EP3892777A1 - Road finisher and method with transverse profile control - Google Patents
Road finisher and method with transverse profile control Download PDFInfo
- Publication number
- EP3892777A1 EP3892777A1 EP20168635.9A EP20168635A EP3892777A1 EP 3892777 A1 EP3892777 A1 EP 3892777A1 EP 20168635 A EP20168635 A EP 20168635A EP 3892777 A1 EP3892777 A1 EP 3892777A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- road
- screed
- paver
- control system
- height profile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 17
- 239000000463 material Substances 0.000 claims abstract description 12
- 238000005056 compaction Methods 0.000 claims abstract description 3
- 230000007704 transition Effects 0.000 claims description 12
- 238000009434 installation Methods 0.000 claims description 9
- 230000006870 function Effects 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 5
- SEQDDYPDSLOBDC-UHFFFAOYSA-N Temazepam Chemical compound N=1C(O)C(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 SEQDDYPDSLOBDC-UHFFFAOYSA-N 0.000 description 7
- 230000008713 feedback mechanism Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 241001136792 Alle Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 210000002023 somite Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C19/00—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
- E01C19/22—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
- E01C19/23—Rollers therefor; Such rollers usable also for compacting soil
- E01C19/26—Rollers therefor; Such rollers usable also for compacting soil self-propelled or fitted to road vehicles
- E01C19/268—Rollers therefor; Such rollers usable also for compacting soil self-propelled or fitted to road vehicles designed for rolling surfaces not situated in the plane of the riding surface of the apparatus, e.g. stepped-down surfaces, sloping edge of surfacing
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C19/00—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
- E01C19/48—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C19/00—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
- E01C19/48—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
- E01C19/4833—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ with tamping or vibrating means for consolidating or finishing, e.g. immersed vibrators, with or without non-vibratory or non-percussive pressing or smoothing means
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C19/00—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
- E01C19/48—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
- E01C19/4866—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ with solely non-vibratory or non-percussive pressing or smoothing means for consolidating or finishing
- E01C19/4873—Apparatus designed for railless operation
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C23/00—Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
- E01C23/01—Devices or auxiliary means for setting-out or checking the configuration of new surfacing, e.g. templates, screed or reference line supports; Applications of apparatus for measuring, indicating, or recording the surface configuration of existing surfacing, e.g. profilographs
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C2301/00—Machine characteristics, parts or accessories not otherwise provided for
- E01C2301/14—Extendable screeds
Definitions
- the present invention relates to a road paver and a method for operating a road paver.
- Pavements are often not only built in a completely horizontal and flat shape, but also have a transverse profile in order to achieve beneficial effects, such as improved rainwater drainage.
- Straight sections of the route are manufactured with a roof profile, i.e. sloping outwards on both sides from a highest line in the middle of the road. Curves are made with a superelevation that increases from the inner to the outer curve radius.
- the settings are made by an operator, for example by means of the hydraulic adjustment of the leveling cylinder or manually operated adjusting nuts.
- a partially automatic control is from the EP 0 849 399 B1 known.
- the object of the present invention is to provide a road finisher with an improved control system for automatic transverse profile control and an improved method for operating a road finisher.
- a paver according to the invention comprises a screed, the screed comprising at least one compaction unit.
- the road finisher also includes a GNSS receiver, a material conveyor and an electronic control system, which in turn includes a memory and a data processor.
- Digital building data in particular a nominal height profile of a road surface to be produced, are stored in the memory.
- the control system is configured to use the building data to automatically control an actuator system present on the road paver, in particular a leveling cylinder and / or roof profile adjustment and / or slope adjustment and / or berm adjustment, in order to match the paving material with the target height profile and thus a defined Install the cross profile for the respective location coordinate point of the paver finisher determined with the GNSS receiver.
- Both the position of the entire screed in the room and the orientation can be adjusted automatically individual plank parts to each other.
- the transverse inclination of the screed can be set automatically for paving a curve superelevation.
- a left and a right half of the plank can be automatically set at an angle to one another for the production of a roof profile.
- add-on or pull-out elements can also be set automatically; in particular, their inclination across the direction of travel can be set automatically.
- the actuators can be, for example, hydraulic or electromotive adjusting elements or drives.
- the transverse profiles can therefore be precisely planned when the digital building data is created and then installed with the paver using precise coordinates. Possible errors by an operator are excluded and the operator can take care of other operational functions of the paver finisher.
- the control system is preferably configured to automatically control the steering of the road finisher as a function of location. This ensures that the road surface is also installed in the exactly foreseen position, which is particularly important in the case of a profiled road surface, since the subgrade and lateral terrain transitions are coordinated with it.
- the GNSS-based position determination of the road paver means that other reference systems such as mechanical, laser-based or visual monitoring by the operator can be omitted, but they can also continue to be used. The operator is further relieved by the automatic control of the steering.
- control system is configured to automatically set the screed width as a function of location. In this way, changes in the desired width of the road surface are taken into account, whereby the operator is not additionally required or can limit himself to monitoring the automatic settings.
- the already mentioned, as well as the following automatic functions of the paver finisher, based on the digital building data which are processed by the electronic control system, can overall enable a nearly or completely autonomous paving of a road surface.
- the screed preferably has a slope sensor, the control system being configured to automatically control the actuators on the basis of the data received from the slope sensor.
- the screed can have several inclination sensors, at least one of which is expediently attached to each inclination-adjustable screed part. For example, the transverse inclination of a right and left half of the basic screed, a right and left attachment or extension part and, if necessary, of elements for berm adjustment on the extension or extension parts can be measured. So can it Control system automatically make the required settings with the help of this feedback mechanism.
- the data from the slope sensors can indicate the absolute slope of the respective screed part in space and / or the relative inclination to one or more other screed parts.
- the road paver expediently has a sensor for measuring an actual height profile, the control system being configured to calculate a deviation of the actual height profile from the target height profile and to automatically control the actuators as a function thereof.
- a feedback mechanism is used to control the automatic installation activity and the settings can be adjusted automatically in order to achieve the desired result. Not only can the machine settings, as mentioned in the previous section, be monitored, but also the actual paving result, whereby a particularly high paving quality is achieved.
- control system is configured to automatically adjust the actuators at the transition between two transverse profiles.
- transitions for example from a roof profile on a straight road section to a curve cant, are particularly laborious to create manually, since the angling of two halves of the plank to one another must continuously transition into a transverse slope of an otherwise straight plank, without creating unevenness.
- a high road quality is particularly important in cornering areas.
- the automatic adjustment takes care of this installation with the highest quality and excludes setting errors that are possible with manual control.
- the paver finisher's GNSS positioning ensures the exact positioning of the roadway profiles and their transitions.
- Slope sensors for example for one left and one right half of the screed, can monitor the current setting of the screed. The operator does not have to initiate the transition sequence manually on the basis of a position determination carried out by him.
- control system is configured to compare the actuator settings required for installing the target height profile with their control limits. This ensures that the paver used can pave the desired profiles. It is conceivable that this check can also be carried out using an external data processing system. In both cases, the paver finisher's data is stored digitally for this purpose.
