EP3889706B1 - Procédé de vérification de l'état de serrage pendant la phase d'accélération - Google Patents

Procédé de vérification de l'état de serrage pendant la phase d'accélération Download PDF

Info

Publication number
EP3889706B1
EP3889706B1 EP20166854.8A EP20166854A EP3889706B1 EP 3889706 B1 EP3889706 B1 EP 3889706B1 EP 20166854 A EP20166854 A EP 20166854A EP 3889706 B1 EP3889706 B1 EP 3889706B1
Authority
EP
European Patent Office
Prior art keywords
time
tool
rotor unit
marking
sensor head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20166854.8A
Other languages
German (de)
English (en)
Other versions
EP3889706A1 (fr
Inventor
Joachim Van Sprang
Harald WEING
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Franz Kessler GmbH
Original Assignee
Franz Kessler GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Franz Kessler GmbH filed Critical Franz Kessler GmbH
Priority to ES20166854T priority Critical patent/ES2924681T3/es
Priority to EP20166854.8A priority patent/EP3889706B1/fr
Priority to US17/210,880 priority patent/US11618119B2/en
Priority to CN202110342700.9A priority patent/CN113458868A/zh
Publication of EP3889706A1 publication Critical patent/EP3889706A1/fr
Application granted granted Critical
Publication of EP3889706B1 publication Critical patent/EP3889706B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/002Arrangements for observing, indicating or measuring on machine tools for indicating or measuring the holding action of work or tool holders
    • B23Q17/003Arrangements for observing, indicating or measuring on machine tools for indicating or measuring the holding action of work or tool holders by measuring a position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/002Arrangements for observing, indicating or measuring on machine tools for indicating or measuring the holding action of work or tool holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/002Arrangements for observing, indicating or measuring on machine tools for indicating or measuring the holding action of work or tool holders
    • B23Q17/005Arrangements for observing, indicating or measuring on machine tools for indicating or measuring the holding action of work or tool holders by measuring a force, a pressure or a deformation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37388Acceleration or deceleration, inertial measurement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49177Runout, eccentricity, unbalance of tool or workpiece
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50183Detect correct clamping of workpiece, chucks grip properly workpiece

