EP3875636A1 - Procédé d'oxydation électrolytique plasma d'un substrat métallique - Google Patents

Procédé d'oxydation électrolytique plasma d'un substrat métallique Download PDF

Info

Publication number
EP3875636A1
EP3875636A1 EP20160579.7A EP20160579A EP3875636A1 EP 3875636 A1 EP3875636 A1 EP 3875636A1 EP 20160579 A EP20160579 A EP 20160579A EP 3875636 A1 EP3875636 A1 EP 3875636A1
Authority
EP
European Patent Office
Prior art keywords
plateau
voltage
metal substrate
current density
nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20160579.7A
Other languages
German (de)
English (en)
Inventor
Selma Hansal
Wolfgang Hansal
Rudolf Mann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rena Technologies Austria GmbH
Original Assignee
Rena Technologies Austria GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rena Technologies Austria GmbH filed Critical Rena Technologies Austria GmbH
Priority to EP20160579.7A priority Critical patent/EP3875636A1/fr
Priority to PCT/EP2021/055212 priority patent/WO2021175868A1/fr
Publication of EP3875636A1 publication Critical patent/EP3875636A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/024Anodisation under pulsed or modulated current or potential
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/026Anodisation with spark discharge
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires

Definitions

  • the present invention relates to a method for plasma electrolytic oxidation of a metal substrate with the formation of an oxide layer on the surface of the metal substrate, non-metallic nanoparticles being integrated into the oxide layer, the method comprising the steps of providing a metal substrate in a non-metallic nanoparticle-containing electrolyte and applying a pulsed one Tension includes.
  • Plasma electrolytic oxidation is an anodizing process for the oxidation of surfaces of a substrate, which works with high voltages. These high voltages generate electrical flashovers and localized arcs between the substrate and the electrolyte, which create a firmly adhering ceramic layer on the surface of the metal substrate.
  • WO 2010/112914 A1 describes, for example, a plasma-electrolytic oxidation with a passivation step for providing corrosion protection for a substrate.
  • US 6,365,028 B1 describes a method for plasma-electrolytic oxidation of an aluminum alloy in order to produce a protective layer.
  • Such particle-reinforced layers are therefore often rough or inhomogeneous. A strong corrosive attack can also sometimes be observed during anodization instead of a plasma-electrolytic oxidation coating.
  • the nanoparticle-reinforced oxide layers which are produced according to the method according to U.S. 9,677,187 are more homogeneous than those without bipolar pulses, but the quality of the nanoparticle-reinforced oxide layer on the metal substrate is insufficient for certain applications.
  • the object of the present invention is therefore to provide a method for producing nanoparticle-reinforced oxide layers on a metal substrate, with improved homogeneity and increased layer thickness of the nanoparticle-reinforced oxide layer on the metal substrate.
  • a plateau is understood to mean that the voltage or current density is kept essentially constant for a time interval> 0, i.e. that a step or a plateau is kept in the voltage profile.
  • the oxide layer is generated anodically, with particles with a negative zeta potential being integrated.
  • the weakly alkaline electrolytes that are usually used with PEO, there are particles with acidic OH groups on the surface (amorphous SiO 2 , oxidic ceramics) through dissociation of the protons on the surface or, alternatively, through adsorption of OH - ions negatively charged.
  • Nanoparticles made from clay minerals have an intrinsic negative charge due to the aluminate groups they contain.
  • Nanoparticles with negative zeta potential require that the voltage or the current density must first be brought to a first plateau and there either the voltage or the current density must be kept at an essentially constant, positive value. In this phase, the nanoparticles are only attracted to the surface of the metal substrate, but there is no plasma-electrolytic oxidation yet. Thereafter, the voltage must be increased and kept on a second plateau with an essentially constant positive voltage or current density. The voltage or the current density at the second plateau must be higher than at the first plateau, ie the constant positive one The voltage or constant positive current density of the second plateau must be more positive than that of the first plateau. The voltage or current density must also be high enough that plasma electrolytic oxidation occurs. Finally the voltage has to be reduced to a constant negative voltage and brought to a third plateau. The voltage must also be kept constant there. Here, the nanoparticles are repelled and nanoparticles that are not integrated into the oxide layer are repelled by the metal substrate.
  • nanoparticles with negative zeta potential are preferably those with acidic OH groups on the surface which can be negatively charged by dissociation of the protons on the surface or, alternatively, by adsorption of OH - ions.
  • Nanoparticles made from clay minerals have an intrinsic negative charge due to the aluminate groups they contain.
  • step A increasing the voltage to the first plateau, the nanoparticles are electrostatically attracted to the surface of the metal substrate and these adsorb on the surface.
  • step B increasing the voltage to the second plateau, the main deposition of the oxide layer takes place.
