EP3870927B1 - Arme à énergie dirigée et procédé de représentation de la position d'un point d'impact de l'arme à énergie dirigée - Google Patents
Arme à énergie dirigée et procédé de représentation de la position d'un point d'impact de l'arme à énergie dirigée Download PDFInfo
- Publication number
- EP3870927B1 EP3870927B1 EP19794537.1A EP19794537A EP3870927B1 EP 3870927 B1 EP3870927 B1 EP 3870927B1 EP 19794537 A EP19794537 A EP 19794537A EP 3870927 B1 EP3870927 B1 EP 3870927B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- directed
- effective beam
- radiation
- optical system
- effective
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 32
- 230000005855 radiation Effects 0.000 claims description 108
- 230000003287 optical effect Effects 0.000 claims description 104
- 238000003384 imaging method Methods 0.000 claims description 51
- 239000007787 solid Substances 0.000 claims description 16
- 230000001960 triggered effect Effects 0.000 claims description 5
- 230000008569 process Effects 0.000 description 5
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 239000003365 glass fiber Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 238000012634 optical imaging Methods 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 238000010304 firing Methods 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H13/00—Means of attack or defence not otherwise provided for
- F41H13/0043—Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target
- F41H13/005—Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target the high-energy beam being a laser beam
- F41H13/0062—Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target the high-energy beam being a laser beam causing structural damage to the target
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G3/00—Aiming or laying means
- F41G3/14—Indirect aiming means
- F41G3/16—Sighting devices adapted for indirect laying of fire
- F41G3/165—Sighting devices adapted for indirect laying of fire using a TV-monitor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G3/00—Aiming or laying means
- F41G3/32—Devices for testing or checking
- F41G3/323—Devices for testing or checking for checking the angle between the muzzle axis of the gun and a reference axis, e.g. the axis of the associated sighting device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H13/00—Means of attack or defence not otherwise provided for
- F41H13/0043—Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target
- F41H13/005—Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target the high-energy beam being a laser beam
Definitions
- the present invention relates to a method for displaying an actual point of impact of a beam weapon according to the preamble of claim 1 and a beam weapon having the features of the preamble of claim 2.
- Also known per se is a method that relates to a beam weapon that has an effective beam optics and an imaging optics.
- the effective beam optics are used for Focusing and alignment of primary radiation emitted by the radiation weapon in the form of an effective beam or an auxiliary beam. Radiation emanating from an object irradiated with the effective beam or auxiliary beam is captured by the imaging optics and directed onto a camera on a screen that has a target point marking.
- the imaging optics are an example of a target optic that is used to visually display a target area.
- a target optic is a riflescope, which allows the target area to be viewed directly with the eye.
- the aiming point of the weapon is usually marked by a crosshair in the optics of the riflescope or on a camera screen.
- the aiming point marked as a crosshair indicates a target point of impact in the target area when the target area is viewed through the riflescope or the target area shown on a screen.
- the process for displaying an actual point of impact is also known as target point determination.
- the weapon When firing, the weapon is first aligned so that the crosshairs of the aiming optics, or the target point, align with the target point. The shot is then fired. The accuracy of the weapon depends on how well the crosshairs, or the target point/target point, align with the actual point of impact of the weapon when a shot is fired.
- a good match between the target point and the actual point of impact is particularly important for beam weapons, as beam weapons are in principle very precise.
- this precision can only be exploited if the crosshairs of the aiming optics, or the target point, match the actual point of impact of the weapon with an accuracy corresponding to the precision of the beam weapon.
- An adjustment of the imaging optics that leads to the desired match requires a determination of the actual point of impact.
- Such an actual point of impact determination is necessary, for example, when setting up a weapon for the first time, after replacing parts of the weapon or after the structure has been misaligned due to environmental influences such as temperature and pressure fluctuations, vibrations, shock waves, etc.
- the position of the actual point of impact relative to the target point of impact is determined by firing live shots from the weapon at a test target on which the actual point of impact is represented, for example, as a bullet hole.
- the resulting bullet hole is then targeted using the weapon's optics and the optics' crosshairs are set to the actual point of impact, represented as a bullet hole, while the weapon remains in the same position.
- This procedure may be repeated several times to increase accuracy. This procedure may need to be repeated for other target distances.
- a primary radiation of the beam weapon focused and directed by the effective beam optics, is triggered as an effective beam or auxiliary beam.
- the object irradiated with this effective beam or auxiliary beam emits radiation, which is referred to below as radiation to distinguish it from the output radiation of the beam weapon, which is referred to as primary radiation.
- This radiation is, for example, a broad spectrum of visible light and/or infrared radiation, which may be emitted as a result of irradiation with the primary radiation, but may also be reflected daylight, for example.
- This radiation is captured by the imaging optics and projected onto a Camera on a screen.
- the point of penetration is shown on the screen as the actual point of impact.
- the screen has a target point marking in the form of a crosshair, for example, so that the position of the point of impact can be read relative to the target point marking.
- the known method requires live shots/irradiation of test targets in the actual range of the weapon to determine the target point. This requires suitable terrain with appropriate safety precautions for the use of the weapon. Another disadvantage is that this target point determination is very difficult when the weapon is moving. Movement of the weapon is almost impossible to avoid, for example with ship weapons.
- Another disadvantage is that the procedure may not be feasible in the area where the weapon is deployed if it is not a restricted area. In this case, for example, it is not possible to determine the exact target point of the ray weapon after a weapon repair.
- the object of the present invention is to provide a method and a radiation weapon of the type mentioned at the beginning, which are not afflicted with these disadvantages.