Definitions

  • the invention relates to a method for checking the clamping state of a tool holder clamped in a tool clamping device of a rotor unit or a clamped tool according to the preamble of claim 1.
  • the object of the invention is to be able to propose a method for checking the clamping state, which can be integrated more easily into the machining process.
  • the method according to the invention for checking the clamping state is characterized in that there is basically no loss of time during the actual measurement and a measurement can be carried out without restrictions, for example after each tool change or tool holder change. In this way, it can also be integrated more easily into the machining process, especially since it is not necessary to specifically provide a period of time in which only the test method can or must be carried out.
  • a motor-driven machine tool unit which comprises a stator unit and a rotor unit, the rotor unit being mounted so as to be rotatable about an axis of rotation.
  • the rotor unit which rotates relative to the stator unit, is usually part of a motor spindle drive.
  • the actual cutting tool (milling cutter, drill, etc.) is in turn held or clamped in a tool holder, which is/is in turn arranged in a tool clamping device, which is to be regarded as part of the spindle head of the rotor unit.
  • the tool clamping device has a holder for a tool holder.
  • the tool clamping device is subjected to a clamping force and adjusted in the longitudinal direction of the axis of rotation.
  • a part of the clamping device can be pulled into a tapered receptacle, so that the tool holder or the Tool in turn can be clamped with a radially acting force.
  • the clamped tool is released again and can be removed from the machine tool or changed.
  • a checking device for checking the clamping state of the tool or tool holder is provided, which has one or more sensor heads for sensory detection.
  • the use of a single sensor head is sufficient.
  • the actual sensor is housed in the sensor head; the sensor measures its distance from the rotor unit, the sensor itself being placed accordingly in the stator unit.
  • the sensor data are processed or evaluated with an electronics unit or evaluation electronics, which can be computer-controlled.
  • the at least one sensor head is basically arranged on the stator unit at a fixed position in the area of the tool clamping device and can measure both on the front side on the rotating spindle head and on the side. Deformations that occur when the tool or the tool holder is clamped due to jammed chips, a tool, tool holder or the like sitting at an angle occur primarily in the area of the tool interface or on the tool holder.
  • sensor heads can also be arranged in a variable position.
  • a chip jammed in the tool clamping device which has gotten between the tool and the tool clamping device or the clamping jaws, means that the tool is no longer straight in the Tool clamping device is seated or that the tool clamping device is slightly (also elastically) deformed and an unchanged concentricity, an unchanged axial run-out of the tool / tool holder or running without a change in angle can no longer be guaranteed.
  • a disturbance of the concentricity usually represents a particular impairment of the machining.
  • Such deformations generally occur on the side as well as on the front and can also be detected there.
  • a distance parallel to the axis of rotation is measured on the front side and a distance running radially to the axis of rotation on the side. All such deformations up to displacements of the rotor unit can be determined in this way.
  • a measurement can be made at a 90° angle to the surface and/or to the axis of rotation of the rotor unit, but also at a different angle.
  • the sensor head measures a time or position-related sequence of distance values. If the sensor head records a chronological sequence of distance values, this is usually also a position-related sequence, because the rotor unit is rotated in a chronological sequence, unless there is always exactly one full rotation between the recording of individual measured values or several integer rotations have been run through.
  • the method according to the invention is characterized in that at least one marking is specified on the rotor unit or at another point on the rotor shaft. This makes it possible for a reference marking to be used even when the rotational speed or angular velocity is unknown, and it is possible to clearly detect when exactly one revolution of the rotor unit has been completed. This is particularly advantageous if a run-out or angle error is to be determined independently of other sensors, without including a separate rotary encoder in the evaluation.
  • This marking can preferably also be recorded simultaneously by the sensor head or the sensor heads during the actual measurement process. In principle, therefore, no further sensor is required for this. However, it is also conceivable for an additional sensor to be provided for separate identification of the marking, in particular if the distance measurement is to remain independent of the identification of the marking.
  • the marking can also include a have a special shape, e.g. an oblique trapezoid, so that the direction of rotation can be roughly identified
  • the accuracy of the error measurement according to the method according to the invention is not insignificantly influenced by it. While it was previously necessary to carry out this measurement at a constant speed in order to be able to compare and correlate the measured values with one another, the invention aims to save this otherwise required period of time and, for example, a meaningful measurement during the acceleration phase of the rotor unit, in particular to be able to perform when starting the rotor unit of the machine tool.
  • the rotor unit accelerates in relation to the stator unit.
  • the method according to the invention is now applied during this period of time.
  • a first or second sequence of distance values is usually recorded outside of the marking area.
  • these distance values cannot initially be easily related, because the time sampling is usually carried out at a specified clock rate, i.e. in equal time intervals, while the accelerated rotor unit is between two successive clocks rotates differently and therefore the positions, especially in at least two sequences of measurements, no longer match.
  • s t 0.5 at 2 + v 0 t
  • s(t) is the time-dependent distance covered in the time span t or the angular range covered in the time span t
  • a is the acceleration
  • v 0 is the current speed at the point in time under consideration at the beginning of the time span t.
  • sequences of measured values are recorded.
  • the distance between the sensor head attached to the stator unit and the rotor unit is determined and measured to determine whether this distance changes when the rotor unit rotates.
  • the respective positions In order to be able to compare the sequences with each other or to evaluate the data (e.g. to be able to subtract the sequences), the respective positions must be assignable to the distance values.
