EP3887321A1 - Butt-joint welding method using a ukp laser beam, and optical element assembled from individual parts - Google Patents

Butt-joint welding method using a ukp laser beam, and optical element assembled from individual parts

Info

Publication number
EP3887321A1
EP3887321A1 EP19801844.2A EP19801844A EP3887321A1 EP 3887321 A1 EP3887321 A1 EP 3887321A1 EP 19801844 A EP19801844 A EP 19801844A EP 3887321 A1 EP3887321 A1 EP 3887321A1
Authority
EP
European Patent Office
Prior art keywords
laser
laser beam
workpieces
focus
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19801844.2A
Other languages
German (de)
French (fr)
Inventor
Dominik Bauer
Helge Höck
Michael Scharun
Manuel Schindler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trumpf Laser GmbH
Original Assignee
Trumpf Laser GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trumpf Laser GmbH filed Critical Trumpf Laser GmbH
Publication of EP3887321A1 publication Critical patent/EP3887321A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/26Seam welding of rectilinear seams
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/20Uniting glass pieces by fusing without substantial reshaping
    • C03B23/203Uniting glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/324Bonding taking account of the properties of the material involved involving non-metallic parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass

Definitions

  • the invention relates to a method for butt welding two, in particular plate-shaped, workpieces made of glass, in particular quartz glass, by means of a pulsed laser beam, in particular UKP laser beam, which is irradiated into the workpiece material parallel to the joining surface of the two workpieces and which is in the area of the common joining surface is focused into the workpiece material, to locally melt the two workpieces in the area of their common joining surface, as well as an optical element assembled from several laser-welded individual parts
  • Ultra-short pulsed (UKP) laser radiation with pulse durations of less than 500 ps, especially in the femtosecond range, is increasingly being used for material processing.
  • the special feature of material processing with UKP laser radiation is the high peak power / peak intensity of the laser radiation with the workpiece.
  • extreme thermal imbalances can be generated in the solid, e.g. between electrons and atom / ion hulls, which then lead to unique removal or formation mechanisms.
  • the laser welding of laser-transparent glasses or other materials that are transparent, partially transparent or scattering for the laser beam by means of ultra-short laser pulses enables a stable connection without the use of additional materials, but is limited by laser-induced transient and permanent voltages.
  • a e.g. UKP laser beam focused in the center of the volume of the two workpieces is moved along the joining line in order to locally melt the two workpieces in the area of their interface and thereby produce a particularly continuous horizontal weld seam in the volume of the two workpieces.
  • the weld seam is characterized by an from the outside
  • Sweat bladder recognizable melting zone is formed, which starts from the laser focus and extends in the form of a drop against the direction of the incident laser beam, that is, it tapers into the laser focus on the side facing the laser focus and terminates in a hemispherical manner on the side away from the laser focus.
  • several weld seams are placed next to each other in strips. This known type of welding enables gas-tight weld seams and joining connections with high strength and is used for joining protective glasses, for example
  • the background is the local melting of the material using ultra-short laser pulses. If you focus ultra-short laser pulses in the volume of glass, e.g.
  • Quartz glass the high intensity present in the laser focus leads to non-linear Absorption processes, which, depending on the laser parameters, can induce various material modifications. Through these non-linear absorption processes, free charge carriers are generated, which absorb quasi linearly as a result. This creates a local plasma that forms the melting zone. If you place the modification in the area of the interface between two glasses, the cooling melt generates a stable connection between the two glasses. Due to the very local joining process, the laser-induced stresses are typically low, which means that very different glasses can also be welded in terms of their thermal properties. Other transparent materials such as crystals with partially even more deviating thermal and mechanical properties can also be welded to one another or to glasses.
  • the object of the present invention is to develop a butt butt welding process of the type mentioned at the outset in such a way that laser-transparent workpieces can be joined together with the least possible visual impairment.
  • the UKP laser beam preferably has laser radiation with pulse durations of less than 50 ps, preferably less than 1 ps, in particular in the femtosecond range.
  • weld seams can also be produced by advancing the laser focus in or against the beam direction.
  • This advance movement of the laser focus can take place, for example, by a movement of the laser processing head in or against the beam direction of the laser beam and / or by a feed movement of the optical fiber and perforated element in or against the beam direction of the laser beam, but also a change in the focal length of the Focusing optics are possible. It was found that what has already been welded can be welded, which corrections wrong welds possible. According to the invention, it is also possible to weld curved or slightly curved surfaces with slight movement in the X direction during the Z weld.
  • the advancing movement of the laser focus in or against the beam direction preferably takes place continuously, but can also take place step by step with or without pauses between the individual steps.
  • welding without breaks leads to welding in the material still hot from the previous step
  • welding with breaks leads to welding in material that has already cooled down due to the time delay to the previous step.
  • continuous laser welding against the beam direction in particular leads to a crack-free, continuous weld.
  • a transverse displacement (xy displacement) of the laser focus is preferably superimposed on the feed direction of the laser focus in or against the radiation direction of the laser beam (so-called wobbling).
  • pulse packets are preferably used which have several individual pulses.
  • a pulse train consists of many individual pulses, the individual pulses in the pulse train having a single pulse repetition rate from pulse to pulse.
  • Pulse packets consist of at least two individual pulses. There is also a single pulse repetition rate here.
  • the individual pulses in a pulse packet are preferably the same.
  • the number of individual pulses in a pulse packet is, for example, between 2 and 20, preferably about 5.
  • the pulse packet-to-pulse packet repetition rates can be 50-200 kHz, preferably approximately 125 kHz, and the average pulse power can be 1-20 W, preferably approximately 10 W.
  • the single pulse repetition rate in the pulse packet is typically several MHz.
  • the laser beam can be directed obliquely or, which is preferred, at right angles to the workpiece side facing the laser beam.
  • the weld seam extends in the thickness direction of the workpieces.
  • several weld seams can be created spaced apart along the joining line of the two workpieces.
  • the laser beam is not moved further relative to the two workpieces during the movement of the laser focus in or against the beam direction.
  • welding is carried out using previously welded material, which, as tests have shown, is possible without any problems.
  • the laser beam is moved relative to the two workpieces in a feed direction running parallel or transverse to the joining line of the two workpieces.
  • the focus speed at which the laser focus is moved in or against the beam direction should advantageously be greater than the feed speed at which the laser beam is moved parallel or transverse to the joining line.
  • the two workpieces are preferably formed from glass, in particular quartz glass, from polymer, glass ceramic, crystals or combinations thereof and / or with opaque materials.
  • the invention also relates to an optical element made of glass, in particular quartz glass, assembled with the butt-butt welding according to the invention from at least two individual parts, two individual parts being are laser-welded to one another by means of at least one weld seam extending in the thickness direction of the two individual parts.
  • the weld seam can extend at right angles or also obliquely to a surface of the optical element and have a length of at least 50 mm, in particular of at least 1 mm.
  • the weld seam can be designed as a continuous line or as an interrupted line consisting of spaced-apart individual welding points or sections.
  • the weld seam preferably extends almost over the entire workpiece thickness and ends in front of the two workpiece sides in such a way that no material escapes and a clean process is carried out. This depends on the size of the weld or weld bladder.
  • a plurality of weld seams extending in the thickness direction of the two individual parts are preferably arranged at a distance from one another along the joining line of the two individual parts.
  • large optics that were previously expensive to produce from a large substrate can now be joined inexpensively from individual parts that are laser-welded to one another via several vertical welds.
  • vertical weld seams do not adversely affect the appearance, but only selectively. The extent of the weld seam in the optical element is small and thus the risk of changing the optical properties of the optics is minimized.
  • FIG. 1 shows schematically a laser processing machine for butt-butt welding two laser-transparent workpieces according to the invention by means of a laser beam, one of the two workpieces being shown broken away in the area of vertical weld seams;
  • FIG. 2a-2c schematically different vertical feed movements of the laser focus in the beam direction of the laser beam during butt welding according to the invention in order to produce a weld seam, in a sectional view along the joining surface of the two laser-welded workpieces;
  • Fig. 4a-4c schematically different vertical feed movements of the
  • the laser processing machine 1 shown in FIG. 1 is used for butt butt welding two plate-shaped workpieces 2 which abut one another in the butt joint by means of a laser beam 3.
  • the two workpieces 2 are made, for example, of glass, in particular quartz glass, of polymer, glass ceramic, crystalline or of combinations thereof and / or formed with opaque materials.
  • the laser processing machine 1 comprises a UKP laser 4 for generating the laser beam 3 in the form of UKP laser pulses 5 with pulse durations of less than 10 ps, in particular in the form of femtosecond pulses, a horizontal workpiece table 6 on which the two workpieces 2 to be welded side by side rest, as well as a laser processing head 8 movable in the XY direction and vertically displaceable in the direction of the double arrow 7 with focusing optics 9 for focusing the laser beam 3 emerging from the laser processing head 8 below.
  • the workpiece table 6 can also be moved in the XY direction.
  • the laser beam 3 is directed at right angles to the upper side 10a of the workpiece facing the laser processing head 8 and is focused into the workpiece material in the area of the joint surface 11 of the two workpieces 2, so that the two workpieces 2 in the area of the
  • the laser focus F of the laser beam 3 is moved in or against the beam direction 12 of the laser beam 3 in order to produce a vertical weld seam 13 extending in the beam direction 12 in the region of the joining surface 11.
  • the laser focus F of the focused laser beam 3 is located on the joining surface 11 or close to this joining surface 11 in the volume of one of the two workpieces 2. Ideally, the process starts before the laser focus F in order to have a performance tolerance. In butt welding, it is preferred to work in the vicinity or very close to the joining surface 11.
  • the vertical weld seam 13 preferably extends almost over the entire workpiece thickness and thus ends in front of the workpiece top and bottom 10a,
  • the laser beam 3 can also be directed obliquely to the workpiece top 10a so that the weld seam produced in the workpiece volume runs obliquely to the workpiece top 10a (for example 45 ° welding).
  • the workpiece underside 10b of the two workpiece 2 can, for example, be coated, for example with a highly reflective coating.
  • Fig. 2a-2c schematically show different vertical feed movements of the laser focus F in the workpiece volume in the beam direction 12, the laser beam 3 being stationary relative to the two workpieces 2 during this vertical feed movement of the laser focus F.
  • FIG. 2a the laser focus F is continuous in the beam direction 12 (for example with a vertical feed rate of 20 mm / s) and in FIGS. 2b, 2c step by step without pauses (Fig. 2b) and with a time pause (eg 2 s) between the steps (Fig. 2c).
  • the laser beam 3 can, as in FIGS. 2a-2c shown, impinge at right angles or also obliquely on the workpiece top 10a.
  • FIGS. 3a-3c are photos of vertical weld seams 13 drawn in a monolithic glass block, which are similar to those shown in FIGS. 2a-2c, vertical feed movements of the laser focus F were generated. As in Figs.
  • both the continuous and the step-wise movement of the laser focus F in the beam direction 12 leads to a vertical weld seam 13, which is formed from solidification bubbles (these arise due to local material densifications) or individual weld spots 14 and which are in one another Direction of thickness D of the two workpieces 2 extends.
  • an individual welding point 14 can also be placed through previously generated individual welding points 14.
  • the next weld-in point 14 is generated in the material still hot from the previous individual weld spot 14
  • the respective next weld-in point 14 is generated in the material that has already cooled due to the time lag to the previous individual weld spot 14.
  • Fig. 4a-4c schematically show different vertical feed movements of the laser focus F in the workpiece volume counter to the beam direction 12, the laser beam 3 being stationary relative to the two workpieces 2 during this vertical feed movement of the laser focus F, in FIG. 4a the laser focus F becomes continuous against the beam direction 12 (eg with a vertical feed speed of 20 mm / s) and in the fig. 4b, 4c moved step by step without pauses (Fig. 4b) and with a time pause (e.g. 2 s) between the steps (Fig. 4c).
  • Fig. 5a-5c are photos of vertical weld seams 13 drawn in a monolithic glass block, which are similar to those shown in FIGS. 4a-4c, vertical feed movements of the laser focus F were generated.
  • FIG. 5 a the continuous movement of the laser focus F leads against the beam direction 12 a continuous, vertical weld 13 without recognizable solidification bubbles or individual weld spots.
  • FIG. 5b welding is carried out in the material still hot from the previous step and in FIG. 5c in already cooled material because of the time delay to the previous step.
  • Fig. 5b and 5c each show a vertical weld seam 13, interrupted by solidification bubbles, with clear cracks along the entire weld seam 13.
  • FIG Direction of thickness D of the two workpieces 2 extends.
  • a plurality of vertical weld seams 13 can be produced spaced apart from one another along the joining line 15 of the two workpieces. Instead of straight as shown in FIG. 1, the joining line 15 cannot run straight either.
  • the laser beam 3 can also be moved relative to the two workpieces 2 in a feed direction running parallel or transverse to the joining line 15, e.g. by moving the laser machining head 8 in the X and Y directions accordingly.
  • the focus speed at which the laser focus F is moved in or against the beam direction 12 should be greater than the feed speed at which the laser beam 3 is moved in the feed direction.
  • individual mirror elements 2 e.g. for a line optics
  • bad horizontal welds can be corrected by vertical welds by a horizontal one
  • the weld seam can also have a circular shape or other free-form contour. It is also possible to weld slightly curved surfaces with slight movement in the X direction during the Z weld.