- control system is configured to compare the adjustment speeds of the actuators required for installing the desired height profile with the possible adjustment speeds. In particular, this enables changes to be made in the Plan the transverse profile exactly and adjust the driving or paving speed of the road paver accordingly.
- the road surface is installed in the desired geometry and in the intended position.
- the position of the GNSS receiver or the receiving antenna on the paver finisher can be taken into account so that the position of the screed is precisely referenced.
- Two GNSS receivers can also be used for this purpose.
- a transverse inclination of the screed and / or a screed part is expediently determined by means of one or more transverse inclination sensors.
- the transverse inclination of each adjustable screed part such as the left or right half of the basic screed, pull-out elements, berm elements, if present, is measured by means of a separate sensor on the respective element.
- the data is received and processed by the control system so that an automatic feedback mechanism monitors the exact setting of the bank slope.
- the data can also be displayed to an operator.
- An actual height profile of the built-in road surface is preferably determined by means of a sensor.
- This data can, for example, be presented to the operator on a display device. In this way, the operator can also intervene manually in the production process and make corrections if necessary.
- a difference between the actual height profile and the target height profile is calculated and the actuators are automatically regulated to minimize the difference.
- a particularly high manufacturing quality is achieved through this feedback mechanism.
- the actuator system is preferably set automatically at the transition between two transverse profiles.
- the settings of the paving screed must be changed continuously when two cross sections transition, until the transition is complete. This is extremely difficult and error-prone to do manually. In addition, a second operator is often required. Thanks to the automatic control, installation is always carried out with a consistently high level of quality and the operator is relieved.
- the digital building data are expediently transferred from an external data processing system to the memory of the electronic control system by means of a radio or cable connection. All precalculations and data enrichments can be carried out on a PC.
- the data of the desired height profile of the road surface can be linked to the three-dimensional height profile of the subgrade, or calculated based on this.
- the formation data can have been obtained beforehand by means of a surface scan. In this way, the layer thickness of the paving material, the material requirements and other additional data can be calculated.
- the external processing of the data is often more practicable, however, and it may be possible to dispense with the otherwise necessary display and input devices on the paver finisher.
- the actuator settings required for installing the nominal height profile are compared with their control limits before installation begins. This ensures that the paver, and in particular the screed, is suitable for producing the road surface with the desired transverse profiles.
- the necessary adjustment speeds of the actuators are compared with the possible adjustment speeds before installation begins.
- the paving speed can be planned and adjusted accordingly.
- sensors 57 for measuring the actual height profile 59 of the built-in road surface 15 are shown.
- the measurement data are compared by the control system 19 with the nominal height profile 43, and the actuator or actuators for the roof profile adjustment 55 are readjusted accordingly in order to prevent deviations.
- the actuators 55 for adjusting the roof profile With the actuators 55 for adjusting the roof profile, the geometry of the screed 3 can be adjusted.
- the transverse inclination of the entire screed 3 and the paving thickness of the road surface 15 can be adjusted by means of the leveling cylinder 17.
- Figure 5 shows a rear view of a road finisher 1 with the screed 3 in the slope position.
- the pull-out parts 51 are inclined in addition to the halves 47, 49 of the basic screed.
- the settings are made with appropriate actuators for slope adjustment 61. For example, rain drains with a steep incline can be created at the edges of a roadway.
- Figure 6 shows a rear view of a road paver 1 with a screed 3 in the berm position.
- sections 63 of the pull-out parts 51 can be brought into the angled position shown.
- These berm sections 63 make it possible, for example, to produce a channel for the water to run off on the side of the road.
- the berm sections 63 can be automatically controlled by the control system 19 by means of actuators for berm adjustment 67 and can have further inclination sensors 53 so that both the transverse inclination of the main surface 65 of the pull-out part and the transverse inclination of the berm section 63 can be measured.
- Figure 7 shows a rear view of a road paver 1 with a screed 3 with extending parts 51, the lower surfaces of which, including the main surface 65 and, if present, a berm section 63, are height-adjustable. This can be done, for example, by hydraulic or electrical drives and in addition to the inclination adjustment.
- M or W transverse profiles can be set by combinations of the transverse inclinations of the pile parts 47, 49, 51.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Road Paving Machines (AREA)
Abstract
Straßenfertiger (1) mit einer Einbaubohle (3), wobei die Einbaubohle (3) mindestens ein Verdichtungsaggregat (5, 7, 9) umfasst, und der Straßenfertiger (1) des Weiteren einen GNSS-Empfänger (25) sowie einen Materialförderer (13) umfasst. Der Straßenfertiger (1) umfasst des Weiteren ein elektronisches Steuerungssystem (19), welches einen Speicher (21) und einen Datenprozessor (23) umfasst, wobei in dem Speicher (21) digitale Bauwerksdaten (37), insbesondere ein Soll-Höhenprofil (43) eines zu fertigenden Straßenbelags (15) gespeichert sind. Das Steuerungssystem (19) ist dazu konfiguriert, anhand der Bauwerksdaten (37) eine am Straßenfertiger (1) vorhandene Aktuatorik (17, 55, 61, 67), insbesondere Nivellierzylinder (17) und/oder Dachprofilverstellung (55) und/oder Slope-Verstellung (61) und/oder Berme-Verstellung (67), automatisch zu steuern, um Einbaumaterial (11) mit dem Soll-Höhenprofil (43) und damit einem definierten Querprofil für den jeweiligen mit dem GNSS-Empfänger (25) ermittelten Ortskoordinatenpunkt (45) des Straßenfertigers (1) einzubauen.Road paver (1) with a paving screed (3), the paving screed (3) comprising at least one compaction unit (5, 7, 9), and the paving machine (1) furthermore a GNSS receiver (25) and a material conveyor (13) includes. The road finisher (1) furthermore comprises an electronic control system (19) which comprises a memory (21) and a data processor (23), with digital building data (37), in particular a desired height profile (43) in the memory (21). a road surface to be manufactured (15) are stored. The control system (19) is configured to use the building data (37) to use actuators (17, 55, 61, 67) present on the paver finisher (1), in particular leveling cylinders (17) and / or roof profile adjustment (55) and / or slope Adjustment (61) and / or bench adjustment (67), to be controlled automatically, in order to provide paving material (11) with the nominal height profile (43) and thus a defined cross profile for the respective spatial coordinate point ( 45) of the paver finisher (1).
Description
Die vorliegende Erfindung betrifft einen Straßenfertiger sowie ein Verfahren zum Betrieb eines Straßenfertigers.The present invention relates to a road paver and a method for operating a road paver.