  • the time during which the distance values are recorded is usually measured.
  • the rotor unit is initially accelerated when the machine starts up.
  • This acceleration can be essentially uniform, i.e. a is essentially constant.
  • a is essentially constant.
  • scaling is carried out mathematically under the condition that the square component of the equation of motion, that is to say the angular component attributable to the acceleration, can be neglected in the case of two measurements that follow one another in quick succession.
  • the production time can also be increased by the method according to the invention, which is also directly associated with cost advantages.
  • the rotor unit is accelerated uniformly throughout the recording of measured values. This also simplifies the evaluation once again, with the approximation merely consisting of the acceleration component from the path or angle-time diagram to neglect. This is possible because the measured values measured in succession are recorded very quickly one after the other and their time interval or angular interval is therefore only small, ie the acceleration term, which is quadratically dependent on time for uniform acceleration, is correspondingly negligibly small.
  • the scaling is thus performed taking the acceleration into account by determining current speeds at different points in time and the time span between the speed measurements.
  • the path-time diagram or angle-time diagram contains a linear term that depends linearly on time and in which the speed (path speed or angular speed), not the acceleration, is included as a constant.
  • the current speed can be determined in various ways. For example, it can be useful to determine the current speed based on the marking by measuring the time between two consecutive detections of the marking by the sensor head. Such a measurement is all the more accurate if the marking only makes up a comparatively narrow section in an angular segment, ideally representing a punctiform marking.
  • a single marker e.g. H.
  • the marking passes the sensor head exactly once per revolution, so a current speed measurement takes place, in that a current speed is determined to a certain extent with an inaccuracy of a speed change within one revolution. Differences due to the acceleration within this period of one revolution are then not taken into account.
  • the measurement is correspondingly more accurate if the marking only makes up a fraction of the entire rotation angle of 360° and it is determined, for example, when the front part of the marking in the direction of rotation reaches the area of the sensor head and the rear part of the marking in the direction of rotation then the sensor head happened.
  • the marking of an embodiment variant of the invention can be designed as a groove, for example in a measuring ring attached specifically for this purpose on the rotor unit, so that the areas outside the groove and inside the groove have different distance values.
  • the flanks that occur at the edges of the groove and that change the distance values measured by the sensor head accordingly are then measured.
  • the groove can basically have flanks running perpendicularly or radially to the axis of rotation or bevelled.
  • the course can be tracked by the sensor head when measuring the distance values.
  • the flanks may occur at shorter or longer time intervals watch.
  • an approximation that allows a linearization can be made such that, for example, the measured values of the first or second time-related and/or position-related sequence of measured values are taken within one revolution of the rotor unit. In this case it is assumed that the speed remains constant within the revolution. This approximation is afflicted with fewer errors, especially at high speeds, such as those that occur in machine tools. Higher angular velocities are to be expected at the end of the start-up phase in particular, so that the measurement with the estimate made is more accurate in this area than at the beginning of the start-up phase.
  • this is to a certain extent divided into partial markings, so that it can be determined with the sensor head, for example, when the marking enters the area of the sensor head and when it leaves the area of the sensor head again .
  • it can be measured when the marking reaches the area of the sensor head and the first flank is detected by the sensor head.
  • the period of time that lies between two measurement events in which the marking occurs and in each case has the same distance value is used.
  • points in time can be used when the marking moves out of the area of the sensor head again. In this way, an error estimate can be made because a current speed can be determined for each measuring point, ie for the two points at which the same distance value is present, but at the same time also the The time span between the two points can be measured.
  • the respective speeds can be determined, ie based on a marking extended over a specific angular range or based on the appearance of the same marking after one revolution. This estimates how the velocity changes with time, thereby estimating an error that occurs in the approximation when the acceleration term is assumed to be negligible at consecutive points.
  • time-related or position-related sequences of distance values can be used as a reference measurement.
  • a reference measurement it is conceivable to measure a new machine tool, a new tool holder, a new tool in which no chip can have been picked up by a machining operation, and to record a first sequence of measured values as a reference. It is also conceivable to run the rotor unit with a cleaned tool holder after a cleaning process in order to produce a corresponding reference measurement.
  • the measurement of The operating situation represents the comparison measurement, which is set in relation to the reference measurement.
  • the marking can in particular be set as an initial point in order to be able to assign the distance values to one another in different sequences, in particular in the formation of the difference and/or the Fourier transformation.
  • a reference measurement is advantageous since the measurement itself can be used to determine when a complete revolution has taken place. This is particularly advantageous when the method is carried out without values relating to the instantaneous speed or rotational speed being supplied to the evaluation electronics by other sensors or by the machine controls, but only the values of the sensor head or sensor heads carry out this determination .
  • the spacer profile itself can be completely absorbed during one revolution.
  • the number of revolutions is very high, and as a rule, measurements can advantageously also be carried out with a comparatively high sampling rate. If, for example, there is a run-out error or an angle error as a result of a chip or a tilted installed / clamped tool / tool holder, in which the tool is at an angle to the axis of rotation, for example, a periodically occurring deviation will be detectable.