Abstract

The invention relates to a method for butt-joint welding two workpieces (2), in particular panel-shaped workpieces, which are made of glass, in particular quartz glass, using a pulsed laser beam (3), in particular a UKP laser beam, which is emitted into the workpiece material parallel to the joint surface (11) of the two workpieces (2) and which is focused into the workpiece material in the region of the joint surface (11) in order to locally melt the two workpieces (2) in the region of the workpiece joint surface (11). According to the invention, the laser focus (F) of the laser beam (3) focused into the workpiece material is moved in or opposite the beam direction (12) of the laser beam (3) in order to produce a weld seam (13) which extends along the beam direction (12) in the region of the joint surface (11).

Description

Verfahren zum Stumpfstoßschweißen mitels eines UKP-Laserstrahls sowie aus Einzelteilen zusammengefügtes optisches Element Process for butt welding using a UKP laser beam and an optical element assembled from individual parts
Die Erfindung betrifft ein Verfahren zum Stumpfstoßschweißen zweier insbeson- dere plattenförmiger Werkstücke aus Glas, insbesondere Quarzglas, mittels eines gepulsten Laserstrahls, insbesondere UKP-Laserstrahls, der parallel zur Fügeflä- che der beiden Werkstücke in das Werkstückmaterial eingestrahlt wird und der im Bereich der gemeinsamen Fügefläche in das Werkstückmaterial fokussiert wird, um die beiden Werkstücke im Bereich ihrer gemeinsamen Fügefläche lokal aufzu- schmelzen, sowie auch ein aus mehreren miteinander laserverschweißten Einzel- teilen zusammengefügtes optisches Element The invention relates to a method for butt welding two, in particular plate-shaped, workpieces made of glass, in particular quartz glass, by means of a pulsed laser beam, in particular UKP laser beam, which is irradiated into the workpiece material parallel to the joining surface of the two workpieces and which is in the area of the common joining surface is focused into the workpiece material, to locally melt the two workpieces in the area of their common joining surface, as well as an optical element assembled from several laser-welded individual parts
Ultrakurz gepulste (UKP)-Laserstrahlung mit Pulsdauern kleiner als 500 ps, insbe- sondere im Femtosekundenbereich, wird zunehmend für die Materialbearbeitung eingesetzt. Die Besonderheit der Materialbearbeitung mit UKP-Laserstrahlung liegt in den hohen Spitzenleistungen/Spitzenintensitäten der Laserstrahlung mit dem Werkstück. Dadurch bedingt lassen sich im Festkörper extreme thermische Ungleichgewichte erzeugen, z.B zwischen Elektronen und Atom/Ion-Rümpfen, die dann zu einzigartigen Abtrags- oder Formationsmechanismen führen. Ultra-short pulsed (UKP) laser radiation with pulse durations of less than 500 ps, especially in the femtosecond range, is increasingly being used for material processing. The special feature of material processing with UKP laser radiation is the high peak power / peak intensity of the laser radiation with the workpiece. As a result, extreme thermal imbalances can be generated in the solid, e.g. between electrons and atom / ion hulls, which then lead to unique removal or formation mechanisms.
Das Laserschweißen von lasertransparenten Gläsern oder auch anderen, für den Laserstrahl transparenten, teiltransparenten oder streuenden Materialien mittels ultrakurzer Laserpulse ermöglicht eine stabile Verbindung ohne zusätzlichen Ma- terialeinsatz, ist aber durch laserinduzierte transiente sowie permanente Spannun- gen limitiert. Zum Stumpfstoßverbinden zweier lasertransparenter Werkstücke, wie z.B, Gläser oder Kristalle, wird ein z.B. mittig in das Volumen der beiden Werk- stück fokussierter UKP-Laserstrahl entlang der Fügelinie bewegt, um die beiden Werkstücke im Bereich ihrer Grenzfläche lokal aufzuschmelzen und dadurch im Volumen der beiden Werkstücke eine insbesondere durchgängige horizontale Schweißnaht zu erzeugen. Die Schweißnaht ist durch eine von außen als The laser welding of laser-transparent glasses or other materials that are transparent, partially transparent or scattering for the laser beam by means of ultra-short laser pulses enables a stable connection without the use of additional materials, but is limited by laser-induced transient and permanent voltages. For butt-jointing two laser-transparent workpieces, e.g. glasses or crystals, a e.g. UKP laser beam focused in the center of the volume of the two workpieces is moved along the joining line in order to locally melt the two workpieces in the area of their interface and thereby produce a particularly continuous horizontal weld seam in the volume of the two workpieces. The weld seam is characterized by an from the outside
Schweißblase erkennbare Schmelzzone gebildet, die vom Laserfokus ausgeht und sich entgegen der Richtung des einfallenden Laserstrahls tropfenförmig er- streckt, also auf der laserfokuszugewandten Seite spitz in den Laserfokus zuläuft und auf der laserfokusabgewandten Seite halbkugelförmig abschließt. Zur Steige- rung der Anbindungsfläche werden mehrere Schweißnähte in Bahnen nebenein- ander gesetzt. Diese bekannte Art zu schweißen ermöglicht gasdichte Schweiß- nähte und Fügeverbindungen mit hohen Festigkeiten und wird zum Fügen von z.B Schutzgläsern eingesetzt Sweat bladder recognizable melting zone is formed, which starts from the laser focus and extends in the form of a drop against the direction of the incident laser beam, that is, it tapers into the laser focus on the side facing the laser focus and terminates in a hemispherical manner on the side away from the laser focus. To increase the connection area, several weld seams are placed next to each other in strips. This known type of welding enables gas-tight weld seams and joining connections with high strength and is used for joining protective glasses, for example
Hintergrund ist das lokale Aufschmelzen des Materials mittels ultrakurzer Laser- pulse. Fokussiert man ultrakurze Laserpulse in das Volumen von Glas, z.B. The background is the local melting of the material using ultra-short laser pulses. If you focus ultra-short laser pulses in the volume of glass, e.g.
Quarzglas, führt die im Laserfokus vorliegende hohe Intensität zu nichtlinearen Absorptionsprozessen, wodurch, in Abhängigkeit der Laserparameter, verschie- dene Materialmodifikationen induziert werden können. Durch diese nichtlinearen Absorptionsprozesse werden freie Ladungsträger erzeugt, die in Folge quasi li- near absorbieren. So entsteht lokal ein Plasma, welches die Schmelzzone aus- bildet. Platziert man die Modifikation im Bereich der Grenzfläche zweier Gläser, generiert die abkühlende Schmelze eine stabile Verbindung beider Gläser. Auf- grund des sehr lokalen Fügeprozesses sind die laserinduzierten Spannungen ty- pischerweise gering, wodurch auch in ihren thermischen Eigenschaften stark verschiedene Gläser verschweißt werden können. Auch können andere transpa- rente Materialien wie Kristalle mit teilweise noch stärker abweichenden thermi- schen und mechanischen Eigenschaften miteinander bzw. mit Gläsern ver- schweißt werden. Quartz glass, the high intensity present in the laser focus leads to non-linear Absorption processes, which, depending on the laser parameters, can induce various material modifications. Through these non-linear absorption processes, free charge carriers are generated, which absorb quasi linearly as a result. This creates a local plasma that forms the melting zone. If you place the modification in the area of the interface between two glasses, the cooling melt generates a stable connection between the two glasses. Due to the very local joining process, the laser-induced stresses are typically low, which means that very different glasses can also be welded in terms of their thermal properties. Other transparent materials such as crystals with partially even more deviating thermal and mechanical properties can also be welded to one another or to glasses.