Fahrbahnbeläge werden häufig nicht nur in vollständig horizontaler und flacher Form gebaut, sondern weisen ein Querprofil auf, um vorteilhafte Wirkungen zu erzielen, wie beispielsweise einen verbesserten Abfluss von Regenwasser. So werden gerade Streckenabschnitte mit einem Dachprofil, also von einer höchsten Linie in der Fahrbahnmitte beidseitig nach außen hin abfallend, gefertigt. Kurven werden mit einer vom inneren zum äußeren Kurvenradius ansteigenden Überhöhung gefertigt. Um derartige Profile mit einem Straßenfertiger einbauen zu können, ist es bislang bekannt, die Querneigung der Einbaubohle als Ganzes zu ändern und Abschnitte der Einbaubohle separat voneinander zu neigen. Die Einstellungen werden dabei von einem Bediener vorgenommen, beispielsweise mittels der hydraulischen Verstellung der Nivellierzylinder oder über manuell betätigbare Stellmuttern. Eine teilweise automatische Steuerung ist aus der
Aufgabe der vorliegenden Erfindung ist es, einen Straßenfertiger mit einem verbesserten Steuerungssystem zur automatischen Querprofilsteuerung sowie ein verbessertes Verfahren zum Betrieb eines Straßenfertigers bereitzustellen.The object of the present invention is to provide a road finisher with an improved control system for automatic transverse profile control and an improved method for operating a road finisher.
Gelöst wird die Aufgabe durch einen Straßenfertiger mit den Merkmalen des Anspruchs 1 oder durch ein Verfahren zum Betrieb eines Straßenfertigers mit den Merkmalen des Anspruchs 9. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.The object is achieved by a road paver with the features of
Ein erfindungsgemäßer Straßenfertiger umfasst eine Einbaubohle, wobei die Einbaubohle mindestens ein Verdichtungsaggregat umfasst. Der Straßenfertiger umfasst des Weiteren einen GNSS-Empfänger, einen Materialförderer und ein elektronisches Steuerungssystem, welches wiederum einen Speicher und einen Datenprozessor umfasst. In dem Speicher sind digitale Bauwerksdaten, insbesondere ein Soll-Höhenprofil eines zu fertigenden Straßenbelags gespeichert. Das Steuerungssystem ist dazu konfiguriert, anhand der Bauwerksdaten eine am Straßenfertiger vorhandene Aktuatorik, insbesondere Nivellierzylinder und/oder Dachprofilverstellung und/oder Slope-Verstellung und/oder Berme-Verstellung, automatisch zu steuern, um das Einbaumaterial mit dem Soll-Höhenprofil und damit einem definierten Querprofil für den jeweiligen mit dem GNSS-Empfänger ermittelten Ortskoordinatenpunkt des Straßenfertigers einzubauen. Automatisch verstellt werden kann also sowohl die Lage der gesamten Einbaubohle im Raum, als auch die Orientierung einzelner Bohlenteile zueinander. So kann beispielsweise die Querneigung der Einbaubohle zum Einbau einer Kurvenüberhöhung automatisch eingestellt werden. Ebenso kann eine linke und eine rechte Bohlenhälfte abgewinkelt zueinander zur Fertigung eines Dachprofils automatisch eingestellt werden. Zusätzlich zur Hauptbohle können auch Anbau- bzw. Ausziehelemente automatisch eingestellt werden, insbesondere kann ihre Neigung quer zur Fahrtrichtung automatisch eingestellt werden. Bei der Aktuatorik kann es sich beispielsweise um hydraulische oder elektromotorische Stellelemente oder Antriebe handeln. Die Querprofile können also bei der Erstellung der digitalen Bauwerksdaten exakt geplant und anschließend präzise koordinatenbasiert mit dem Straßenfertiger eingebaut werden. Mögliche Fehler eines Bedieners werden ausgeschlossen und dieser kann sich um andere Betriebsfunktionen des Straßenfertigers kümmern.A paver according to the invention comprises a screed, the screed comprising at least one compaction unit. The road finisher also includes a GNSS receiver, a material conveyor and an electronic control system, which in turn includes a memory and a data processor. Digital building data, in particular a nominal height profile of a road surface to be produced, are stored in the memory. The control system is configured to use the building data to automatically control an actuator system present on the road paver, in particular a leveling cylinder and / or roof profile adjustment and / or slope adjustment and / or berm adjustment, in order to match the paving material with the target height profile and thus a defined Install the cross profile for the respective location coordinate point of the paver finisher determined with the GNSS receiver. Both the position of the entire screed in the room and the orientation can be adjusted automatically individual plank parts to each other. For example, the transverse inclination of the screed can be set automatically for paving a curve superelevation. Likewise, a left and a right half of the plank can be automatically set at an angle to one another for the production of a roof profile. In addition to the main screed, add-on or pull-out elements can also be set automatically; in particular, their inclination across the direction of travel can be set automatically. The actuators can be, for example, hydraulic or electromotive adjusting elements or drives. The transverse profiles can therefore be precisely planned when the digital building data is created and then installed with the paver using precise coordinates. Possible errors by an operator are excluded and the operator can take care of other operational functions of the paver finisher.
Vorzugsweise ist das Steuerungssystem dazu konfiguriert, die Lenkung des Straßenfertigers ortsabhängig automatisch zu steuern. So wird sichergestellt, dass der Straßenbelag auch an der exakt vorhergesehenen Position eingebaut wird, was insbesondere bei einer profilierten Fahrbahnoberfläche wichtig ist, da Planum und seitliche Geländeübergänge darauf abgestimmt sind. Durch die GNSS-basierte Positionsbestimmung des Straßenfertigers können andere Referenzsysteme, wie mechanische, laserbasierte oder Sichtüberwachung durch den Bediener wegfallen, sie können aber auch zusätzlich weiter zum Einsatz kommen. Durch die automatische Steuerung der Lenkung wird der Bediener weiter entlastet.The control system is preferably configured to automatically control the steering of the road finisher as a function of location. This ensures that the road surface is also installed in the exactly foreseen position, which is particularly important in the case of a profiled road surface, since the subgrade and lateral terrain transitions are coordinated with it. The GNSS-based position determination of the road paver means that other reference systems such as mechanical, laser-based or visual monitoring by the operator can be omitted, but they can also continue to be used. The operator is further relieved by the automatic control of the steering.
In einer vorteilhaften Variante ist das Steuerungssystem dazu konfiguriert, die Bohlenbreite ortsabhängig automatisch einzustellen. So werden Änderungen in der gewünschten Breite des Fahrbahnbelags berücksichtigt, wobei ebenfalls der Bediener nicht zusätzlich gefordert ist, oder sich darauf beschränken kann die automatischen Einstellungen zu überwachen. Die bereits erwähnten, sowie die noch folgenden automatischen Funktionen des Straßenfertigers, basierend auf den digitalen Bauwerksdaten, welche von dem elektronischen Steuerungssystem verarbeitet werden, können insgesamt ein nahezu oder vollständig autonomes Einbauen eines Straßenbelags ermöglichen.In an advantageous variant, the control system is configured to automatically set the screed width as a function of location. In this way, changes in the desired width of the road surface are taken into account, whereby the operator is not additionally required or can limit himself to monitoring the automatic settings. The already mentioned, as well as the following automatic functions of the paver finisher, based on the digital building data which are processed by the electronic control system, can overall enable a nearly or completely autonomous paving of a road surface.