  • a Fourier transformation of the signal which is carried out as a discrete Fourier transformation, preferably as an FFT or DFT, in particular to simplify the evaluation.
  • the values of the first and second sequence can be subtracted from one another, with the positions of the distance measurements having to match.
  • a difference formation can also be performed after the Fourier transformation of the respective sequences.
  • all distance values would be identical, so that there is no change in run-out, no impairment of concentricity or no change in angular position compared to the reference measurement.
  • due to static and systematic errors in the measurement alone it cannot be expected that the sensor head will always measure exactly the same distance values without any change in axial run-out, without a changed angular position or without concentricity errors.
  • the distance values have irregularities, in particular singularities, these can be determined accordingly, since they are detected periodically, and they can therefore also be assigned a frequency that is to be determined by the Fourier transformation. It is also conceivable that a mean value of the time-related or position-related sequence is taken with subsequent formation of the difference between mean values.
  • a threshold value can be defined from which it is actually assumed that a chip is jammed or that another error is contributing to a deviation from axial run-out or radial run-out or leads to an angular error that actually also has to be corrected. In this respect, such changes in the measurements can advantageously be compared in relation to a predetermined threshold value.
  • a displacement of the rotor unit or the axis of rotation can be determined from the difference between two of the time-related or position-related sequences.
  • This displacement can have the effect, for example, that the tool touches down on the workpiece earlier or later than expected or than intended by the machine controls.
  • the machining accuracy can be influenced accordingly, even if the tool or the tool holder is not tilted.
  • Such changes can occur, for example, when the tool/tool holder is drawn in even without an angle error. With such deviations, the tool either protrudes further from the tool holder or the tool holder from the clamping device or sits deeper in it.
  • the corresponding method can in principle also be used at a standstill if corresponding displacements are compared with one another, for example before and after the tool change or tool holder change.
  • figure 1 shows a schematic representation of a machine tool unit 1 with a stator unit 2 and a rotor unit 3, wherein in figure 1 especially the spindle head as part of the rotor unit 3 can be seen.
  • the stator unit 2 has a ring 4 to which a sensor head in the form of an axial sensor 5 is attached.
  • the rotor unit 3 includes a measuring ring 6 made of a metal, which is advantageously made of a paramagnetic material here.
  • the axial sensor 5 is arranged in such a way that it measures the distance to an end face of the rotor unit 3 . A lateral measurement, radial to the axis of rotation, is also conceivable. This surface, from which the distance is determined, is located on the measuring ring 6.
  • the axial sensor 5 is designed as an eddy current sensor in order to be able to obtain measurements that are as accurate as possible despite any contamination.
  • the sensor head/axial sensor 5 is connected to an electronics unit 7; Both together form the testing device 8, which in turn is connected to the machine control 9, so that it is possible to intervene in the control if the run-out errors are too great.
  • only one sensor head 5 is provided.
  • a trigger sensor for example to detect an optical reference marking on measuring ring 6 , such a trigger sensor also being able to be attached to sensor ring 4 , for example.
  • the marking can also be in the form of a groove or the like.
  • the stator unit 2 includes a cover 10 for the sensor ring 4 and also a bearing cap 11.
  • a tool clamping device 12 is attached to the rotor unit 3 (in 1 the cone ring is shown).
  • a sequence 20 of reference measurement values is first recorded with the new machine tool unit 1 . This can be done at the factory or at the customer's.
  • a reference measurement can also be made with tools or tool holders; However, this is not necessarily necessary, but it may increase the precision of the measurement and, if necessary, facilitate the detection of even small chips in the area of the tool interface, especially when individual tools or tool holders are to be used.
  • a new sequence 21 of distance values is then later determined for the same tool/tool holder.
  • a set of reference measurements can be made for different tools or tool holders; this measure increases the recognition accuracy.
  • FIG 3 typical deformation images are shown, whereby in representation A there is no chip and the amplitude distribution is much more uniform over the entire angle range, while in representation B a chip is clamped in the tool holder and for a significantly changed distortion (between 10-11 o'clock and 4- 5 o'clock) with higher (changed) amplitudes.
  • the threshold value can also be determined accordingly.
  • representation C the span is at a different angular position, so that representation C differs from representation B mainly with regard to the phase by ⁇ .
  • the clamping status test can be carried out in very short time periods during the start-up phase.
  • the rotor unit is accelerated in the first 300 ms, during which a measured value is already being recorded.
  • the speed of the rotor unit is shown as a function of the time curve t.
  • the S-grinding S shows a slightly left-curved curve, i.e. a slow start-up to avoid jerky movements.
  • a linearization does not make sense in this range, since the acceleration is not constant and an approximation by Neglecting the acceleration component is generally too imprecise.
  • there is otherwise a constant acceleration i.e. a linear dependence of the speed on the time t. If no run-out deviation can be determined, processing can take place. Otherwise, according to the invention, it must be braked for safety reasons. From approx. 300 ms, a constant speed of approx. 4000 revolutions per minute is reached for the example processing.
  • FIG 5 a section through a rotor unit 3 with a measuring ring with a groove in the side area is shown.
  • the edge regions F1, F2 which can be in the form of flanks and which can be detected at a correspondingly high sampling rate, are shown in the enlarged view.
  • a current speed can also be determined from when the sensor head detects the corresponding flanks at the beginning and at the end of the slot N. Since the angular range over which the groove N extends is known, the angular distance between these two flanks is also known, so that only the time span between the occurrence of the flanks needs to be determined.
  • figure 7 shows again how an error in the linearization (neglecting the acceleration term) can be estimated at short time intervals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Air Bags (AREA)
  • Radar Systems Or Details Thereof (AREA)