Die vorliegende Erfindung stellt sich demgegenüber die Aufgabe, ein Stumpfstoß- schweißverfahren der eingangs genannten Art dahingehend weiterzubilden, dass lasertransparente Werkstücke mit möglichst minimaler optischer Beeinträchtigung zusammengefügt werden können. In contrast, the object of the present invention is to develop a butt butt welding process of the type mentioned at the outset in such a way that laser-transparent workpieces can be joined together with the least possible visual impairment.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass der Laserfokus des in das Werkstückmaterial fokussierten Laserstrahls in oder entgegen der Strahlrich- tung des Laserstrahls bewegt wird, um im Bereich der Fügefläche eine sich ent- lang der Strahlrichtung erstreckende Schweißnaht zu erzeugen. Vorzugsweise weist der UKP-Laserstrahl Laserstrahlung mit Pulsdauern kleiner als 50 ps, bevor- zugt kleiner 1 ps, insbesondere im Femtosekundenbereich, auf. This object is achieved according to the invention in that the laser focus of the laser beam focused in the workpiece material is moved in or against the beam direction of the laser beam in order to produce a weld seam extending along the beam direction in the region of the joining surface. The UKP laser beam preferably has laser radiation with pulse durations of less than 50 ps, preferably less than 1 ps, in particular in the femtosecond range.
Erfindungsgemäß können Schweißnähte auch durch eine Vorschubbewegung des Laserfokus in oder entgegen der Strahlrichtung erzeugt werden. Diese Vorschub- bewegung des Laserfokus kann beispielsweise durch eine Bewegung des Laser- bearbeitungskopfs in oder entgegen der Strahlrichtung des Laserstrahls und/oder durch eine Vorschubbewegung von Lichtleitfaser und Lochelement in oder entge- gen der Strahlrichtung des Laserstrahls erfolgen, aber auch eine Brennweitenän- derung der Fokussieroptik ist möglich. Dabei wurde gefunden, dass durch zuvor bereits geschweißtes Material hindurch geschweißt werden kann, was Korrekturen falscher Schweißungen möglich macht. Erfindungsgemäß ist es auch möglich, ge- krümmte oder leicht gekrümmte Flächen unter leichter Bewegung in X-Richtung während der Z-Schweißung zu verschweißen. Vorzugsweise erfolgt die Vorschubbewegung des Laserfokus in bzw. entgegen der Strahlrichtung kontinuierlich, kann aber auch schrittweise mit oder ohne Pau- sen zwischen den einzelnen Schritten erfolgen. Im letzteren Fall führt das Schwei- ßen ohne Pausen dazu, dass in dem noch vom vorhergehenden Schritt heißen Material geschweißt wird, und das Schweißen mit Pausen dazu, dass wegen der zeitlichen Verzögerung zum vorhergehenden Schritt in bereits abgekühltem Mate- rial geschweißt wird. Wie Versuche gezeigt haben, führt insbesondere das konti- nuierliche Laserschweißen entgegen der Strahlrichtung zu einer rissfreien durch- gängigen Schweißnaht. Vorzugsweise wird bei einem Vorschub entgegen der Strahleinfallsrichtung mit ei- nem kontinuierlichen Vorschub im Bereich von 0,5 mm/s bis 100 mm/s, bevorzugt 5 mm/s bis 30 mm/s, besonders bevorzugt mit ca. 20 mm/s, gearbeitet. According to the invention, weld seams can also be produced by advancing the laser focus in or against the beam direction. This advance movement of the laser focus can take place, for example, by a movement of the laser processing head in or against the beam direction of the laser beam and / or by a feed movement of the optical fiber and perforated element in or against the beam direction of the laser beam, but also a change in the focal length of the Focusing optics are possible. It was found that what has already been welded can be welded, which corrections wrong welds possible. According to the invention, it is also possible to weld curved or slightly curved surfaces with slight movement in the X direction during the Z weld. The advancing movement of the laser focus in or against the beam direction preferably takes place continuously, but can also take place step by step with or without pauses between the individual steps. In the latter case, welding without breaks leads to welding in the material still hot from the previous step, and welding with breaks leads to welding in material that has already cooled down due to the time delay to the previous step. As tests have shown, continuous laser welding against the beam direction in particular leads to a crack-free, continuous weld. In the case of a feed against the direction of incidence of the beam, a continuous feed in the range from 0.5 mm / s to 100 mm / s, preferably 5 mm / s to 30 mm / s, particularly preferably at approximately 20 mm / s, is preferred. worked.
Vorzugsweise wird bei der Schweißung eine Schweißnaht mit einem Nahtdurch- messer von 5-500 gm, bevorzugt 50 gm bis 100 gm, erzeugt. Preferably, a weld seam with a seam diameter of 5-500 gm, preferably 50 gm to 100 gm, is produced during the welding.
Um den Toleranzbereich zu vergrößern, wird bevorzugt der Vorschubrichtung des Laserfokus in oder entgegen der Strahlungsrichtung des Laserstrahls noch eine Querverschiebung (xy-Verschiebung) des Laserfokus überlagert (sogenanntes Wobbeln). In order to enlarge the tolerance range, a transverse displacement (xy displacement) of the laser focus is preferably superimposed on the feed direction of the laser focus in or against the radiation direction of the laser beam (so-called wobbling).
Es ist möglich, bei der Schweißung mit Einzelpulsen zu arbeiten. Vorzugsweise wird bei der Schweißung mit Pulspaketen gearbeitet, die mehrere Einzelpulse auf- weisen. Ein Pulszug besteht aus vielen Einzelpulsen, wobei im Pulszug die Einzel- pulse eine Einzelpulsrepetitionsrate von Puls zu Puls aufweisen. Pulspakete be- stehen aus mindestens zwei Einzelpulsen. Hier gibt es auch eine Einzelpulsrepeti- tionsrate. Desweiteren gibt es auch eine Pulspaket-zu-Pulspaket-Repetitionsrate. Bevorzugt sind die Einzelpulse in einem Pulspaket gleich. Die Anzahl Einzelpulse in einem Pulspaket beträgt beispielsweise zwischen 2 und 20, bevorzugt ca. 5. Beispielsweise können die Pulspaket-zu-Pulspaket-Repetitionsraten 50-200 kHz, bevorzugt ca. 125 kHz, und die mittlere Pulsleistung 1-20 W, bevorzugt ca. 10 W, betragen. Die Einzelpulsrepetitionsrate im Pulspaket beträgt typischerweise meh- rere MHz. It is possible to work with single pulses during welding. When welding, pulse packets are preferably used which have several individual pulses. A pulse train consists of many individual pulses, the individual pulses in the pulse train having a single pulse repetition rate from pulse to pulse. Pulse packets consist of at least two individual pulses. There is also a single pulse repetition rate here. There is also a pulse packet-to-pulse packet repetition rate. The individual pulses in a pulse packet are preferably the same. The number of individual pulses in a pulse packet is, for example, between 2 and 20, preferably about 5. For example, the pulse packet-to-pulse packet repetition rates can be 50-200 kHz, preferably approximately 125 kHz, and the average pulse power can be 1-20 W, preferably approximately 10 W. The single pulse repetition rate in the pulse packet is typically several MHz.
Der Laserstrahl kann schräg oder, was bevorzugt ist, rechtwinklig auf die dem La- serstrahl zugewandte Werkstückseite gerichtet sein. In beiden Fällen erstreckt sich die Schweißnaht in Dickenrichtung der Werkstücke. Für eine zuverlässige Fügeverbindung können mehrere Schweißnähte voneinan- der beabstandet entlang der Fügelinie der beiden Werkstücke erzeugt werden. The laser beam can be directed obliquely or, which is preferred, at right angles to the workpiece side facing the laser beam. In both cases, the weld seam extends in the thickness direction of the workpieces. For a reliable joint connection, several weld seams can be created spaced apart along the joining line of the two workpieces.