Bevorzugt weist die Einbaubohle einen Querneigungssensor auf, wobei das Steuerungssystem dazu konfiguriert ist, anhand der von dem Querneigungssensor empfangenen Daten die Aktuatorik automatisch zu steuern. Die Einbaubohle kann mehrere Querneigungssensoren aufweisen, wovon zweckmäßig jeweils mindestens einer an jedem neigungsverstellbaren Bohlenteil angebracht ist. So kann beispielsweise jeweils die Querneigung einer rechten und linken Hälfte der Grundbohle, eines rechten und linken Anbau- oder Ausziehteils und gegebenenfalls von Elementen zur Berme-Einstellung an den Anbau- oder Ausziehteilen gemessen werden. So kann das Steuerungssystem automatisch mit Hilfe dieses Rückmeldungsmechanismus die gewünschten Einstellungen exakt vornehmen. Die Daten der Querneigungssensoren können die absolute Querneigung des jeweiligen Bohlenteils im Raum und/oder die relative Neigung zu einem oder mehreren anderen Bohlenteilen angeben.The screed preferably has a slope sensor, the control system being configured to automatically control the actuators on the basis of the data received from the slope sensor. The screed can have several inclination sensors, at least one of which is expediently attached to each inclination-adjustable screed part. For example, the transverse inclination of a right and left half of the basic screed, a right and left attachment or extension part and, if necessary, of elements for berm adjustment on the extension or extension parts can be measured. So can it Control system automatically make the required settings with the help of this feedback mechanism. The data from the slope sensors can indicate the absolute slope of the respective screed part in space and / or the relative inclination to one or more other screed parts.
Zweckmäßig weist der Straßenfertiger einen Sensor zur Messung eines Ist-Höhenprofils auf, wobei das Steuerungssystem dazu konfiguriert ist, eine Abweichung des Ist-Höhenprofils von dem Soll-Höhenprofil zu berechnen und in Abhängigkeit davon die Aktuatorik automatisch zu steuern. So wird mit einem Rückmeldungsmechanismus die automatische Einbautätigkeit maschinell kontrolliert und es können die Einstellungen automatisch nachgeregelt werden, um das gewünschte Ergebnis zu erreichen. Es können also nicht nur die Maschineneinstellungen, wie im vorangegangenen Abschnitt erwähnt, überwacht werden, sondern auch das tatsächliche Einbauergebnis, wodurch eine besonders hohe Einbauqualität erreicht wird.The road paver expediently has a sensor for measuring an actual height profile, the control system being configured to calculate a deviation of the actual height profile from the target height profile and to automatically control the actuators as a function thereof. A feedback mechanism is used to control the automatic installation activity and the settings can be adjusted automatically in order to achieve the desired result. Not only can the machine settings, as mentioned in the previous section, be monitored, but also the actual paving result, whereby a particularly high paving quality is achieved.
In einer vorteilhaften Variante ist das Steuerungssystem dazu konfiguriert, die Aktuatorik beim Übergang zwischen zwei Querprofilen automatisch zu verstellen. Solche Übergänge, beispielsweise von einem Dachprofil auf einem geraden Fahrbahnabschnitt zu einer Kurvenüberhöhung, sind besonders aufwändig manuell zu erstellen, da die Abwinkelung zweier Bohlenhälften zueinander kontinuierlich in eine Querneigung einer ansonsten geraden Bohle übergehen muss, ohne dass dabei Unebenheiten entstehen. Besonders in Kurvenbereichen ist eine hohe Fahrbahnqualität wichtig. Die automatische Verstellung erledigt diesen Einbau mit höchster Qualität und schließt Einstellungsfehler, welche bei der manuellen Regelung möglich sind, aus. Die GNSS-Positionsbestimmung des Straßenfertigers sichert dabei die exakte Positionierung der Fahrbahnprofile und deren Übergänge. Querneigungssensoren, beispielsweise jeweils für eine linke und rechte Bohlenhälfte, können die momentane Einstellung der Einbaubohle überwachen. Der Bediener muss also die Übergangssequenz nicht anhand einer von ihm vorgenommenen Positionsbestimmung manuell einleiten.In an advantageous variant, the control system is configured to automatically adjust the actuators at the transition between two transverse profiles. Such transitions, for example from a roof profile on a straight road section to a curve cant, are particularly laborious to create manually, since the angling of two halves of the plank to one another must continuously transition into a transverse slope of an otherwise straight plank, without creating unevenness. A high road quality is particularly important in cornering areas. The automatic adjustment takes care of this installation with the highest quality and excludes setting errors that are possible with manual control. The paver finisher's GNSS positioning ensures the exact positioning of the roadway profiles and their transitions. Slope sensors, for example for one left and one right half of the screed, can monitor the current setting of the screed. The operator does not have to initiate the transition sequence manually on the basis of a position determination carried out by him.
Idealerweise ist das Steuerungssystem dazu konfiguriert, die zum Einbau des Soll-Höhenprofils nötigen Aktuatoreneinstellungen mit deren Stellgrenzen zu vergleichen. So wird sichergestellt, dass der verwendete Straßenfertiger die gewünschten Profile einbauen kann. Dabei ist es denkbar, diese Überprüfung auch mittels einer externen Datenverarbeitungsanlage vorzunehmen. In beiden Fällen sind dazu die Daten des Straßenfertigers digital vorgehalten.Ideally, the control system is configured to compare the actuator settings required for installing the target height profile with their control limits. This ensures that the paver used can pave the desired profiles. It is conceivable that this check can also be carried out using an external data processing system. In both cases, the paver finisher's data is stored digitally for this purpose.
In einer weiteren Variante ist das Steuerungssystem dazu konfiguriert, die zum Einbau des Soll-Höhenprofils nötigen Verstellgeschwindigkeiten der Aktuatoren mit den möglichen Verstellgeschwindigkeiten zu vergleichen. Dies ermöglicht insbesondere den Einbau von Änderungen im Querprofil exakt zu planen und die Fahr- bzw Einbaugeschwindigkeit des Straßenfertigers entsprechend anzupassen.In a further variant, the control system is configured to compare the adjustment speeds of the actuators required for installing the desired height profile with the possible adjustment speeds. In particular, this enables changes to be made in the Plan the transverse profile exactly and adjust the driving or paving speed of the road paver accordingly.
Ein erfindungsgemäßes Verfahren zum Betrieb eines Straßenfertigers, insbesondere eines Straßenfertigers nach einer der vorangegangenen Ausführungsformen, umfasst folgende Verfahrensschritte:
- Vorhalten von digitalen Bauwerksdaten, insbesondere einem Soll-Höhenprofil und einem damit definierten Querprofil eines zu fertigenden Straßenbelags, in einem Speicher eines elektronischen Steuerungssystems des Straßenfertigers,
- Einbau eines Einbaumaterials mittels einer Einbaubohle des Straßenfertigers, wobei die jeweilige aktuelle Position des Straßenfertigers mittels eines GNSS-Empfängers ermittelt wird und anhand des Soll-Höhenprofils eine am Straßenfertiger vorhandene Aktuatorik, insbesondere Nivellierzylinder und/oder Dachprofilverstellung und/oder Slope-Verstellung und/oder Berme-Verstellung, automatisch gesteuert wird.