Claims (15)

  1. Procédé permettant de vérifier l'état de serrage d'un porte-outil et/ou d'un outil installé sur un dispositif de serrage d'outil (12) d'une unité de rotor (3) d'une unité de machine-outil (1) entraînée par moteur, le porte-outil et/ou l'outil étant fixés de manière amovible et serrés au moyen d'un dispositif de serrage d'outil (12) pouvant être soumis à une force de serrage, le dispositif de serrage d'outil étant serré lorsque l'outil est serré dans la direction longitudinale de l'axe de rotation, le dispositif de serrage d'outil étant disposé dans le nez de broche de l'unité de rotor (3), l'unité de machine-outil présentant une unité de stator (2) par rapport à laquelle l'unité de rotor est montée rotative autour d'un axe de rotation, le procédé comprenant les étapes de procédé suivantes consistant à :
    • fournir au moins une tête de capteur (5) servant à déterminer une distance (u),
    • disposer la tête de capteur (5) dans une position sur l'unité de stator (2),
    • mesurer la distance (u) de la tête de capteur (5) par rapport à une partie de l'unité de rotor (3),
    • enregistrer au moins une séquence de temps et/ou de positionnement (20, 21) des valeurs de distance mesurées par la tête de capteur (5),
    • déterminer un battement axial et/ou un battement radial et/ou une variation angulaire exclusivement en tenant compte de la séquence de temps et/ou de positionnement des valeurs de distance mesurées (u) par rapport à la partie du nez de broche tournant par rapport à la tête de capteur,
    caractérisé en ce que
    • un repère (N) est fourni sur l'unité de rotor (3),
    • la tête de capteur (5) détectant le repère (N) sur l'unité de rotor lors de la mesure,
    • la vitesse actuelle (v0, v1) de l'unité de rotor (3) étant détectée à l'aide de la détection du repère (N) par la tête de capteur,
    • l'enregistrement d'une première et d'une deuxième séquence de temps et/ou de positionnement des valeurs de distance (u) mesurées par la tête de capteur étant effectué pendant une accélération de la rotation de l'unité de rotor (3) par rapport à l'unité de stator (2), en particulier au démarrage de l'unité de rotor,
    • la vitesse actuelle respective étant associée aux valeurs de distance (u) de la première et de la deuxième séquence (20, 21) afin de former un vecteur de séquence à partir de la valeur de distance, de l'information de temps et/ou de positionnement, ainsi que de la vitesse actuelle (v0),
    • l'information de temps et/ou de positionnement des vecteurs de séquence de la première et/ou de la deuxième séquence étant mise à l'échelle à l'aide de la vitesse actuelle (v0) respectivement associée de sorte qu'en particulier les vecteurs de séquence des séquences respectives présentent respectivement au moins une valeur de distance pour des positions concordantes sur l'unité de rotor (3),
    • freiner l'unité de rotor en cas d'identification d'un battement axial.
  2. Procédé de vérification selon la revendication 1, caractérisé en ce que l'enregistrement d'une première et d'une deuxième séquence de temps et/ou de positionnement (20, 21) des valeurs de distance (u) mesurées par la tête de capteur (5) est effectué pendant une accélération de la rotation de l'unité de rotor (3) en dehors du repère (N).
  3. Procédé de vérification selon l'une quelconque des revendications précédentes, caractérisé en ce que l'unité de rotor (3) est accélérée de façon homogène pendant l'ensemble de l'enregistrement.
  4. Procédé de vérification selon l'une quelconque des revendications précédentes, caractérisé en ce que la mise à l'échelle est effectuée en tenant compte de l'accélération (a) en ce que les vitesses actuelles (v0) sont déterminées à différents instants et le délai entre les mesures de vitesse est déterminé.
  5. Procédé de vérification selon l'une quelconque des revendications précédentes, caractérisé en ce que la vitesse actuelle (v0) de l'unité de rotor (3) est déterminée à l'aide du repère (N) en ce que :
    • comme repère (N), un repère est fourni qui marque un certain secteur angulaire de l'unité de rotor (3) lors de la rotation, et le temps que nécessite la tête de capteur (5) pour que le repère (N) passe devant la tête de capteur (5) lorsque le secteur angulaire est connu est déterminé, et/ou
    • le délai entre deux détections successives du repère (N) par la tête de capteur (5) est mesuré.
  6. Procédé de vérification selon l'une quelconque des revendications précédentes, caractérisé en ce que comme repère (N), une rainure est utilisée de sorte que la zone à l'extérieur de la rainure et la zone à l'intérieur de la rainure présentent différentes valeurs de distance (u).
  7. Procédé de vérification selon l'une quelconque des revendications précédentes, caractérisé en ce que l'enregistrement de la première et/ou de la deuxième séquence de temps et/ou de positionnement (20, 21) est effectué pendant un tour de l'unité de rotor (3).