  • the homogeneously distributed nanoparticles in step A are incorporated into the oxide layer in step B.
  • step C loose nanoparticles are removed again from the surface by reversing the polarity.
  • Steps A and B can be repeated several times, up to 20 times, before step C occurs.
  • the sequence of steps A, B, optionally also repeated several times, A and B and then C can also be repeated several times.
  • the targeted sequence of steps makes use of the negative zeta potential of the nanoparticles in order to achieve a more homogeneous distribution of the nanoparticles in the oxide layer.
  • the first plateau can have a current density of up to +20 A / dm 2 and / or a voltage of up to +500 V.
  • the current density or voltage is to be selected depending on the metal substrate in such a way that essentially no PEO occurs.
  • the first plateau can have a current density of +1 to +20 A / dm 2 and / or a voltage of +25 V to +500 V, for example.
  • the second plateau can have a current density of up to +40 A / dm 2 and / or a voltage of up to +2000 V.
  • the current density or voltage is to be selected depending on the metal substrate so that PEO occurs.
  • the second plateau can have a current density of +8 to +40 A / dm 2 and / or a voltage of +200 V to +2000 V, for example.
  • the third plateau can have a current density of up to -30 A / dm 2 and / or a voltage of up to -500 V.
  • the current density or voltage should be selected depending on the metal substrate so that non-adsorbed nanoparticles are diffused from the surface.
  • the third plateau can have a current density of -2 A / dm 2 to -30 A / dm 2 and / or a voltage of -30 V to -500 V, for example
  • nanoparticles with negative zeta potential are silicates, pyrogenic silicon dioxide, montmorillonite or bentonite and mixtures thereof.
  • the duration of the first plateau is from 10 ⁇ s to 5,000 ⁇ s.
  • the duration is preferably 500 to 5,000 microseconds for an arrangement of the nanoparticles that is as even as possible.
  • the duration of the second plateau is preferably from 10 microseconds to 2,000 microseconds, particularly preferably from 500 microseconds to 2000 microseconds. This results in a particularly even surface of the oxide layer.
  • the duration of the third plateau can be from 500 microseconds to 10,000 microseconds, for example 5000 microseconds to 10,000 microseconds.
  • the electrolyte preferably has a pH 8, preferably 8 to 11.
  • the process is carried out at a temperature of 2 ° C to 95 ° C, preferably at 10 ° C to 30 ° C.
  • electrolytes for PEO can be used as electrolytes, for example alkaline salt solutions of phosphates, silicates, aluminates, etc.
  • Light metals are preferably used as the metal substrate.
  • Aluminum and alloys of aluminum are particularly suitable.
  • the nanoparticles preferably have a diameter of 1 nm to 10 ⁇ m, preferably 5 nm to 100 nm.
  • the invention describes a novel pulse sequence for plasma-electrolytic oxidation with the incorporation of particles.
  • step duration Current density potential A. up to 5000 ⁇ s up to 20 A / dm2 up to 500 V B. up to 2000 ⁇ s up to 40 A / dm2 up to 2000 V C. up to 10000 ⁇ s up to -30 A / dm2 up to -500 V
  • Non-conductive microparticles and nanoparticles in a liquid have an electrical potential on their surface compared to the liquid, the so-called zeta potential.
  • the behavior of particles in a liquid is determined by the zeta potential. For example, a stable suspension is only possible if the absolute value of the zeta potential is greater than 30 mV, since only then is the suspension stabilized by the electrostatic repulsion of the particles.
  • the behavior of the particles in the electric field is also dependent on the zeta potential.
  • the electrostatic attraction between the particles and the electrode surface makes it possible to incorporate particles into electrochemically generated layers.
  • the EP 3 307 925 B1 describes the use of surface-modified inorganic particles and makes use of this phenomenon.
  • sequence A-B can be repeated up to 20 times before sequence C begins.
  • the process can be operated in a current-controlled as well as in a potential-controlled manner, the former being preferred.
  • This procedure allows the individual phases of the coating process to be controlled independently of one another and thus to optimize the layer properties.
  • the result is a homogeneous, smooth layer with a thickness of about 30 ⁇ m - 50 ⁇ m.
  • phases A and B electrostatic attraction of the particles and coating
  • phases A and B are carried out several times one after the other at a high frequency before the substrate surface is cleaned again by polarity reversal. This procedure is more effective for small particles with a high zeta potential than the previously described method.
  • the layer created in this way is smooth, homogeneous and about 20 ⁇ m thick.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
EP20160579.7A 2020-03-03 2020-03-03 Procédé d'oxydation électrolytique plasma d'un substrat métallique Withdrawn EP3875636A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20160579.7A EP3875636A1 (fr) 2020-03-03 2020-03-03 Procédé d'oxydation électrolytique plasma d'un substrat métallique
PCT/EP2021/055212 WO2021175868A1 (fr) 2020-03-03 2021-03-02 Procédé d'oxydation électrolytique au plasma d'un substrat métallique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20160579.7A EP3875636A1 (fr) 2020-03-03 2020-03-03 Procédé d'oxydation électrolytique plasma d'un substrat métallique