- Preservation of digital building data, in particular a target height profile and a transverse profile defined therewith of a road surface to be manufactured, in a memory of an electronic control system of the road paver,
- Installation of a paving material by means of a screed of the paver finisher, the respective current position of the paver finisher being determined by means of a GNSS receiver and an actuator system present on the paver finisher, in particular a leveling cylinder and / or roof profile adjustment and / or slope adjustment and / or, based on the target height profile Berme adjustment, controlled automatically.
So wird der Straßenbelag in der gewünschten Geometrie und an der vorgesehenen Position eingebaut. Dabei kann die Position des GNSS-Empfängers bzw. der Empfangsantenne am Straßenfertiger berücksichtigt werden, so dass die Position der Einbaubohle exakt referenziert wird. Dazu können auch zwei GNSS-Empfänger zum Einsatz kommen.The road surface is installed in the desired geometry and in the intended position. The position of the GNSS receiver or the receiving antenna on the paver finisher can be taken into account so that the position of the screed is precisely referenced. Two GNSS receivers can also be used for this purpose.
Zweckmäßig wird eine Querneigung der Einbaubohle und/oder eines Bohlenteils mittels eines oder mehrerer Querneigungssensoren ermittelt. Idealerweise wird die Querneigung jedes verstellbaren Bohlenteils, wie linke oder rechte Hälfte der Grundbohle, Ausziehelemente, Berme-Elemente, sofern jeweils vorhanden, mittels eines eigenen Sensors an dem jeweiligen Element gemessen. Die Daten werden von dem Steuerungssystem empfangen und verarbeitet, so dass ein automatischer Rückkopplungsmechanismus die exakte Einstellung der Querneigung überwacht. Ebenso können die Daten einem Bediener angezeigt werden.A transverse inclination of the screed and / or a screed part is expediently determined by means of one or more transverse inclination sensors. Ideally, the transverse inclination of each adjustable screed part, such as the left or right half of the basic screed, pull-out elements, berm elements, if present, is measured by means of a separate sensor on the respective element. The data is received and processed by the control system so that an automatic feedback mechanism monitors the exact setting of the bank slope. The data can also be displayed to an operator.
Vorzugsweise wird ein Ist-Höhenprofil des eingebauten Straßenbelags mittels eines Sensors ermittelt. Diese Daten können beispielsweise dem Bediener auf einem Anzeigegerät dargestellt werden. So kann der Bediener bei Bedarf auch manuell in den Fertigungsprozess eingreifen und Korrekturen vornehmen.An actual height profile of the built-in road surface is preferably determined by means of a sensor. This data can, for example, be presented to the operator on a display device. In this way, the operator can also intervene manually in the production process and make corrections if necessary.
In einer vorteilhaften Variante wird eine Differenz des Ist-Höhenprofils zu dem Soll-Höhenprofil berechnet und die Aktuatorik zur Minimierung der Differenz automatisch geregelt. Durch diesen Rückkoppelungsmechanismus wird eine besonders hohe Fertigungsqualität erreicht.In an advantageous variant, a difference between the actual height profile and the target height profile is calculated and the actuators are automatically regulated to minimize the difference. A particularly high manufacturing quality is achieved through this feedback mechanism.
Bevorzugt wird die Aktuatorik beim Übergang zwischen zwei Querprofilen automatisch eingestellt. Die Einstellungen der Einbaubohle müssen beim Übergang zweier Querprofile kontinuierlich geändert werden, bis der Übergang vollständig abgeschlossen ist. Dies ist manuell äußerst schwierig und fehleranfällig. Zudem wird oftmals eine zweite Bedienperson benötigt. Durch die automatische Regelung wird stets mit gleichbleibender hoher Qualität eingebaut und der Bediener entlastet.The actuator system is preferably set automatically at the transition between two transverse profiles. The settings of the paving screed must be changed continuously when two cross sections transition, until the transition is complete. This is extremely difficult and error-prone to do manually. In addition, a second operator is often required. Thanks to the automatic control, installation is always carried out with a consistently high level of quality and the operator is relieved.
Zweckmäßig werden die digitalen Bauwerksdaten zu Beginn des Verfahrens von einer externen Datenverarbeitungsanlage in den Speicher des elektronischen Steuerungssystems mittels Funk- oder Kabelverbindung übertragen. So können alle Vorberechnungen und Datenanreicherungen an einem PC vorgenommen werden. Es können beispielsweise die Daten des Soll-Höhenprofils des Straßenbelags mit dem dreidimensionalen Höhenprofil des Planums verknüpft werden, bzw. basierend auf diesem berechnet werden. Die Planumsdaten können zuvor durch einen Oberflächenscan gewonnen worden sein. So können auch die Schichtstärke des Einbaumaterials, der Materialbedarf und andere zusätzliche Daten berechnet werden. Dabei ist es jedoch auch denkbar, derartige Berechnungen mittels des Steuerungssystems des Straßenfertigers selbst durchzuführen. Die externe Aufbereitung der Daten ist jedoch oftmals praktikabler, und es kann eventuell auf sonst nötige Anzeige- und Eingabegeräte am Straßenfertiger verzichtet werden.At the beginning of the method, the digital building data are expediently transferred from an external data processing system to the memory of the electronic control system by means of a radio or cable connection. All precalculations and data enrichments can be carried out on a PC. For example, the data of the desired height profile of the road surface can be linked to the three-dimensional height profile of the subgrade, or calculated based on this. The formation data can have been obtained beforehand by means of a surface scan. In this way, the layer thickness of the paving material, the material requirements and other additional data can be calculated. However, it is also conceivable to carry out such calculations by means of the control system of the road finisher itself. The external processing of the data is often more practicable, however, and it may be possible to dispense with the otherwise necessary display and input devices on the paver finisher.
In einer bevorzugten Variante werden vor Beginn des Einbaus die zum Einbau des Soll-Höhenprofils nötigen Aktuatoreneinstellungen mit deren Stellgrenzen verglichen. So wird sichergestellt, dass der Straßenfertiger und insbesondere die Einbaubohle zur Fertigung des Straßenbelags mit den gewünschten Querprofilen geeignet ist.In a preferred variant, the actuator settings required for installing the nominal height profile are compared with their control limits before installation begins. This ensures that the paver, and in particular the screed, is suitable for producing the road surface with the desired transverse profiles.
In einer weiteren vorteilhaften Variante werden vor Beginn des Einbaus die nötigen Verstellgeschwindigkeiten der Aktuatoren mit den möglichen Verstellgeschwindigkeiten verglichen. Entsprechend kann die Einbaugeschwindigkeit geplant und eingestellt werden.In a further advantageous variant, the necessary adjustment speeds of the actuators are compared with the possible adjustment speeds before installation begins. The paving speed can be planned and adjusted accordingly.