In einer bevorzugten Verfahrensvariante wird während der Bewegung des Laser- fokus in bzw. entgegen der Strahlrichtung der Laserstrahl relativ zu den beiden Werkstücken nicht weiterbewegt. Im Fall einer Vorschubbewegung des Laserfokus in Strahlrichtung wird durch zuvor bereits geschweißtes Material geschweißt, was, wie Versuche gezeigt haben, problemlos möglich ist. In a preferred method variant, the laser beam is not moved further relative to the two workpieces during the movement of the laser focus in or against the beam direction. In the event of a feed movement of the laser focus in the beam direction, welding is carried out using previously welded material, which, as tests have shown, is possible without any problems.
In einer anderen Verfahrensvariante wird während der Bewegung des Laserfokus in bzw. entgegen der Strahlrichtung der Laserstrahl relativ zu den beiden Werkstü- cken in einer parallel oder quer zur Fügelinie der beiden Werkstücke verlaufenden Vorschubrichtung bewegt. Dabei sollte vorteilhaft die Fokusgeschwindigkeit, mit welcher der Laserfokus in oder entgegen der Strahlrichtung bewegt wird, größer als die Vorschubgeschwindigkeit sein, mit welcher der Laserstrahl parallel oder quer zur Fügelinie bewegt wird. In another method variant, during the movement of the laser focus in or against the beam direction, the laser beam is moved relative to the two workpieces in a feed direction running parallel or transverse to the joining line of the two workpieces. The focus speed at which the laser focus is moved in or against the beam direction should advantageously be greater than the feed speed at which the laser beam is moved parallel or transverse to the joining line.
Vorzugsweise sind die beiden Werkstücke aus Glas, insbesondere Quarzglas, aus Polymer, Glaskeramik, Kristallen oder Kombinationen davon und/oder mit opaken Materialien gebildet. The two workpieces are preferably formed from glass, in particular quartz glass, from polymer, glass ceramic, crystals or combinations thereof and / or with opaque materials.
Die Erfindung betrifft in einem weiteren Aspekt auch ein mit dem erfindungsgemä- ßen Stumpfstoßschweißen aus mindestens zwei Einzelteilen zusammengefügtes optisches Element aus Glas, insbesondere Quarzglas,, wobei zwei Einzelteile mit- einander mittels mindestens einer sich in Dickenrichtung der beiden Einzelteile er- streckenden Schweißnaht laserverschweißt sind. Die Schweißnaht kann sich rechtwinklig oder auch schräg zu einer Oberfläche des optischen Elements erstre- cken und eine Länge von mindestens 50 mm, insbesondere von mindestens 1 mm, aufweisen. Dabei kann die Schweißnaht als eine durchgehende Linie oder als eine aus beabstandeten Einzelschweißpunkten oder -strecken bestehende, unterbro- chene Linie ausgebildet sein. Vorzugsweise erstreckt sich die Schweißnaht fast über die gesamte Werkstückdicke und endet so vor den beiden Werkstückseiten, dass kein Materialaustritt entsteht und ein sauberer Prozess gefahren wird. Dies hängt von der Größe der Schweißnaht bzw. Schweißblase ab. Bevorzugt sind mehrere sich in Dickenrichtung der beiden Einzelteile erstreckende Schweißnähte voneinander beabstandet entlang der Fügelinie der beiden Einzelteile angeordnet. In a further aspect, the invention also relates to an optical element made of glass, in particular quartz glass, assembled with the butt-butt welding according to the invention from at least two individual parts, two individual parts being are laser-welded to one another by means of at least one weld seam extending in the thickness direction of the two individual parts. The weld seam can extend at right angles or also obliquely to a surface of the optical element and have a length of at least 50 mm, in particular of at least 1 mm. In this case, the weld seam can be designed as a continuous line or as an interrupted line consisting of spaced-apart individual welding points or sections. The weld seam preferably extends almost over the entire workpiece thickness and ends in front of the two workpiece sides in such a way that no material escapes and a clean process is carried out. This depends on the size of the weld or weld bladder. A plurality of weld seams extending in the thickness direction of the two individual parts are preferably arranged at a distance from one another along the joining line of the two individual parts.
Erfindungsgemäß können so Großoptiken, die bisher teuer aus einem großen Substrat gefertigt werden, nunmehr kostengünstig aus Einzelteilen gefügt werden, die über mehrere vertikale Schweißnähte miteinander laserverschweißt sind. Im Gegensatz zu horizontalen Schweißnähten beeinträchtigen vertikale Schweiß- nähte die Optik nicht linienhaft, sondern nur punktuell. Die Ausdehnung der Schweißnaht im optischen Element ist gering und damit die Gefahr von Änderung der optischen Eigenschaften der Optik minimiert. According to the invention, large optics that were previously expensive to produce from a large substrate can now be joined inexpensively from individual parts that are laser-welded to one another via several vertical welds. In contrast to horizontal weld seams, vertical weld seams do not adversely affect the appearance, but only selectively. The extent of the weld seam in the optical element is small and thus the risk of changing the optical properties of the optics is minimized.
Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstands der Erfindung ergeben sich aus der Beschreibung, den Ansprüchen und der Zeichnung. Ebenso können die vorstehend genannten und die noch weiter aufgeführten Merkmale je für sich oder zu mehreren in beliebigen Kombinationen Verwendung finden. Die gezeigten und beschriebenen Ausführungsformen sind nicht als abschließende Aufzählung zu verstehen, sondern haben vielmehr beispielhaften Charakter für die Schilderung der Erfindung. Es zeigen: Further advantages and advantageous configurations of the object of the invention result from the description, the claims and the drawing. Likewise, the features mentioned above and those listed further can be used individually or in combination in any combination. The embodiments shown and described are not to be understood as an exhaustive list, but rather have an exemplary character for the description of the invention. Show it:
Fig. 1 schematisch eine Laserbearbeitungsmaschine zum erfindungsgemä- ßen Stumpfstoßschweißen zweier lasertransparenter Werkstücke mittels eines Laserstrahls, wobei eines der beiden Werkstücke im Bereich von vertikalen Schweißnähten aufgebrochen dargestellt ist; Fign. 2a-2c schematisch unterschiedliche vertikale Vorschubbewegungen des Laserfokus in Strahlrichtung des Laserstrahls beim erfindungsgemä- ßen Stumpfstoßschweißen, um eine Schweißnaht zu erzeugen, in ei- ner Schnittansicht entlang der Fügefläche der beiden laserver- schweißten Werkstücke; 1 shows schematically a laser processing machine for butt-butt welding two laser-transparent workpieces according to the invention by means of a laser beam, one of the two workpieces being shown broken away in the area of vertical weld seams; Fig. 2a-2c schematically different vertical feed movements of the laser focus in the beam direction of the laser beam during butt welding according to the invention in order to produce a weld seam, in a sectional view along the joining surface of the two laser-welded workpieces;
Fign. 3a-3c Fotos von vertikalen Schweißnähten, die in einem monolithischen Fig. 3a-3c photos of vertical welds made in a monolithic
Glasblock mit den in Fign. 2a-2c gezeigten, vertikalen Vorschubbe- wegungen des Laserfokus erzeugt wurden; Glass block with the in fig. 2a-2c, vertical feed movements of the laser focus were generated;
Fign. 4a-4c schematisch unterschiedliche vertikale Vorschubbewegungen des Fig. 4a-4c schematically different vertical feed movements of the
Laserfokus entgegen der Strahlrichtung des Laserstrahls beim erfin- dungsgemäßen Stumpfstoßschweißen, um eine vertikale Schweiß- naht zu erzeugen, in einer Schnittansicht entlang der Fügefläche der beiden laserverschweißten Werkstücke; und Laser focus against the beam direction of the laser beam in butt welding according to the invention to produce a vertical weld seam, in a sectional view along the joining surface of the two laser-welded workpieces; and
Fign. 5a-5c Fotos von vertikalen Schweißnähten, die in einem monolithischen Fig. 5a-5c Photos of vertical welds made in a monolithic
Glasblock mit den in Fign. 4a-4c gezeigten, vertikalen Vorschubbe- wegungen des Laserfokus erzeugt wurden. Glass block with the in fig. 4a-4c, vertical feed movements of the laser focus were generated.
Die in Fig. 1 gezeigte Laserbearbeitungsmaschine 1 dient zum Stumpfstoßschwei- ßen zweier im Stumpfstoß aneinander anliegender, plattenförmiger Werkstücke 2 mittels eines Laserstrahls 3. Die beiden Werkstücke 2 sind beispielsweise aus Glas, insbesondere Quarzglas, aus Polymer, Glaskeramik, kristallin oder aus Kombinationen davon und/oder mit opaken Materialien gebildet. The laser processing machine 1 shown in FIG. 1 is used for butt butt welding two plate-shaped workpieces 2 which abut one another in the butt joint by means of a laser beam 3. The two workpieces 2 are made, for example, of glass, in particular quartz glass, of polymer, glass ceramic, crystalline or of combinations thereof and / or formed with opaque materials.
Die Laserbearbeitungsmaschine 1 umfasst einen UKP-Laser 4 zum Erzeugen des Laserstrahls 3 in Form von UKP-Laserpulsen 5 mit Pulsdauern kleiner als 10 ps, insbesondere in Form von Femtosekundenpulsen, einen horizontalen Werkstück- tisch 6, auf dem die beiden zu verschweißenden Werkstücke 2 nebeneinander aufliegen, sowie einen in X-Y-Richtung bewegbaren und in Richtung des Doppel- pfeils 7 höhenverfahrbaren Laserbearbeitungskopf 8 mit einer Fokussieroptik 9 zum Fokussieren des unten aus dem Laserbearbeitungskopf 8 austretenden La- serstrahls 3. Alternativ oder zusätzlich zu dem in X-Y-Richtung bewegbaren Laser- bearbeitungskopf 8 kann auch der Werkstücktisch 6 in X-Y-Richtung bewegt wer- den. Beim Stumpfstoßschweißen der beiden Werkstücke 2 wird der Laserstrahl 3 recht- winklig auf die dem Laserbearbeitungskopf 8 zugewandte Werkstückoberseite 10a gerichtet und im Bereich der gemeinsamen Fügefläche 11 der beiden Werkstücke 2 in das Werkstückmaterial fokussiert, um die beiden Werkstücke 2 im Bereich derThe laser processing machine 1 comprises a UKP laser 4 for generating the laser beam 3 in the form of UKP laser pulses 5 with pulse durations of less than 10 ps, in particular in the form of femtosecond pulses, a horizontal workpiece table 6 on which the two workpieces 2 to be welded side by side rest, as well as a laser processing head 8 movable in the XY direction and vertically displaceable in the direction of the double arrow 7 with focusing optics 9 for focusing the laser beam 3 emerging from the laser processing head 8 below. Alternatively or in addition to the laser beam movable in the XY direction machining head 8, the workpiece table 6 can also be moved in the XY direction. When the two workpieces 2 are butt-welded, the laser beam 3 is directed at right angles to the upper side 10a of the workpiece facing the laser processing head 8 and is focused into the workpiece material in the area of the joint surface 11 of the two workpieces 2, so that the two workpieces 2 in the area of the
Fügefläche 11 lokal aufzuschmelzen. Dabei wird der Laserfokus F des Laser- strahls 3 in oder entgegen der Strahlrichtung 12 des Laserstrahls 3 bewegt, um im Bereich der Fügefläche 11 eine sich in Strahlrichtung 12 erstreckende, vertikale Schweißnaht 13 zu erzeugen. Der Laserfokus F des fokussierten Laserstrahls 3 befindet sich dabei an der Fügefläche 11 oder nahe an dieser Fügefläche 11 im Volumen eines der beiden Werkstückes 2. Idealerweise startet der Prozess schon vor dem Laserfokus F, um Leistungstoleranz zu haben. Beim Stumpfstoßschwei- ßen ist es bevorzugt, in der Nähe oder sehr nah an der Fügefläche 11 zu arbeiten. Vorzugsweise erstreckt sich die vertikale Schweißnaht 13 fast über die gesamte Werkstückdicke und endet so vor der Werkstückoberseite und -Unterseite 10a,Melt joint surface 11 locally. The laser focus F of the laser beam 3 is moved in or against the beam direction 12 of the laser beam 3 in order to produce a vertical weld seam 13 extending in the beam direction 12 in the region of the joining surface 11. The laser focus F of the focused laser beam 3 is located on the joining surface 11 or close to this joining surface 11 in the volume of one of the two workpieces 2. Ideally, the process starts before the laser focus F in order to have a performance tolerance. In butt welding, it is preferred to work in the vicinity or very close to the joining surface 11. The vertical weld seam 13 preferably extends almost over the entire workpiece thickness and thus ends in front of the workpiece top and bottom 10a,
10b, dass kein Materialaustritt entsteht und ein sauberer Prozess gefahren wird. Dies hängt von der Größe der Schweißnaht 13 bzw. der Schweißblase ab. Statt wie in Fig. 1 rechtwinklig zur Werkstückoberseite 10a kann der Laserstrahl 3 auch schräg auf die Werkstückoberseite 10a gerichtet werden, so dass die im Werk- stückvolumen erzeugte Schweißnaht schräg zur Werkstückoberseite 10a verläuft (z.B. 45°-Schweißung). Die Werkstückunterseite 10b der beiden Werkstückes 2 kann beispielsweise beschichtet sein, z.B. mit einer hochreflektierenden Beschich- tung. Fign. 2a-2c zeigen schematisch unterschiedliche vertikale Vorschubbewegungen des Laserfokus F im Werkstückvolumen in Strahlrichtung 12, wobei während die- ser vertikalen Vorschubbewegung des Laserfokus F der Laserstrahl 3 relativ zu den beiden Werkstücken 2 stillsteht. In Fig. 2a wird der Laserfokus F in Strahlrich- tung 12 kontinuierlich (z.B. mit einer vertikalen Vorschubgeschwindigkeit von 20 mm/s) und in den Fign. 2b, 2c schrittweise ohne Pausen (Fig. 2b) und mit einer zeitlichen Pause (z.B. 2 s) zwischen den Schritten (Fig. 2c) bewegt. Der Laser- strahl 3 kann, wie in Fign. 2a-2c gezeigt, rechtwinklig oder aber auch schräg auf die Werkstückoberseite 10a auftreffen. Fign, 3a-3c sind Fotos von in einem monolithischen Glasblock gezogenen, verti- kalen Schweißnähten 13, die mit den in Fign. 2a-2c gezeigten, vertikalen Vor- schubbewegungen des Laserfokus F erzeugt wurden. Wie in den Fign. 3a-3c ge- zeigt, führt sowohl die kontinuierliche als auch die schrittweise Bewegung des La- serfokus F in Strahlrichtung 12 zu einer aus Erstarrungsblasen (diese entstehen aufgrund lokaler Materialverdichtungen) bzw. Einzelschweißpunkten 14 gebilde- ten, vertikalen Schweißnaht 13, die sich in Dickenrichtung D der beiden Werkstü- cke 2 erstreckt. Dabei ist festzustellen, dass ein Einzelschweißpunkt 14 auch durch zuvor bereits erzeugte Einzelschweißpunkte 14 hindurch gesetzt werden kann. In Fig. 3b wird der jeweils nächste Einschweißpunkt 14 in dem noch vom vorhergehenden Einzelschweißpunkt 14 heißen Material erzeugt, wohingegen in Fig. 3c der jeweils nächste Einschweißpunkt 14 wegen der zeitlichen Verzögerung zum vorhergehenden Einzelschweißpunkt 14 in dem bereits abgekühlten Material erzeugt wird. Ein nennenswerter Unterschied der Schweißnaht 13 in heißprozes- siertem Material (Fig. 3b) und in abgekühltem Material (Fig. 3c) ist nicht festzustel- len Im Ergebnis führen die kontinuierliche und die schrittweise Bewegung des La- serfokus F in Strahlrichtung 12 zu einer vertikalen Schweißnaht 13 Dabei entste- hen Blasen (Voids) 14 beim Erstarren der Schweißnaht 13 aufgrund von schneller Ausdehnung und Abkühlung. Diese Blasen 14 sind eigentlich ungewollt, können aber nicht verhindert werden. 