EP3883709A1 - Verfahren zum herstellen eines bauteils aus metall oder werkstoffen der technischen keramik - Google Patents

Verfahren zum herstellen eines bauteils aus metall oder werkstoffen der technischen keramik

Info

Publication number
EP3883709A1
EP3883709A1 EP19805277.1A EP19805277A EP3883709A1 EP 3883709 A1 EP3883709 A1 EP 3883709A1 EP 19805277 A EP19805277 A EP 19805277A EP 3883709 A1 EP3883709 A1 EP 3883709A1
Authority
EP
European Patent Office
Prior art keywords
component
green body
sintering
post
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19805277.1A
Other languages
English (en)
French (fr)
Inventor
Thomas Meissner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samson AG
Original Assignee
Samson AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samson AG filed Critical Samson AG
Publication of EP3883709A1 publication Critical patent/EP3883709A1/de
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/18Formation of a green body by mixing binder with metal in filament form, e.g. fused filament fabrication [FFF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63408Polyalkenes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63432Polystyrenes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6346Polyesters
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63464Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63468Polyamides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • component properties at the upper limit of the values that are possible today can usually be achieved by producing and using ceramic powders with high chemical purity and with a particularly small crystallite size. These powders are processed into a green body with the lowest possible binder content under high pressures.
  • One goal is to maintain a high green density and, due to the low binder content ( ⁇ 5%), to create as few or small pores as possible during the subsequent debinding.
  • high-quality components can also be produced using the injection molding process if the pressure during injection molding is correspondingly high.
  • processes such as uniaxial pressing or cold isostatic pressing are preferably used.
  • Isostatic pressing is a pressing process in which the pressing pressure acting on the component is the same in all directions.
  • the isostatic process uses an elastic sleeve around the green body.
  • further processing of this compact by turning or milling is usually necessary.
  • mainly cylindrical molds are used as molds for the pressing process, since geometrically optimized molds would require additional mold construction. Through this mostly only a rough preform, depending on the geometry of the desired component, requires a relatively high “machining effort”, which leads to corresponding losses of the ceramic powder material used.
  • Additive manufacturing processes in particular various 3D printing processes, have been developed for the material classes plastic and metals in recent years until they are ready for series production. With these processes, both customer-specific individual parts (e.g. crowns and bridges made of CrCo alloys in the dental sector) and sample parts ("fast prototyping”) can be manufactured in one-off production.
  • the bodies made of ceramic materials which are produced using the 3D printing process, have to be processed further by sintering at suitable higher temperatures with a corresponding volume shrinkage.
  • An exception to this are components made of silicon in filtered silicon carbide (SiSiC), also called reaction-bonded silicon carbide (RbSiC). These parts no longer experience any significant shrinkage during the actual sintering process, since the pores present after debinding are filled with molten silicon.
  • the mechanical properties in the sintered ceramic final state of the components produced by means of 3D printing processes are lower than those for a technical application Mechanical components required and usual values of a high-performance ceramic, which can be achieved with the above-mentioned conventional manufacturing processes.
  • oxide-ceramic materials include aluminum oxide AI 2 O 3 in various degrees of purity, zirconium oxide ZrÜ2 with various stabilizing additives and the mixed materials ATZ (alumina toughened zirconia) or ZTA (zirconia toughened alumina).
  • SSiC sintered Silicon Nitride
  • S13N4 sintered Silicon Nitride
  • thermoplastic processes T3DP and FFF require particularly high proportions of additives.
  • green densities of up to 55% and thus sintered densities of 99.4% are achieved. With other methods, these values are significantly lower.
  • the ceramic powder is always brought into the desired shape without pressure or at low pressure.
  • the production without external pressure after debinding of the manufactured components leads to a structure with a relatively high pore content and a low green density.
  • These green bodies with a relatively low green density have a relatively high proportion of pores and can subsequently not or only to a very limited extent be processed into a ceramic body with a very high sintered density and very good mechanical properties.
  • filigree and thin-walled components are mostly produced using 3D printing with ceramic materials.
  • the components often also have internal structures that cannot be produced by other processes.
  • the wall thicknesses range from 0.5 mm to a maximum of 6 mm.
  • relatively solid components In contrast to the ceramic components that can already be produced using 3D printing processes, relatively solid components with wall thicknesses over 6 mm are required for many applications. These components are usually relatively solid and are in the size range of 20 x 20 x 20 mm to 300 x 300 x 300 mm. There are no complex internal structures, but the wall thicknesses are in the range of 6 to 35 mm.
  • Such solid ceramic parts are produced in the prior art by isostatic pressing of the raw powder and subsequent processing of the green body on lathes and milling machines. This is followed by debinding and sintering with a linear combustion shrinkage of about 20%. In the hard-fired state, grinding is usually still required to achieve the required tolerances and surface qualities. Due to the machining of an isostatically pressed full body required in such a conventional manufacture of a ceramic machine component, depending on the geometry, up to 80% of the ceramic material has to be removed and disposed of.
  • EP 1 534 461 B1 a 3D object is used to build a metallic object without the addition of a binder. Compaction is achieved when the component is built up in layers by compressing each layer with a pressure roller.
  • EP 1 292 413 B1 shows an alternative solution for sintered parts with 98-99% of the theoretical maximum density by adding sugar to the sintered powder in connection with a particular process sequence.
  • the object of the invention is to provide a method which enables the production of solid components made of metal or materials of technical ceramics with sintered densities above 99%.
  • a method with the following steps is proposed: First, a mixture of a binder and a ceramic or sintered metallurgical powder is produced. This mixture must be suitable for the additive manufacturing of a green body from the mixture. If the mixture is available, a green body is created using additive manufacturing. This is then isostatically compressed to achieve a more homogeneous density distribution and a higher green density. The redensification can take place in the green state or in partially or completely debindered or in a slightly sintered state. Then the densified component is sintered.
  • green bodies produced according to the invention are post-compressed using an isostatic pressing process before the sintering process.
  • the additive manufacturing enables a very precise and material-saving production of the green body.
  • the additive manufacturing enables a near-net-shape production of the raw body and accordingly less material is used.
  • components can be produced in an efficient manner from materials of technical ceramics or sintered metals.
  • These include e.g. Valve body, valve cone seat rings, valve balls, wear protection sleeves or similar for process control.
  • the isostatic pressing is carried out in the form of Nassostatic pressing.
  • the body produced in an additive process during the recompression before the penetration of the liquid pressure medium during the nasostatic pressing protect, it is preferably covered with an elastic sleeve before the nasostatic pressing.
  • the elastic sleeve must be designed as a double-walled hose.
  • the green body produced in an additive process can be coated with an expandable lacquer prior to isostatic pressing.
  • Stretchable plastic-based paints e.g. polyurethane-based paints
  • Such painting can be done in a simple immersion process.
  • the varnish is preferably removed before sintering. This is preferably done by chemical dissolving.
  • the green body is preferably at least partially removed after the additive manufacturing and before the isostatic post-compression.
  • the binder is preferably removed almost completely.
  • the component can be deblocked a second time and further after compression, but before sintering.