Im Folgenden werden Ausführungsbeispiele der Erfindung anhand der Figuren näher beschrieben. Dabei zeigen
- Figur 1:
- eine Seitenansicht eines Straßenfertigers,
- Figur 2:
- eine schematische Ansicht digitaler Bauwerksdaten,
- Figur 3:
- eine Rückansicht eines Straßenfertigers mit einer Einbaubohle in Querneigung,
- Figur 4:
- eine Rückansicht eines Straßenfertigers mit einer Einbaubohle in Dachprofilstellung,
- Figur 5:
- eine Rückansicht eines Straßenfertigers mit einer Einbaubohle in Slope-Stellung
- Figur 6:
- eine Rückansicht eines Straßenfertigers mit einer Einbaubohle in Berme-Stellung,
- Figur 7:
- eine Rückansicht eines Straßenfertigers mit einer Einbaubohle mit höhenverstellten Ausziehteilen.
- Figure 1:
- a side view of a road paver,
- Figure 2:
- a schematic view of digital building data,
- Figure 3:
- a rear view of a road paver with a screed in a cross slope,
- Figure 4:
- a rear view of a road paver with a screed in roof profile position,
- Figure 5:
- a rear view of a paver with a screed in slope position
- Figure 6:
- a rear view of a road paver with a screed in berm position,
- Figure 7:
- a rear view of a road paver with a screed with height-adjusted extending parts.
Einander entsprechende Komponenten sind in den Figuren jeweils mit gleichen Bezugszeichen versehen.
-
zeigt einen Straßenfertiger 1 mit einer Einbaubohle 3 mit Tamper 5, Glättblech 7 und Pressleiste 9 zumFigur 1Verdichten von Einbaumaterial 11, welches mittels einem Materialförderer 13 vor der Einbaubohle 3 abgelegt ist. Die Einbaubohle 3 fertigt einen Straßenbelag 15 mit einem vorgegebenen Querprofil. In dieser Seitenansicht ist des Weiteren ein Nivellierzylinder 17 zu erkennen, welcher unter Anderem zur Einstellung einer Querneigung der Einbaubohle 3 angesteuert werden kann. Dazuist ein Steuerungssystem 19, welches einen Speicher 21 und einen Datenprozessor 23 umfasst, auf geeignete Weise mit dem Nivellierzylinder 17 bzw. einer mit diesem verbundenen Hydrauliksteuerung verbunden.Der Straßenfertiger 1 umfasst zudem einen GNSS-Empfänger 25 zur Ermittlung der aktuellen Ortskoordinate, wobei eine Entfernung der tatsächlichen Empfängerantenne 27 zur Einbaubohle 3 berücksichtigt werden kann, um die tatsächliche Position der Bohle 3 zu bestimmen. Alternativ kann die GNSS-Empfängerantenne 27 auch auf der Einbaubohle 3 angeordnet sein. Auch können zwei GNSS-Empfängerantennen 27 verwendet werden, um die Position der Einbaubohle 3 exakt zu bestimmen.Eine externe Datenverarbeitungseinheit 29 kann mittels Funkverbindung 31oder Kabelverbindung 33 Datenmit dem Steuerungssystem 19 austauschen. Wenigstens eine Achse desStraßenfertigers 1 ist mit einerLenkung 35 ausgestattet, welche ebenfallsvon dem Steuerungssystem 19 ansteuerbar sein kann. -
Figur 2 zeigt eine schematische Darstellung digitaler Bauwerksdaten 37, welche in diesemBeispiel ein Höhenprofil 39 eines Planums 41, sowie ein Soll-Höhenprofil 43 des zu fertigenden Straßenbelags 15 umfassen. Das Soll-Höhenprofil 43 ist bzw. definiert das Querprofil und ist hier in Form eines Dachprofils dargestellt.Die Bauwerksdaten 37 sind jeweils für Ortskoordinatenpunkte 45 gespeichert und stellen zusammen mit den Höhendaten einen dreidimensionalen Datensatz dar. Die Querprofileinstellung der Einbaubohle 3 wird anhand der Bauwerksdaten 37 für den jeweiligen mit dem GNSS-Empfänger 25 erfassten Ortskoordinatenpunkt 45 eingestellt. Es versteht sich, dass Übergänge zwischen zwei Profilarten zweckmäßig graduell, also ohne abrupte Änderungen gestaltet sind.Die Planumsdaten 39 können beispielsweise durch einen Oberflächenscan gewonnen werden. Hierzu wird beispielsweise mit einem Fahrzeug das Planum abgefahren, wobei ein Oberflächenscanner und ein GNSS-Empfänger am Fahrzeug angeordnet sind und dieHöhendaten 39 mit der jeweiligen Ortskoordinate abgespeichert werden. -
Figur 3 zeigt eine Rückansicht eines Straßenfertigers 1 mit der Einbaubohle 3 in Querneigung zur Fertigung einer schrägen Fahrbahnoberfläche, wie sie beispielsweise als Kurvenüberhöhung verwendet wird. In der hier dargestellten Variante weist bereitsdas Planum 41 die gewünschte Querneigung im Vergleich zur Horizontalen auf. Somit fährt der Straßenfertiger 1 bereits geneigt aufdem Planum 41, wobei die Einbaubohle 3 mit ihrer Rechts-Links-Achse im Wesentlichen senkrecht zum restlichen Straßenfertiger 1 steht. Ebenso ist es jedoch möglich bei einem horizontalen Planum 41 die Einbaubohle 3 in eine Querneigung relativ zum Chassis desStraßenfertigers 1 und zum Planum 41 zu bringen, um einen Straßenbelag 15 mit quergeneigter Fahrbahnoberfläche aufdem horizontalen Planum 41 zu fertigen. Die Querneigung der gesamten Einbaubohle 3 wird dabei durch die Verstellung der Nivellierzylinder 17 vorgenommen.. Für alle Ausführungsformen kann die Einbaubohle 3 eine linke Bohlenhälfte 47, eine rechte Bohlenhälfte 49 sowie Verbreiterungs- und/oder Ausziehteile 51 aufweisen. Zur Überwachung der Querneigung können Querneigungssensoren 53 an der Einbaubohle 3 bzw. an 47, 49, 51 angeordnet sein.den jeweiligen Bohlenteilen -
Figur 4 zeigt eine Rückansicht eines Straßenfertigers 1 mit der Einbaubohle 3 in einer Dachprofilstellung. Eine linke Bohlenhälfte 47 und eine rechte Bohlenhälfte 49 sind mittels eines Aktuators zur Dachprofilverstellung 55 in eine zueinander geneigte Position verstellt. Hier ist ein positives Dachprofil gezeigt, bei dem die äußeren Enden der Einbaubohle 3 nach unten geneigt sind. Ebenso ist auch ein negatives Dachprofil möglich, bei dem die äußeren Enden nach oben weisen. In diesem Beispiel ist eine Einbaubohle 3ohne Ausziehteile 51 gezeigt,wobei die Ausziehteile 51 vorhanden sein können.