10b that there is no material leakage and that a clean process is run. This depends on the size of the weld 13 or the weld bladder. Instead of at right angles to the workpiece top 10a as in FIG. 1, the laser beam 3 can also be directed obliquely to the workpiece top 10a so that the weld seam produced in the workpiece volume runs obliquely to the workpiece top 10a (for example 45 ° welding). The workpiece underside 10b of the two workpiece 2 can, for example, be coated, for example with a highly reflective coating. Fig. 2a-2c schematically show different vertical feed movements of the laser focus F in the workpiece volume in the beam direction 12, the laser beam 3 being stationary relative to the two workpieces 2 during this vertical feed movement of the laser focus F. In FIG. 2a the laser focus F is continuous in the beam direction 12 (for example with a vertical feed rate of 20 mm / s) and in FIGS. 2b, 2c step by step without pauses (Fig. 2b) and with a time pause (eg 2 s) between the steps (Fig. 2c). The laser beam 3 can, as in FIGS. 2a-2c shown, impinge at right angles or also obliquely on the workpiece top 10a. FIGS. 3a-3c are photos of vertical weld seams 13 drawn in a monolithic glass block, which are similar to those shown in FIGS. 2a-2c, vertical feed movements of the laser focus F were generated. As in Figs. 3a-3c, both the continuous and the step-wise movement of the laser focus F in the beam direction 12 leads to a vertical weld seam 13, which is formed from solidification bubbles (these arise due to local material densifications) or individual weld spots 14 and which are in one another Direction of thickness D of the two workpieces 2 extends. It should be noted that an individual welding point 14 can also be placed through previously generated individual welding points 14. In FIG. 3b, the next weld-in point 14 is generated in the material still hot from the previous individual weld spot 14, whereas in FIG. 3c the respective next weld-in point 14 is generated in the material that has already cooled due to the time lag to the previous individual weld spot 14. A noteworthy difference between the weld seam 13 in hot-processed material (FIG. 3b) and in cooled material (FIG. 3c) cannot be determined. As a result, the continuous and the stepwise movement of the laser focus F in the beam direction 12 leads to a vertical one Weld seam 13 This creates bubbles (voids) 14 when the weld seam 13 solidifies due to rapid expansion and cooling. These bubbles 14 are actually unwanted, but cannot be prevented.
Fign. 4a-4c zeigen schematisch unterschiedliche vertikale Vorschubbewegungen des Laserfokus F im Werkstückvolumen entgegen der Strahlrichtung 12, wobei während dieser vertikalen Vorschubbewegung des Laserfokus F der Laserstrahl 3 relativ zu den beiden Werkstücken 2 stillsteht, ln Fig. 4a wird der Laserfokus F entgegen der Strahlrichtung 12 kontinuierlich (z.B. mit einer vertikalen Vorschub- geschwindigkeit von 20 mm/s) und in den Fign. 4b, 4c schrittweise ohne Pausen (Fig. 4b) und mit einer zeitlichen Pause (z.B. 2 s) zwischen den Schritten (Fig. 4c) bewegt. Fig. 4a-4c schematically show different vertical feed movements of the laser focus F in the workpiece volume counter to the beam direction 12, the laser beam 3 being stationary relative to the two workpieces 2 during this vertical feed movement of the laser focus F, in FIG. 4a the laser focus F becomes continuous against the beam direction 12 (eg with a vertical feed speed of 20 mm / s) and in the fig. 4b, 4c moved step by step without pauses (Fig. 4b) and with a time pause (e.g. 2 s) between the steps (Fig. 4c).
Fign. 5a-5c sind Fotos von in einem monolithischen Glasblock gezogenen, verti- kalen Schweißnähten 13, die mit den in Fign. 4a-4c gezeigten, vertikalen Vor- schubbewegungen des Laserfokus F erzeugt wurden. Wie in Fig 5a gezeigt, führt die kontinuierliche Bewegung des Laserfokus F entgegen der Strahlrichtung 12 zu einer durchgehenden, vertikalen Schweißnaht 13 ohne erkennbare Erstarrungs- blasen bzw. Einzelschweißpunkte. In Fig. 5b wird jeweils in dem noch vom vorher- gehenden Schritt heißen Material und in Fig. 5c wegen der zeitlichen Verzögerung zum vorhergehenden Schritt in bereits abgekühltem Material geschweißt. Fign. 5b und 5c zeigen jeweils eine aus von Erstarrungsblasen unterbrochene, vertikale Schweißnaht 13 mit deutlichen Rissen entlang der gesamten Schweißnaht 13. Im Ergebnis führt somit nur die kontinuierliche Bewegung des Laserfokus F entgegen der Strahlrichtung 12 zu einer durchgängigen, rissfreien vertikalen Schweißnaht 13, die sich in Dickenrichtung D der beiden Werkstücke 2 erstreckt. Fig. 5a-5c are photos of vertical weld seams 13 drawn in a monolithic glass block, which are similar to those shown in FIGS. 4a-4c, vertical feed movements of the laser focus F were generated. As shown in FIG. 5 a, the continuous movement of the laser focus F leads against the beam direction 12 a continuous, vertical weld 13 without recognizable solidification bubbles or individual weld spots. In FIG. 5b welding is carried out in the material still hot from the previous step and in FIG. 5c in already cooled material because of the time delay to the previous step. Fig. 5b and 5c each show a vertical weld seam 13, interrupted by solidification bubbles, with clear cracks along the entire weld seam 13. As a result, only the continuous movement of the laser focus F against the beam direction 12 leads to a continuous, crack-free vertical weld seam 13, which is shown in FIG Direction of thickness D of the two workpieces 2 extends.
Wie in Fig. 1 gezeigt, können mehrere vertikale Schweißnähte 13 voneinander be- abstandet entlang der Fügelinie 15 der beiden Werkstücke erzeugt werden. Statt gerade wie in Fig. 1 gezeigt, kann die Fügelinie 15 auch nicht gerade verlaufen. As shown in FIG. 1, a plurality of vertical weld seams 13 can be produced spaced apart from one another along the joining line 15 of the two workpieces. Instead of straight as shown in FIG. 1, the joining line 15 cannot run straight either.
Während der vertikalen Vorschubbewegung des Laserfokus F in bzw. entgegen der Strahlrichtung 12 kann der Laserstrahl 3 auch relativ zu den beiden Werkstü- cken 2 in einer parallel oder quer zur Fügelinie 15 verlaufenden Vorschubrichtung bewegt werden, z.B. indem der Laserbearbeitungskopf 8 entsprechend in der X- und Y-Richtung bewegt wird. Dabei sollte allerdings die Fokusgeschwindigkeit, mit welcher der Laserfokus F in oder entgegen der Strahlrichtung 12 bewegt wird, grö- ßer als die Vorschubgeschwindigkeit sein, mit welcher der Laserstrahl 3 in Vor- schubrichtung bewegt wird. During the vertical feed movement of the laser focus F in or counter to the beam direction 12, the laser beam 3 can also be moved relative to the two workpieces 2 in a feed direction running parallel or transverse to the joining line 15, e.g. by moving the laser machining head 8 in the X and Y directions accordingly. However, the focus speed at which the laser focus F is moved in or against the beam direction 12 should be greater than the feed speed at which the laser beam 3 is moved in the feed direction.
Mit dem oben beschriebenen Stumpfstoßschweißen können beispielsweise ein- zelne Spiegelelemente 2 (z.B. für eine Linienoptik) zu einem großen Spiegel zu- sammengefügt werden, indem entlang der Fügelinie eine oder mehrere vertikale Schweißnähte gesetzt werden. Auch können schlechte horizontale Schweißnähte durch vertikale Schweißnähte korrigiert werden, die durch eine horizontale With the butt-joint welding described above, for example, individual mirror elements 2 (e.g. for a line optics) can be joined together to form a large mirror by placing one or more vertical weld seams along the joining line. Also bad horizontal welds can be corrected by vertical welds by a horizontal one
Schweißnaht hindurch gesetzt werden. Die Schweißnaht kann auch eine Kreis- form oder sonstige Freiformkontur haben. Es ist auch möglich, leicht gekrümmte Flächen unter leichter Bewegung in X-Richtung während der Z-Schweißung zu verschweißen. Welded through. The weld seam can also have a circular shape or other free-form contour. It is also possible to weld slightly curved surfaces with slight movement in the X direction during the Z weld.