  8. Procédé de vérification selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une séquence de temps et/ou de positionnement (20, 21) de valeurs de distance (u), qui est utilisée comme mesure de référence, quand un outil et/ou porte-outil est/sont parfaitement serré(s), est enregistrée en particulier avant la première opération d'usinage par l'unité de machine-outil (1) et/ou après une opération de nettoyage, de préférence individuellement pour chaque outil utilisé et/ou pour chaque porte-outil utilisé.
  9. Procédé de vérification selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une séquence de temps et/ou de positionnement (20, 21) de valeurs de distance (u) pour un outil et/ou porte-outil serré(s) est enregistrée lors du démarrage de l'unité de rotor (3) pour atteindre une situation opérationnelle, en particulier une situation opérationnelle ultérieure en comparaison avec la mesure de référence, qui est utilisée comme mesure de comparaison pour la mesure de référence.
  10. Procédé de vérification selon l'une quelconque des revendications précédentes, caractérisé en ce que le repère (N) est utilisé comme point initial et le point initial est associé aux séquences de valeurs de distance pour l'évaluation afin de pouvoir associer les valeurs de distance de différentes séquences (20, 21) les unes aux autres, en particulier lors de la soustraction (22) et/ou de la transformation de Fourier (23) .
  11. Procédé de vérification selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une séquence d'évaluation de valeurs est déterminée au moyen d'au moins l'un des calculs suivants :
    • une soustraction (22) entre deux séquences de temps (20, 21) et ensuite une transformation de Fourier (23), en particulier une transformation de Fourier discrète, de préférence une FFT et/ou DFT, de la soustraction effectuée auparavant de la première et de la deuxième séquence de temps et/ou de positionnement (20, 21), et/ou
    • une transformation de Fourier, en particulier une transformation de Fourier discrète, de préférence une FFT et/ou une DFT, respectivement des séquences et ensuite une soustraction entre les séquences de temps (20, 21) respectivement soumises à une transformation de Fourier, et/ou
    • un calcul de la moyenne des séquences de temps et/ou de positionnement avec une soustraction consécutive entre les moyennes.
  12. Procédé de vérification selon l'une quelconque des revendications précédentes, caractérisé en ce que la séquence d'évaluation est examinée quant à un écart ou à au moins deux écarts (24, 25) qui dépassent une valeur seuil prédéfinie, et en cas de dépassement de la valeur seuil, un battement axial et/ou un battement radial et/ou une variation angulaire sont supposés.
  13. Procédé de vérification selon l'une quelconque des revendications précédentes, caractérisé en ce que dans la séquence d'évaluation, en particulier dans la transformée de Fourier, pour valeur de fréquence correspondant à la vitesse de rotation par unité de temps de l'unité de rotor, la valeur de différence des distances est comparée avec une valeur seuil, et en cas de dépassement de la valeur seuil, un battement axial et/ou un battement radial et/ou une variation angulaire sont supposés.
  14. Procédé de vérification selon l'une quelconque des revendications précédentes, caractérisé en ce qu'à partir de la différence de deux des séquences de temps et/ou de positionnement (20, 21), un décalage de l'unité de rotor et/ou de l'axe de rotation est/sont déterminé(s).
  15. Procédé de vérification selon l'une quelconque des revendications précédentes, caractérisé en ce que la détermination si un battement axial, en particulier une erreur de battement axial, et/ou un battement radial, en particulier une erreur de battement radial, et/ou une variation angulaire, en particulier une erreur de variation angulaire, sont présents, est effectuée par l'application d'une intelligence artificielle en ce qu'en particulier un apprentissage machine des séquences (20, 21) permet de conclure à l'erreur et/ou à la variation.
EP20166854.8A 2020-03-30 2020-03-30 Procédé de vérification de l'état de serrage pendant la phase d'accélération Active EP3889706B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES20166854T ES2924681T3 (es) 2020-03-30 2020-03-30 Procedimiento para la verificación del estado de sujeción durante la fase de aceleración
EP20166854.8A EP3889706B1 (fr) 2020-03-30 2020-03-30 Procédé de vérification de l'état de serrage pendant la phase d'accélération
US17/210,880 US11618119B2 (en) 2020-03-30 2021-03-24 Method for examining the clamping state during acceleration phase
CN202110342700.9A CN113458868A (zh) 2020-03-30 2021-03-30 用于在加速阶段检查夹持状态的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20166854.8A EP3889706B1 (fr) 2020-03-30 2020-03-30 Procédé de vérification de l'état de serrage pendant la phase d'accélération

Publications (2)

Publication Number Publication Date
EP3889706A1 EP3889706A1 (fr) 2021-10-06
EP3889706B1 true EP3889706B1 (fr) 2022-05-04

Family

ID=70108062

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20166854.8A Active EP3889706B1 (fr) 2020-03-30 2020-03-30 Procédé de vérification de l'état de serrage pendant la phase d'accélération

Country Status (4)

Country Link
US (1) US11618119B2 (fr)
EP (1) EP3889706B1 (fr)
CN (1) CN113458868A (fr)
ES (1) ES2924681T3 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11704205B2 (en) * 2019-08-16 2023-07-18 Verizon Patent And Licensing Inc. Systems and methods for transitioning from legacy computer systems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006016919A1 (de) * 2006-04-08 2007-10-11 Nordmann, Klaus, Dr.-Ing. Vorrichtung zur Erkennung von Fremdkörpern im Spalt zwischen Werkzeug und Spindel in spanenden Werkzeugmaschinen
DE102009045688A1 (de) * 2009-10-14 2011-04-28 Dreier Lasermesstechnik Gmbh Vorrichtung zur Überprüfung der Genauigkeit einer von einer Arbeitsspindel und/oder einem Maschinentisch auszuführenden Kreisbahn einer Werkzeugmaschine
EP3581328B1 (fr) 2018-06-15 2020-04-15 Franz Kessler GmbH Unité de machine-outil à contrôle du voile et procédé de vérification de l'état de serrage