-
Figure 1 shows aroad finisher 1 with a screed 3 with a tamper 5, screed 7 and pressure bar 9 for compacting pavingmaterial 11, which is deposited in front of the screed 3 by means of amaterial conveyor 13. The screed 3 produces aroad surface 15 with a predetermined transverse profile. In this side view, a leveling cylinder 17 can also be seen, which, among other things, can be controlled to set a transverse inclination of the screed 3. For this purpose, acontrol system 19, which comprises amemory 21 and adata processor 23, is connected in a suitable manner to the leveling cylinder 17 or to a hydraulic control connected to it. Theroad finisher 1 also includes aGNSS receiver 25 for determining the current location coordinate, it being possible to take into account a distance between theactual receiver antenna 27 and the screed 3 in order to determine the actual position of the screed 3. Alternatively, theGNSS receiver antenna 27 can also be arranged on the screed 3. TwoGNSS receiver antennas 27 can also be used in order to determine the position of the screed 3 exactly. An externaldata processing unit 29 can exchange data with thecontrol system 19 by means ofradio connection 31 orcable connection 33. At least one axle of theroad paver 1 is equipped with asteering 35, which can also be controlled by thecontrol system 19. -
Figure 2 shows a schematic representation ofdigital building data 37, which in this example include aheight profile 39 of asubgrade 41 and atarget height profile 43 of theroad surface 15 to be produced. The desiredheight profile 43 is or defines the transverse profile and is shown here in the form of a roof profile. Thebuilding data 37 are each stored for location coordinatepoints 45 and, together with the height data, represent a three-dimensional data set. It goes without saying that transitions between two types of profile are expediently designed gradually, that is to say without abrupt changes. Theformation data 39 can be obtained, for example, by a surface scan. For this purpose, a vehicle is used, for example, to drive over the subgrade, a surface scanner and a GNSS receiver being arranged on the vehicle and thealtitude data 39 being stored with the respective location coordinates. -
Figure 3 shows a rear view of aroad paver 1 with the screed 3 in a transverse inclination for the production of an inclined road surface, as it is used, for example, as a curve superelevation. In the variant shown here, the planum 41 already has the desired transverse slope compared to the horizontal. Theroad paver 1 is thus already traveling inclined on thesubgrade 41, the right-left axis of the screed 3 being essentially perpendicular to the rest of theroad paver 1. However, in the case of ahorizontal subgrade 41 it is also possible to bring the screed 3 into a transverse slope relative to the chassis of thepaver 1 and to thesubgrade 41 in order to produce aroad surface 15 with a transversely inclined road surface on thehorizontal subgrade 41. The transverse inclination of the entire screed 3 is made by adjusting the leveling cylinder 17. For all embodiments, the screed 3 can have aleft screed half 47, aright screed half 49 and widening and / or extendingparts 51. To monitor the transverse inclination,transverse inclination sensors 53 can be arranged on the screed 3 or on the 47, 49, 51.respective screed parts -
Figure 4 shows a rear view of aroad paver 1 with the screed 3 in a roof profile position. Aleft screed half 47 and aright screed half 49 are adjusted into a mutually inclined position by means of an actuator forroof profile adjustment 55. Here a positive roof profile is shown in which the outer ends of the screed 3 are inclined downwards. A negative roof profile with the outer ends pointing upwards is also possible. In this example, a screed 3 is shown withoutextension parts 51, it being possible forextension parts 51 to be present.
Zudem sind Sensoren 57 zur Messung des Ist-Höhenprofils 59 des eingebauten Straßenbelags 15 gezeigt. Die Messdaten werden von dem Steuerungssystem 19 mit dem Soll-Höhenprofil 43 verglichen, und der oder die Aktuatoren zur Dachprofilverstellung 55 entsprechend nachgeregelt, um Abweichungen zu verhindern. Mit den Aktuatoren 55 zur Dachprofilverstellung kann die Geometrie der Einbaubohle 3 verstellt werden. Zusätzlich kann mittels der Nivellierzylinder 17 die Querneigung der gesamten Einbaubohle 3 und die Einbaustärke des Straßenbelags 15 eingestellt werden.In addition, sensors 57 for measuring the
Ausgehend von den oben dargestellten Ausführungsformen eines Straßenfertigers 1 und eines Verfahrens zum Betrieb eines Straßenfertigers 1 sind vielerlei Variationen derselben denkbar. So können M- oder W-Querprofile durch Kombinationen der Querneigungen der Bohlenteile 47, 49, 51 eingestellt werden.Based on the above-described embodiments of a
Claims (15)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20168635.9A EP3892777B1 (en) | 2020-04-08 | 2020-04-08 | Road finisher and method with transverse profile control |
PL20168635.9T PL3892777T3 (en) | 2020-04-08 | 2020-04-08 | Road finisher and method with transverse profile control |
BR102021006565-6A BR102021006565A2 (en) | 2020-04-08 | 2021-04-06 | ROAD FINISHING MACHINE AND METHOD FOR OPERATING IT |
CN202120731925.9U CN216712654U (en) | 2020-04-08 | 2021-04-07 | Road surface finisher |
CN202110376748.1A CN113494039B (en) | 2020-04-08 | 2021-04-07 | Pavement finisher with lateral profile control |
US17/225,316 US12091826B2 (en) | 2020-04-08 | 2021-04-08 | Road finishing machine with transverse profile control |
JP2021065919A JP2021167560A (en) | 2020-04-08 | 2021-04-08 | Road finisher provided with traverse profile control |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20168635.9A EP3892777B1 (en) | 2020-04-08 | 2020-04-08 | Road finisher and method with transverse profile control |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3892777A1 true EP3892777A1 (en) | 2021-10-13 |
EP3892777B1 EP3892777B1 (en) | 2023-08-30 |
Family
ID=70227942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20168635.9A Active EP3892777B1 (en) | 2020-04-08 | 2020-04-08 | Road finisher and method with transverse profile control |
Country Status (6)
Country | Link |
---|---|
US (1) | US12091826B2 (en) |
EP (1) | EP3892777B1 (en) |
JP (1) | JP2021167560A (en) |
CN (2) | CN113494039B (en) |
BR (1) | BR102021006565A2 (en) |
PL (1) | PL3892777T3 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114875763A (en) * | 2022-06-10 | 2022-08-09 | 苌永涛 | Road and bridge construction foundation ditch patching device |
US20230097444A1 (en) * | 2021-09-29 | 2023-03-30 | Caterpillar Paving Products Inc. | Automated mechanical system to position screed at starting paving depth |
EP4183922A1 (en) * | 2021-11-18 | 2023-05-24 | Joseph Vögele AG | Levelling controller adaption by means of floor profile analysis |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3892777B1 (en) * | 2020-04-08 | 2023-08-30 | Joseph Vögele AG | Road finisher and method with transverse profile control |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0849399B1 (en) | 1996-12-18 | 2002-03-20 | ABG Allgemeine Baumaschinen-Gesellschaft mbH | Paver |
US20090317186A1 (en) * | 2008-06-20 | 2009-12-24 | Caterpillar Inc. | Paving system and method for controlling compactor interaction with paving material mat |
EP2514872A1 (en) * | 2011-04-18 | 2012-10-24 | Joseph Vögele AG | Method and paver for paving a road surface |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5549412A (en) * | 1995-05-24 | 1996-08-27 | Blaw-Knox Construction Equipment Corporation | Position referencing, measuring and paving method and apparatus for a profiler and paver |
US7399139B2 (en) * | 1998-10-27 | 2008-07-15 | Somero Enterprises, Inc. | Apparatus and method for three-dimensional contouring |