  • this lacquer Before sintering, this lacquer will be removed again by pyrolysis or by means of a solvent. Depending on the type of paint used, water or organic solvents are suitable as solvents.
  • the varnish is preferably removed by thermal treatment between 20 ° C and 650 ° C. In principle, this process corresponds to the "debinding" of the plasticizer / binder of the ceramic green body that has already been carried out. Debinding must, however, be carried out much more slowly, since the resulting gases have to escape from the component through very small pore channels, while the coating is only on the surface.
  • the outer edges of the component can have radii
  • the foils are thick enough and stretchable enough to close on edges to stay;
  • the organic binders When the ceramic green body is heated, the organic binders are expelled or oxidized and expelled in the range between room temperature and about 600 ° C.
  • the component does not change its external shape, but is made easier by the escape of the substances. This reduces the macroscopic density of the body and creates a pore volume.
  • the actual sintering process begins through liquid phase formation or solid diffusion only at a higher temperature (depending on the material) of around 800 - 1,000 ° C. During this sintering process, the entire body becomes smaller (ceramic shrinkage) and the pore volume is reduced. The macroscopically measurable density of the body increases. If one stops this sintering process shortly after the onset of shrinkage, one speaks of sintering.
  • the ceramic component When debinding and sintering, the ceramic component always has a state in which organic binder components have been completely expelled, but there is still no firm ceramic bond. Nevertheless, the component does not fall apart in the firing process.
  • the object is also achieved by a component which was produced using the method described and which has a pore fraction of less than 1% of the volume after sintering.
  • the coating remains at least partially on the component, the remaining coating can enable or improve a function of the component, in particular through a hydrophilic or oleophilic or electrically conductive or electrically insulating property of the coating.
  • the method described is suitable, among other things. for the production of wear protection sleeves, valve seat rings, valve bodies or valve housing parts.
  • FIG. 3 shows a seat ring for a ball
  • Fig. 4 shows a recirculating ball sleeve
  • Fig. 5 is a wear protection sleeve.
  • 1A and 2B show two preferred processes of the proposed method for producing a component from, for example, a technical ceramic.
  • step 100 a mixture of a binder and a ceramic or sintered tallurgical granulate is produced.
  • ABS acrylonitrile butadiene styrene
  • PLA Polyactide - polyactid acid
  • PVA polyvinyl alcohol
  • TPE thermoplastic elastomers
  • a green body is then produced additively from the mixture.
  • the green body often has about 50 +/- 15% of the maximum achievable density of the ceramic end material.
  • the binder is wholly or partly removed from the green body by pyrolysis or another method.
  • the ceramic green body is heated, the organic binders are expelled or oxidized and expelled in the range between room temperature and about 600 ° C.
  • the component does not change its external shape, but is made easier by the escape of the substances. This reduces the macroscopic density of the body and creates a pore volume.
  • the actual sintering process begins through liquid phase formation or solid-state diffusion only at a higher temperature (depending on the material) of around 800 - 1,000 ° C.
  • the ceramic component When debinding and sintering, the ceramic component always has a state in which organic binder components have been completely expelled, but there is still no solid ceramic bond. Nevertheless, the component does not fall apart in the firing process.
  • the green body is lightly sintered in order to further stabilize it.
  • a thermal process step is required between the production of the green body by one of the various additive processes and the post-compression of the component by isostatic pressing and how far the body should be debinded or even sintered depends on the type of 3D printing process selected and from the residual porosity still present in the green body and the type of binder and plasticizer system used. You cannot specify a fixed number for a residual volume share of binder here. The redensification takes place in the green state or in partially or completely debindered or in a slightly sintered state.
  • the green body is packed or coated in a watertight manner. This can be done by vacuuming 145 in a suitable plastic film (made of PE or PP or other plastics) or by immersing 140 in a suitable lacquer.
  • This coating is intended to prevent the hydraulic fluid from penetrating into the pores. This is typically done using varnishes based on elastic plastic that shows no cracking, e.g. Polyurethane-based paints.
  • the stretchable varnish is applied sufficiently thick.
  • the paint is applied thicker at the edges, which prevents the paint layer from tearing open during subsequent isostatic compaction.
  • the thicker application of paint on unbroken edges is set automatically if the application of paint is carried out in the dipping process.
  • This coating process also enables the isostatic pressing of bodies with finer inner contours or (transverse) bores.
  • step 150 a cold nasostatic pressing of the green body follows with a pressure fluid.
  • the green body After pressing, the green body usually has a density of approximately 55 +/- 15% of the maximum achievable density of the ceramic end material.
  • step 160 the waterproof cover is removed.
  • This can be in use a coating or a varnish by pyrolysis or by means of a solvent, in the case of vacuumed blanks the covering can be removed mechanically.
  • step 170 the green body is further debindered. This is done either by pyrolysis or by means of a solvent.
  • step 180 the green body is finally sintered.
  • the component should preferably have a density of more than 98% of the maximum achievable density of the ceramic end material.
  • step 190 the surfaces are possibly subsequently finished, for example by grinding, sandblasting or machining.
  • FIG. 3 shows a seat ring for a ball
  • Fig. 4 shows a recirculating ball sleeve
  • Fig. 5 is a wear protection sleeve.
  • Additive manufacturing also popularly known as 3D printing, refers to processes for manufacturing components by means of point-by-layer or layer-by-layer construction.
  • the production takes place on the basis of computer-aided models of the components made of formless (liquids, gels / pastes, powder, etc.) or form-neutral (band, wire, sheet) material by means of chemical and / or physical processes.
  • Binder or binder are substances that adhere added solids with a fine degree of division (e.g. powder). Binders are usually added to the fillers to be joined in liquid or pasty form. Both substances are mixed intensively so that they are evenly distributed and all particles of the filler are evenly wetted with the binder.
  • the main difference from the FFF process is that instead of filaments, granules are used as the raw material. This means that commercially available raw materials from the injection molding sector can be used.
  • FFF Fused Filament Fabrication
  • FFF for short, also called Fused Filament Manufacturing
  • FFF is a 3D printing process that uses an endless filament made of a thermoplastic material. This is guided by a large spool through a movable, heated printer extruder head. Melted material is pressed out of the nozzle of the print head and placed on the growing workpiece. The head is moved under computer control to define the printing form. Typically, the head moves in layers, moving in two dimensions to deposit one horizontal plane at a time, before moving up slightly to start a new disk.
  • ceramic or sintered metallurgical powder has to be introduced into a filament beforehand. By inserting it into a plasticizing filament, almost all ceramic materials can be processed. Relatively simple and inexpensive printing machines can be used. Green body
  • a green body or green body is an unsintered blank that is still easy to machine.
  • it is powder bonded with binders.
  • the green bodies are dimensioned in such a way that they shrink almost completely to the final shape when they burn.
  • Isostatic post-compression is a pressing process in which the pressing pressure acting on the component is the same in all directions. This method is well suited for small parts with high isotropy and even compression, and is also inexpensive for demanding prototypes and production in small series.
  • Nasostatic post-compression is isostatic post-compression, in which the pressure is transmitted through a liquid, preferably through water.
  • the mold enveloping the compact is completely immersed in the pressure medium (e.g. water) and removed from the pressure medium for demolding. 3D extrusion process
  • the plastic ceramic mass is pressed through an extruder through a 3D movable nozzle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

Es wird ein Verfahren zum Herstellen eines Bauteils aus Werkstoffen der technischen Keramik oder sintermetallurgischen Werkstoffen mit den folgenden Schritten vorgeschlagen: Zunächst wird ein Gemisch aus einem Binder und einem keramischen oder sintermetallurgischen Granulat hergestellt(100). Dieses Gemisch muss für die additive Fertigung eines Grünkörpers aus dem Gemisch geeignet sein. Steht das Gemisch zur Verfügung, wird ein Grünkörper mittels additiver Fertigung erzeugt(110). Dieser wird anschließend in grünem Zustand oder in ganz oder teilweise entbindertem Zustand oder in leicht angesintertem Zustand isostatisch nachverdichtet (150). Anschließend wird das nachverdichtete Bauteil gesintert (180).Durch die Erhöhung der Dichte vor dem eigentlichen Sinterprozess (180) sowie die durch das isostatische Pressen(150) zusätzlich erfolgende Homogenisierung der Dichteverteilung lassen sich im anschließenden Sinterprozess höhere Sinterdichten und deutlich verbesserte Eigenschaftswerte bezüglich Festigkeit und weiterer Parameter erreichen.

Description

Verfahren zum Herstellen eines Bauteils aus Metall oder Werkstoffen der technischen Keramik
Beschreibung
Gebiet der Erfindung
Produkte aus Werkstoffen der technischen Keramik können heutzutage sehr gute und reproduzierbare Festigkeitswerte und andere Eigenschaften erreichen, die den Einsatz der kera- mischen Bauteile im Maschinenbau, in der Medizintechnik oder anderen Anwendungsgebieten ermöglich.
Bauteileigenschaften an der oberen Grenze der heute möglichen Werte lassen sich bei keramischen Bauteilen üblicherweise dadurch erreichen, dass keramische Pulver mit hoher che mischer Reinheit und mit einer besonders geringen Kristallitgröße hergestellt und verwendet wer- den. Diese Pulver werden mit möglichst geringem Bindergehalt unter hohen Drücken zu einem Grünkörper verarbeitet. Ein Ziel dabei ist es, eine hohe Gründichte zu erhalten und durch den geringen Bindergehalt (< 5%) beim anschließend notwendigen Entbindern möglichst wenige bzw. kleine Poren entstehen zu lassen.
Trotz eines höheren Gehaltes an organischen Bindern können auch mit dem Spritzguss- verfahren hochwertige Bauteile hergestellt werden, wenn der Druck beim Spritzgießen entspre chend hoch ist.
Zur Herstellung solcher hochwertigen keramischen Bauteile werden vorzugsweise Ver fahren wie uniaxiales Pressen oder kalt isostatisches Pressen eingesetzt.
Beim uniaxialen Pressen wird der Pressdruck nur in eine Richtung auf den Körper ausge- übt. Das uniaxiale Pressen benötigt einen hohen Aufwand für Werkzeuge.
Das isostatische Pressen ist ein Pressvorgang, bei dem der auf das Bauteil wirkende Pressdruck in alle Richtungen gleich groß ist. Das isostatische Verfahren verwendet eine elasti sche Hülle um den Grünkörper. Je nach Geometrie ist meistens eine weitere Bearbeitung dieses Presskörpers durch Drehen oder Fräsen erforderlich. Bei kleinen Losgrößen werden als Formen für den Pressvorgang überwiegend zylindrische Pressformen verwendet, da geometrisch opti mierte Pressformen jeweils einen zusätzlichen Formenbau erfordern würden. Durch diese meist nur grobe Vorform ist je nach Geometrie des gewünschten Bauteils ein relativ hoher„Zer spanungs-Aufwand“ erforderlich, der zu entsprechenden Verlusten des eingesetzten kerami schen Pulver-Materials führt.
Additive Fertigungsverfahren, im Besonderen verschiedene 3D Druck Verfahren, sind für die Werkstoffklassen Kunststoff und Metalle in den letzten Jahren bis zur Serienreife entwickelt worden. Mit diesen Verfahren können sowohl kundenspezifische Einzelteile (z.B. Kronen und Brücken aus CrCo-Legierungen im Dentalbereich) als auch Musterteile („fast prototyping“) in Ein zelfertigung hergestellt werden.
Für die Werkstoffklasse Keramik wird seit einiger Zeit versucht, das 3D Druck Verfahren ebenfalls mit einer Vielzahl unterschiedlicher Herstellverfahren zu etablieren. Als Beispiele seien das Lithographie-Verfahren (LCM), das suspensionsbasierte Verfahren DLP, der Thermoplast druck T3DP, das pulverbasierte Verfahren (Binder Jetting), das selektive Lasersintern (SLS), das Fused Filament Fabrication Verfahren (FFF) genannt.
Mit den additiven 3D Verfahren für keramische Werkstoffe lassen sich wie bei metallischen oder thermoplastischen Werkstoffen hochkomplexe Strukturen hersteilen, die mit anderen Pro duktionsverfahren nicht realisiert werden können.
Die im 3D Druck Verfahren hergestellten Körper aus keramischen Werkstoffen müssen durch Sintern bei geeigneten höheren Temperaturen unter Vollzug einer entsprechenden Volu men-Schwindung weiterverarbeitet werden. Eine Ausnahme davon sind Bauteile aus Siliciumin filtriertem Siliciumcarbid (SiSiC), auch reaktionsgebundenes Siliciumcarbid (RbSiC) genannt. Diese Teile erfahren beim eigentlichen Sintervorgang keine nennenswerte Schwindung mehr, da hier die nach dem Entbindern vorhandenen Poren durch schmelzflüssiges Silicium aufgefüllt wer den.
Das 3D-Drucken von Bauteilen führt zu Problemen beim anschließenden Sintern, da ei nerseits der hohe Binderanteil (von 20 - 40 Vol.%) nur sehr langsam ausgetrieben werden kann, und der nach der Entbinderung zurückbleibende Rohkörper einen entsprechend hohen Porenan teil hat. Zu schnelles Entbindern kann zur Rissbildung während dieses Vorgangs führen, wenn die entstehenden Gase des Entbinderungsvorgangs nicht auseichend schnell aus dem Inneren des Bauteils durch den Formkörper nach außen abgeleitet werden können. Auf Grund des hohen Porenanteils nach dem Entbindern lässt sich das Bauteil beim anschließenden Sintern nicht oder nur sehr bedingt zu einem homogenen Körper mit sehr hoher Dichte sintern. Zum Erreichen best möglicher Eigenschaftswerte sind aber Sinterdichten von > 99% erforderlich. Typische Fehlerbil der sind Rißbildungen durch zu schnelles Entbindern oder niedrige mechanische Kennwerte im gesinterten Zustand durch Restporosität. Dieser Effekt bei 3-D gedruckten keramischen Bauteilen tritt umso deutlicher auf, je größer die Wandstärke des hergestellten Bauteils ist.
Die mechanischen Eigenschaften im gesinterten keramischen Endzustand liegen bei den mittels 3D Druck Verfahren hergestellten Bauteilen unter den für eine technische Anwendung als Maschinenbauelemente erforderlichen und üblichen Werten einer Hochleistungskeramik, die mit den oben genannten konventionellen Herstellungsverfahren erreicht werden.
Diese Betrachtungen gelten in gleichem Maße für Bauteile aus oxidkeramischen Werkstoffen als auch für Bauteile aus nichtoxidischen Werkstoffen. Als typische Vertreter der Oxidkeramik zählen Aluminiumoxid AI2O3 in verschieden Reinheitsgraden, Zirkonoxid ZrÜ2 mit verschiedenen Stabilisierungszusätzen sowie die Mischwerkstoffe ATZ ( Alumina toughened Zirconia) o- der ZTA ( Zirconia toughened Alumina). Als Vertreter der Nichtoxid-Keramiken sei hier stellvertretend SSiC ( Sintered Silicon Carbide) und S13N4 ( Sintered Silicon Nitride) genannt, jeweils in verschiedenen Reinheitsgraden und Phasenmodifikationen sowie mit verschiedenen Sinteradditiven.