Publications (1)

Publication Number Publication Date
EP3875636A1 true EP3875636A1 (fr) 2021-09-08

Family

ID=69804467

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20160579.7A Withdrawn EP3875636A1 (fr) 2020-03-03 2020-03-03 Procédé d'oxydation électrolytique plasma d'un substrat métallique

Country Status (2)

Country Link
EP (1) EP3875636A1 (fr)
WO (1) WO2021175868A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115094497A (zh) * 2022-06-21 2022-09-23 重庆大学 一种金属基光热构件及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114318459A (zh) * 2022-01-27 2022-04-12 重庆建设工业(集团)有限责任公司 一种功能性镀液及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365028B1 (en) 1997-12-17 2002-04-02 Isle Coat Limited Method for producing hard protection coatings on articles made of aluminum alloys
US20080093223A1 (en) * 2004-11-05 2008-04-24 Nobuaki Yoshioka Method for electrolytically depositing a ceramic coating on a metal, electrolyte for such electrolytic ceramic coating method, and metal member
WO2010112914A1 (fr) 2009-04-03 2010-10-07 Keronite International Ltd Procédé de protection renforcée contre la corrosion de métaux de soupapes
US9677187B2 (en) 2011-02-08 2017-06-13 Cambridge Nanolitic Limited Non-metallic coating and method of its production
EP3307925B1 (fr) 2015-06-09 2019-03-13 Hirtenberger Engineered Surfaces GmbH Procédé pour oxydation par plasma électrolytique
CN110438541A (zh) * 2019-09-12 2019-11-12 山东省科学院新材料研究所 一种粒子掺杂型复合梯度微弧氧化涂层及多级制备方法、应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365028B1 (en) 1997-12-17 2002-04-02 Isle Coat Limited Method for producing hard protection coatings on articles made of aluminum alloys
US20080093223A1 (en) * 2004-11-05 2008-04-24 Nobuaki Yoshioka Method for electrolytically depositing a ceramic coating on a metal, electrolyte for such electrolytic ceramic coating method, and metal member
WO2010112914A1 (fr) 2009-04-03 2010-10-07 Keronite International Ltd Procédé de protection renforcée contre la corrosion de métaux de soupapes
US9677187B2 (en) 2011-02-08 2017-06-13 Cambridge Nanolitic Limited Non-metallic coating and method of its production
EP3307925B1 (fr) 2015-06-09 2019-03-13 Hirtenberger Engineered Surfaces GmbH Procédé pour oxydation par plasma électrolytique
CN110438541A (zh) * 2019-09-12 2019-11-12 山东省科学院新材料研究所 一种粒子掺杂型复合梯度微弧氧化涂层及多级制备方法、应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115094497A (zh) * 2022-06-21 2022-09-23 重庆大学 一种金属基光热构件及其制备方法
CN115094497B (zh) * 2022-06-21 2023-09-08 重庆大学 一种金属基光热构件及其制备方法