Also Published As

Publication number Publication date
CN113458868A (zh) 2021-10-01
ES2924681T3 (es) 2022-10-10
US20210299808A1 (en) 2021-09-30
EP3889706A1 (fr) 2021-10-06
US11618119B2 (en) 2023-04-04

Similar Documents

Publication Publication Date Title
EP3581328B1 (fr) Unité de machine-outil à contrôle du voile et procédé de vérification de l'état de serrage
DE4004237C2 (fr)
EP3922403A1 (fr) Unité de machine-outil doté d'un capteur d'outil et procédé permettant de détecter une charge de coupe d'un outil
EP2131178B1 (fr) Procédé de diagnostic pour au moins un roulement à billes, en particulier pour un palier à billes oblique, système de diagnostic correspondant et utilisation d'un tel système de diagnostic
DE19928500A1 (de) Verfahren und Vorrichtung zur automatischen Messung von Prozess- und Werkstückkennwerten beim Schleifen von Zahnrädern
DE102013010866A1 (de) Bodenfräsmaschine mit einer Sensoreinrichtung zur berührungslosen Bestimmung von Verschleiß an Meißeleinrichtungen und Verfahren zur berührungslosen Bestimmung von Verschleiß an Meißeleinrichtungen einer Bodenfräsmaschine
DE102017121344A1 (de) Verfahren zum automatischen Bestimmen der geometrischen Abmessungen eines Werkzeugs mit einem schneckengangförmigen Bearbeitungsbereich
DE3224980C2 (de) Selbsttätig arbeitendes Zahnradprüfgerät
EP3889706B1 (fr) Procédé de vérification de l'état de serrage pendant la phase d'accélération
DE4100267C2 (de) Digitaler Torsionsmesser
EP3377846B1 (fr) Mesure de planéité et mesure de longueur par voie tactile
DE102009059331B4 (de) Vorrichtung und Verfahren zur Feinbearbeitung eines Werkstücks
WO2020221818A1 (fr) Procédé et dispositif de contrôle de roues dentées
EP3964903B1 (fr) Dispositif et procédé de traitement des valeurs mesurées dépendant de la rotation
DE3411892A1 (de) Verschleissmessvorrichtung
EP1593950A1 (fr) Dispositif de mesure de l' eccentricité radiale des engranages
CH661589A5 (de) Selbsttaetig arbeitendes zahnradpruefgeraet.
EP2583764A2 (fr) Method for controlling a production assembly by means of high resolution tracking of the produced workpieces
WO2023284913A1 (fr) Procédé de mesure de l'expansion angulaire de rotor d'un rotor rotatif sous contrainte centrifuge
DE3212081C2 (de) Selbsttätig arbeitendes Zahnradprüfgerät
DE2935723C2 (de) Überwachungseinrichtung für die Vorschubbewegung eines programmgesteuert angetriebenen Maschinenteils
EP1319946B1 (fr) Procédé et dispositif pour essais par courant de foucault d'un dispositif à tester avec une surface planaire
EP3913349A1 (fr) Procédé de détermination de la charge d'un arbre d'entrainement
DE102019128041A1 (de) Analysegerät, Analyseverfahren und Bearbeitungssystem
EP4137269B1 (fr) Dispositif et procédé de détection d'un contact entre un outil et une pièce

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201027

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211019

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1489739

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020001044

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220504

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2924681

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20221010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220905

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220804

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220805

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020001044

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

26N No opposition filed

Effective date: 20230207

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230330

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240321

Year of fee payment: 5

Ref country code: GB

Payment date: 20240322

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240329

Year of fee payment: 5

Ref country code: FR

Payment date: 20240320

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240401

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240417

Year of fee payment: 5