge and according to a particular embodiment, the sensor is based on strain gauges mounted in a Wheatstone bridge, this is that is to say that there are at least four gauges mounted in a Wheatstone bridge, but there can be several Wheatstone bridges, or as many times four gauges. Of course any other technology is possible, such as a piezo sensor for example.
  • a force sensor 202 called a "balance” is used (here a two-component balance) which provides access to the normal and tangential forces on the blade 110 independently of the point of application of the force.
  • this force sensor 202 includes several bridges of stress gauges which measure displacements (very small of a few tens of micrometers) due to hydrodynamic loading, and a specific matrix calculation involving these measurements makes it possible to trace the forces wanted.
  • a prior calibration of the balance makes it possible to construct the matrix used. The calibration is done out of water and consists of measuring the outputs of the gauge bridges for known forces imposed at different locations on the blade 110.
  • the control unit 150 manages the rotation speed of the rotor 102 as well as the position of each blade 110 as a function of the angular position of the rotor 102.
  • each blade 110 can be positioned so as to maximize the efforts in the direction of the ship's advance.
  • the pitch of the blades 110 can therefore be adapted as a function of the rotation speed of the rotor 102 and the data from the force sensor 202.
  • the detection of strong variations in force on the blade 110 can be the sign of a separation of the boundary layer around this blade 110, and it is then possible to modify the position of the blades 110 in order to avoid this separation at each angular position of the rotor 102.
  • each blade 110 is movable in translation along the associated arm 108 in order to modify the distance between the main axis 104 and the secondary axis 112.
  • This embodiment is particularly interesting when the main motor 106 can operate as an electric generator. Changing the center distance of the blades 110 makes it possible to lengthen the center distance and thus when the water current causes the blades 110 to rotate around the main axis 104, the main motor 106 operating as an electric generator generates an electric current to deliver electricity to the ship or to storage batteries.
  • the cycloidal dynamic propulsion or positioning system 100 comprises for each blade 110, a movement system 170 which is a motorized slide system which is controlled by the control unit 150 and arranged to move the blade 110 and the secondary motor 114 associated along the arm 108.
  • the movement system 170 comprises for each arm 108, an additional arm 208 fixed to the rotor 102 parallel to said arm 108 and arranged here under said arm 108.
  • the movement system 170 also includes a slide 172 slidably mounted on the arm 108 and the additional arm 208.
  • the slide 172 is integral with the secondary motor 114.
  • the slide 172 is also integral with a bearing 174 in which the shaft 204 is mounted.
  • the movement system 170 includes a drive system which is connected to and controlled by the control unit 150 to move the slider 172 along the arms 108 and 208.
  • the drive system can for example be a cylinder, for example hydraulic.
  • the drive system here comprises a movement motor 176 carrying a threaded rod 178 meshing with a nut 180 of the slide 172 so as to form a worm system where the rotation of the threaded rod 178 in one direction will move the slide 172 and therefore the blade 110 in one direction and where the rotation of the threaded rod 178 in the opposite direction will move the slide 172 and therefore the blade 110 in an opposite direction.
  • the travel motor 176 is connected and controlled by the control unit 150.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Control Of Position Or Direction (AREA)
  • Control Of Velocity Or Acceleration (AREA)

Claims (5)

  1. Zykloidisches dynamisches Antriebs- oder Positionierungssystem (100) für ein Schiff, das sich in einem Gewässer befindet, das eine Strömungsrichtung aufweist, wobei das zykloidische dynamische Antriebs- oder Positionierungssystem (100) Folgendes umfasst:
    - ein Gestell,
    - einen Rotor (102), der um eine Hauptachse (104), die zu der Strömungsrichtung senkrecht ist, drehbar an dem Gestell montiert ist und eine Vielzahl von Armen (108) umfasst, die sich in Bezug auf die Hauptachse (104) radial erstrecken,
    - einen Hauptmotor (106), der über einen Drehgeber verfügt und den Rotor (102) in eine Drehbewegung versetzt,
    - für jeden Arm (108), einen Flügel (110), der um eine Nebenachse (112), die zu der Hauptachse (104) parallel ist, drehbar an dem Arm (108) montiert ist,
    - für jeden Flügel (110), einen Nebenmotor (114), der über einen Drehgeber verfügt und den Flügel (110) in eine Drehbewegung versetzt,
    - für mindestens einen Flügel (110), einen Kraftsensor (202), der so angeordnet ist, dass er die Kräfte, die auf den Flügel (110) wirken, ermitteln kann,
    - eine Steuereinheit (150), die mit jedem Drehgeber, dem Kraftsensor (202) und jedem Motor (106, 114) verbunden ist und die Drehung in Bezug auf Winkel und Geschwindigkeit jedes Motors (106, 114) steuert, und
    - ein Verschiebesystem (170), das durch die Steuereinheit (150) gesteuert wird und dazu bestimmt ist, den Flügel (110) und den zugehörigen Nebenmotor (114) entlang des Arms (108) zu verschieben.
  2. Zykloidisches dynamisches Antriebs- oder Positionierungssystem (100) nach Anspruch 1, dadurch gekennzeichnet, dass der Kraftsensor (202) auf einer Welle (104) zwischen dem Nebenmotor (114) und dem Flügel (110) angeordnet ist.
  3. Zykloidisches dynamisches Antriebs- oder Positionierungssystem (100) nach Anspruch 1, dadurch gekennzeichnet, dass der Hauptmotor (106) als elektrischer Generator arbeitet.
  4. Zykloidisches dynamisches Antriebs- oder Positionierungssystem (100) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Verschiebesystem (170) Folgendes umfasst:
    - für jeden Arm (108), einen Zusatzarm (208), der parallel zu dem Arm (108) an dem Rotor (102) befestigt ist,
    - einen Schieber (172), der fest mit dem Nebenmotor (114) verbunden ist und auf dem Arm (108) und dem Zusatzarm (208) gleitend montiert ist,
    - ein Antriebssystem, das mit der Steuereinheit (150) verbunden ist und durch diese gesteuert wird, um den Schieber (172) entlang der Arme (108, 208) zu verschieben.
  5. Schiff, das einen Rumpf (10) und ein zykloidisches dynamisches Antriebs- oder Positionierungssystem (100) nach einem der vorhergehenden Ansprüche umfasst, wobei das Gestell an dem Rumpf (10) befestigt ist und wobei sich mindestens die Flügel (110) außerhalb des Rumpfes (10) befinden.
EP19817344.5A 2018-12-19 2019-12-13 Zykloidisches dynamisches antriebs- oder positionierungssystem für ein schiff Active EP3898406B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1873269A FR3090571B1 (fr) 2018-12-19 2018-12-19 Systeme de propulsion ou de positionnement dynamique cycloidal pour un navire
PCT/EP2019/085163 WO2020126933A1 (fr) 2018-12-19 2019-12-13 Systeme de propulsion ou de positionnement dynamique cycloidal pour un navire

Publications (2)

Publication Number Publication Date
EP3898406A1 EP3898406A1 (de) 2021-10-27
EP3898406B1 true EP3898406B1 (de) 2024-01-03

Family

ID=66542402

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19817344.5A Active EP3898406B1 (de) 2018-12-19 2019-12-13 Zykloidisches dynamisches antriebs- oder positionierungssystem für ein schiff

Country Status (8)

Country Link
US (1) US11613335B2 (de)
EP (1) EP3898406B1 (de)
JP (1) JP7482346B2 (de)
KR (1) KR20210127921A (de)
CN (1) CN113613995B (de)
FI (1) FI3898406T3 (de)
FR (1) FR3090571B1 (de)
WO (1) WO2020126933A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118103292A (zh) * 2021-10-15 2024-05-28 通用电气能源能量变换技术有限公司 摆线桨

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2971583A (en) * 1959-07-02 1961-02-14 Bendt H Hansen Vertical axis propeller mechanism
DE19620970A1 (de) * 1996-05-24 1997-11-27 Blohm & Voss Int Vom Hauptantrieb unabhängige, wahlweise als passives Ruder oder als aktives Manövrierorgan einsetzbare Einrichtung für Schiffe
DE10060067A1 (de) * 2000-12-01 2002-06-13 Doczyck Wolfgang Propulsionsantrieb und Verfahren zum Antreiben eines Schiffs
JP2004224147A (ja) * 2003-01-22 2004-08-12 National Institute Of Advanced Industrial & Technology サイクロイダル・プロペラの制御機構
US7762776B2 (en) * 2006-03-14 2010-07-27 Siegel Aerodynamics, Inc. Vortex shedding cyclical propeller
US20100274420A1 (en) * 2009-04-24 2010-10-28 General Electric Company Method and system for controlling propulsion systems
JP2011207299A (ja) 2010-03-29 2011-10-20 National Institute Of Advanced Industrial Science & Technology サイクロイダル・プロペラ
FR2993019B1 (fr) * 2012-07-05 2018-07-13 Adv Tech Sas Mecanisme de controle de l'incidence des pales d'un rotor fonctionnant dans un flux transversal de fluide
EP2944556B1 (de) * 2014-05-12 2018-07-11 GE Energy Power Conversion Technology Ltd Zykloidisches Wasserantriebssystem
CZ307925B6 (cs) 2017-02-15 2019-08-28 Ladislav Pejša Neobjemový tekutinový stroj

Also Published As

Publication number Publication date
FI3898406T3 (fi) 2024-03-28
US20220063783A1 (en) 2022-03-03
WO2020126933A1 (fr) 2020-06-25
CN113613995A (zh) 2021-11-05
US11613335B2 (en) 2023-03-28
CN113613995B (zh) 2024-04-30
JP7482346B2 (ja) 2024-05-14
KR20210127921A (ko) 2021-10-25
FR3090571B1 (fr) 2021-01-08
JP2022516242A (ja) 2022-02-25
EP3898406A1 (de) 2021-10-27
FR3090571A1 (fr) 2020-06-26

Similar Documents

Publication Publication Date Title
EP2350725B1 (de) Raum-optiksystem mit mitteln zur aktiven steuerung der optik
EP3898406B1 (de) Zykloidisches dynamisches antriebs- oder positionierungssystem für ein schiff
EP1862423B1 (de) Hebevorrichtung mit Sicherheitsmutter
FR3029284A1 (fr) Dispositif de mesure des positions angulaires d'un element de pale de giravion par rapport a un moyen de rotor, giravion associe et procede de mesure correspondant
EP2997345B1 (de) Prüfstand für oligocyclische ermüdung oder oligocyclische und polycyclische ermüdung
WO2013079638A1 (fr) Hydrolienne
FR2797248A1 (fr) Procede et appareil pour detecter une precharge dans un dispositif d'arret vers le bas d'un rotor d'un aeronef a rotor basculant
FR3037621A1 (fr) Dispositif capteur, avantageusement du genre eolienne ou hydrolienne, pour capter l'energie cinetique d'un flux de fluide
EP1964778B1 (de) Drehgelenk mit Blattfedern
EP3702278B1 (de) Vorrichtung zur assistierten umlenkung, und luftfahrzeug
EP2724945A2 (de) Motorisierungssystem für Gelenk mit flexiblen Rollwegen
FR3031722A1 (fr) Dispositif de determination du couple applique a un axe de pedalier
FR2923293A1 (fr) Poulie a capteur d'effort integre.
FR3051770A1 (fr) Mecanisme de retour d'effort pour un minimanche de pilotage d'un aeronef, ainsi que dispositif de pilotage d'un aeronef, comportant un tel mecanisme
EP4041628B1 (de) System zur zyklischen blattverstellung
FR2792427A1 (fr) Dispositif de rappel au point neutre, en particulier pour volant sans axe, et volant sans axe comportant un tel dispositif
WO2022017932A1 (fr) Articulation instrumentee pour bras robotise
FR2897936A1 (fr) Capteur de flexions et de pressions
WO2013140084A1 (fr) Dispositif de sertissage a came instrumentee
EP2982596B1 (de) Antriebsvorrichtung, insbesondere für wasserfahrzeug, das mindestens über eine schiffsschraube mit ausrichtbaren blättern verfügt
EP0455543B1 (de) Vorrichtung zur Ausrichtung einer Reflektorantenne
EP4283157A1 (de) Elastisch verformbares gelenk und system mit einem solchen gelenk
EP2602601B1 (de) Überwachungssystem einer kinematischen Kette
FR3006828A1 (fr) Procede d'assemblage d'une machine electrique a flux axial
WO2019102119A1 (fr) Verin electrique

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210617

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230713

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019044570

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240201

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240103

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602019044570

Country of ref document: DE

Owner name: ECOLE NAVALE, FR

Free format text: FORMER OWNER: ECOLE NATIONALE SUPERIEURE D'ARTS ET METIERS, PARIS, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602019044570

Country of ref document: DE

Owner name: ECOLE NATIONALE SUPERIEURE D'ARTS ET METIERS, FR

Free format text: FORMER OWNER: ECOLE NATIONALE SUPERIEURE D'ARTS ET METIERS, PARIS, FR

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1646539

Country of ref document: AT

Kind code of ref document: T

Effective date: 20240103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240103