Claims

Patentansprüche Claims
1. Verfahren zum Stumpfstoßschweißen zweier insbesondere plattenförmi- ger Werkstücke (2) aus Glas, insbesondere Quarzglas, mittels eines ge- pulsten Laserstrahls (3), insbesondere UKP-Laserstrahls, der parallel zur Fügefläche (11) der beiden Werkstücke (2) in das Werkstückmaterial ein- gestrahlt wird und der im Bereich der Fügefläche (11 ) in das Werkstück- material fokussiert wird, um die beiden Werkstücke (2) im Bereich ihrer Fügefläche (11 ) lokal aufzuschmeizen, 1. Method for butt welding two, in particular plate-shaped, workpieces (2) made of glass, in particular quartz glass, by means of a pulsed laser beam (3), in particular UKP laser beam, which is parallel to the joining surface (11) of the two workpieces (2) into the Workpiece material is blasted in and is focused in the area of the joining surface (11) in the workpiece material in order to locally melt the two workpieces (2) in the area of their joining area (11),
dadurch gekennzeichnet, characterized,
dass der Laserfokus (F) des in das Werkstückmaterial fokussierten Laser- strahls (3) in oder entgegen der Strahlrichtung (12) des Laserstrahls (3) bewegt wird, um im Bereich der Fügefläche (11 ) eine sich entlang der Strahlrichtung (12) erstreckende Schweißnaht (13) zu erzeugen. that the laser focus (F) of the laser beam (3) focused in the workpiece material is moved in or against the beam direction (12) of the laser beam (3), in order to extend in the area of the joining surface (11) along the beam direction (12) Generate weld seam (13).
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Vorschub- bewegung des Laserfokus (F) in bzw. entgegen der Strahlrichtung (12) kontinuierlich oder schrittweise erfolgt. 2. The method according to claim 1, characterized in that the feed movement of the laser focus (F) in or against the beam direction (12) takes place continuously or stepwise.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Vorschub- bewegung des Laserfokus (F) entgegen der Strahlrichtung (12) kontinuier- lich mit einer Vorschubgeschwindigkeit von 0,5 mm/s bis 100 mm/s, be- vorzugt von 5 mm/s bis 30 mm/s, besonders bevorzugt ca. 20 mm/s, er- folgt. 3. The method according to claim 2, characterized in that the feed movement of the laser focus (F) against the beam direction (12) continuously with a feed speed of 0.5 mm / s to 100 mm / s, preferably of 5 mm / s to 30 mm / s, particularly preferably approximately 20 mm / s.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass eine Schweißnaht (13) mit einem Nahtdurchmesser von 5 bis 500 mm, bevorzugt 50 bis 100 mm, erzeugt wird. 4. The method according to any one of the preceding claims, characterized in that a weld seam (13) with a seam diameter of 5 to 500 mm, preferably 50 to 100 mm, is produced.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass der Vo rsch u bbe weg u ng des Laserfokus (F) in oder entge- gen der Strahiungsrichtung (12) des Laserstrahls (3) noch eine Querbewe- gung des Laserfokus (F) überlagert wird. 5. The method according to any one of the preceding claims, characterized in that the advance and movement of the laser focus (F) in or against the radiation direction (12) of the laser beam (3) is also a transverse movement of the laser focus (F) is superimposed.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass der gepulste Laserstrahl (3) als ein Laserpulspaket ausge- führt ist, welches aus Einzelpulsen besteht. 6. The method according to any one of the preceding claims, characterized in that the pulsed laser beam (3) is designed as a laser pulse packet, which consists of individual pulses.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Einzel- pulse im Pulspaket gleich sind. 7. The method according to claim 6, characterized in that the individual pulses in the pulse packet are the same.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass der Laserstrahl (3) rechtwinklig oder schräg auf die dem Laserstrahl (3) zugewandte Werkstückseite (10a) auftrifft. 8. The method according to any one of the preceding claims, characterized in that the laser beam (3) strikes the workpiece side (10a) facing the laser beam (3) at right angles or at an angle.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass mehrere Schweißnähte (13) voneinander beabstandet ent- lang der Fügelinie (15) der beiden Werkstücke (2) erzeugt werden. 9. The method according to any one of the preceding claims, characterized in that a plurality of weld seams (13) are produced at a distance from one another along the joining line (15) of the two workpieces (2).
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass während der Vorschubbewegung des Laserfokus (F) in bzw. entgegen der Strahlrichtung (12) der Laserstrahl (3) relativ zu den beiden Werkstücken (2) nicht weiterbewegt wird. 10. The method according to any one of the preceding claims, characterized in that during the advancing movement of the laser focus (F) in or against the beam direction (12) the laser beam (3) is not moved further relative to the two workpieces (2).
11. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass während der Vorschubbewegung des Laserfokus (F) in bzw. entge- gen der Strahlrichtung (12) der Laserstrahl (3) relativ zu den beiden Werk- stücken (2) parallel oder quer zur Fügelinie (15) der beiden Werkstücke (2) bewegt wird. 11. The method according to any one of claims 1 to 9, characterized in that during the advancing movement of the laser focus (F) in or against the beam direction (12), the laser beam (3) is parallel to the two workpieces (2) or is moved transversely to the joining line (15) of the two workpieces (2).
12. Verfahren nach Anspruch 11 , dadurch gekennzeichnet, dass die Fokusge- schwindigkeit, mit welcher der Laserfokus (F) in oder entgegen der Strahl- richtung (12) bewegt wird, größer als die Vo rsch u bgeschwi nd ig keit (v) ist, mit welcher der Laserstrahl (3) parallel oder quer zur Fügelinie (15) be- wegt wird. 12. The method according to claim 11, characterized in that the focus speed at which the laser focus (F) is moved in or against the beam direction (12) is greater than the speed (v) , with which the laser beam (3) is moved parallel or transversely to the joining line (15).
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass der UKP-Laserstrahl Laserstrahlung mit Pulsdauern kleiner als 50 ps, bevorzugt kleiner 1 ps, insbesondere im Femtosekundenbe- reich, aufweist. 13. The method according to any one of the preceding claims, characterized in that the UKP laser beam has laser radiation with pulse durations of less than 50 ps, preferably less than 1 ps, in particular in the femtosecond range.
14. Optisches Element aus Glas, insbesondere Quarzglas, das aus mindes- tens zwei miteinander laserverschweißten Einzelteilen (2) zusammenge- fügt ist, 14. Optical element made of glass, in particular quartz glass, which is assembled from at least two laser-welded individual parts (2),
dadurch gekennzeichnet, characterized,
dass zwei Einzelteile (2) miteinander mittels mindestens einer sich in Di- ckenrichtung (D) der beiden Einzelteile (2) erstreckenden Schweißnaht (13) laserverschweißt sind. that two individual parts (2) are laser welded to one another by means of at least one weld seam (13) extending in the thickness direction (D) of the two individual parts (2).
15. Optisches Element nach Anspruch14, dadurch gekennzeichnet, dass sich die Schweißnaht (13) rechtwinklig oder schräg zu einer Oberfläche (10a) des optisches Elements erstreckt. 15. Optical element according to claim 14, characterized in that the weld seam (13) extends at right angles or at an angle to a surface (10a) of the optical element.
16. Optisches Element nach Anspruch 14 oder15, dadurch gekennzeichnet, dass die Schweißnaht (13) eine Länge von mindestens 50 mm, insbeson- dere von mindestens 1 mm, aufweist. 16. Optical element according to claim 14 or 15, characterized in that the weld seam (13) has a length of at least 50 mm, in particular of at least 1 mm.
17. Optisches Element nach einem der Ansprüche 14 bis 16, dadurch gekenn- zeichnet, dass die Schweißnaht (13) als eine durchgehende Linie oder als eine insbesondere mehrmals unterbrochen Linie ausgebildet ist. 17. Optical element according to one of claims 14 to 16, characterized in that the weld seam (13) is designed as a continuous line or as an in particular interrupted line several times.
18. Optisches Element nach einem der Ansprüche 14 bis 17, dadurch gekenn- zeichnet, dass mehrere sich in Dickenrichtung (D) der beiden Einzelteile (2) erstreckende Schweißnähte (13) voneinander beabstandet entlang der Fügelinie (15) der beiden Einzelteile (2) angeordnet sind. 18. Optical element according to one of claims 14 to 17, characterized in that a plurality of weld seams (13) extending in the thickness direction (D) of the two individual parts (2) are spaced apart from one another along the joining line (15) of the two individual parts (2). are arranged.
19. Optisches Element nach einem der Ansprüche 14 bis18, dadurch gekenn- zeichnet, dass die Schweißnaht (13) einen Nahtdurchmesser von 5 bis 500mm, bevorzugt 50 bis 100mm, aufweist. 19. Optical element according to one of claims 14 to 18, characterized in that the weld seam (13) has a seam diameter of 5 to 500 mm, preferably 50 to 100 mm.
EP19801844.2A 2018-11-28 2019-11-09 Butt-joint welding method using a ukp laser beam, and optical element assembled from individual parts Pending EP3887321A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018220447.0A DE102018220447A1 (en) 2018-11-28 2018-11-28 Process for butt welding using a UKP laser beam and an optical element assembled from individual parts
PCT/EP2019/080770 WO2020108960A1 (en) 2018-11-28 2019-11-09 Butt-joint welding method using a ukp laser beam, and optical element assembled from individual parts