DE19951297C1 (en) | 1999-10-25 | 2001-04-12 | Moba Mobile Automation Gmbh | Control device for road laying machine has beam of road laying machine displaced transverse to travel direction for compensating offset from required path of road surface |
AU2003217559A1 (en) | 2003-02-13 | 2004-09-09 | John Paul Smith | Asphalt delivery and compaction system |
US20060198700A1 (en) | 2005-03-04 | 2006-09-07 | Jurgen Maier | Method and system for controlling construction machine |
EP2366830B1 (en) | 2010-03-18 | 2016-05-11 | Joseph Vögele AG | Method and system for applying a street pavement |
PL2366831T3 (en) | 2010-03-18 | 2015-07-31 | Joseph Voegele Ag | Method for controlling the process of applying a layer of road paving material and paver |
PL2813619T3 (en) * | 2013-06-11 | 2018-10-31 | Joseph Vögele AG | Screed for a road finisher |
JP6018549B2 (en) * | 2013-07-30 | 2016-11-02 | 大成ロテック株式会社 | Vibrator device and concrete pavement construction method |
JP2015045276A (en) * | 2013-08-28 | 2015-03-12 | 前田道路株式会社 | Engine noise reduction device of asphalt finisher |
DE102015007647A1 (en) | 2014-06-26 | 2015-12-31 | Dynapac Gmbh | Paver and method for operating a paver |
US10990245B2 (en) * | 2016-01-15 | 2021-04-27 | Caterpillar Paving Products Inc. | Mobile process management tool for paving operations |
US10613524B2 (en) * | 2016-01-15 | 2020-04-07 | Caterpillar Paving Products Inc. | Truck process management tool for transport operations |
EP3208381B1 (en) | 2016-02-17 | 2018-10-10 | Caterpillar Paving Products Inc. | Paving machine for applying varying crown profiles and its method |
DE102017005015A1 (en) | 2017-05-26 | 2018-11-29 | Wirtgen Gmbh | Machine train comprising a road milling machine and a road paver and method of operating a road milling machine and a road paver |
US11186957B2 (en) * | 2018-07-27 | 2021-11-30 | Caterpillar Paving Products Inc. | System and method for cold planer control |
EP3892777B1 (en) * | 2020-04-08 | 2023-08-30 | Joseph Vögele AG | Road finisher and method with transverse profile control |
-
2020
- 2020-04-08 EP EP20168635.9A patent/EP3892777B1/en active Active
- 2020-04-08 PL PL20168635.9T patent/PL3892777T3/en unknown
-
2021
- 2021-04-06 BR BR102021006565-6A patent/BR102021006565A2/en unknown
- 2021-04-07 CN CN202110376748.1A patent/CN113494039B/en active Active
- 2021-04-07 CN CN202120731925.9U patent/CN216712654U/en not_active Withdrawn - After Issue
- 2021-04-08 US US17/225,316 patent/US12091826B2/en active Active
- 2021-04-08 JP JP2021065919A patent/JP2021167560A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0849399B1 (en) | 1996-12-18 | 2002-03-20 | ABG Allgemeine Baumaschinen-Gesellschaft mbH | Paver |
US20090317186A1 (en) * | 2008-06-20 | 2009-12-24 | Caterpillar Inc. | Paving system and method for controlling compactor interaction with paving material mat |
EP2514872A1 (en) * | 2011-04-18 | 2012-10-24 | Joseph Vögele AG | Method and paver for paving a road surface |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230097444A1 (en) * | 2021-09-29 | 2023-03-30 | Caterpillar Paving Products Inc. | Automated mechanical system to position screed at starting paving depth |
EP4183922A1 (en) * | 2021-11-18 | 2023-05-24 | Joseph Vögele AG | Levelling controller adaption by means of floor profile analysis |
CN114875763A (en) * | 2022-06-10 | 2022-08-09 | 苌永涛 | Road and bridge construction foundation ditch patching device |
CN114875763B (en) * | 2022-06-10 | 2024-02-06 | 苌永涛 | Road and bridge construction foundation pit repairing device |
Also Published As
Publication number | Publication date |
---|---|
PL3892777T3 (en) | 2024-02-26 |
BR102021006565A2 (en) | 2021-10-19 |
US20210317620A1 (en) | 2021-10-14 |
EP3892777B1 (en) | 2023-08-30 |
CN113494039B (en) | 2022-10-21 |
CN216712654U (en) | 2022-06-10 |
JP2021167560A (en) | 2021-10-21 |
CN113494039A (en) | 2021-10-12 |
US12091826B2 (en) | 2024-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3892777B1 (en) | Road finisher and method with transverse profile control | |
DE69411064T2 (en) | Control device for a paver | |
EP2336424B1 (en) | Self-propelled construction machine and method for controlling same | |
EP0834620B1 (en) | Paving train | |
DE102011001542B4 (en) | Control and corresponding procedure for a tar machine | |
EP2199466B1 (en) | Method for laying a paving surface | |
EP3739122B1 (en) | Road finisher and method for determining a thickness of a layer of an established installation layer | |
EP1880057B1 (en) | Finisher for the groundlaying of surfaces for roads or simlar | |
EP2650443B1 (en) | Road milling machine with control means for producing parallelism of the machine frame with the ground | |
EP3124698B1 (en) | Road finisher with roller indication display device | |
EP4056758B1 (en) | Method for manufacturing a road paving and asphalting system | |
EP3851584B1 (en) | Road finisher with compression control | |
WO2002046533A1 (en) | Laser height adjustment device for a construction machine | |
WO2006092441A1 (en) | Method and system for controlling a construction machine | |
EP3498914A1 (en) | Adjustment of the levelling cylinder in a road finisher | |
DE112016000713B4 (en) | Auto-calibration of an automatic leveling control system in a work machine | |
EP0388819A1 (en) | Road-paving machine | |
EP2696173A1 (en) | Construction machine with sensor unit | |
WO2018114669A1 (en) | Measuring system for detecting the thickness of layers | |
EP4224112A2 (en) | Measurement system and controller | |
EP3252233B1 (en) | Paver | |
DE10038943A1 (en) | Asphalt pavers and paving processes | |
EP4056760B1 (en) | Road finisher with levelling cascade control | |
EP3981918B1 (en) | Road finisher and method for levelling the screed of a finisher | |
DE102014010837A1 (en) | Process for the production of a road surface and road paver |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220408 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230315 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230524 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502020004922 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230830 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230830 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231130 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230830 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230830 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231230 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230830 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231201 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230830 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230830 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230830 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230830 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230830 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230830 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230830 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240102 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502020004922 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
26 | Opposition filed |
Opponent name: DYNAPAC GMBH Effective date: 20240530 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240423 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240425 Year of fee payment: 5 |
|
R26 | Opposition filed (corrected) |
Opponent name: DYNAPAC GMBH Effective date: 20240530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230830 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240426 Year of fee payment: 5 Ref country code: FR Payment date: 20240423 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240405 Year of fee payment: 5 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |