WO2021074427A1 - Method for joining two joining partners by means of ultra-short laser pulses - Google Patents
Method for joining two joining partners by means of ultra-short laser pulses Download PDFInfo
- Publication number
- WO2021074427A1 WO2021074427A1 PCT/EP2020/079279 EP2020079279W WO2021074427A1 WO 2021074427 A1 WO2021074427 A1 WO 2021074427A1 EP 2020079279 W EP2020079279 W EP 2020079279W WO 2021074427 A1 WO2021074427 A1 WO 2021074427A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- joining
- area
- laser
- laser pulses
- partners
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/21—Bonding by welding
- B23K26/24—Seam welding
- B23K26/244—Overlap seam welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/0604—Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
- B23K26/0608—Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0622—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
- B23K26/0624—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/073—Shaping the laser spot
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/32—Bonding taking account of the properties of the material involved
- B23K26/324—Bonding taking account of the properties of the material involved involving non-metallic parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/50—Working by transmitting the laser beam through or within the workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
- B23K2103/54—Glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1603—Laser beams characterised by the type of electromagnetic radiation
- B29C65/1606—Ultraviolet [UV] radiation, e.g. by ultraviolet excimer lasers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1603—Laser beams characterised by the type of electromagnetic radiation
- B29C65/1609—Visible light radiation, e.g. by visible light lasers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1603—Laser beams characterised by the type of electromagnetic radiation
- B29C65/1612—Infrared [IR] radiation, e.g. by infrared lasers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1603—Laser beams characterised by the type of electromagnetic radiation
- B29C65/1612—Infrared [IR] radiation, e.g. by infrared lasers
- B29C65/1616—Near infrared radiation [NIR], e.g. by YAG lasers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1603—Laser beams characterised by the type of electromagnetic radiation
- B29C65/1612—Infrared [IR] radiation, e.g. by infrared lasers
- B29C65/1619—Mid infrared radiation [MIR], e.g. by CO or CO2 lasers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1629—Laser beams characterised by the way of heating the interface
- B29C65/1635—Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
- B29C65/1638—Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding focusing the laser beam on the interface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1629—Laser beams characterised by the way of heating the interface
- B29C65/1654—Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1629—Laser beams characterised by the way of heating the interface
- B29C65/1664—Laser beams characterised by the way of heating the interface making use of several radiators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1629—Laser beams characterised by the way of heating the interface
- B29C65/1664—Laser beams characterised by the way of heating the interface making use of several radiators
- B29C65/1667—Laser beams characterised by the way of heating the interface making use of several radiators at the same time, i.e. simultaneous laser welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/11—Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
- B29C66/112—Single lapped joints
- B29C66/1122—Single lap to lap joints, i.e. overlap joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/20—Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
- B29C66/22—Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being in the form of recurring patterns
- B29C66/223—Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being in the form of recurring patterns being in the form of a triangle wave or of a sawtooth wave, e.g. zigzagged
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/20—Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
- B29C66/22—Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being in the form of recurring patterns
- B29C66/229—Other specific patterns not provided for in B29C66/221 - B29C66/227
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/343—Making tension-free or wrinkle-free joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/40—General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
- B29C66/41—Joining substantially flat articles ; Making flat seams in tubular or hollow articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/739—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/7392—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
- B29C66/73921—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/914—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
- B29C66/9161—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
- B29C66/91641—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time
- B29C66/91643—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/919—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
- B29C66/9192—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
- B29C66/91951—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to time, e.g. temperature-time diagrams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/93—Measuring or controlling the joining process by measuring or controlling the speed
- B29C66/939—Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges
Definitions
- the invention relates to a method for joining two joining partners by means of ultrashort laser pulses, preferably for joining at least one joining partner that is essentially transparent for the laser pulses with another joining partner, particularly preferably for joining two joining partners that are transparent for the laser pulses and in particular for joining two glasses by means of ultrashort laser pulses.
- the processing laser beam is focused by appropriate optics and the associated beam shaping into the material of one of the joining partners, into both joining partners and / or into the area of an interface between the two mutually adjacent joining partners.
- the strong local energy input from the focused laser beam results in high temperatures that are not present in the surrounding material areas.
- the heat required for processing - for example for the production of a weld seam - leads to temperature stresses in relation to the surrounding material areas.
- ultrashort laser pulses are focused in the volume of glass, e.g. quartz glass
- the high intensity in the focus leads to non-linear absorption processes.
- various material modifications can be made to the glass. If the time interval between the successive ultrashort laser pulses is shorter than the heat diffusion time, this leads to heat accumulation or a temperature rise in the glass in the focus area. With each of the successive pulses, the temperature can then be increased to the melting temperature of the glass and finally the glass can be locally melted.
- the laser focus can be focused through the glass body aligned in the beam direction onto the interface between the joining partners. Due to the successive heat accumulation from pulse to pulse, the absorption zone shifts longitudinally in the direction of the laser incidence direction, so that finally the melt from the glass enters the interface.
- the melt cools down, a stable connection between the two glasses can then be created, with the weld seam appearing elongated in the direction of laser incidence as a result of the previous process.
- the melt bridges the gap so that glasses with smaller unevenness that are not completely flat against one another can also be joined.
- a method for joining joining partners by means of ultrashort laser pulses of a joining beam is specified, preferably for joining at least one material that is essentially transparent for the laser pulses with a further joining partner, particularly preferably for joining two materials that are transparent for the laser pulses, with one ultrashort laser pulses being more comprehensive Joining beam for local melting of a joining area is introduced into the joint partner.
- a process area is heated with at least one process beam, the joining beam and the process beam being placed next to one another in such a way that the joining area and the process area do not spatially overlap and / or the joining beam and the process beam are designed so that the laser pulses of the process beam and of the joining beam do not overlap in time.
- a joining environment can be heated spatially around the joining area and / or before and / or after the joining process by means of the process beam.
- the joining partners to be joined are in contact with one another at an interface.
- the melting of the material of the joining partners in the joining area takes place, among other things, at the interface, so that the resulting melt bridges the interface and a joint is established at the interface after the melt has solidified.
- the method is preferably applied to two joining partners made of glass, for example quartz glass, in which the joining beam of an ultrashort pulse laser is focused through the upper joining partner, which is transparent for the wavelength of the ultrashort pulse laser, into the vicinity or exactly on the common interface of the two joining partners.
- the method can also be used to join a first joining partner that is transparent to the joining beam and a second joining partner that is essentially opaque to the joining beam, for example for joining a first joining partner made of glass with a second joining partner made of metal, for example aluminum.
- the joining beam enters through the joining partner that is transparent to the joining beam.
- the successive absorption of the laser pulses causes heat to accumulate, provided that the pulse rate of the joining beam is greater than the rate of heat dissipation through material-specific heat transport mechanisms. Due to the increasing temperature from pulse to pulse, the melting temperature of the joining partner can finally be reached, which leads to a local melting of the material of the first joining partner into which the joining beam enters. The resulting melt can bridge the common interface and permanently connect the parts to be joined together when it cools.
- the size of the joining area is determined by the beam geometry, in particular the focus diameter of the joining beam.
- a joining environment is defined here as the area that heats up as a whole as a result of the absorption of the joining beam and the subsequent heat transport.
- the size and extent of the joining environment is determined by the heat diffusion time and the laser absorption capacity of the glass as well as the joining pulse rate.
- the joining area can, for example, be twenty times the diameter of the joining area, or six to ten times the size of the joining area.
- thermal gradients of a 50 ⁇ m wide weld seam can also show up to 400 ⁇ m outside the weld seam.
- the joining area is additionally heated by the process beam in the process area.
- the process area is determined analogously to the joining area via the beam geometry, in particular via the focus diameter of the process beam.
- a process environment is defined here as the area that heats up overall as a result of the absorption of the process beam and the subsequent heat transport.
- the size and extent of the process environment is included determined by the heat diffusion time and the laser absorption capacity of the joint partner, and thus by the average coupled process performance.
- the process environment can, for example, be twenty times the diameter of the process area, or also ten times the size of the process area.
- the joining environment and the process environment preferably overlap at least partially, so that, for example, the higher temperature in the process environment can reduce material stresses in the joining environment.
- the overlap of the joining and process environment is given by the distance between the joining and process areas, the heat diffusion time of the glass and the corresponding laser absorption capacity for the joining and process laser light, and the average coupled power of the joining and process lasers.
- the joining environment can thus be heated spatially around the joining area with a process laser if the process environment and the joining environment overlap.
- the process beam can comprise ultrashort laser pulses or continuous wave radiation.
- the process area can be heated before and / or after the joining process.
- Time before the joining process means that the pulse of the joining beam hits an already heated joining area or hits the process environment.
- Temporally after the joining process means that the process beam hits the joining area, or the overlap between the process area and the joining area is formed after the joining beam hits.
- the time interval between the joining beam and the process beam should preferably be selected to be smaller than the typical heat diffusion time in the glass, for example smaller than 10 ps.
- the process area can also be heated at the same time as the joining process.
- the process beam and the joining beam can be generated by one and the same ultrashort pulse laser and, for example, to be split into two beams of different intensity by beam splitter optics.
- a temporal offset of the pulses of the process beam and the joining beam can then be implemented through different beam paths and the associated different transit times of the partial beams to the joint partner.
- the ultrashort pulse laser that generates the joining beam is referred to herein as the joining fiber.
- the laser that generates the at least one process beam is referred to herein as a process laser. It is possible here for the process laser to be a continuous wave laser and the joining fiber to be an ultra-short pulse laser. In particular, the process laser and the joining fiber can also perform the other task mutatis mutandis.
- process and joining fibers can be used synonymously - the joining beam and the process beam are nevertheless designed as separate beams.
- the process laser can fulfill various functions regardless of the precise operating mode. For example, it can act thermally on material modifications or act on the surrounding areas of the material modification.
- the process laser can also be used to produce tailor-made permanent material modifications, for example to heal stresses in the material, to reshape material or to expand previously produced weld seams.
- One advantage of this method is that material stresses from the joining environment are healed or reduced by the process beam, so that crack formation is suppressed.
- the joining beam and the at least one process beam are not generated by the same laser.
- the joining pulse rate and the pulse repetition rate can be selected differently. Since the material of the joining partner should not be melted with the process beam, a lower average process output, for example through a lower pulse repetition rate with the same laser pulse intensity, can be selected as with the joining beam.
- the process beam it is also possible for the process beam to have a different wavelength than the joining beam, or for the fluence of the process beam to be smaller than that of the joining beam due to a different focus.
- the intensity in the joining spot introduced into the material by the joining fiber is preferably ten times greater than the intensity introduced into the material by the process laser in the heating spot.
- the process beam can also have the same or lower intensity than the main beam.
- the at least one process beam preferably has a central spot and at least one further process area.
- a central spot means that there is a local maximum in the beam's intensity profile in the center of the beam.
- a further process area is understood here to mean that a further area with a non-vanishing laser intensity follows radially from the central spot.
- the central spot can also be used to join the glasses, with the further process area of low intensity only being used to heat the joining environment.
- the intensity profile of the process laser can be impressed on the process environment of the process area, which in particular enables particularly advantageous thermal gradients to be implemented in the joining partners.
- the profile of the central spot of the at least one process beam and / or the at least one further process area of the at least one process beam can be Gauss-shaped, or Bessel-shaped or Laguerre-Gauss-shaped, or as a superposition of the aforementioned.
- Gaussian, Bessel or Laguerre-Gaussian intensity profiles correspond to the natural laser modes of a laser and so the method can be used without additional optical adjustment effort.
- the at least one further process area of the at least one process beam can comprise at least one higher order of diffraction.
- the heating profile of the process beam can be determined directly by a suitable choice of a higher diffraction order. It is thus possible to use diffraction orders that enable the most extensive possible illumination with the process beam.
- the central spot and the at least one further process area of the at least one process beam can be offset longitudinally with respect to one another.
- offset longitudinally means that the central spot and the process area are offset from one another in the direction of the beam.
- spatial mode beating of the laser modes can be used constructively, so that several intensity maxima can result in the beam direction of the at least one process beam.
- the process area and the central spot can also be offset from one another by means of suitable optics. This is particularly the case when several laser beams are superimposed to implement the process beam.
- the process beam can also create a longitudinal heat profile in the glasses, since the stresses during the joining process not only fade out transversely along the interface, but can also protrude into the glass. In this way, material stresses in the glass can also be effectively reduced.
- the beam shape of the at least one process beam can be generated by means of a beam-shaping unit and / or by means of a spatial light modulator and / or by means of a diffractive element and / or by means of an acousto-optical deflector.
- a beam-shaping unit can in particular be an objective for focusing the laser beam.
- a spatial light modulator enables the process beam to be fanned out to a given geometry, for example round, square or star-shaped.
- a diffractive element also allows the process beam to be fanned out to a given geometry.
- An acousto-optical deflector makes it possible to deflect the process beam periodically in time, so that in particular Lissajous-figure-shaped heating patterns can be generated in the interface so that a larger area is heated.
- the deflection by means of acousto-optical deflector also allows a randomized movement pattern, so-called random access scanning, which enables the rapid scanning of any heating pattern.
- the at least one process beam can be moved around the joining beam.
- Moved around the joining beam means in this context that the process beam moves relative to the joining beam in a temporally variable manner.
- the joining beam is the center of a movement of the process beam, such as, for example, the center of symmetry in the case of a radial movement or a pendulum movement.
- a movement of the process beam around the joining beam comprises a movement along (longitudinal) or perpendicular (laterally) to the direction of movement of the joining beam.
- the movement of the at least one process beam can be circular or figure-eight, or the trajectory of the movement can consist of two touching circles or similar geometries.
- the joining beam can be placed in the center of symmetry, so that the glasses can be tempered symmetrically and evenly around the joining area.
- the at least one process beam can precede or follow the joining beam, or run parallel and with a lateral offset to the joining beam.
- a process beam following the joining beam can adjust any material defects such as tensions or cracks to the surroundings due to the heating of the material during the joining process.
- cracks in one or both of the joining partners caused by the joining process can also be compensated for by the fact that the respective material flows into the crack and thus closes it.
- the process beam runs in front of the joining beam when it is in front of it in the process direction of the joining beam.
- the process beam follows the joining beam if the process beam is located behind the joining beam in the process direction of the joining beam.
- the at least one process beam has a lateral offset when it does not coincide with the joining beam.
- the movement of the at least one process beam runs parallel to the joining beam if it takes place at the same speed and in the same direction.
- the joining beam can join the joining partners in the already relaxed state.
- the method can also simultaneously enable slower cooling by the subsequent process beam.
- the beams can have the same beam intensity.
- the ultrashort pulse laser beam can be split into two equally intense beam parts with a 50-50 beam splitter.
- the joining beam can also be preceded by two process beams and two process beams can follow it.
- Two leading and trailing process beams have the advantage that the temperature can be controlled over a larger area.
- a particularly advantageous embodiment of the method provides that the process beams are arranged symmetrically around the joining beam.
- symmetrical around the joining beam means that the process beams lie, for example, on a common round or square geometry, in whose center of symmetry the joining beam is located.
- the process beams can preferably each have approximately one tenth the intensity of the joining beam.
- the movement of the at least one process beam can be generated by means of an acousto-optical deflector and / or a scanner unit and / or a micro-scanner.
- the process beam is preferably designed in such a way that it does not melt the process area.
- only the joining beam is designed to melt the material of the joining partners, whereas the at least one process beam only leads to heating of the process area, which does not lead to melting of the material in the process area.
- FIGS. 1A, B show a schematic representation of a joining and process area
- FIG. 2 shows a time profile of the ultra-short process and joining pulses
- FIGS. 3A, B show a schematic representation of the process areas
- FIG. 4 shows a longitudinal offset of the further process areas and the central spot
- FIG. 5 shows a sketch of a general trajectory of the process beam around the joining beam
- FIG. 6A, B, C circular, figure-eight and linear trajectories of the process beam around the joining beam
- FIG. 7A B trajectories of a process beam when moving around the moving joining beam
- FIG. 8 a sketch of possible trajectories of four process beams around the moving one
- FIG. 9 shows a sketch of process beams placed symmetrically around the joining beam.
- FIG. 1, comprising FIG. 1 A and FIG. 1 B, shows two joining partners 3 to be joined, which rest against one another at an interface 5.
- the two joining partners 3 can be, for example, two glasses which are in contact with one another at the interface 5 and which are to be joined to one another at this interface 5.
- a process beam 2 is placed laterally next to a joining beam 1. Both beams are focused in the interface 5 between the two joining partners 3, which is represented by the minimal beam waist.
- the foci can, however, also be located under the interface of the materials to be joined.
- the foci can, however, also fall apart and, for example, the focus of the joining beam 1 can be arranged below the interface 5 between the two joining partners 3 and the focus of the process beam 2 can then, for example, be placed in the interface 5 between the two joining partners 3.
- the joining partners 3 are melted locally in the joining area 11.
- the joining beam 1 comprises a number, for example ten, successive laser pulses which are successively absorbed by the joining partner 3 in the joining area 11.
- this leads to heat accumulation in the joining partner 3, provided that the time interval between the pulses is shorter than the heat diffusion time of the joining partner 3.
- the melting temperature can be exceeded and the joining partner 3 is locally melted.
- it should be pointed out here that by cleverly positioning the laser focus it can be achieved that both joining partners can be melted at the same time. When the melt passes over the interface 5 and cools, it can lead to a stable connection between the two joining partners 3.
- this heat is also given off into the joining environment 12 by heat diffusion in accordance with the heat diffusion time.
- the joining temperature gradient depends on the difference between the melting temperature and the temperature of the joining partners outside the joining area. If this joining temperature gradient is too high, stresses can arise in the material 6, which ultimately lead to crack formation.
- the joining temperature gradient In order to prevent the formation of cracks, the joining temperature gradient must therefore be reduced, but the temperature in the joining area always at least corresponds to the melting temperature of the joining partner. This can be done by heating the joining area to a higher temperature, or by artificially increasing the joining area so that the temperature difference is formed in the joining partner over a longer distance.
- a process beam 2 is placed next to the joining beam 1.
- the process beam 2 heats the process area 21.
- no joining partner 3 should be melted with the process beam 2.
- the average power of the process laser or the process beam 2 is, however, also absorbed in the process area 21 of the joining partner 3, so that there is a rise in temperature there.
- the heat flows away from the process area 21 by heat diffusion, so that a process environment 22 is formed.
- a heating temperature gradient that is smaller than the joining temperature gradient is thus also formed from the process area 21 to the edge of the process environment 22.
- the temperature in the entire process environment 22 is increased or at least equal to the temperature of the joining partner 3 outside the joining environment 12 and the process environment 22.
- the formed process environment 22 and joining environment 12 overlap. This ensures that the joint partner 3 has a higher temperature in the area of the overlap 4 than if no process environment 22 were formed .
- the joining area 12 in particular now has an increased temperature in the area of the overlap 4, so that the joining temperature gradient from the joining area 11 to the edge of the joining area 12 in the area of the overlap 4 has been artificially reduced. Due to the lower joining temperature gradient, material stress 6 can thus be reduced.
- the joining partner 3 has an entire temperature gradient, which now extends from the joining area 11 to the edge of the process area 21, so that the temperature decrease takes place over a larger area on average.
- the roles of the joining and process lasers can be reversed mutatis mutandis.
- the process beam 2 can also at least partially melt the process area 21 and thus expand the area melted in the joining environment 11 or expand a central modification.
- FIG. 1A it is shown that in the joining area 11 or in the process area 21, the intensities of the joining or process beams are greatest.
- the joining beam 1 is intense enough to melt the joining partner 3 near the interface 5, so that with successive ultrashort pulse absorption the melt center moves towards the interface 5, the melt exits there and via the interface 5 to the opposite joining partner 3 propagated, with which the melt then forms a firm bond when it cools.
- the processing and joining fibers used have a tunable wavelength in the range from 200 nm to 5000 nm. Because of the wavelength range that goes beyond the optically visible range, in a further embodiment everything is considered to be glass that is transparent for the selected laser wavelength.
- the repetition rates are between continuous wave irradiation, 100Hz and 50MHz. Bursts are also conceivable, the repetition rate of the pulses in the burst being between 1 MHz and 50 GHz.
- the laser pulses are between 10fs and 50ps long.
- the laser beams are also focused in such a way that a fluence in the focus zone of more than 10 mJ / cm 2 can be achieved.
- the modification threshold of the joining partners is typically between 1 J / cm 2 and 5 J / cm 2 . In order to increase the strength of the weld, for example, the pulse energies can also be modulated over time.
- FIG. 1 B the joining environment 12 and the process environment 22 are shown in a top view.
- the process environment 22 and the joining environment 12 are formed so that they overlap in the overlap 4.
- the joining area 12 experiences a temperature increase. If material tension should have arisen or arise in the overlap 4 because of the strong temperature gradient around the joining area 11, then this can be reduced by the additional heating process so that there is no crack or crack in the joining partner.
- FIG. 2 shows that the joining beam 1 and the process beam 2 can strike at different times for one location.
- the intensity I of a process pulse can be different from the intensity of the joining pulse.
- the process beam can hit the joining partner both after the joining pulse (the abscissa axis points in the positive direction) and before the joining pulse (the abscissa axis points in the negative direction).
- FIG. 3A shows how a central spot 23 and a further process area 24 are combined to form the actual process area 21 through a corresponding design of the process beam 2.
- the intensity profile shown below shows that the central spot 23 and the further process area 24 can be composed of different beam profiles.
- the intensity distribution of the central spot 23 is thus distributed over a significantly smaller area than that of the further process area 24.
- FIG. 3B shows that the further process area 24 can also consist of a higher mode, in particular of Gauss, Bessel and / or Laguerre-Gauss modes.
- FIG. 4 shows a process beam 2 which is focused in the first joining partner 3 in such a way that the central spot 23 of the process beam 2 lies at the interface 5 of the first joining partner in the direction of the beam.
- the joining area 11 of the joining beam 1 (not shown) can coincide with the central spot 23.
- the further process areas 24 are located longitudinally offset in relation to this in the joining partner 3 and not on the surface. As a result, material stresses 6 which run from the interface 5 into the joining partner 3 are reduced.
- FIG. 5 shows an embodiment of the method in which the process beam 2 is moved around the joining beam 1.
- the joining beam 1 is located at the origin of the coordinate system in order to make it clear that any symmetries of the process beam trajectory relate to the current location of the joining beam 1.
- the time arrow is shown in such a way that it points to both positive and negative times. This is intended to symbolize at this point that the direction of the movement can be freely selected, so that, for example, clockwise or counterclockwise movements are possible.
- FIG. 6 comprising FIGS. 6A, 6B and 6C, various possible movements of the process beam 2 are shown, namely circular 6A, figure-of-eight 6B and linear 6C.
- the process beam 2 moves relative to the joining beam 1.
- the different shapes can be produced, for example, with an acousto-optic deflector.
- the process beam passes through an acousto-optic deflector, it is periodically deflected, for example in the x and y directions.
- 2 Lissajous figures can be generated with the process beam.
- FIG. 7A an embodiment of the method is shown in which the joining beam 1 is moved with a feed along the x-axis.
- the feed is, for example, of the order of magnitude between 10 pm / s and 1 m / s.
- the process beam 2 is moved in a circle around the joining beam 1.
- FIG. 7B shows an embodiment in which the process beam moves linearly up and down relative to the joining beam along the y-axis. This results in a sawtooth curve of the process beam trajectory.
- the process beam 2 follows the joining beam 1.
- FIG. 8 shows an embodiment in which two process beams 2 each precede the joining beam 1 and two process beams 2 each follow.
- the process beams 2 move on trajectories around the joining beam 1, which originate from a figure-eight movement.
- FIG. 9 A further embodiment is shown in FIG. 9, in which two process beams 2 each lead in front of the joining beam 1 and two process beams 2 each follow the joining beam 1.
- the process beams 2 are placed symmetrically around the joining beam 1, so that a symmetrical temperature gradient around the joining area 11 can be implemented.
- the process beams 2 have a lower intensity than the joining beam, for example 10% each of the joining beam intensity, which is characterized by the smaller diameter of the process beams in the figure.
- the process beams 2 that follow the joining beam 1 can adjust any material defects, such as tension or cracks, to the surroundings due to the heating of the material following the actual joining process during the joining process.
- cracks in one or both of the joining partners caused by the joining process can also be compensated for by the fact that the respective material flows into the crack and thus closes it.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Laser Beam Processing (AREA)
Abstract
The invention relates to a method for joining two joining partners (3) by means of ultra-short laser pulses of a joining beam, preferably for joining at least one joining partner that is substantially transparent to the laser pulses to a further joining partner, particularly preferably for joining two joining partners that are transparent to the laser pulses, wherein a joining beam (1) comprising ultra-short laser pulses is introduced into the joining partners (5) to locally melt a joining region (11). In this way, a processing region (21) is heated with at least one processing beam (2), wherein the joining beam (1) and the processing beam (2) are positioned next to one another such that the joining region (11) and the processing region (21) do not physically overlap and/or wherein the joining beam (1) and the processing beam (2) are designed such that the laser pulses of the processing beam (2) and the joining beam (1) do not temporally overlap.
Description
Verfahren zum Fügen von zwei Fügepartnern mittels ultrakurzer Laserpulse Method for joining two joining partners using ultra-short laser pulses
Technisches Gebiet Technical area
Die Erfindung betrifft ein Verfahren zum Fügen von zwei Fügepartnern mittels ultrakurzer Laserpulse, bevorzugt zum Fügen von mindestens einem für die Laserpulse im Wesentlichen transparenten Fügepartner mit einem weiteren Fügepartner, besonders bevorzugt zum Fügen von zwei für die Laserpulse transparenten Fügepartnern und insbesondere zum Fügen von zwei Gläsern mittels ultrakurzen Laserpulsen. The invention relates to a method for joining two joining partners by means of ultrashort laser pulses, preferably for joining at least one joining partner that is essentially transparent for the laser pulses with another joining partner, particularly preferably for joining two joining partners that are transparent for the laser pulses and in particular for joining two glasses by means of ultrashort laser pulses.
Stand der Technik State of the art
Zum Fügen zweier Fügepartner miteinander ist es bekannt, die jeweiligen Fügepartner mittels eines Laserstrahls zu beaufschlagen, um auf diese Weise in der durch den Laserstrahl beaufschlagten Zone durch Energieabsorption eine Schmelze zu erzeugen, welche nach dem Erstarren der Schmelze eine Schweißnaht zwischen den Fügepartnern ausbildet. To join two parts to be joined together, it is known to apply a laser beam to the respective part to be joined in order to generate a melt in the zone acted upon by the laser beam through energy absorption, which forms a weld seam between the parts to be joined after the melt has solidified.
Dabei ist es insbesondere bekannt, zur Herstellung einer Verschweißung eines transparenten Fügepartners mit einem nicht transparenten Fügepartner oder zum Verschweißen zweier transparenter Fügepartner den Fokus des Laserstrahls zwischen die beiden Fügepartner zu legen. Dies wird darüber erreicht, dass der bearbeitende Laserstrahl so fokussiert wird, dass der Energieeintrag in der Grenzfläche zwischen den Fügepartnern am höchsten ist, um entsprechend zwischen den beiden Fügepartnern eine Schmelze und dann nach dem Erstarren eine Schweißnaht bereitzustellen. Dabei tritt der bearbeitende Laserstrahl entsprechend durch eines der transparenten Fügepartner hindurch und wird erst auf der dem Eintrittsbereich gegenüberliegenden Seite des Fügepartners fokussiert. In this context, it is particularly known to place the focus of the laser beam between the two parts to be joined in order to produce a weld between a transparent joint partner and a non-transparent joint partner or in order to weld two transparent joint partners. This is achieved by focusing the processing laser beam in such a way that the energy input is highest in the interface between the joining partners in order to provide a melt between the two joining partners and then a weld seam after solidification. The processing laser beam passes through one of the transparent joining partners and is only focused on the side of the joining partner opposite the entry area.
Der bearbeitende Laserstrahl wird dabei durch entsprechende Optiken und eine damit einhergehende Strahlformung in das Material eines der Fügepartner, in beide Fügepartner und/oder in den Bereich einer Grenzfläche zwischen den beiden aneinander anliegenden Fügepartner fokussiert.
Beim Fügen von Fügepartnern kommt es aufgrund des starken lokalen Energieeintrags durch den fokussierten Laserstrahl zu hohen Temperaturen, welche in den umliegenden Materialbereichen nicht vorliegen. Entsprechend führt die für die Bearbeitung - beispielsweise für die Herstellung einer Schweißnaht - notwendige Wärme zu Temperaturspannungen gegenüber den umgebenden Materialbereichen. Entsprechend kann es zu Spannungen und/oder Rissen in dem Material im Bereich der Schweißnaht kommen, was in einer Reduzierung der Qualität der gefügten Materialien resultieren kann. The processing laser beam is focused by appropriate optics and the associated beam shaping into the material of one of the joining partners, into both joining partners and / or into the area of an interface between the two mutually adjacent joining partners. When joining parts to be joined, the strong local energy input from the focused laser beam results in high temperatures that are not present in the surrounding material areas. Correspondingly, the heat required for processing - for example for the production of a weld seam - leads to temperature stresses in relation to the surrounding material areas. Correspondingly, there can be tensions and / or cracks in the material in the area of the weld seam, which can result in a reduction in the quality of the joined materials.
Fokussiert man ultrakurze Laserpulse in das Volumen von Glas, z.B. Quarzglas, so führt die hohe Intensität im Fokus zu nichtlinearen Absorptionsprozessen. In Abhängigkeit von den Laserparametern lassen sich so verschiedene Materialmodifikationen am Glas vornehmen. Wenn der zeitliche Abstand der aufeinander folgenden ultrakurzen Laserpulse kürzer als die Wärmediffusionszeit ist, dann führt dies zu einer Wärmeakkumulation beziehungsweise einem Temperaturanstieg im Glas im Fokusbereich. Mit jedem der aufeinanderfolgenden Pulse kann die Temperatur dann auf die Schmelztemperatur des Glases erhöht werden und schließlich das Glas lokal aufschmelzen. If ultrashort laser pulses are focused in the volume of glass, e.g. quartz glass, the high intensity in the focus leads to non-linear absorption processes. Depending on the laser parameters, various material modifications can be made to the glass. If the time interval between the successive ultrashort laser pulses is shorter than the heat diffusion time, this leads to heat accumulation or a temperature rise in the glass in the focus area. With each of the successive pulses, the temperature can then be increased to the melting temperature of the glass and finally the glass can be locally melted.
Durch die transparenten Fügepartner, beispielsweise die miteinander zu fügenden Gläser, lässt sich erreichen, dass der Laserfokus durch den in Strahlrichtung ausgerichteten Glaskörper hindurch auf die zwischen den Fügepartnern liegende Grenzfläche fokussiert werden kann. Durch die sukzessive Wärmeakkumulation von Puls zu Puls verschiebt sich die Absorptionszone longitudinal in Richtung der Lasereinfallrichtung, so dass schließlich die Schmelze aus dem Glas in die Grenzfläche eintritt. Beim Abkühlvorgang der Schmelze kann dann eine stabile Verbindung der beiden Gläser entstehen, wobei die Schweißnaht durch den vorherigen Prozess in Lasereinfallrichtung elongiert erscheint. Im Falle eines kleinen Spaltes zwischen den Fügepartnern ist es möglich, dass die Schmelze den Spalt überbrückt, so dass auch Gläser mit kleineren Unebenheiten, welche nicht vollständig plan aneinander liegen, gefügt werden können. Through the transparent joining partners, for example the glasses to be joined together, it can be achieved that the laser focus can be focused through the glass body aligned in the beam direction onto the interface between the joining partners. Due to the successive heat accumulation from pulse to pulse, the absorption zone shifts longitudinally in the direction of the laser incidence direction, so that finally the melt from the glass enters the interface. When the melt cools down, a stable connection between the two glasses can then be created, with the weld seam appearing elongated in the direction of laser incidence as a result of the previous process. In the case of a small gap between the parts to be joined, it is possible that the melt bridges the gap so that glasses with smaller unevenness that are not completely flat against one another can also be joined.
In US 8,314,359 B2 sowie US 9,625,713 B2 werden Systeme und Verfahren beschrieben, bei denen mittels ultrakurzer Laserpulse zwei optisch transparente Materialen lokal im Bereich der gemeinsamen Grenzfläche aufgeschmolzen und dadurch schließlich zusammengeschweißt werden. In US2015/273624A1 wird ein Verfahren beschrieben, bei dem zwei räumlich und zeitlich überlagerte Laserpulse kombiniert werden, um die Schwellintensität für einen Fügeprozess zu überschreiten. In US2016/0318122A1 wird ein Verfahren zur verstärkten Materialbearbeitung
beschrieben, in dem die Lebensdauer eines durch einen ultrakurzen Laserpuls initiierten Plasmazustands mit dem rechtzeitigen Einbringen eines langen Laserpulses verlängert wird.In US Pat. No. 8,314,359 B2 and US Pat. No. 9,625,713 B2, systems and methods are described in which two optically transparent materials are melted locally in the area of the common interface by means of ultrashort laser pulses and are thereby finally welded together. US2015 / 273624A1 describes a method in which two spatially and temporally superimposed laser pulses are combined in order to exceed the threshold intensity for a joining process. US2016 / 0318122A1 describes a method for increased material processing described, in which the life of a plasma state initiated by an ultrashort laser pulse is extended with the timely introduction of a long laser pulse.
Bei diesen Verfahren können jedoch durch die hohen auftretenden Temperaturgradienten von dem Schweißpunkt aus zur Umgebung im Glas Materialspannungen entstehen, die Rissbildungen zur Folge haben können. In these processes, however, the high temperature gradients that occur from the welding point to the environment in the glass can cause material stresses that can result in cracking.
Darstellung der Erfindung Presentation of the invention
Ausgehend von den bekannten Fügeverfahren ist es eine Aufgabe der vorliegenden Erfindung, ein Fügeverfahren anzugeben, welches die Rissbildung vermindert beziehungsweise verhindert.Based on the known joining methods, it is an object of the present invention to specify a joining method which reduces or prevents the formation of cracks.
Entsprechend wird ein Verfahren zum Fügen von Fügepartnern mittels ultrakurzen Laserpulsen eines Fügestrahls angegeben, bevorzugt zum Fügen von mindestens einem für die Laserpulse im Wesentlichen transparenten Material mit einem weiteren Fügepartner, besonders bevorzugt zum Fügen von zwei für die Laserpulse transparenten Materialien, wobei ein ultrakurze Laserpulse umfassender Fügestrahl zum lokalen Aufschmelzen eines Fügebereichs in die Fügepartner eingebracht wird. Erfindungsgemäß wird ein Prozessbereich mit mindestens einem Prozessstrahl erhitzt, wobei der Fügestrahl und der Prozessstrahl so nebeneinander platziert werden, dass sich der Fügebereich und der Prozessbereich räumlich nicht überlappen und/oder wobei der Fügestrahl und der Prozessstrahl so ausgebildet sind, dass die Laserpulse des Prozessstrahls und des Fügestrahls zeitlich nicht überlappen. Accordingly, a method for joining joining partners by means of ultrashort laser pulses of a joining beam is specified, preferably for joining at least one material that is essentially transparent for the laser pulses with a further joining partner, particularly preferably for joining two materials that are transparent for the laser pulses, with one ultrashort laser pulses being more comprehensive Joining beam for local melting of a joining area is introduced into the joint partner. According to the invention, a process area is heated with at least one process beam, the joining beam and the process beam being placed next to one another in such a way that the joining area and the process area do not spatially overlap and / or the joining beam and the process beam are designed so that the laser pulses of the process beam and of the joining beam do not overlap in time.
Damit kann eine Fügeumgebung räumlich um den Fügebereich herum und/oder zeitlich vor und/oder nach dem Fügevorgang mittels des Prozessstrahls erhitzt werden. In this way, a joining environment can be heated spatially around the joining area and / or before and / or after the joining process by means of the process beam.
Die zu fügenden Fügepartner liegen dabei an einer Grenzfläche aneinander an. Das Aufschmelzen des Materials der Fügepartner im Fügebereich findet unter anderem an der Grenzfläche statt, so dass die entstehende Schmelze die Grenzfläche überbrückt und nach dem Erstarren der Schmelze eine Fügeverbindung an der Grenzfläche hergestellt ist. The joining partners to be joined are in contact with one another at an interface. The melting of the material of the joining partners in the joining area takes place, among other things, at the interface, so that the resulting melt bridges the interface and a joint is established at the interface after the melt has solidified.
Das Verfahren wird dabei bevorzugt auf zwei Fügepartner aus Glas, beispielsweise Quarzglas, angewandt, bei dem der Fügestrahl eines Ultrakurzpulslasers durch den oberen, für die Wellenlänge des Ultrakurzpulslasers transparenten Fügepartner hindurch in die Nähe oder genau auf die gemeinsame Grenzfläche der beiden Fügepartner fokussiert wird.
Das Verfahren kann auch auf das Fügen eines ersten für den Fügestrahl transparenten Fügepartners und eines zweiten für den Fügestrahl im Wesentlichen opaken Fügepartners angewendet werden, beispielsweise zum Fügen eines ersten Fügepartners aus Glas mit einem zweiten Fügepartner aus Metall, beispielsweise Aluminium. Der Eintritt des Fügestrahls findet dabei durch den für den Fügestrahl transparenten Fügepartner hindurch statt. The method is preferably applied to two joining partners made of glass, for example quartz glass, in which the joining beam of an ultrashort pulse laser is focused through the upper joining partner, which is transparent for the wavelength of the ultrashort pulse laser, into the vicinity or exactly on the common interface of the two joining partners. The method can also be used to join a first joining partner that is transparent to the joining beam and a second joining partner that is essentially opaque to the joining beam, for example for joining a first joining partner made of glass with a second joining partner made of metal, for example aluminum. The joining beam enters through the joining partner that is transparent to the joining beam.
Im Fügebereich findet durch sukzessive Absorption der Laserpulse eine Wärmeakkumulation statt, sofern die Pulsrate des Fügestrahls größer ist als die Rate des Wärmeabtransports durch materialspezifische Wärmetransportmechanismen. Durch die steigende Temperatur von Puls zu Puls, kann so schließlich die Schmelztemperatur des Fügepartners erreicht werden, was zu einem lokalen Aufschmelzen des Materials des ersten Fügepartners führt, in welchen der Fügestrahl eintritt. Die entstehende Schmelze kann die gemeinsame Grenzfläche überbrücken und beim Abkühlen die Fügepartner dauerhaft miteinander verbinden. In the joining area, the successive absorption of the laser pulses causes heat to accumulate, provided that the pulse rate of the joining beam is greater than the rate of heat dissipation through material-specific heat transport mechanisms. Due to the increasing temperature from pulse to pulse, the melting temperature of the joining partner can finally be reached, which leads to a local melting of the material of the first joining partner into which the joining beam enters. The resulting melt can bridge the common interface and permanently connect the parts to be joined together when it cools.
Die Größe des Fügebereichs ist dabei durch die Strahlgeometrie, insbesondere den Fokusdurchmesser des Fügestrahls, bestimmt. The size of the joining area is determined by the beam geometry, in particular the focus diameter of the joining beam.
Eine Fügeumgebung ist hierbei definiert als der Bereich, der sich durch die Absorption des Fügestrahls und den anschließenden Wärmetransport insgesamt erhitzt. Die Größe und Ausdehnung der Fügeumgebung ist dabei durch die Wärmediffusionszeit und das Laserabsorptionsvermögen des Glases sowie durch die Fügepulsrate bestimmt. Die Fügeumgebung kann beispielsweise den zwanzigfachen Durchmesser des Fügebereichs, oder auch das sechs- bis Zehnfache der Größe des Fügebereichs, einnehmen. Beispielsweise können sich thermische Gradienten einer 50pm breiten Schweißnaht auch noch bis zu 400pm außerhalb der Schweißnaht zeigen. A joining environment is defined here as the area that heats up as a whole as a result of the absorption of the joining beam and the subsequent heat transport. The size and extent of the joining environment is determined by the heat diffusion time and the laser absorption capacity of the glass as well as the joining pulse rate. The joining area can, for example, be twenty times the diameter of the joining area, or six to ten times the size of the joining area. For example, thermal gradients of a 50 μm wide weld seam can also show up to 400 μm outside the weld seam.
Durch die großen Temperaturgradienten die in der Fügeumgebung entstehen, kann es zu Materialspannungen kommen, die eine Rissbildung begünstigen. Um eine Rissbildung räumlich in der Fügeumgebung durch zu starke oder zu schnelle Erhitzung oder Abkühlung und zu große Temperaturgradienten zu vermeiden, wird die Fügeumgebung durch den Prozessstrahl in dem Prozessbereich zusätzlich erhitzt. Due to the large temperature gradients that arise in the area around the joint, material stresses can occur, which promote the formation of cracks. In order to avoid crack formation spatially in the joining area due to excessive or too rapid heating or cooling and excessive temperature gradients, the joining area is additionally heated by the process beam in the process area.
Der Prozessbereich ist dabei analog zum Fügebereich über die Strahlgeometrie, insbesondere über den Fokusdurchmesser des Prozessstrahls bestimmt. Eine Prozessumgebung ist hierbei definiert als der Bereich, der sich durch die Absorption des Prozessstrahls und den anschließenden Wärmetransport insgesamt erhitzt. Die Größe und Ausdehnung der Prozessumgebung ist dabei
durch die Wärmediffusionszeit und das Laserabsorptionsvermögen des Fügepartners, und somit über die mittlere eingekoppelte Prozessleistung bestimmt. Die Prozessumgebung kann analog zur Fügeumgebung beispielsweise den zwanzigfachen Durchmesser des Prozessbereichs, oder auch die zehnfache Größe des Prozessbereichs, einnehmen. The process area is determined analogously to the joining area via the beam geometry, in particular via the focus diameter of the process beam. A process environment is defined here as the area that heats up overall as a result of the absorption of the process beam and the subsequent heat transport. The size and extent of the process environment is included determined by the heat diffusion time and the laser absorption capacity of the joint partner, and thus by the average coupled process performance. Analogous to the joining environment, the process environment can, for example, be twenty times the diameter of the process area, or also ten times the size of the process area.
Bevorzugt überlappen die Fügeumgebung und die Prozessumgebung zumindest teilweise, so dass beispielsweise durch die höhere Temperatur in der Prozessumgebung Materialspannungen in der Fügeumgebung reduziert werden können. Der Überlapp von Füge- und Prozessumgebung ist dabei gegeben durch den Abstand der Füge- und Prozessbereiche, durch die Wärmediffusionszeit des Glases und die entsprechenden Laserabsorptionsvermögen für das Füge- und Prozesslaserlicht, und die mittlere eingekoppelte Leistung der Füge- und Prozesslaser. The joining environment and the process environment preferably overlap at least partially, so that, for example, the higher temperature in the process environment can reduce material stresses in the joining environment. The overlap of the joining and process environment is given by the distance between the joining and process areas, the heat diffusion time of the glass and the corresponding laser absorption capacity for the joining and process laser light, and the average coupled power of the joining and process lasers.
Die Fügeumgebung kann somit räumlich um den Fügebereich herum mit einem Prozesslaser erhitzt werden, wenn die Prozessumgebung und die Fügeumgebung überlappen. The joining environment can thus be heated spatially around the joining area with a process laser if the process environment and the joining environment overlap.
Der Prozessstrahl kann ultrakurze Laserpulse oder Dauerstrichstrahlung umfassen. The process beam can comprise ultrashort laser pulses or continuous wave radiation.
Der Prozessbereich kann dabei zeitlich vor und/oder nach dem Fügevorgang erhitzt werden. The process area can be heated before and / or after the joining process.
Zeitlich vor dem Fügevorgang bedeutet, dass der Puls des Fügestrahls auf einen bereits erhitzten Fügebereich trifft, beziehungsweise in die Prozessumgebung trifft. Zeitlich nach dem Fügevorgang bedeutet, dass der Prozessstrahl in die Fügeumgebung trifft, beziehungsweise der Überlapp der Prozessumgebung mit der Fügeumgebung zeitlich nach Auftreffen des Fügestrahls gebildet wird. Der zeitliche Abstand von Fügestrahl zu Prozessstrahl ist bevorzugt kleiner als die typische Wärmediffusionszeit im Glas zu wählen, beispielsweise kleiner als 10ps. Time before the joining process means that the pulse of the joining beam hits an already heated joining area or hits the process environment. Temporally after the joining process means that the process beam hits the joining area, or the overlap between the process area and the joining area is formed after the joining beam hits. The time interval between the joining beam and the process beam should preferably be selected to be smaller than the typical heat diffusion time in the glass, for example smaller than 10 ps.
Natürlich kann der Prozessbereich auch gleichzeitig mit dem Fügevorgang erhitzt werden. Of course, the process area can also be heated at the same time as the joining process.
Es ist ferner möglich, dass der Prozessstrahl und der Fügestrahl von ein und demselben Ultrakurzpulslaser erzeugt werden, und beispielsweise durch eine Strahlteileroptik in zwei verschieden intensive Strahlen aufgeteilt wird. Einen zeitlichen Versatz der Pulse des Prozessstrahls und des Fügestrahls lässt sich dann durch verschiedene Strahlpfade und damit einhergehende unterschiedliche Laufzeiten der Teilstrahlen zum Fügepartner realisieren. It is also possible for the process beam and the joining beam to be generated by one and the same ultrashort pulse laser and, for example, to be split into two beams of different intensity by beam splitter optics. A temporal offset of the pulses of the process beam and the joining beam can then be implemented through different beam paths and the associated different transit times of the partial beams to the joint partner.
Der Ultrakurzpulslaser, der den Fügestrahl erzeugt, wird hierin Fügelaser genannt. Der Laser der den mindestens einen Prozessstrahl erzeugt wird hierin Prozesslaser genannt. Hierbei ist es möglich, dass der Prozesslaser ein Dauerstrichlaser ist und der Fügelaser ein Ultrakurzpulslaser ist.
Insbesondere können der Prozesslaser und der Fügelaser auch mutatis mutandis auch die jeweils andere Aufgabe erfüllen. The ultrashort pulse laser that generates the joining beam is referred to herein as the joining fiber. The laser that generates the at least one process beam is referred to herein as a process laser. It is possible here for the process laser to be a continuous wave laser and the joining fiber to be an ultra-short pulse laser. In particular, the process laser and the joining fiber can also perform the other task mutatis mutandis.
Sollte nur ein Laser verwendet werden, so können die Begriffe Prozess- und Fügelaser synonym verwendet werden - der Fügestrahl und der Prozessstrahl sind aber dennoch als separate Strahlen ausgebildet. If only one laser is used, the terms process and joining fibers can be used synonymously - the joining beam and the process beam are nevertheless designed as separate beams.
Insbesondere kann der Prozesslaser unabhängig vom genauen Betriebsmodus verschiedene Funktionen erfüllen. Beispielsweise kann er thermisch auf Materialmodifikationen einwirken, oder auf die umliegenden Bereiche der Materialmodifikation einwirken. Der Prozesslaser kann auch zur Herstellung maßgeschneiderter permanenter Materialmodifikationen verwendet werden, beispielsweise um Spannungen aus dem Material zu heilen, Material umzuformen oder um zuvor erzeugte Schweißnähte zu erweitern. In particular, the process laser can fulfill various functions regardless of the precise operating mode. For example, it can act thermally on material modifications or act on the surrounding areas of the material modification. The process laser can also be used to produce tailor-made permanent material modifications, for example to heal stresses in the material, to reshape material or to expand previously produced weld seams.
Ein Vorteil dieses Verfahren ist es, dass durch den Prozessstrahl Materialspannungen aus der Fügeumgebung ausgeheilt bzw. reduziert werden, so dass eine Rissbildung unterdrückt wird.One advantage of this method is that material stresses from the joining environment are healed or reduced by the process beam, so that crack formation is suppressed.
Es wird so auch ermöglicht, Materialien auch bei geringer Probenebenheit oder großen Spaltabständen permanent und mit hoher Festigkeit zu fügen. Bei diesem Verfahren werden zudem keine zusätzlichen Materialien wie beispielsweise Klebstoffe verwendet, wodurch Kosten reduziert werden können. Zudem kann durch den wegfallenden Trocknungsprozess der Durchsatz an Fügeteilen erhöht werden. This also makes it possible to join materials permanently and with high strength, even with low sample evenness or large gap distances. In addition, no additional materials such as adhesives are used in this process, which means that costs can be reduced. In addition, the throughput of parts to be joined can be increased by eliminating the drying process.
In einerweiteren Ausführungsform werden der Fügestrahl und der mindestens eine Prozessstrahl nicht von demselben Laser erzeugt. In a further embodiment, the joining beam and the at least one process beam are not generated by the same laser.
Insbesondere können dadurch verschiedene Laser eingesetzt werden, so dass für den Fügestrahl und den mindestens einen Prozessstrahl unabhängig voneinander optimale Laserparameter eingestellt werden können. So können beispielsweise die Fügepulsrate und die Pulsrepetitionsrate unterschiedlich gewählt werden. Da mit dem Prozessstrahl das Material des Fügepartners nicht aufgeschmolzen werden soll, kann eine geringere mittlere Prozessleistung, beispielsweise durch eine geringere Pulsrepetitionsrate bei gleicher Laserpulsintensität, wie beim Fügestrahl gewählt werden. Es ist aber auch möglich, dass der Prozessstrahl eine andere Wellenlänge aufweist, als der Fügestrahl, oder dass durch einen unterschiedlichen Fokus die Fluenz des Prozessstrahls kleiner ist, als die des Fügestrahls.
Die von dem Fügelaser in das Material eingebrachte Intensität im Fügespot ist bevorzugt zehn Mal größer, als die vom Prozesslaser in das Material eingebrachte Intensität im Heizspot. Jedoch kann der Prozessstrahl auch gleiche oder geringere Intensität gegenüber dem Hauptstrahl aufweisen.In particular, different lasers can be used as a result, so that optimal laser parameters can be set independently of one another for the joining beam and the at least one process beam. For example, the joining pulse rate and the pulse repetition rate can be selected differently. Since the material of the joining partner should not be melted with the process beam, a lower average process output, for example through a lower pulse repetition rate with the same laser pulse intensity, can be selected as with the joining beam. However, it is also possible for the process beam to have a different wavelength than the joining beam, or for the fluence of the process beam to be smaller than that of the joining beam due to a different focus. The intensity in the joining spot introduced into the material by the joining fiber is preferably ten times greater than the intensity introduced into the material by the process laser in the heating spot. However, the process beam can also have the same or lower intensity than the main beam.
Bevorzugt weist der mindestens eine Prozessstrahl einen zentralen Spot und mindestens einen weiteren Prozessbereich auf. The at least one process beam preferably has a central spot and at least one further process area.
Ein zentraler Spot bedeutet, dass im Intensitätsprofil des Strahls in der Strahlmitte ein lokales Maximum vorliegt. Unter einem weiteren Prozessbereich wird dabei verstanden, dass sich vom zentralen Spot radial abgehend ein weiterer Bereich mit nicht verschwindender Laserintensität anschließt. Insbesondere kann der zentrale Spot auch zum Fügen der Gläser benutzt werden, wobei der weitere Prozessbereich geringer Intensität lediglich zum Erhitzen der Fügeumgebung genutzt wird. A central spot means that there is a local maximum in the beam's intensity profile in the center of the beam. A further process area is understood here to mean that a further area with a non-vanishing laser intensity follows radially from the central spot. In particular, the central spot can also be used to join the glasses, with the further process area of low intensity only being used to heat the joining environment.
Durch die Wahl einer geeigneten Strahlgeometrie kann der Intensitätsverlauf des Prozesslasers auf die Prozessumgebung des Prozessbereichs aufgeprägt werden, wodurch sich insbesondere besonders vorteilhafte thermische Gradienten in den Fügepartnern realisieren lassen. By choosing a suitable beam geometry, the intensity profile of the process laser can be impressed on the process environment of the process area, which in particular enables particularly advantageous thermal gradients to be implemented in the joining partners.
Das Profil des zentralen Spots des mindestens einen Prozessstrahls und/oder der mindestens eine weitere Prozessbereich des mindestens einen Prozessstrahls können Gauß-förmig, oder Bessel- förmig oder Laguerre-Gauß-förmig, oder als Superposition aus den vorgenannten, ausgebildet sein.The profile of the central spot of the at least one process beam and / or the at least one further process area of the at least one process beam can be Gauss-shaped, or Bessel-shaped or Laguerre-Gauss-shaped, or as a superposition of the aforementioned.
Dadurch kann erreicht werden, dass Gauß- oder Bessel- oder Laguerre-Gauß-förmige Intensitätsprofile den natürlichen Lasermoden eines Lasers entsprechen und so das Verfahren ohne zusätzlichen optischen Justageaufwand genutzt werden kann. As a result, it can be achieved that Gaussian, Bessel or Laguerre-Gaussian intensity profiles correspond to the natural laser modes of a laser and so the method can be used without additional optical adjustment effort.
Der mindestens eine weitere Prozessbereich des mindestens einen Prozessstrahls kann mindestens eine höhere Beugungsordnung umfassen. The at least one further process area of the at least one process beam can comprise at least one higher order of diffraction.
Dadurch kann erreicht werden, dass man durch geeignete Wahl einer höheren Beugungsordnung direkt das Heizprofil des Prozessstrahls festlegen kann. Somit ist es möglich Beugungsordnungen zu nutzen, die eine möglichst flächige Ausleuchtung mit dem Prozessstrahl ermöglichen. In this way it can be achieved that the heating profile of the process beam can be determined directly by a suitable choice of a higher diffraction order. It is thus possible to use diffraction orders that enable the most extensive possible illumination with the process beam.
Der zentrale Spot und der mindestens eine weitere Prozessbereich des mindestens einen Prozessstrahls können longitudinal zueinander versetzt sein.
Longitudinal versetzt heißt in diesem Zusammenhang, dass der zentrale Spot und der Prozessbereich in Strahlrichtung gegeneinander versetzt sind. Insbesondere ist es hiermit möglich, dass ein sogenanntes räumliches Mode-Beating der Lasermoden konstruktiv eingesetzt werden kann, so dass sich in Strahlrichtung des mindestens einen Prozessstrahls mehrere Intensitätsmaxima ergeben können. Es können aber auch durch eine geeignete Optik der Prozessbereich und der zentrale Spot gegeneinander versetzt werden. Dies ist insbesondere der Fall, wenn zur Realisierung des Prozessstrahls mehrere Laserstrahlen überlagert werden. The central spot and the at least one further process area of the at least one process beam can be offset longitudinally with respect to one another. In this context, offset longitudinally means that the central spot and the process area are offset from one another in the direction of the beam. In particular, it is hereby possible that what is known as spatial mode beating of the laser modes can be used constructively, so that several intensity maxima can result in the beam direction of the at least one process beam. However, the process area and the central spot can also be offset from one another by means of suitable optics. This is particularly the case when several laser beams are superimposed to implement the process beam.
Dadurch kann erreicht werden, dass durch den Prozessstrahl auch longitudinal ein Wärmeprofil in die Gläser geprägt werden kann, da sich die Spannungen während des Fügevorgangs nicht nur transversal entlang der Grenzfläche ausblenden, sondern auch in das Glas hineinragen können. Somit können auch Materialspannungen im Glas wirkungsvoll reduziert werden. This means that the process beam can also create a longitudinal heat profile in the glasses, since the stresses during the joining process not only fade out transversely along the interface, but can also protrude into the glass. In this way, material stresses in the glass can also be effectively reduced.
Die Strahlform des mindestens einen Prozessstrahls kann mittels einer strahlformenden Einheit und/oder mittels eines räumlichen Lichtmodulators und/oder mittels eines diffraktiven Elements und/oder mittels eines akusto-optischen Deflektors generiert werden. The beam shape of the at least one process beam can be generated by means of a beam-shaping unit and / or by means of a spatial light modulator and / or by means of a diffractive element and / or by means of an acousto-optical deflector.
Eine strahlformende Einheit kann hier insbesondere ein Objektiv zur Fokussierung des Laserstrahls sein. Ein räumlicher Lichtmodulator ermöglich es, den Prozessstrahl auf eine vorgegebene Geometrie aufzufächern, beispielsweise rund, quadratisch oder sternförmig. Ein diffraktives Element erlaubt ebenfalls, die räumliche Auffächerung des Prozessstrahls auf eine vorgegebene Geometrie vorzunehmen. A beam-shaping unit can in particular be an objective for focusing the laser beam. A spatial light modulator enables the process beam to be fanned out to a given geometry, for example round, square or star-shaped. A diffractive element also allows the process beam to be fanned out to a given geometry.
Durch einen akusto-optischen Deflektor wird es möglich, den Prozessstrahl periodisch in der zeit abzulenken, so dass insbesondere Lissajous-Figur-förmige Heizmuster in der Grenzfläche erzeugt werden können, so dass eine größere Fläche beheizt wird. Die Ablenkung mittels akusto-optischen Deflektors erlaubt zusätzlich ein randomisiertes Bewegungsmuster, sogenanntes random access scanning, wodurch das schnelle Abscannen eines beliebigen Heizmusters ermöglicht wird. An acousto-optical deflector makes it possible to deflect the process beam periodically in time, so that in particular Lissajous-figure-shaped heating patterns can be generated in the interface so that a larger area is heated. The deflection by means of acousto-optical deflector also allows a randomized movement pattern, so-called random access scanning, which enables the rapid scanning of any heating pattern.
Dadurch kann erreicht werden, dass mit einfachen Mitteln spezielle Geometrien erstellt werden können, die vom Prozessstrahl beheizt werden, so dass beispielsweise Fügestellen, die besonderen Spannungen ausgesetzt sind - beispielsweise an Kanten oder Spitzen - eine speziell angepasste Materialentspannung erfahren. This means that special geometries can be created with simple means that are heated by the process beam so that, for example, joints that are exposed to particular stresses - for example on edges or tips - experience a specially adapted material relaxation.
Der mindestens eine Prozessstrahl kann um den Fügestrahl herum bewegt werden.
Um den Fügestrahl herum bewegt heißt in diesem Zusammenhang, dass der Prozessstrahl sich zeitlich veränderlich relativ zum Fügestrahl bewegt. Insbesondere sieht diese Ausführungsform vor, dass der Fügestrahl das Zentrum einer Bewegung des Prozessstrahls ist, wie beispielsweise das Symmetriezentrum bei einer radialen Bewegung, oder einer Pendelbewegung. Insbesondere umfasst eine Bewegung des Prozessstrahls um den Fügestrahl herum eine Bewegung entlang (longitudinal) oder senkrecht (lateral) zur Bewegungsrichtung des Fügestrahls. The at least one process beam can be moved around the joining beam. Moved around the joining beam means in this context that the process beam moves relative to the joining beam in a temporally variable manner. In particular, this embodiment provides that the joining beam is the center of a movement of the process beam, such as, for example, the center of symmetry in the case of a radial movement or a pendulum movement. In particular, a movement of the process beam around the joining beam comprises a movement along (longitudinal) or perpendicular (laterally) to the direction of movement of the joining beam.
Dadurch kann erreicht werden, dass relativ zum Fügestrahl einfache geometrische Formen beheizt und parametrisiert werden können. So ist es beispielsweise bei einem zusätzlich bewegten Fügestrahl möglich, komplexe beheizte Geometrien des Prozesslasers zu erzeugen. It can thereby be achieved that simple geometric shapes can be heated and parameterized relative to the joining beam. For example, with an additionally moving joining beam, it is possible to generate complex heated geometries of the process laser.
Die Bewegung des mindestens einen Prozessstrahls kann kreisförmig oder achtförmig sein, oder die Trajektorie der Bewegung kann aus zwei sich berührenden Kreisen oder ähnlichen Geometrien bestehen. The movement of the at least one process beam can be circular or figure-eight, or the trajectory of the movement can consist of two touching circles or similar geometries.
Dadurch kann erreicht werden, dass der Fügestrahl im Symmetriezentrum platziert werden kann, so dass symmetrisch und gleichmäßig um den Fügebereich herum eine Temperierung der Gläser vorgenommen werden kann. It can thereby be achieved that the joining beam can be placed in the center of symmetry, so that the glasses can be tempered symmetrically and evenly around the joining area.
Dadurch kann des Weiteren erreicht werden, dass bei einem zusätzlich bewegten Fügestrahl sogenannte Wobbel-Figuren entstehen, die in diesem Zusammenhang eine besonders stabile und spannungsfreie Verbindung der beiden Gläser ermöglichen. In this way it can also be achieved that so-called wobble figures are created when an additionally moving joining beam is used, which in this context enables a particularly stable and tension-free connection between the two glasses.
Im Falle einer Bewegung des Fügestrahls kann der mindestens eine Prozessstrahl dem Fügestrahl vorlaufen oder nachlaufen, oder parallel und mit einem seitlichen Versatz zum Fügestrahl laufen.In the case of a movement of the joining beam, the at least one process beam can precede or follow the joining beam, or run parallel and with a lateral offset to the joining beam.
Ein dem Fügestrahl nachlaufender Prozessstrahl kann durch die dem Fügevorgang nachfolgende Erhitzung des Materials beim Fügevorgang etwaig aufgetretene Materialfehler wie Verspannungen oder Risse an die Umgebung angleichen. Beispielsweise können auch durch den Fügevorgang entstandene Risse in einem oder beiden der Fügepartner dadurch ausgeglichen werden, dass das jeweilige Material in den Riss fließt und ihn so verschließt. A process beam following the joining beam can adjust any material defects such as tensions or cracks to the surroundings due to the heating of the material during the joining process. For example, cracks in one or both of the joining partners caused by the joining process can also be compensated for by the fact that the respective material flows into the crack and thus closes it.
In dieser Ausführungsform läuft der Prozessstrahl dem Fügestrahl vor, wenn er sieh in Verfahrensrichtung des Fügestrahls vor ihm befindet. Analog dazu läuft der Prozessstrahl dem Fügestrahl hinterher, wenn sich der Prozessstrahl in Verfahrensrichtung des Fügestrahls hinter dem Fügestrahl befindet.
Der mindestens eine Prozessstrahl weist einen seitlichen Versatz auf, wenn er nicht mit dem Fügestrahl zusammenfällt. Die Bewegung des mindestens einen Prozessstrahls verläuft dabei parallel zum Fügestrahl, wenn sie mit derselben Geschwindigkeit und derselben Richtung stattfindet. In this embodiment, the process beam runs in front of the joining beam when it is in front of it in the process direction of the joining beam. Analogously to this, the process beam follows the joining beam if the process beam is located behind the joining beam in the process direction of the joining beam. The at least one process beam has a lateral offset when it does not coincide with the joining beam. The movement of the at least one process beam runs parallel to the joining beam if it takes place at the same speed and in the same direction.
Dadurch kann erreicht werden, dass der Fügestrahl die Fügepartner im bereits entspannten Zustand zusammenfügen kann. Andererseits kann durch das Verfahren auch gleichzeitig eine langsamere Abkühlung durch den nachlaufenden Prozessstrahl ermöglicht werden. Im dem Falle, dass es nur einen Prozessstrahl und einen Fügestrahl gibt, können die Strahlen die gleiche Strahlintensität aufweisen. It can thereby be achieved that the joining beam can join the joining partners in the already relaxed state. On the other hand, the method can also simultaneously enable slower cooling by the subsequent process beam. In the event that there is only one process beam and one joining beam, the beams can have the same beam intensity.
Hierfür kann beispielsweise der Strahl des Ultrakurzpulslasers mit einem 50-50 Strahlteiler in zwei gleich intensive Strahlteile aufgespalten werden. For this purpose, for example, the ultrashort pulse laser beam can be split into two equally intense beam parts with a 50-50 beam splitter.
Dadurch kann erreicht werden, dass durch den einfachen optischen Aufbau der Justageaufwand für das optische System reduziert wird und durch die gleiche Quelle für Füge und Prozessstrahl eine einfache Leistungsanpassung gegeben ist. It can thereby be achieved that the adjustment effort for the optical system is reduced by the simple optical structure and a simple power adjustment is given by the same source for joining and process beam.
Dem Fügestrahl können außerdem zwei Prozessstrahlen vorweglaufen und zwei Prozessstrahlen hinterherlaufen. The joining beam can also be preceded by two process beams and two process beams can follow it.
Zwei vor- und nachlaufende Prozessstrahlen haben den Vorteil, dass die Temperatur über einen größeren Bereich kontrolliert werden kann. Two leading and trailing process beams have the advantage that the temperature can be controlled over a larger area.
Eine besonders vorteilhafte Ausführungsform des Verfahrens sieht vor, dass die Prozessstrahlen symmetrisch um den Fügestrahl angeordnet sind. A particularly advantageous embodiment of the method provides that the process beams are arranged symmetrically around the joining beam.
Symmetrisch um den Fügestrahl heißt in diesem Fall, dass die Prozessstrahlen beispielsweise auf einer gemeinsamen runden oder viereckigen Geometrie liegen, in deren Symmetriezentrum der Fügestrahl steht. In this case, symmetrical around the joining beam means that the process beams lie, for example, on a common round or square geometry, in whose center of symmetry the joining beam is located.
Wie zuvor kann dadurch erreicht werden, dass bei einer symmetrisch zum Fügebereich verlaufenden Wärmediffusion die Materialspannungen durch die Prozessstrahlen symmetrisch zum Fügezentrum reduziert werden. As before, it can be achieved that in the case of a heat diffusion running symmetrically to the joining area, the material stresses are reduced symmetrically to the joining center by the process beams.
Die Prozessstrahlen können bevorzugt jeweils etwa ein Zehntel der Intensität des Fügestrahls ausweisen.
Die Bewegung des mindestens einen Prozessstrahls kann mittels eines akusto-optischen Deflektors und/oder einer Scanner-Einheit und/oder eines Mikro-Scanners erzeugt werden. The process beams can preferably each have approximately one tenth the intensity of the joining beam. The movement of the at least one process beam can be generated by means of an acousto-optical deflector and / or a scanner unit and / or a micro-scanner.
Durch diese optischen und einfach zugänglichen Mittel ist es möglich, die Prozess- und Fügestrahlausrichtung beispielsweise computerunterstützt zu steuern. Bevorzugt ist der Prozessstrahl so ausgebildet, dass er den Prozessbereich nicht aufschmilzt. Mit anderen Worten ist nur der Fügestrahl dazu ausgebildet, das Material der Fügepartner aufzuschmelzen, der mindestens eine Prozessstrahl hingegen führt nur zu einer Erhitzung des Prozessbereichs, die nicht zu einem Aufschmelzen des Materials im Prozessbereich führt. These optical and easily accessible means make it possible to control the process and joining beam alignment with the aid of a computer, for example. The process beam is preferably designed in such a way that it does not melt the process area. In other words, only the joining beam is designed to melt the material of the joining partners, whereas the at least one process beam only leads to heating of the process area, which does not lead to melting of the material in the process area.
Kurze Beschreibung der Figuren Brief description of the figures
Bevorzugte weitere Ausführungsformen der Erfindung werden durch die nachfolgende Beschreibung der Figuren näher erläutert. Dabei zeigen: Preferred further embodiments of the invention are explained in more detail by the following description of the figures. Show:
Figur 1A,B eine schematische Darstellung eines Füge- und Prozessbereichs; FIGS. 1A, B show a schematic representation of a joining and process area;
Figur 2 einen zeitlichen Verlauf der ultrakurzen Prozess- und Fügepulse; Figur 3A,B eine schematische Darstellung der Prozessbereiche; FIG. 2 shows a time profile of the ultra-short process and joining pulses; FIGS. 3A, B show a schematic representation of the process areas;
Figur 4 einen longitudinalen Versatz der weiteren Prozessbereiche und des zentralen Spots;FIG. 4 shows a longitudinal offset of the further process areas and the central spot;
Figur 5 eine Skizze einer allgemeinen Trajektorie des Prozessstrahls um den Fügestrahl;FIG. 5 shows a sketch of a general trajectory of the process beam around the joining beam;
Figur 6A,B,C kreisförmige, achtförmige und lineare Trajektorien des Prozessstrahls um den Fügestrahl; Figur 7A,B Trajektorien eines Prozessstrahls bei Bewegung um den bewegten Fügestrahl;6A, B, C circular, figure-eight and linear trajectories of the process beam around the joining beam; FIG. 7A, B trajectories of a process beam when moving around the moving joining beam;
Figur 8 eine Skizze möglicher Trajektorien von vier Prozessstrahlen um den bewegtenFIG. 8 a sketch of possible trajectories of four process beams around the moving one
Fügestrahl herum; und Joining beam around; and
Figur 9 eine Skizze von symmetrisch um den Fügestrahl platzierten Prozessstrahlen. FIG. 9 shows a sketch of process beams placed symmetrically around the joining beam.
Detaillierte Beschreibung bevorzugter Ausführunqsbeispiele
Im Folgenden werden bevorzugte Ausführungsbeispiele anhand der Figuren beschrieben. Dabei werden gleiche, ähnliche oder gleichwirkende Elemente in den unterschiedlichen Figuren mit identischen Bezugszeichen versehen, und auf eine wiederholte Beschreibung dieser Elemente wird teilweise verzichtet, um Redundanzen zu vermeiden. Detailed description of preferred exemplary embodiments Preferred exemplary embodiments are described below with reference to the figures. Identical, similar or identically acting elements are provided with identical reference symbols in the different figures, and a repeated description of these elements is in some cases dispensed with in order to avoid redundancies.
Figur 1 , umfassend Figur 1 A und Figur 1 B, zeigt zwei miteinander zu fügende Fügepartner 3, die an einer Grenzfläche 5 aneinander anliegen. Bei den beiden Fügepartner 3 kann es sich beispielsweise um zwei Gläser handeln, die an der Grenzfläche 5 aneinander anliegen und die an dieser Grenzfläche 5 miteinander gefügt werden sollen. FIG. 1, comprising FIG. 1 A and FIG. 1 B, shows two joining partners 3 to be joined, which rest against one another at an interface 5. The two joining partners 3 can be, for example, two glasses which are in contact with one another at the interface 5 and which are to be joined to one another at this interface 5.
In dem in der Figur 1 exemplarisch gezeigten Verfahren wird ein Prozessstrahl 2 lateral neben einem Fügestrahl 1 platziert. Beide Strahlen sind in die Grenzfläche 5 zwischen den beiden Fügepartnern 3 fokussiert, was durch die minimale Strahltaille dargestellt ist. In the method shown as an example in FIG. 1, a process beam 2 is placed laterally next to a joining beam 1. Both beams are focused in the interface 5 between the two joining partners 3, which is represented by the minimal beam waist.
Die Foki können sich aber auch unter der Grenzfläche der zu fügenden Materialien befinden.The foci can, however, also be located under the interface of the materials to be joined.
Die Foki können aber auch auseinanderfallen und beispielsweise der Fokus des Fügestrahls 1 unterhalb der Grenzfläche 5 zwischen den beiden Fügepartnern 3 angeordnet sein und der Fokus des Prozessstrahls 2 kann dann beispielsweise in die Grenzfläche 5 zwischen den beiden Fügepartnern 3 gelegt sein. The foci can, however, also fall apart and, for example, the focus of the joining beam 1 can be arranged below the interface 5 between the two joining partners 3 and the focus of the process beam 2 can then, for example, be placed in the interface 5 between the two joining partners 3.
Um eine stabile Verbindung über die Grenzfläche 5 zu erreichen, werden die Fügepartner 3 lokal im Fügebereich 11 aufgeschmolzen. Dies wird dadurch erreicht, dass der Fügestrahl 1 eine Anzahl, beispielsweise zehn, aufeinanderfolgende Laserpulse umfasst, die vom Fügepartner 3 nacheinander im Fügebereich 11 absorbiert werden. Dies führt durch nichtlineare Absorptionsprozesse zu einer Wärmeakkumulation im Fügepartner 3, sofern der zeitliche Pulsabstand kürzer als die Wärmediffusionszeit des Fügepartners 3 ist. So kann nach Absorption der Laserpulse die Schmelztemperatur überschritten sein und der Fügepartner 3 ist lokal aufgeschmolzen. Insbesondere sei hier darauf hingewiesen, dass durch eine geschickte Positionierung des Laserfokus erreicht werden kann, dass beide Fügepartner gleichzeitig aufgeschmolzen werden können. Wenn die Schmelze über die Grenzfläche 5 tritt und abkühlt kann sie zu einer stabilen Verbindung der beiden Fügepartner 3 führen. In order to achieve a stable connection via the interface 5, the joining partners 3 are melted locally in the joining area 11. This is achieved in that the joining beam 1 comprises a number, for example ten, successive laser pulses which are successively absorbed by the joining partner 3 in the joining area 11. As a result of non-linear absorption processes, this leads to heat accumulation in the joining partner 3, provided that the time interval between the pulses is shorter than the heat diffusion time of the joining partner 3. Thus, after absorption of the laser pulses, the melting temperature can be exceeded and the joining partner 3 is locally melted. In particular, it should be pointed out here that by cleverly positioning the laser focus it can be achieved that both joining partners can be melted at the same time. When the melt passes over the interface 5 and cools, it can lead to a stable connection between the two joining partners 3.
Nach jedem absorbierten Fügepuls steigt die Wärme im Fügebereich 11 im Fügepartner 3 an.After each absorbed joining pulse, the heat rises in the joining area 11 in the joining partner 3.
Diese Wärme wird durch Wärmediffusion jedoch gemäß der Wärmediffusionszeit ebenso in die Fügeumgebung 12 abgegeben. Somit entsteht ein Fügetemperaturgradient vom Fügebereich 11
zum Rand der Fügeumgebung 12. Der Fügetemperaturgradient hängt dabei von der Differenz der Schmelztemperatur und von der Temperatur der Fügepartner außerhalb des Fügebereichs ab. Ist dieser Fügetemperaturgradient zu hoch, kann es zu Spannungen im Material 6 kommen, die schließlich zu einer Rissbildung führen. However, this heat is also given off into the joining environment 12 by heat diffusion in accordance with the heat diffusion time. This creates a joining temperature gradient from the joining area 11 to the edge of the joining area 12. The joining temperature gradient depends on the difference between the melting temperature and the temperature of the joining partners outside the joining area. If this joining temperature gradient is too high, stresses can arise in the material 6, which ultimately lead to crack formation.
Um der Rissbildung zuvor zu kommen muss daher der Fügetemperaturgradient verringert werden, wobei die Temperatur im Fügebereich aber immer mindestens der Schmelztemperatur des Fügepartners entspricht. Dies kann dadurch geschehen, dass die Fügeumgebung auf eine höhere Temperatur geheizt wird, oder dass die Fügeumgebung künstlich vergrößert wird, so dass sich die Temperaturdifferenz über einer längeren Strecke im Fügepartner bildet. In order to prevent the formation of cracks, the joining temperature gradient must therefore be reduced, but the temperature in the joining area always at least corresponds to the melting temperature of the joining partner. This can be done by heating the joining area to a higher temperature, or by artificially increasing the joining area so that the temperature difference is formed in the joining partner over a longer distance.
Beide Effekte können durch das vorliegende Verfahren ausgenutzt werden. Hierzu wird ein Prozessstrahl 2 neben dem Fügestrahl 1 platziert. Der Prozessstrahl 2 heizt den Prozessbereich 21 auf. Im Gegensatz zum Fügestrahl 1 soll mit dem Prozessstrahl 2 jedoch kein Fügepartner 3 aufgeschmolzen werden. Die mittlere Leistung des Prozesslasers beziehungsweise des Prozessstrahls 2 wird jedoch ebenso im Prozessbereich 21 des Fügepartners 3 absorbiert, so dass es dort zu einem Temperaturanstieg kommt. Durch Wärmediffusion fließt die Wärme vom Prozessbereich 21 ab, so dass sich eine Prozessumgebung 22 ausbildet. Vom Prozessbereich 21 zum Rand der Prozessumgebung 22 bildet sich somit ebenso ein Heiztemperaturgradient, der kleiner als der Fügetemperaturgradient ist. Insbesondere ist die Temperatur in der gesamten Prozessumgebung 22 erhöht oder mindestens gleich der Temperatur des Fügepartners 3 außerhalb der Fügeumgebung 12 und der Prozessumgebung 22. Both effects can be exploited by the present method. For this purpose, a process beam 2 is placed next to the joining beam 1. The process beam 2 heats the process area 21. In contrast to the joining beam 1, however, no joining partner 3 should be melted with the process beam 2. The average power of the process laser or the process beam 2 is, however, also absorbed in the process area 21 of the joining partner 3, so that there is a rise in temperature there. The heat flows away from the process area 21 by heat diffusion, so that a process environment 22 is formed. A heating temperature gradient that is smaller than the joining temperature gradient is thus also formed from the process area 21 to the edge of the process environment 22. In particular, the temperature in the entire process environment 22 is increased or at least equal to the temperature of the joining partner 3 outside the joining environment 12 and the process environment 22.
Wenn der Prozessbereich 21 und der Fügebereich 11 nahe genug aneinander platziert sind, dann überlappen die ausgebildeten Prozessumgebung 22 und Fügeumgebung 12. Dadurch wird erreicht, dass im Bereich des Überlapps 4 der Fügepartner 3 eine höhere Temperatur aufweist, als wenn keine Prozessumgebung 22 ausgebildet werden würde. Somit weist insbesondere die Fügeumgebung 12 im Bereich des Überlapps 4 nun eine erhöhte Temperatur auf, so dass der Fügetemperaturgradient vom Fügebereich 11 zum Rand der Fügeumgebung 12 im Bereich des Überlapps 4 künstlich verringert wurde. Durch den geringeren Fügetemperaturgradienten kann so eine Materialspannung 6 abgebaut werden. Gleichzeitig weist der Fügepartner 3 einen gesamten Temperaturgradienten auf, der sich nun vom Fügebereich 11 zum Rand des Prozessbereichs 21 erstreckt, so dass die Temperaturabnahme im Schnitt über einen größeren Bereich erfolgt. If the process area 21 and the joining area 11 are placed close enough to one another, the formed process environment 22 and joining environment 12 overlap. This ensures that the joint partner 3 has a higher temperature in the area of the overlap 4 than if no process environment 22 were formed . The joining area 12 in particular now has an increased temperature in the area of the overlap 4, so that the joining temperature gradient from the joining area 11 to the edge of the joining area 12 in the area of the overlap 4 has been artificially reduced. Due to the lower joining temperature gradient, material stress 6 can thus be reduced. At the same time, the joining partner 3 has an entire temperature gradient, which now extends from the joining area 11 to the edge of the process area 21, so that the temperature decrease takes place over a larger area on average.
Insbesondere können die Rollen des Füge- und des Prozesslasers mutatis mutandis vertauscht werden.
Weiterhin kann in einer Ausführungsform auch der Prozessstrahl 2 den Prozessbereich 21 zumindest teilweise aufschmelzen und so den in der Fügeumgebung 11 aufgeschmolzenen Bereich erweitern beziehungsweise eine zentrale Modifikation erweitern. In particular, the roles of the joining and process lasers can be reversed mutatis mutandis. Furthermore, in one embodiment, the process beam 2 can also at least partially melt the process area 21 and thus expand the area melted in the joining environment 11 or expand a central modification.
In Figur 1A ist gezeigt, dass im Fügebereich 11 beziehungsweise im Prozessbereich 21 die Intensitäten der Füge- beziehungsweise Prozessstrahlen am größten sind. Im Unterschied zum Prozessstrahl 2 ist der Fügestrahl 1 allerdings intensiv genug, um den Fügepartner 3 nahe der Grenzfläche 5 zu schmelzen, so dass mit sukzessiver Ultrakurzpulsabsorption das Schmelzzentrum in Richtung Grenzfläche 5 wandert, die Schmelze dort austritt und über die Grenzfläche 5 zum gegenüberliegenden Fügepartner 3 propagiert, mit dem die Schmelze dann beim Abkühlen eine feste Verbindung eingeht. In FIG. 1A it is shown that in the joining area 11 or in the process area 21, the intensities of the joining or process beams are greatest. In contrast to process beam 2, however, the joining beam 1 is intense enough to melt the joining partner 3 near the interface 5, so that with successive ultrashort pulse absorption the melt center moves towards the interface 5, the melt exits there and via the interface 5 to the opposite joining partner 3 propagated, with which the melt then forms a firm bond when it cools.
In einer Ausführungsform des Verfahrens haben die eingesetzten Prozess- und Fügelaser eine verstimmbare Wellenlänge im Bereich von 200nm bis 5000nm. Aufgrund des Wellenlängenbereiches, der über den optisch sichtbaren Bereich hinausgeht, gilt in einerweiteren Ausführungsform alles als Glas, was für die gewählte Laserwellenlänge transparent ist. Die Repetitionsraten liegen dabei zwischen Dauerstrichbestrahlung, 100Hz und 50MHz. Ebenso sind auch Bursts denkbar, wobei die Repetitionsrate der Pulse im Burst zwischen 1 MHz und 50GHz liegen kann. Die Laserpulse sind zwischen 10fs und 50ps lang. Die Laserstrahlen werden außerdem so fokussiert, dass eine Fluenz in der Fokuszone von mehr als 10mJ/cm2 erreicht werden kann. Typischerweise liegt die Modifikationsschwelle der Fügepartner zwischen 1 J/cm2 und 5J/cm2. Um die Festigkeit der Schweißung zu erhöhen können zum Beispiel die Pulsenergien auch zeitlich moduliert werden. In one embodiment of the method, the processing and joining fibers used have a tunable wavelength in the range from 200 nm to 5000 nm. Because of the wavelength range that goes beyond the optically visible range, in a further embodiment everything is considered to be glass that is transparent for the selected laser wavelength. The repetition rates are between continuous wave irradiation, 100Hz and 50MHz. Bursts are also conceivable, the repetition rate of the pulses in the burst being between 1 MHz and 50 GHz. The laser pulses are between 10fs and 50ps long. The laser beams are also focused in such a way that a fluence in the focus zone of more than 10 mJ / cm 2 can be achieved. The modification threshold of the joining partners is typically between 1 J / cm 2 and 5 J / cm 2 . In order to increase the strength of the weld, for example, the pulse energies can also be modulated over time.
In Figur 1 B sind in Draufsicht die Fügeumgebung 12 und die Prozessumgebung 22 gezeigt. Durch den Wärmetransport vom Prozessbereich 21 beziehungsweise Fügebereich 11 aus bilden sich die Prozessumgebung 22 und die Fügeumgebung 12 aus, so dass diese im Überlapp 4 überlappen. Im Überlapp 4 widerfährt der Fügeumgebung 12 eine Temperaturerhöhung. Sollte im Überlapp 4 eine Materialspannung wegen des starken Temperaturgradienten um den Fügebereich 11 entstanden sein oder entstehen, dann kann diese durch den zusätzlichen Heizvorgang verringert werden, so dass es zu keinem Riss oder Sprung im Fügepartner kommt. In FIG. 1 B, the joining environment 12 and the process environment 22 are shown in a top view. As a result of the heat transport from the process area 21 or the joining area 11, the process environment 22 and the joining environment 12 are formed so that they overlap in the overlap 4. In the overlap 4, the joining area 12 experiences a temperature increase. If material tension should have arisen or arise in the overlap 4 because of the strong temperature gradient around the joining area 11, then this can be reduced by the additional heating process so that there is no crack or crack in the joining partner.
Figur 2 zeigt, dass für einen Ort der Fügestrahl 1 und der Prozessstrahl 2 zu unterschiedlichen Zeiten auftreffen können. Insbesondere ist gezeigt, dass die Intensität I eines Prozesspulses unterschiedlich zur Intensität des Fügepulses sein kann. Insbesondere ist außerdem gezeigt, dass
der Prozessstrahl sowohl nach dem Fügepuls (Abszissenachse zeigt in positive Richtung), als auch vor dem Fügepuls (Abszissenachse zeigt in negative Richtung) im Fügepartner auftreffen kann.FIG. 2 shows that the joining beam 1 and the process beam 2 can strike at different times for one location. In particular, it is shown that the intensity I of a process pulse can be different from the intensity of the joining pulse. In particular, it is also shown that the process beam can hit the joining partner both after the joining pulse (the abscissa axis points in the positive direction) and before the joining pulse (the abscissa axis points in the negative direction).
Figur 3A zeigt, wie sich durch eine entsprechende Ausbildung des Prozessstrahls 2 ein zentraler Spot 23 und ein weiterer Prozessbereich 24 zum eigentlichen Prozessbereich 21 zusammensetzen. Im darunter gezeigten Intensitätsprofil ist gezeigt, dass sich der zentrale Spot 23 und der weitere Prozessbereich 24 aus verschiedenen Strahlprofilen zusammensetzen kann. So ist die Intensitätsverteilung des zentralen Spots 23 auf einen deutlich kleineren Bereich verteilt, als die des weiteren Prozessbereichs 24. FIG. 3A shows how a central spot 23 and a further process area 24 are combined to form the actual process area 21 through a corresponding design of the process beam 2. The intensity profile shown below shows that the central spot 23 and the further process area 24 can be composed of different beam profiles. The intensity distribution of the central spot 23 is thus distributed over a significantly smaller area than that of the further process area 24.
In Figur 3B ist gezeigt, dass der weitere Prozessbereich 24 auch aus einer höheren Mode bestehen kann, insbesondere aus Gauß-, Bessel- und oder Laguerre-Gauß-Moden. FIG. 3B shows that the further process area 24 can also consist of a higher mode, in particular of Gauss, Bessel and / or Laguerre-Gauss modes.
In Figur 4 ist ein Prozessstrahl 2 gezeigt, der im ersten Fügepartner 3 so fokussiert ist, dass der zentrale Spot 23 des Prozessstrahls 2 an der Grenzfläche 5 des ersten Fügepartners in Strahlrichtung liegt. Der Fügebereich 11 des Fügestrahls 1 (nicht gezeigt) kann mit dem zentralen Spot 23 zusammenfallen. Longitudinal versetzt dazu befinden sich die weiteren Prozessbereiche 24 in dem Fügepartner 3 und nicht an der Oberfläche. Dadurch werden Materialspannungen 6, die von der Grenzfläche 5 in den Fügepartner 3 laufen, vermindert. FIG. 4 shows a process beam 2 which is focused in the first joining partner 3 in such a way that the central spot 23 of the process beam 2 lies at the interface 5 of the first joining partner in the direction of the beam. The joining area 11 of the joining beam 1 (not shown) can coincide with the central spot 23. The further process areas 24 are located longitudinally offset in relation to this in the joining partner 3 and not on the surface. As a result, material stresses 6 which run from the interface 5 into the joining partner 3 are reduced.
In Figur 5 ist eine Ausführungsform des Verfahrens gezeigt, bei welcher der Prozessstrahl 2 um den Fügestrahl 1 herum bewegt wird. Der Fügestrahl 1 sitzt dabei im Ursprung des Koordinatensystems, um zu verdeutlichen, dass sich eventuelle Symmetrien der Prozessstrahltrajektorie auf den momentanen Ort des Fügestrahls 1 beziehen. Insbesondere ist der Zeitpfeil so dargestellt, dass er sowohl in positive als auch zu negativen Zeiten zeigt. Das soll an dieser Stelle symbolisieren, dass die Richtung der Bewegung frei wählbar ist, so dass beispielsweise Bewegungen im Uhrzeigersinn oder gegen den Uhrzeigersinn ermöglicht werden.FIG. 5 shows an embodiment of the method in which the process beam 2 is moved around the joining beam 1. The joining beam 1 is located at the origin of the coordinate system in order to make it clear that any symmetries of the process beam trajectory relate to the current location of the joining beam 1. In particular, the time arrow is shown in such a way that it points to both positive and negative times. This is intended to symbolize at this point that the direction of the movement can be freely selected, so that, for example, clockwise or counterclockwise movements are possible.
In Figur 6, umfassend Figuren 6A, 6B und 6C, werden verschiedene mögliche Bewegungen des Prozessstrahls 2 gezeigt, nämlich kreisförmig 6A, achtförmig 6B und linear 6C. In allen hier gezeigten Varianten bewegt sich der Prozessstrahl 2 relativ zum Fügestrahl 1 . Die verschiedenen Formen können beispielsweise mit einem akusto-optischen Deflektor erzeugt werden. Beim Durchgang des Prozessstrahls durch einen akusto-optischen Deflektor wird dieser periodisch beispielsweise in x- und y- Richtung abgelenkt. Durch Wahl der Frequenz derx-Ablenkung und y- Ablenkung und phasenrichtige Überlagerung der periodischen Ablenkungen, können so mit dem Prozessstrahl 2 Lissajous-Figuren erzeugt werden.
In Figur 7A wird eine Ausführungsform des Verfahrens gezeigt, bei dem der Fügestrahl 1 mit einem Vorschub entlang der x-Achse bewegt wird. Der Vorschub ist beispielsweise in der Größenordnung zwischen 10pm/s und 1 m/s. Gleichzeitig wird der Prozessstrahl 2 währenddessen kreisförmig um den Fügestrahl 1 bewegt. Es ergibt sich eine sogenannte Wobbelfigur aus der Prozessstrahltrajektorie, durch die eine gleichmäßige Temperierung der Fügeumgebung 12 ermöglicht wird. Analog dazu ist in Figur 7B eine Ausführungsform gezeigt, bei der sich der Prozessstrahl relativ zum Fügestrahl linear entlang der y-Achse auf und ab bewegt. Dadurch ergibt sich eine Sägezahnkurve der Prozessstrahltrajektorie. Es sei weiter darauf hingewiesen, dass in der gezeigten Ausführungsform der Prozessstrahl 2 dem Fügestrahl 1 hinterherläuft. In FIG. 6, comprising FIGS. 6A, 6B and 6C, various possible movements of the process beam 2 are shown, namely circular 6A, figure-of-eight 6B and linear 6C. In all the variants shown here, the process beam 2 moves relative to the joining beam 1. The different shapes can be produced, for example, with an acousto-optic deflector. When the process beam passes through an acousto-optic deflector, it is periodically deflected, for example in the x and y directions. By choosing the frequency of the x-deflection and y-deflection and superimposing the periodic deflections in the correct phase, 2 Lissajous figures can be generated with the process beam. In FIG. 7A, an embodiment of the method is shown in which the joining beam 1 is moved with a feed along the x-axis. The feed is, for example, of the order of magnitude between 10 pm / s and 1 m / s. At the same time, the process beam 2 is moved in a circle around the joining beam 1. A so-called wobble figure results from the process beam trajectory, by means of which a uniform temperature control of the joining environment 12 is made possible. Analogously to this, FIG. 7B shows an embodiment in which the process beam moves linearly up and down relative to the joining beam along the y-axis. This results in a sawtooth curve of the process beam trajectory. It should also be pointed out that in the embodiment shown, the process beam 2 follows the joining beam 1.
In Figur 8 ist eine Ausführungsform gezeigt, bei der dem Fügestrahl 1 je zwei Prozessstrahlen 2 vorlaufen und je zwei Prozessstrahlen 2 nachlaufen. Die Prozessstrahlen 2 bewegen sich dabei auf Trajektorien um den Fügestrahl 1 , die aus einer achtförmigen Bewegung stammen. FIG. 8 shows an embodiment in which two process beams 2 each precede the joining beam 1 and two process beams 2 each follow. The process beams 2 move on trajectories around the joining beam 1, which originate from a figure-eight movement.
In Figur 9 ist eine weitere Ausführungsform gezeigt, bei der je zwei Prozessstrahlen 2 vor- und je zwei Prozessstrahlen 2 dem Fügestrahl 1 nachlaufen. Die Prozessstrahlen 2 sind dabei symmetrisch um den Fügestrahl 1 platziert, so dass ein symmetrischer Temperaturgradient um den Fügebereich 11 realisiert werden kann. Des Weiteren haben die Prozessstrahlen 2 eine geringere Intensität als der Fügestrahl, beispielsweise je 10% der Fügestrahlintensität, was durch den kleineren Durchmesser der Prozessstrahlen in der Figur gekennzeichnet ist. A further embodiment is shown in FIG. 9, in which two process beams 2 each lead in front of the joining beam 1 and two process beams 2 each follow the joining beam 1. The process beams 2 are placed symmetrically around the joining beam 1, so that a symmetrical temperature gradient around the joining area 11 can be implemented. Furthermore, the process beams 2 have a lower intensity than the joining beam, for example 10% each of the joining beam intensity, which is characterized by the smaller diameter of the process beams in the figure.
Die dem Fügestrahl 1 nachlaufenden Prozessstrahlen 2 können durch die dem eigentlichen Fügevorgang nachfolgende Erhitzung des Materials beim Fügevorgang etwaig aufgetretene Materialfehler, wie Verspannungen oder Risse, an die Umgebung angleichen. Beispielsweise können auch durch den Fügevorgang entstandene Risse in einem oder beiden der Fügepartner dadurch ausgeglichen werden, dass das jeweilige Material in den Riss fließt und ihn so verschließt.The process beams 2 that follow the joining beam 1 can adjust any material defects, such as tension or cracks, to the surroundings due to the heating of the material following the actual joining process during the joining process. For example, cracks in one or both of the joining partners caused by the joining process can also be compensated for by the fact that the respective material flows into the crack and thus closes it.
Soweit anwendbar, können alle einzelnen Merkmale, die in den Ausführungsbeispielen dargestellt sind, miteinander kombiniert und/oder ausgetauscht werden, ohne den Bereich der Erfindung zu verlassen.