Bei den 3D Druck Verfahren von keramischen Werkstoffen müssen die pulverförmigen Rohstoffe mit verschieden Additiven versetzt werden, um die jeweiligen Druckverfahren zu ermöglichen. Bei den thermoplastischen Verfahren T3DP und FFF sind besonders hohe Anteile an Additiven erforderlich. Beim Lithographie-Verfahren werden auf Grund des niedrigen Bindergehaltes gemäß Literaturangaben Gründichten von bis zu 55% und damit Sinterdichten von 99,4% erreicht. Bei anderen Verfahren liegen diese Werte deutlich niedriger.
Das keramische Pulver wird bei allen bekannten additiven Herstellungsverfahren immer drucklos oder mit niedrigem Druck in die gewünschte Form gebracht. In Kombination mit dem hohen Anteil an (meist organischen) Additiven führt die Herstellung ohne äußeren Druck nach dem Entbindern der hergestellten Bauteile zu einer Struktur mit relativ hohem Porenanteil und einer niedrigen Gründichte. Diese Grünkörper mit relativ niedriger Gründichte haben einen relativ hohen Porenanteil, und lassen sich anschließend nicht oder nur sehr bedingt zu einem keramischen Körper mit sehr hoher Sinterdichte und sehr guten mechanischen Eigenschaften verarbeiten.
Die meisten anderen keramischen Herstellverfahren (uniaxiales Pressen, isostatisches Pressen, Hochdruckgießen, Spritzgießen, u.a.) arbeiten mit hohen Drücken bei der Formgebung und einem möglichst niedrigen Anteil an organischen Bindern, um nach dem Sinterprozess hohe Sinterdichten, ein homogenes und feinkristallines Gefüge und gute mechanische Eigenschaften zu erreichen.
Im 3D Druck Verfahren mit keramischen Werkstoffen werden heutzutage meistens filigrane und dünnwandige Bauteile hergestellt. Oft haben die Bauteile auch innere Strukturen, die durch andere Verfahren nicht herstellbar sind. Die Wandstärken liegen im Bereich von 0,5 mm bis maximal 6 mm.
Im Gegensatz zu den heute bereits mit 3D Druckverfahren herstellbaren keramischen Bauteilen sind für viele Anwendungen relativ massive Bauteile mit Wandstärken über 6 mm erforderlich. Diese Bauteile sind meist relativ massiv und liegen im Größenbereich von 20 x 20 x 20 mm bis 300 x 300 x 300 mm. Komplexe innere Strukturen sind nicht vorhanden, die Wand stärken liegen aber im Bereich von 6 bis 35 mm.
Stand der Technik
Solche massiven keramischen Teile werden im Stand der Technik durch isostatisches Pressen des Rohpulvers und anschließende Bearbeitung des Grünkörpers auf Drehmaschinen und Fräsmaschinen hergestellt. Anschließend erfolgen das Entbindern und die Sinterung mit ei ner linearen Brennschwindung von etwa 20%. Im hartgebrannten Zustand ist meistens noch eine Schleifbearbeitung erforderlich, um die geforderten Toleranzen und Oberflächengüten zu errei chen. Durch die bei einer solchen konventionellen Herstellung eines keramischen Maschinen bauteils erforderliche Zerspanung eines isostatisch gepressten Vollkörpers muss je nach Geo metrie bis zu 80% des Keramikmaterials abgespant und entsorgt werden.
In der US 2018/104743 A1 erfolgt eine Verdichtung des Sinterpulvers durch gesteuerte Druckwellen, die von Aktuatoren erzeugt werden.
In der EP 1 534 461 B1 wird durch eine 3D-Druck-Technik ein metallisches Objekt ohne Zusatz eines Binders aufgebaut. Eine Verdichtung wird beim schichtweisen Aufbau des Bauteils erzielt, indem jede Schicht mit einer Druckrolle verdichtet wird.
EP 1 292 413 B1 zeigt eine alternative Lösung für Sinterteile mit 98-99% der theoretisch maximalen Dichte durch Zugabe von Zucker zum Sinterpulver in Verbindung mit einem beson deren Prozessablauf.
Aufgabe
Aufgabe der Erfindung ist es, ein Verfahren anzugeben, das das Herstellen von massiven Bauteilen aus Metall oder Werkstoffen der technischen Keramik mit Sinterdichten oberhalb von 99% ermöglicht.
Lösung
Diese Aufgabe wird durch den Gegenstand des unabhängigen Anspruchs gelöst. Vorteil hafte Weiterbildungen des Gegenstands des unabhängigen Anspruchs sind in den Unteransprü chen gekennzeichnet. Der Wortlaut sämtlicher Ansprüche wird hiermit durch Bezugnahme zum Inhalt dieser Beschreibung gemacht.
Die Verwendung der Einzahl soll die Mehrzahl nicht ausschließen, was auch im umgekehr ten Sinn zu gelten hat, soweit nichts Gegenteiliges offenbart ist.
Im Folgenden werden einzelne Verfahrensschritte näher beschrieben. Die Schritte müssen nicht notwendigerweise in der angegebenen Reihenfolge durchgeführt werden, und das zu schil dernde Verfahren kann auch weitere, nicht genannte Schritte aufweisen.
Zur Lösung der Aufgabe wird ein Verfahren mit den folgenden Schritten vorgeschlagen: Zunächst wird ein Gemisch aus einem Binder und einem keramischen oder sintermetallurgi schen Pulver hergestellt. Dieses Gemisch muss für die additive Fertigung eines Grünkörpers aus dem Gemisch geeignet sein. Steht das Gemisch zur Verfügung, wird ein Grünkörper mittels ad ditiver Fertigung erzeugt. Dieser wird anschließend zum Erreichen einer homogeneren Dichte verteilung und einer höheren Gründichte isostatisch nachverdichtet. Die Nachverdichtung kann in grünem Zustand oder in teilweise oder vollständig entbindertem oder in leicht angesintertem Zustand erfolgen. Anschließend wird das nachverdichtete Bauteil gesintert.
D.h. um das Ziel einer Erhöhung der Gründichte und eine Verringerung der Porosität nach dem Sinterprozess zu erreichen, werden erfindungsgemäß additiv hergestellte Grünkörper vor dem Sinterprozess mit einem isostatischen Pressverfahren nachverdichtet.
Das Verfahren bietet eine Vielzahl von Vorteilen:
- Durch die Erhöhung der Dichte vor dem eigentlichen Sinterprozess sowie die durch das isostatische Pressen zusätzlich erfolgende Homogenisierung der Dichteverteilung lassen sich im anschließenden Sinterprozess höhere Sinterdichten und deutlich verbesserte Eigenschaftswerte bezüglich Festigkeit und weiterer Parameter erreichen. Dies gilt im Besonderen für die (Bie- gebruch-)Festigkeit und daraus resultierende Werte wie z.B. die Temperaturschockbeständigkeit.
- Die additive Fertigung ermöglicht eine sehr exakte und materialsparende Herstellung des Grünkörpers. Durch die additive Fertigung wird eine endkonturnahe Herstellung des Rohkörpers möglich und entsprechend weniger Material verbraucht.
- Durch das zusätzliche Nachverdichten vor dem Sinterprozess werden die Werkstoffeigen schaften der Bauteile verbessert.
- Das bei konventioneller Herstellung nötige spanende Abtragen von bis zu 80% des Mate rials wird vermieden.
- Im Stand der Technik sind die mechanischen Kennwerte von mittels 3D-Druck Verfahren hergestellter Keramik-Bauteile schlechter als die Werte von konventionell gefertigten Keramik- Bauteilen. Dies ist unter anderem auf eine größere Porosität zurückzuführen. Diesem Nachteil wird durch die erfindungsgemäße Weiterbehandlung der in additiver Fertigung hergestellten Grünkörper abgeholfen.
- Durch den Einsatz des isostatischen Pressverfahrens entfällt die aufwändige Herstellung von spezifischen Presswerkzeugen für uniaxiales Pressen.
Mit dem erfindungsgemäßen Verfahren können auf effiziente Weise Bauteile aus Werkstof fen der technischen Keramik oder der Sintermetalle hergestellt werden. Dazu zählen z.B. Ventil körper, Ventilkegel Sitzringe, Ventilkugeln, Verschleißschutzhülsen oder ähnliches für eine Pro zesssteuerung.
Erfindungsgemäß wird das isostatische Pressen in Form von nassisostatischem Pressen durchgeführt. Um den in einem additiven Verfahren hergestellten Körper beim Nachverdichten vor dem Eindringen des flüssigen Druckmediums während des nassisostatischen Pressens zu schützen, wird er vor dem nassisostatischen Pressen vorzugsweise mit einer elastischen Hülle wasserdicht ummantelt.
Dies erfolgt auf besonders einfache Weise mittels einer Kunststoffhülle, die evakuiert wird. Dazu bieten sich handelsübliche Vakuumierverfahren an, mittels derer der Grünkörper in Folie wasserdicht eingeschweißt werden kann. Das Vakuumierverfahren ist in der Lebensmitteltechnik weit verbreitet, kann aber auch für technische Gegenstände verwendet werden.
Ist das herzustellende Bauteil ring- oder rohrförmig, muss die elastische Hülle als doppel wandiger Schlauch ausgebildet werden.
Zusätzlich kann der in einem additiven Verfahren hergestellte Grünkörper vor dem isostati schen Pressen mit einem dehnungsfähigen Lack überzogen werden. Dazu eignen sich insbeson dere dehnungsfähige Lacke auf Kunststoffbasis (z.B. Lacke auf Polyurethanbasis). Eine solche Lackierung kann in einem einfachen Tauchvorgang erfolgen.
Damit der Lack bei Sintern nicht vorkohlt oder verbrennt und Rus und Rauch erzeugt, was das Bauteil beeinträchtigen könnte, wird der Lack vorzugsweise vor dem Sintern entfernt. Dies geschieht vorzugsweise durch chemisches Lösen.
Zur Verbesserung der Homogenität und Dichte des Bauteils wird der Grünkörpers nach der additiven Fertigung und vor dem isostatischen Nachverdichten vorzugsweise zumindest teilwei ses entbindert. Vorzugsweise wird der Binder fast vollständig entfernt.
Um die Homogenität und Dichte des Bauteils weiter zu erhöhen, kann das Bauteil nach dem Verdichten, aber vor dem Sintern, ein zweites Mal und weitergehend entbindert werden.
Vor dem Sintern wird dieser Lack durch Pyrolyse oder mittels eines Lösemittels wieder ent fernt werden. Als Lösemittel eignen sich je nach Art des verwendeten Lacks Wasser oder orga nische Lösungsmittel. Der Lack wird vorzugsweise durch eine thermische Behandlung zwischen 20°C und 650°C entfernt. Dieser Vorgang entspricht prinzipiell dem bereits vorher durchgeführten „Entbindern“ der Plastifizierer/Binder des keramischen Grünlings. Das Entbindern muss aber deutlich langsamer durchgeführt werden, da die entstehenden Gase aus dem Bauteil durch sehr kleine Porenkanäle entweichen müssen, während die Lackhülle nur an der Oberfläche ist.
Damit die verschweißte Folie bzw. der Lack beim isostatischen Pressen nicht an den Kan ten des Bauteils aufreißen, können folgende Maßnahmen vorgesehen werden:
a) die Außenkanten des Bauteils können Radien aufweisen;
b) die Folien sind dick genug und ausreichend dehnungsfähig, um an Kanten geschlossen zu bleiben;
c) der dehnungsfähige Lack wird ausreichend dick aufgetragen;
d) der Lackauftrag erfolgt an den Kanten dicker; oder
e) es werden eine zweite Schicht Lack aufgetragen oder zwei elastische Hüllen übereinan der eingesetzt.
Es ist auch denkbar, die Lage des Bauteils in der vakuumierten und verschweißten Folie derart zu optimieren, dass möglichst keine Ecken in die Folie ragen.
Beim Erhitzen des keramischen Grünkörpers werden im Bereich zwischen Raumtempera tur und etwa 600° C die organischen Bindemittel ausgetrieben bzw. oxidiert und ausgetrieben. Dabei verändert das Bauteil seine äußere Form nicht, wird aber durch das Entweichen der Stoffe leichter. Dadurch reduziert sich die makroskopische Dichte des Körpers und es entsteht ein Po renvolumen. Erst bei einer höheren Temperatur von (werkstoffabhängig) etwa 800 - 1 .000°C be ginnt der eigentliche Sinterprozess durch Flüssigphasenbildung oder Festkörperdiffusion. Bei die sem Sintervorgang wird der Gesamtkörper kleiner (keramische Schwindung) und das Porenvo lumen reduziert sich. Dabei erhöht sich die makroskopisch messbare Dichte des Körpers. Wenn man diesen Sintervorgang kurz nach dem Einsetzen der Schwindung wieder abbricht, spricht man von ansintern.
Das keramische Bauteil hat beim Entbindern und Sintern also immer einen Zustand, bei dem organische Binderanteile vollständig ausgetrieben sind, aber noch keine feste Keramische Bindung vorliegt. Dennoch fällt das Bauteil im Brennprozess nicht auseinander.
Die Aufgabe wird auch gelöst durch ein Bauteil, das mit Hilfe des beschriebenen Verfahrens hergestellt wurde und nach dem Sintern einen Porenanteil kleiner als 1 % des Volumens hat.
Verbleibt die Beschichtung zumindest teilweise auf dem Bauteil kann die verbleibende Be schichtung eine Funktion des Bauteils ermöglichen oder verbessern, insbesondere durch eine hydrophile oder oleophile oder elektrisch leitend oder elektrisch isolierend Eigenschaft der Be schichtung.
Das beschriebene Verfahren eignet sich u.a. zur Herstellung von Verschleißschutzhülsen, Ventilsitzringen, Ventilkörpern oder Ventilgehäuseteilen.
Weitere Einzelheiten und Merkmale ergeben sich aus der nachfolgenden Beschreibung von bevorzugten Ausführungsbeispielen in Verbindung mit den Figuren. Hierbei können die jeweiligen Merkmale für sich alleine oder zu mehreren in Kombination miteinander verwirklicht sein. Die Möglichkeiten, die Aufgabe zu lösen, sind nicht auf die Ausführungsbeispiele beschränkt. So um fassen beispielsweise Bereichsangaben stets alle - nicht genannten - Zwischenwerte und alle denkbaren Teilintervalle.
Ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens ist in den Figuren schema tisch dargestellt. Im Einzelnen zeigt:
Fig. 1A einen Ablaufplan des vorgeschlagenen Verfahrens;
Fig. 1 B einen Ablaufplan des vorgeschlagenen Verfahrens;
Fig. 2 eine Verschleißschutzhülse;
Fig. 3 einen Sitzring für eine Kugel;
Fig. 4 eine Kugelumlaufhülse; und
Fig. 5 eine Verschleißschutzhülse.
Die Fig. 1 A und 2B zeigen zwei bevorzugte Abläufe des vorgeschlagenen Verfahrens zum Herstellen eines Bauteils aus beispielsweise einer technischen Keramik.
In Schritt 100 wird ein Gemisch aus einem Binder und einem keramischen oder sinterme tallurgischen Granulat hergestellt.
Für das„3D-Drucken“ werden je nach angewendetem Verfahren unterschiedliche Aufbe reitungsformen des keramischen Rohstoffes und des Bindersystems erforderlich:
Filamente oder Pellets für Extrusionsverfahren
Pulver für Schmelzverfahren
Resin (Harz) & Wachs für Druckverfahren mit flüssigen Materialien
Als Binder zur Herstellung des jeweiligen Vormaterial für die verschiedenen 3D-Druck Verfahren werden unter anderem folgende Polymere und Thermoplaste verwendet:
ABS (Acrylnitril-Butadien-Styrol)
PLA (Polyactide - polyactid acid) - Polymilchsäure
Nylon (Polyamid)
PC (Polycarbonat)
PP (Polypropylen)
PVA (Polyvinylalkohol)
TPE (Thermoplastische Elastomere)
- XT-Copolyester
Die Liste ist nicht vollständig, andere Polymere und Thermoplaste sind ebenfalls möglich.
In Schritt 1 10 wird anschließend ein Grünkörper additiv aus dem Gemisch gefertigt. Der Grünkörper hat in diesem Stadium oft etwa 50 +/- 15 % der maximal erreichbaren Dichte des keramischen Endmaterials. ln Schritt 120 wird der Binder durch Pyrolyse oder ein anderes Verfahren ganz oder teil weise aus dem Grünkörper entfernt. Beim Erhitzen des keramischen Grünkörpers werden im Be reich zwischen Raumtemperatur und etwa 600° C die organischen Bindemittel ausgetrieben bzw. oxidiert und ausgetrieben. Dabei verändert das Bauteil seine äußere Form nicht, wird aber durch das Entweichen der Stoffe leichter. Dadurch reduziert sich die makroskopische Dichte des Kör pers und es entsteht ein Porenvolumen. Erst bei einer höheren Temperatur von (werkstoffabhän gig) etwa 800 - 1 .000°C beginnt der eigentliche Sinterprozess durch Flüssigphasenbildung oder Festkörperdiffusion. Bei diesem Sintervorgang wird der Gesamtkörper kleiner (keramische Schwindung) und das Porenvolumen reduziert sich. Dabei erhöht sich die makroskopisch mess bare Dichte des Körpers. Wenn man diesen Sintervorgang kurz nach dem Einsetzen der Schwin dung wieder abbricht, spricht man von ansintern.
Das keramische Bauteil hat beim Entbindern und Sintern also immer einen Zustand, bei dem organische Binderanteile vollständig ausgetrieben sind, aber noch keine feste Keramische Bin dung vorliegt. Dennoch fällt das Bauteil im Brennprozess nicht auseinander.
In Schritt 130 wird der Grünkörper leicht angesintert, um ihn weiter zu stabilisieren. Ob zwi schen der Herstellung des Grünkörpers durch eines der verschiedenen additiven Verfahren und das Nachverdichten des Bauteils durch isostatisches Pressen ein thermischer Prozessschritt er forderlich ist und wie weit der Körper dabei entbindert oder gar angesintert werden soll, hängt von der Art des gewählten 3D-Druck Verfahrens und der im Grünkörper noch vorhandenen Restpo rosität und der Art des verwendeten Binder- und Plastifizierer-System ab. Man kann hier keine feste Zahl zu einem Restvolumenanteil Binder angeben. Die Nachverdichtung erfolgt in grünem Zustand oder in teilweise oder vollständig entbindertem oder in leicht angesintertem Zustand.
In Schritt 140 bzw. 145 wird der Grünkörper wasserdicht verpackt oder beschichtet. Dies kann durch Vakuumieren 145 in einer geeigneten Kunststofffolie (aus PE oder PP oder anderen Kunststoffen) erfolgen oder durch Eintauchen 140 in einen geeigneten Lack. Diese Beschichtung soll vermeiden, dass die Druckflüssigkeit in die Poren eindringt. Hierzu dienen typischerweise Lacke basierend auf elastischem Kunststoff, der keine Rissbildung aufzeigt, z.B. Lacke auf Po lyurethanbasis. Der dehnungsfähige Lack wird dabei ausreichend dick aufgetragen. Der Lackauf trag erfolgt an den Kanten dicker, wodurch ein Aufreißen der Lackschicht beim anschließenden isostatischen Verdichten vermieden wird. Der dickere Farbauftrag an ungebrochenen Kanten stellt sich automatisch ein, wenn der Farbauftrag im Tauchverfahren erfolgt. Dieses Beschich tungsverfahren ermöglicht auch das isostatische Pressen von Körpern mit feineren Innenkontu ren oder (Quer-) Bohrungen.
In Schritt 150 folgt ein kaltes nassisostatisches Pressen des Grünkörpers mit einer Druck flüssigkeit. Nach dem Pressen hat der Grünkörper meist eine Dichte von etwa 55 +/- 15% der maximal erreichbaren Dichte des keramischen Endmaterials.
Im Schritt 160 wird die wasserdichte Umhüllung entfernt. Dies kann bei der Verwendung einer Beschichtung oder eines Lacks durch Pyrolyse oder mittels eines Lösungsmittels erfolgen, bei vakuumierten Rohlingen kann die Umhüllung mechanisch entfernt werden.
In Schritt 170 wird der Grünkörper weiter entbindert. Dies erfolgt entweder durch Pyrolyse oder mittels eines Lösemittels.
In Schritt 180 wird der Grünkörper schließlich gesintert. Dabei soll das Bauteil möglichst eine Dichte von mehr als 98 % der maximal erreichbaren Dichte des keramischen Endmaterials erreichen.
In Schritt 190 erfolgt ggf. abschließend eine Nachbearbeitung der Oberflächen, etwa durch Schleifen, Sandstrahlen oder spanende Bearbeitung.
Die Fig. 2 bis 7 zeigen Beispiele von Bauteilen, die mit dem vorgeschlagenen Verfahren hergestellt werden können. Die Teile sind relativ dickwandig, und ihre Herstellung mit herkömm licher spanender Bearbeitung würde formbedingt erhebliche Materialverluste mit sich bringen. Im Einzelnen zeigt:
Fig. 2 eine Verschleißschutzhülse;
Fig. 3 einen Sitzring für eine Kugel;
Fig. 4 eine Kugelumlaufhülse; und
Fig. 5 eine Verschleißschutzhülse.
Glossar
additive Fertigung
Additive Fertigung, populär auch als 3D-Druck bezeichnet, bezeichnet Verfahren zur Ferti gung von Bauteilen durch punkt- oder schichtweisen Aufbau. Die Fertigung erfolgt auf der Basis rechnergestützter Modelle der Bauteile aus formlosem (Flüssigkeiten, Gelen/Pasten, Pulver u. ä.) oder formneutralem (band-, drahtförmig, blattförmig) Material mittels chemischer und/oder physi kalischer Prozesse.
Binder
Als Binder oder auch Bindemittel werden Stoffe bezeichnet, die zugesetzte Feststoffe mit einem feinen Zerteilungsgrad (z. B. Pulver) miteinander verkleben. Bindemittel werden meist in flüssiger oder pastöser Form den zu verbindenden Füllstoffen zugesetzt. Beide Stoffe werden intensiv vermischt, damit sie sich gleichmäßig verteilen und alle Partikel des Füllstoffs gleichmä ßig mit dem Bindemittel benetzt werden.
FFD-Verfahren ( Fused Feedstock Deposition)
Der Unterschied zum FFF-Verfahren ist vor allem, dass keine Filamente, sondern Granulate als Rohmaterial eingesetzt werden. Dadurch können kommerziell erwerbbare Rohmassen aus dem Spritzgussbereich verwendet werden.
Fused Filament Fabrication
Fused Filament Fabrication, kurz FFF, auch Fused Filament Manufacturing genannt, ist ein 3D-Druckverfahren, bei dem ein Endlosfilament aus einem thermoplastischen Material verwendet wird. Diese wird von einer großen Spule durch einen beweglichen, beheizten Druckerextruder kopf geführt. Geschmolzenes Material wird aus der Düse des Druckkopfes herausgedrückt und auf dem wachsenden Werkstück abgelegt. Der Kopf wird computergesteuert bewegt, um die Druckform zu definieren. Normalerweise bewegt sich der Kopf in Schichten, wobei er sich in zwei Dimensionen bewegt, um jeweils eine horizontale Ebene abzulagern, bevor er sich leicht nach oben bewegt, um eine neue Scheibe zu beginnen. Bei dem FFF-Verfahren muss keramisches oder sintermetallurgisches Pulver vorher in ein Filament eingebracht werden. Durch das Einbrin gen in ein plastifizierendes Filament können fast alle keramischen Werkstoffe verarbeitet werden. Es können relativ einfache und preisgünstige Druckmaschinen eingesetzt werden. Grünkörper
Als Grünkörper oder Grünling bezeichnet man bei der Herstellung von Sinterwerkstücken einen ungesinterten Rohling, der sich noch leicht bearbeiten lässt. Beispielsweise handelt es sich um mit Bindemitteln verklebtes Pulver. Die Grünkörper sind so bemessen, dass sie durch das Schwinden beim Brennen nahezu die endgültige Form erhalten.
Isostatisches Nachverdichten oder Pressen
Isostatisches Nachverdichten ist ein Pressvorgang, bei dem der auf das Bauteil wirkende Pressdruck in alle Richtungen gleich groß ist. Diese Methode eignet sich gut für kleine Teile mit hoher Isotropie und gleichmäßiger Verdichtung, und ist zudem günstig für anspruchsvolle Proto typen und Fertigung in Kleinserien.
Nassisostatisches Nachverdichten oder Pressen
Nassisostatisches Nachverdichten ist isostatisches Nachverdichten, bei dem der Druck durch eine Flüssigkeit übertragen wird, vorzugsweise durch Wasser. Die den Pressling umhül lende Form wird vollständig in das Druckmedium (z.B. Wasser) eingetaucht und zum Entformen wieder aus dem Druckmedium herausgenommen. 3D-Extrusions-Verfahren
Beim 3D-Extrusions-Verfahren wird die plastische keramische Masse mittels eines Extru ders durch eine 3D-bewegliche Düse gepresst.
zitierte Literatur
zitierte Patentliteratur
US 2018/104743 A1
EP 1 534 461 B1
EP 1 292 413 B1

Claims

Patentansprüche
1 . Verfahren zum Herstellen eines Bauteils aus Metall oder Werkstoffen der technischen Keramik mit folgenden Schritten:
1 .1 Herstellen (100) eines Gemisches aus einem Binder und einem keramischen oder sinterme tallurgischen Granulat;
1 .2 additive Fertigung (1 10) eines Grünkörpers aus dem Gemisch;
1 .3 isostatisches Nachverdichten (150) des Grünkörpers;
1 .4 Sintern (180) des isostatisch nachverdichteten Grünkörpers;
1 .5 wobei für das isostatische Nachverdichten (150) nassisostatisches Nachverdichten eingesetzt wird;
1 .6 wobei der Grünkörper vor dem nassisostatischen Nachverdichten (150) mit einer elastischen
Hülle wasserdicht ummantelt wird;
1 .7 wobei die elastische Hülle eine Kunststoffhülle ist; und
1 .8 wobei die Kunststoffhülle vor dem nassisostatischen Nachverdichten (150) evakuiert wird.
2. Verfahren nach dem vorhergehenden Anspruch,
dadurch gekennzeichnet,
dass für ringförmige oder rohrförmige Bauteile die elastische Hülle als doppelwandiger Schlauch ausgebildet wird.
3. Verfahren nach einem der vorhergehenden Ansprüche,
gekennzeichnet durch
Lackieren (140) des Grünkörpers vor dem isostatischen Pressen (150) mit einem dehnungsfähi gen Lack.
4. Verfahren nach dem vorhergehenden Anspruch,
gekennzeichnet durch
ein Entfernen (160) des Lacks vor dem Sintern.
5. Verfahren nach einem der vorhergehenden Ansprüche,
gekennzeichnet durch,
zumindest teilweises Entbindern (120) des Grünkörpers nach der additiven Fertigung (1 10) und vor dem isostatischen Nachverdichten (150).
6. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch
ein Entbindern (170) des Grünkörpers vor dem Sintern.
7. Verfahren nach einem der beiden vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass das Entbindern (120, 170) durch Pyrolyse oder mittels eines Lösemittels erfolgt.
8. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
8.1 dass das Bauteil derart additiv gefertigt wird, dass Kanten des Bauteils Radien haben; und/o der
8.2 dass der Lack oder die elastische Hülle dick genug und ausreichend dehnungsfähig sind, um während des nassisostatischen Nachverdichtens (150) an Kanten geschlossen zu bleiben; und/oder
8.3 dass der Lackauftrag (140) an den Kanten dicker erfolgt als auf den Flächen des zumindest teilweise entbinderten Grünkörpers; und/oder
8.4 dass zwei Schichten Lack oder zwei elastische Hüllen übereinander eingesetzt werden.
9. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass der Grünkörper vor dem isostatischen Nachverdichten (150) angesintert (130) wird.
10. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die additive Fertigung (1 10) im Fused Filament Fabrication Verfahren erfolgt.
1 1 . Bauteil hergestellt nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass nach dem Sintern der Porenanteil im Bauteil kleiner als 1 % des Volumens ist.
12. Bauteil hergestellt nach Anspruch 3, 6, 7, 8 oder 9,
dadurch gekennzeichnet,
dass eine Beschichtung zumindest teilweise auf dem Bauteil verbleibt und die verbleibende Be schichtung die Funktion des Bauteils ermöglicht oder verbessert, insbesondere durch eine hyd rophile oder oleophile oder elektrisch leitend oder elektrisch isolierend Eigenschaft der Beschich tung.
13. Bauteil hergestellt nach einem der vorhergehenden Verfahrensansprüche,
dadurch gekennzeichnet,
dass es sich bei dem Bauteil um eine Verschleißschutzhülse oder einen Ventilsitzring oder einen Ventilkörper oder ein Ventilgehäuseteil handelt.
EP19805277.1A 2018-11-20 2019-11-15 Verfahren zum herstellen eines bauteils aus metall oder werkstoffen der technischen keramik Pending EP3883709A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018129162.0A DE102018129162A1 (de) 2018-11-20 2018-11-20 Verfahren zum Herstellen eines Bauteils aus Metall oder Werkstoffen der technischen Keramik
PCT/EP2019/081530 WO2020104334A1 (de) 2018-11-20 2019-11-15 Verfahren zum herstellen eines bauteils aus metall oder werkstoffen der technischen keramik