Also Published As

Publication number Publication date
WO2021175868A1 (fr) 2021-09-10

Similar Documents

Publication Publication Date Title
DE69722680T2 (de) Verfahren zur herstellung von harten schutzbeschichtungen auf artikel, die aus aluminiumlegierungen hergestellt sind
DE2420704C3 (de) Verfahren zum kontinuierlichen Eloxieren eines Aluminiumbandes und Vorrichtung zur Durchführung dieses Verfahrens
WO2021175868A1 (fr) Procédé d'oxydation électrolytique au plasma d'un substrat métallique
DE4139006C3 (de) Verfahren zur Erzeugung von Oxidkeramikschichten auf sperrschichtbildenden Metallen und auf diese Weise erzeugte Gegenstände aus Aluminium, Magnesium, Titan oder deren Legierungen mit einer Oxidkeramikschicht
DE102010053619B4 (de) Ionisator und Verfahren zur Entfernung statischer Aufladung
DE2327764A1 (de) Verfahren zur elektrokoernung von aluminium
DE102005039614A1 (de) Anodische Oxidschicht und Verfahren zur Anodisierung
EP2162922A1 (fr) Structure de contact pour un composant semi-conducteur et son procédé de fabrication
EP0722515B1 (fr) Procede d'application d'un revetement superficiel par galvanisation
DE102010013415B4 (de) Beschichtung aus anodischem Oxid und Verfahren zum anodischen Oxidieren
DE4116910A1 (de) Verfahren zur erzeugung oxidkeramischer oberflaechenschichten auf leichtmetall-gusslegierungen
EP2238280B1 (fr) Revêtement multifonction de pièces en aluminium
EP3551786A1 (fr) Procédé d'électropolissage et électrolyte pour ce procédé
DE2919261A1 (de) Harteloxalverfahren
EP0390033B1 (fr) Procédé et dispositif de grainage d'un support pour des couches photosensibles
DE4104847C2 (fr)
DE10297114B4 (de) Verfahren zum Anodisieren von Magnesium und Elektrolytlösung
DE102005041609A1 (de) Verfahren zum Herstellen von elektrischen Bauteilen
EP0563671A1 (fr) Procédé pour le revêtement électrolytique de substrats et d'analogues de substrats
EP0224443B1 (fr) Procédé de fabrication d'un microfiltre
DE4334122C2 (de) Verfahren zum elektrochemischen Aufbringen einer Oberflächenbeschichtung und Anwendung des Verfahrens
DE741753C (de) Verfahren zur elektrolytischen Faerbung von Gegenstaenden aus Aluminium mit oxydischer Oberflaechenschicht
CN106637334A (zh) 一种调控阀金属阳极氧化物薄膜中杂质元素比例和化学性质的方法及其产品
DE1919932A1 (de) Verfahren zur gemeinsamen galvanischen Abscheidung von Metallen und Nichtmetallen
DE539162C (de) Verfahren zum UEberziehen von festen metallischen Strahlungskoerpern elektrischer Vakuumgefaesse mit schwer Schmelzbaren Metallen oder Metallverbindungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220308

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20231003