Bezuaszeichenliste As far as applicable, all of the individual features shown in the exemplary embodiments can be combined with one another and / or exchanged without departing from the scope of the invention. Reference list
I Fügestrahl I joining beam
I I Fügebereich 12 Fügeumgebung 2 Prozessstrahl I I joining area 12 joining environment 2 process beam
21 Prozessbereich 21 Process area
22 Prozessumgebung22 Process environment
23 zentraler Spot 23 central spot
24 weiterer Prozessbereich 3 Fügepartner 24 further process area 3 joining partners
4 Überlapp 4 overlap
5 Grenzfläche 5 interface
6 Materialspannung
6 material tension
Claims
Ansprüche Expectations
1 . Verfahren zum Fügen von zwei Fügepartnern (3) mittels ultrakurzer Laserpulse eines Fügestrahls, bevorzugt zum Fügen von mindestens einem für die Laserpulse im Wesentlichen transparenten Fügepartner mit einem weiteren Fügepartner, besonders bevorzugt zum Fügen von zwei für die Laserpulse transparenten Fügepartnern, wobei ein ultrakurze Laserpulse umfassender Fügestrahl (1) zum lokalen Aufschmelzen eines Fügebereichs (11) in die Fügepartner (5) eingebracht wird, dadurch gekennzeichnet, dass ein Prozessbereich (21) mit mindestens einem Prozessstrahl (2) erhitzt wird, wobei der Fügestrahl (1) und der Prozessstrahl (2) so nebeneinander platziert werden, dass sich der Fügebereich (11) und der Prozessbereich (21) räumlich nicht überlappen und/oder wobei der Fügestrahl (1) und der Prozessstrahl (2) so ausgebildet sind, dass sich die Laserpulse des Prozessstrahls (2) und des Fügestrahls (1) zeitlich nicht überlappen. 1 . Method for joining two joining partners (3) by means of ultrashort laser pulses of a joining beam, preferably for joining at least one joining partner that is essentially transparent for the laser pulses with another joining partner, particularly preferably for joining two joining partners that are transparent for the laser pulses, with one ultrashort laser pulse being more comprehensive Joining beam (1) for local melting of a joining area (11) is introduced into the joining partners (5), characterized in that a process area (21) is heated with at least one process beam (2), the joining beam (1) and the process beam ( 2) are placed next to each other in such a way that the joining area (11) and the process area (21) do not spatially overlap and / or the joining beam (1) and the process beam (2) are designed so that the laser pulses of the process beam (2 ) and the joining beam (1) do not overlap in time.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Prozessstrahl (2) ultrakurze Laserpulse oder Dauerstrichstrahlung umfasst, wobei der Fügestrahl (1) und der mindestens eine Prozessstrahl (2) bevorzugt von unterschiedlichen Lasern erzeugt werden und besonders bevorzugt der Fügestrahl (1) von einem Ultrakurzpulslaser erzeugt wird und der Prozessstrahl (2) von einem Kurzpulslaser oder einem Dauerstrichlaser erzeugt wird. 2. The method according to claim 1, characterized in that the process beam (2) comprises ultrashort laser pulses or continuous wave radiation, the joining beam (1) and the at least one process beam (2) preferably being generated by different lasers and particularly preferably the joining beam (1) is generated by an ultrashort pulse laser and the process beam (2) is generated by a short pulse laser or a continuous wave laser.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der mindestens eine Prozessstrahl (2) einen zentralen Spot (23) und mindestens einen weiteren Prozessbereich3. The method according to claim 1 or 2, characterized in that the at least one process beam (2) has a central spot (23) and at least one further process area
(24) umfasst. (24) includes.
4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Profil des zentralen Spots (23) und/oder der weitere Prozessbereich des mindestens einen Prozessstrahls (2) Gauß-förmig, oder Bessel-förmig oder Laguerre-Gauß-förmig, oder als Superposition aus den vorgenannten, ausgebildet ist. 4. The method according to any one of the preceding claims, characterized in that the profile of the central spot (23) and / or the further process area of the at least one process beam (2) Gaussian, or Bessel-shaped or Laguerre-Gaussian, or is designed as a superposition of the aforementioned.
5. Verfahren nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass der mindestens eine weitere Prozessbereich (24) des mindestens einen Prozessstrahls (2) mindestens eine höhere Beugungsordnung umfasst.
6. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass der zentrale Spot (23) und der mindestens eine weitere Prozessbereich (24) des mindestens einen Prozessstrahls (2) longitudinal versetzt sind. 5. The method according to any one of claims 3 or 4, characterized in that the at least one further process area (24) of the at least one process beam (2) comprises at least one higher order of diffraction. 6. The method according to any one of claims 3 to 5, characterized in that the central spot (23) and the at least one further process area (24) of the at least one process beam (2) are offset longitudinally.
7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Strahlform des mindestens einen Prozessstrahls (2) mittels einer strahlformenden Einheit und/oder mittels eines räumlichen Lichtmodulators und/oder mittels eines diffraktiven Elements und/oder mittels eines akusto-optischen Deflektors generiert wird. 7. The method according to any one of the preceding claims, characterized in that the beam shape of the at least one process beam (2) is generated by means of a beam-shaping unit and / or by means of a spatial light modulator and / or by means of a diffractive element and / or by means of an acousto-optical deflector becomes.
8. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der mindestens eine Prozessstrahl (2) um den Fügestrahl (1) bewegt wird. 9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Bewegung des mindestens einen Prozessstrahls (2) kreisförmig oder achtförmig ist, oder die Trajektorie der Bewegung aus zwei sich berührenden Kreisen oder ähnlichen Geometrien besteht.8. The method according to any one of the preceding claims, characterized in that the at least one process beam (2) is moved around the joining beam (1). 9. The method according to claim 8, characterized in that the movement of the at least one process beam (2) is circular or figure-eight, or the trajectory of the movement consists of two touching circles or similar geometries.
10. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass im Falle einer Bewegung des Fügestrahls (1) der mindestens eine Prozessstrahl (2) dem Fügestrahl (1) vorläuft oder nachläuft, oder parallel oder mit einem seitlichen Versatz zum10. The method according to any one of the preceding claims, characterized in that in the case of a movement of the joining beam (1) the at least one process beam (2) precedes or follows the joining beam (1), or parallel or with a lateral offset to
Fügestrahl (1) läuft. Joining beam (1) runs.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass ein Prozessstrahl (2) und ein Fügestrahl (1) vorgesehen sind, und die Strahlen gleiche Strahlintensitäten aufweisen. 11. The method according to claim 10, characterized in that a process beam (2) and a joining beam (1) are provided, and the beams have the same beam intensities.
12. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass dem Fügestrahl (1) zwei Prozessstrahlen (2) vorweglaufen und zwei Prozessstrahlen (2) hinterherlaufen und dass die Prozessstrahlen (2) symmetrisch um den Fügestrahl (1) angeordnet sind. 12. The method according to claim 10, characterized in that two process beams (2) run in front of the joining beam (1) and two process beams (2) follow it and that the process beams (2) are arranged symmetrically around the joining beam (1).
13. Verfahren nach einem der Ansprüche 10 oder 12, dadurch gekennzeichnet, dass die Prozessstrahlen (2) jeweils etwa ein Zehntel der Intensität des Fügestrahls (1) aufweisen. 13. The method according to any one of claims 10 or 12, characterized in that the process beams (2) each have approximately one tenth the intensity of the joining beam (1).
14. Verfahren nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass die Bewegung des mindestens einen Prozessstrahls (2) mittels eines akusto-optischen14. The method according to any one of claims 8 to 12, characterized in that the movement of the at least one process beam (2) by means of an acousto-optical
Deflektors und/oder einer Scanner-Einheit und/oder eines Mikro-Scanners erzeugt wird. Deflector and / or a scanner unit and / or a micro-scanner is generated.
15. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Prozessstrahl (2) den Prozessbereich (21) nicht aufschmilzt.
15. The method according to any one of the preceding claims, characterized in that the process beam (2) does not melt the process area (21).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102019128251.9A DE102019128251A1 (en) | 2019-10-18 | 2019-10-18 | Method for joining two joining partners using ultra-short laser pulses |
DE102019128251.9 | 2019-10-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021074427A1 true WO2021074427A1 (en) | 2021-04-22 |
Family
ID=73014484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2020/079279 WO2021074427A1 (en) | 2019-10-18 | 2020-10-16 | Method for joining two joining partners by means of ultra-short laser pulses |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102019128251A1 (en) |
WO (1) | WO2021074427A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113560580A (en) * | 2021-07-08 | 2021-10-29 | 中国科学院力学研究所 | Laser repairing method and device for metal parts |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004058485A1 (en) * | 2002-12-27 | 2004-07-15 | Laserquipment Ag | Method and device for welding thermoplastic material shaped parts, particularly for contour-welding three-dimensional shaped parts |
US20070051706A1 (en) * | 2005-09-08 | 2007-03-08 | Imra America, Inc. | Transparent material processing with an ultrashort pulse laser |
US20150273624A1 (en) | 2014-03-31 | 2015-10-01 | Aisin Seiki Kabushiki Kaisha | Laser joining method, laser-joined component, and laser joining apparatus |
US20160318122A1 (en) | 2014-01-17 | 2016-11-03 | Imra America, Inc. | Laser-based modification of transparent materials |
US9625713B2 (en) | 2011-01-10 | 2017-04-18 | UNIVERSITé LAVAL | Laser reinforced direct bonding of optical components |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4222296B2 (en) * | 2004-11-22 | 2009-02-12 | 住友電気工業株式会社 | Laser processing method and laser processing apparatus |
DE102015112537A1 (en) * | 2015-07-15 | 2017-01-19 | Laserline Gesellschaft für Entwicklung und Vertrieb von Diodenlasern mbH | Optical device for shaping laser radiation |
CN109909601A (en) * | 2017-12-13 | 2019-06-21 | 京东方科技集团股份有限公司 | A kind of laser-processing system and method |
-
2019
- 2019-10-18 DE DE102019128251.9A patent/DE102019128251A1/en active Pending
-
2020
- 2020-10-16 WO PCT/EP2020/079279 patent/WO2021074427A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004058485A1 (en) * | 2002-12-27 | 2004-07-15 | Laserquipment Ag | Method and device for welding thermoplastic material shaped parts, particularly for contour-welding three-dimensional shaped parts |
US20070051706A1 (en) * | 2005-09-08 | 2007-03-08 | Imra America, Inc. | Transparent material processing with an ultrashort pulse laser |
US8314359B2 (en) | 2005-09-08 | 2012-11-20 | Imra America, Inc. | Methods and systems for laser welding transparent materials with an ultrashort pulsed laser |
US9625713B2 (en) | 2011-01-10 | 2017-04-18 | UNIVERSITé LAVAL | Laser reinforced direct bonding of optical components |
US20160318122A1 (en) | 2014-01-17 | 2016-11-03 | Imra America, Inc. | Laser-based modification of transparent materials |
US20150273624A1 (en) | 2014-03-31 | 2015-10-01 | Aisin Seiki Kabushiki Kaisha | Laser joining method, laser-joined component, and laser joining apparatus |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113560580A (en) * | 2021-07-08 | 2021-10-29 | 中国科学院力学研究所 | Laser repairing method and device for metal parts |
Also Published As
Publication number | Publication date |
---|---|
DE102019128251A1 (en) | 2021-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102015104411B4 (en) | Laser beam joining process and laser processing optics | |
WO2019197298A1 (en) | Method for the laser welding of transparent workpieces, and associated laser machining tool | |
EP2915785B1 (en) | Method for laser-induced joining of a vitreous joining partner with another joining partner using ultrashort laser pulses | |
DE19715537C2 (en) | Method and device for cutting flat workpieces made of brittle material, especially glass | |
WO2020254639A1 (en) | Method and device for processing a workpiece with a processing beam composed of at least two beam profiles | |
EP4387805A1 (en) | Device and method for processing a workpiece | |
WO2022122251A1 (en) | Laser machining of a material using a gradient filter element | |
EP1479506B1 (en) | Laser welding method for structured plastics | |
WO2020108960A1 (en) | Butt-joint welding method using a ukp laser beam, and optical element assembled from individual parts | |
WO2021074427A1 (en) | Method for joining two joining partners by means of ultra-short laser pulses | |
EP4210896A1 (en) | Method for separating a workpiece | |
DE102018120011A1 (en) | Welding method for connecting a transparent, aluminum oxide-containing first substrate to an opaque second substrate | |
EP4076828A1 (en) | Method for laser material machining and laser-machining installation | |
WO2020109029A1 (en) | Method for laser welding an optical fiber in a hole element using a ukp laser beam, and corresponding optical element | |
DE102004027229B4 (en) | Method for welding workpieces made of aluminum or an aluminum alloy | |
DE102008022142B3 (en) | Method for welding of aluminum diecast articles connected with one another along a joining zone of its contact zone, by subjecting thermal energy to pulsed focused laser radiation in the zone on two primary and secondary beam spots | |
WO2020254615A1 (en) | Method and device for processing a workpiece with a highly dynamic movement of the laser beam between different spatial regions | |
WO2020109080A1 (en) | Method for butt-joint welding two workpieces by means of an ultrashort pulse laser beam, and associated optical element | |
DE102020123540A1 (en) | Device and method for joining at least two joining partners | |
DE19756110C1 (en) | Separating glass solder joints | |
DE102020105505A1 (en) | Process for laser welding two coated workpieces | |
DE102020133629A1 (en) | Process for joining at least two joining partners | |
WO2022017892A2 (en) | Method for joining at least two joining partners | |
WO2022018069A2 (en) | Apparatus and method for joining at least two joining partners | |
WO2023001730A1 (en) | Method for joining at least two joining partners |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20797056 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20797056 Country of ref document: EP Kind code of ref document: A1 |