Publications (1)

Publication Number Publication Date
EP3887321A1 true EP3887321A1 (en) 2021-10-06

Family

ID=68536848

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19801844.2A Pending EP3887321A1 (en) 2018-11-28 2019-11-09 Butt-joint welding method using a ukp laser beam, and optical element assembled from individual parts

Country Status (5)

Country Link
US (1) US20210276128A1 (en)
EP (1) EP3887321A1 (en)
CN (1) CN113227002A (en)
DE (1) DE102018220447A1 (en)
WO (1) WO2020108960A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018220477A1 (en) 2018-11-28 2020-05-28 Trumpf Laser Gmbh Method for laser welding an optical fiber in a perforated element by means of a UKP laser beam and associated optical element
DE102021118593A1 (en) 2021-07-19 2023-01-19 Trumpf Laser Gmbh Process for joining at least two joining partners
CN113634898B (en) * 2021-09-03 2023-07-04 上海无线电设备研究所 Cross-scale ultrafast laser composite welding device and method for high-silicon aluminum airtight package

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1193490A1 (en) * 2000-10-02 2002-04-03 AEA Technology QSA GmbH Method for weld seam testing and device therefore
JP4230826B2 (en) * 2003-06-10 2009-02-25 浜松ホトニクス株式会社 Laser processing method
US9138913B2 (en) * 2005-09-08 2015-09-22 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
KR101091370B1 (en) * 2006-09-22 2011-12-07 오사카 유니버시티 Substance joining method, substance joining device, joined body, and its manufacturing method
JP2010070388A (en) * 2008-09-16 2010-04-02 Olympus Corp Laser beam machining device and laser beam machining method
WO2011115243A1 (en) * 2010-03-16 2011-09-22 アイシン精機株式会社 Pulse laser device, transparent member welding method, and transparent member welding device
WO2011133660A2 (en) * 2010-04-20 2011-10-27 Alfano Robert R Method for picosecond and femtosecond laser tissue welding
EP2686722A4 (en) * 2011-01-10 2016-06-08 UNIVERSITé LAVAL Laser reinforced direct bonding of optical components
DE102011081554A1 (en) * 2011-08-25 2013-02-28 Lpkf Laser & Electronics Ag Method and apparatus for laser welding two joining partners made of plastic
US8739574B2 (en) * 2011-09-21 2014-06-03 Polaronyx, Inc. Method and apparatus for three dimensional large area welding and sealing of optically transparent materials
JP5771516B2 (en) * 2011-12-09 2015-09-02 株式会社日立製作所 Laser bonding method
US20160016261A1 (en) * 2013-03-29 2016-01-21 Photon Automation, Inc. Laser welding system and method
US9067278B2 (en) * 2013-03-29 2015-06-30 Photon Automation, Inc. Pulse spread laser
KR101453855B1 (en) * 2013-08-21 2014-10-24 한국기계연구원 Bonding method of multiple member using ultra short pulse laser
EP2851121B1 (en) * 2013-09-20 2022-11-02 thinXXS Microtechnology GmbH Devices for and methods of forming microchannels or microfluid reservoirs
DE102014210486B4 (en) * 2014-06-03 2016-08-04 Lpkf Laser & Electronics Ag Method for welding two joining partners made of thermoplastic materials along a weld seam by means of a laser
CN108609841B (en) * 2018-04-10 2020-05-19 华中科技大学 Welding method suitable for glass

Also Published As

Publication number Publication date
US20210276128A1 (en) 2021-09-09
DE102018220447A1 (en) 2020-05-28
CN113227002A (en) 2021-08-06
WO2020108960A1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
EP3887321A1 (en) Butt-joint welding method using a ukp laser beam, and optical element assembled from individual parts
DE102016107581B3 (en) Welding process for joining workpieces to a lap joint
WO2019197298A1 (en) Method for the laser welding of transparent workpieces, and associated laser machining tool
EP2915785B1 (en) Method for laser-induced joining of a vitreous joining partner with another joining partner using ultrashort laser pulses
DE19830237C2 (en) Method and device for cutting a workpiece made of brittle material
DE19715537C2 (en) Method and device for cutting flat workpieces made of brittle material, especially glass
EP0748268B1 (en) Process for preparing the seam regions of coated workpieces for laser beam welding and lap joint for welding coated workpieces
EP3735333A1 (en) Method and laser machining tool for the surface structuring of laser-transparent workpieces
EP1479506B1 (en) Laser welding method for structured plastics
EP3405738B1 (en) Method of connecting tubes of a tube bundle heat-exchanger with a tube base of the tube bundle heat-exchanger
DE19608074C2 (en) Process for welding relatively moving workpieces
DE102018120011B4 (en) Welding process for joining a transparent, alumina-containing first substrate to an opaque second substrate
WO2020109029A1 (en) Method for laser welding an optical fiber in a hole element using a ukp laser beam, and corresponding optical element
EP4238687A1 (en) Method for machining a plate-shaped or tubular workpiece
WO2020109080A1 (en) Method for butt-joint welding two workpieces by means of an ultrashort pulse laser beam, and associated optical element
DE102004027229B4 (en) Method for welding workpieces made of aluminum or an aluminum alloy
WO2021074427A1 (en) Method for joining two joining partners by means of ultra-short laser pulses
DE10140533A1 (en) Method and device for micromachining a workpiece with laser radiation
EP0889769B1 (en) Process for joining of workpieces with laser beam
DE10131883A1 (en) Welding metal components uses welding beams on either side of components which melt processing zone over complete cross-section of welding bead
WO2023001730A1 (en) Method for joining at least two joining partners
DE102022104779A1 (en) Process for processing a plate or tube-shaped workpiece
WO2021094480A1 (en) Device and method for producing a molten pool by advancing a laser beam in an oscillating manner
DE102020133629A1 (en) Process for joining at least two joining partners
EP4185434A2 (en) Apparatus and method for joining at least two joining partners

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210527

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)