Publications (1)

Publication Number Publication Date
EP3883709A1 true EP3883709A1 (de) 2021-09-29

Family

ID=68583435

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19805277.1A Pending EP3883709A1 (de) 2018-11-20 2019-11-15 Verfahren zum herstellen eines bauteils aus metall oder werkstoffen der technischen keramik

Country Status (3)

Country Link
EP (1) EP3883709A1 (de)
DE (1) DE102018129162A1 (de)
WO (1) WO2020104334A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4001243A1 (de) 2020-11-17 2022-05-25 Element 22 GmbH Verfahren zur herstellung von formkörpern durch sintern
EP4117060A1 (de) * 2021-07-09 2023-01-11 Hochschule Rheinmain University of Applied Sciences Wiesbaden Rüsselsheim Verbessertes verfahren zur herstellung einer polarplatte
CN113909490A (zh) * 2021-09-10 2022-01-11 华中科技大学 一种金属零件及其近净成形方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4227227B2 (ja) * 1998-10-30 2009-02-18 Dowaホールディングス株式会社 Itoスパッタリングターゲットの製造方法
JP2000233299A (ja) * 1999-02-12 2000-08-29 Dowa Mining Co Ltd プレス成形用構造体及び成形方法
US6262150B1 (en) 2000-06-20 2001-07-17 Honeywell International Inc. Aqueous injection molding binder composition and molding process
EP1534461B1 (de) 2002-07-23 2010-06-16 University Of Southern California Herstellung von metallteilen unter verwendung von sis-sintern (sis - selective inhibition of sintering)
JP5778372B2 (ja) * 2005-02-01 2015-09-16 東ソー株式会社 焼結体、スパッタリングターゲット及び成形型並びに焼結体の製造方法
KR101297280B1 (ko) * 2005-02-01 2013-08-16 토소가부시키가이샤 소결체, 스퍼터링 표적 및 성형 금형, 그리고 이것을 이용한 소결체의 제조 방법
US9139893B2 (en) * 2008-12-22 2015-09-22 Baker Hughes Incorporated Methods of forming bodies for earth boring drilling tools comprising molding and sintering techniques
WO2017152094A1 (en) * 2016-03-03 2017-09-08 Veloxint Corporation Methods for creating nanocrystalline articles using additive manufacturing
WO2017180314A1 (en) * 2016-04-14 2017-10-19 Desktop Metal, Inc. Additive fabrication with support structures
DE102016209127A1 (de) * 2016-05-25 2017-11-30 Robert Bosch Gmbh Verfahren und Vorrichtung zum Erzeugen eines Formkörpers
US10744563B2 (en) 2016-10-17 2020-08-18 The Boeing Company 3D printing of an object from powdered material using pressure waves

Also Published As

Publication number Publication date
DE102018129162A1 (de) 2020-05-20
WO2020104334A1 (de) 2020-05-28

Similar Documents

Publication Publication Date Title
WO2020104334A1 (de) Verfahren zum herstellen eines bauteils aus metall oder werkstoffen der technischen keramik
EP2794152B1 (de) Verfahren zur fertigung eines kompakten bauteils sowie mit dem verfahren herstellbares bauteil
DE102007003192B4 (de) Keramischer und/oder pulvermetallurgischer Verbundformkörper und Verfahren zu seiner Herstellung
DE10317473B3 (de) Keramische Gussformen für den Metallguss und deren Herstellungsverfahren
DE10128664A1 (de) Verfahren und Vorrichtung zur Herstellung von keramischen Formförpern
WO2003101647A2 (de) Verfahren zur endkonturnahen herstellung von hochporösen metallischen formkörpern
WO2015055264A2 (de) Verfahren zum herstellen von formkörpern aus reaktionsgebundenem, mit silicium infiltriertem siliciumcarbid und/oder borcarbid und so hergestellter formkörper
EP1056690B1 (de) Verfahren zur herstellung eines stiftheizers
DE102015216802A1 (de) Verfahren zum Herstellen einer Kapsel für ein heiß-isostatisches Pressen
DE19652223C2 (de) Formkörper aus einem Werkstoffverbund, Verfahren zu seiner Herstellung und Verwendung
DE3942666C2 (de)
DE102016220845B4 (de) Verfahren zur Umformung von keramischen und/oder pulvermetallurgischen Grünfolien
WO2021078742A1 (de) Verfahren zur herstellung von formteilen, insbesondere zahnmedizinischen formteilen
EP3524375A1 (de) Verfahren zur herstellung eines porösen formkörpers sowie poröser formkörper
EP1674437B1 (de) Verfahren zur Herstellung von keramischen Formkörpern auf Basis sinterfähiger Pulver
EP3173202A2 (de) Spezial-keramikbauteile
DE3736660A1 (de) Verfahren zur herstellung eines poroesen formkoerpers
DE19809657B4 (de) Verfahren zur Herstellung eines Keramikbauteils
DE102008051622A1 (de) Verfahren und Vorrichtung zur Herstellung eines Erzeugnisses durch Urformen aus flüssigem, breiigem, pastenförmigem, pulverigem, körnigem, festem Material und/oder dessen Kompositionszuständen
EP3173227A1 (de) Freiform-keramikbauteile
DE102008013471A1 (de) Keramische Grünkörper mit einstellbarer Sinterschwindung, Verfahren zu ihrer Herstellug und Anwendung
DE10149793B4 (de) Verfahren zur Herstellung von Sinterkörpern aus einer plastischen Formmasse enthaltend Pulver, Wachs und Lösungsmittel
DE19508959C2 (de) Formkörper aus keramischem, pulvermetallurgischem oder Verbundwerkstoff und Verfahren zu seiner Herstellung
DE212011100068U1 (de) Vorrichtung zur Herstellung eines Erzeugnisses durch Urformen aus flüssigem, breiigem, pastenförmigem, pulverigem, körnigem, festen Material und/oder dessen Kompositionszuständen
DE19728113A1 (de) Verfahren zur Herstellung eines Werkstückprototyps

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210617

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230713

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240322