- this object is achieved with the features of claim 1 and with regard to device aspects with the features of claim 2.
- the method according to the invention differs from the prior art by the characterizing features of claim 1.
- a beam cross-section of an effective beam or auxiliary beam emerging from the beam weapon is covered with an optical auxiliary element that reflects the incident effective beam or auxiliary beam.
- the effective beam or auxiliary beam is then triggered when the beam cross-section is covered, so that the primary radiation propagating in this beam cross-section hits the optical auxiliary element and is reflected by it.
- Primary radiation of the effective beam or auxiliary beam reflected by the reflective optical auxiliary element is captured by the imaging optics and directed at a spot on the camera. This spot is displayed on the screen as the determined actual impact point.
- the characterizing features of claim 2 represent device features of the beam weapon that correspond to these method features.
- the housing When the procedure is being carried out, the housing is closed to prevent light from entering. This ensures that no laser radiation can escape when the procedure is being carried out, so that no safety measures are necessary.
- the invention allows the target point of the beam weapon to be determined and displayed without primary radiation having to be emitted into the environment in the form of an effective beam or auxiliary beam.
- the target point can be determined and displayed at any time with high accuracy, in a short amount of time and without safety precautions relating to the area surrounding the beam weapon, such as barriers.
- a further advantage is that the target point of the beam weapon can be determined and displayed even when the beam weapon is moving, without the movement of the beam weapon affecting the accuracy of the determination and display of the target point.
- a preferred embodiment of the radiation weapon is characterized in that it has a primary radiation source and at least one radiation-conducting solid body having a first end and a second end, as well as a wavelength or beam splitter which is a common component of the imaging optics and the effective beam optics, wherein the first end is arranged relative to the primary radiation source such that primary radiation emitted by the primary radiation source can be coupled into the solid body via the first end and can be coupled out of the solid body via the second end, and that the wavelength or beam splitter is arranged in a beam path of the decoupleable primary radiation such that it can be illuminated with the decoupleable primary radiation.
- the process also works without restrictions without such a solid body if the laser beam is introduced into the optics as a free beam (adjusted to the optical axis of the optics).
- the laser beam is then usually coupled into the optics as a collimated beam, i.e. a beam of parallel aligned light.
- Coupling in a divergent beam is also conceivable.
- Coupling in as a free beam has advantages at very high powers, since the powers that can be transmitted with currently known fibers are limited.
- the effective beam optics and the imaging optics have, as further common components, optical elements which are located between the wavelength or beam splitter and the effective beam exit opening of the beam weapon.
- optical elements have a common optical axis.
- the shared optical elements ensure that the target plane is sharply imaged on the camera and screen.
- a further preferred embodiment of the beam weapon is characterized in that the other common optical elements include at least a first telescopic optic and a second telescopic optic.
- auxiliary optical element is a flat mirror arranged perpendicular to the optical axis.
- the auxiliary optical element comprises a retroreflector which is designed to reflect incident primary radiation as reflected radiation and in directions opposite to the directions of the incident primary radiation.
- a further preferred embodiment of the beam weapon is characterized in that the effective beam optics and the imaging optics have, as a further common component, a deflection mirror which is arranged and aligned such that it reflects primary radiation incident from the wavelength or beam splitter in the direction of the effective beam exit opening and reflects reflected radiation incident from the direction of the optical auxiliary element to the wavelength or beam splitter.
- the wavelength or beam splitter directs at least a portion of the reflected radiation incident from the deflection mirror onto at least one camera of the imaging optics.
- the imaging optics have a first camera and a second camera and a second wavelength or beam splitter, which reflected radiation into a reflected portion and a transmitted portion and that the first camera is arranged so that it can be illuminated with the reflected portion and that the second camera is arranged so that it can be illuminated with the transmitted portion.
- a single camera is sufficient to carry out the process. This will usually be a so-called fine tracking camera.
- a second (or further) camera(s) can be used independently of the first camera.
- the process then provides the target point (crosshairs) for this camera at the same time as the first camera.
- the second camera usually uses a different wavelength, so that in the optics the beam paths are separated by a wavelength splitter mirror. Sometimes the software analysis does not allow the images to be available to the observer. In this case the second camera can be used for observation.
- the second wavelength can sometimes provide better images because different atmospheric conditions exist (less scattering, fog).
- a second camera can have a higher resolution, optics with higher magnification for better resolution or with lower magnification for a larger field of view.
- a further preferred embodiment of the beam weapon is characterized in that the alignment of the deflection mirror can be adjusted manually or automatically.
- an optical element (lens or spherical mirror) is arranged between the wavelength or beam splitter and a deflection mirror and that a further optical element (lens or spherical mirror) is arranged between the deflection mirror and the second wavelength or beam splitter and that a second deflection mirror is arranged between the second wavelength or beam splitter and the first camera.
- the imaging optics and the effective beam optics are arranged in a housing which has an effective beam exit opening allowing radiation to exit from the housing and radiation to enter the housing, wherein the optical auxiliary element in the form of a cover closing the effective beam exit opening can be fastened to an edge of the effective beam exit opening.
- a further preferred embodiment of the beam weapon is characterized in that the optical auxiliary element is attached in a captive manner and can be folded by means of a joint, wherein the optical auxiliary element leaves the effective beam exit opening free in a first folding position and closes the effective beam exit opening in a second folding position.
- the Figure 1 a simplified representation of a radiation weapon 10.
- the radiation weapon 10 has a primary radiation source 12 and at least one radiation-conducting solid body 18 having a first end 14 and a second end 16, as well as a first wavelength or beam splitter 20.
- the primary radiation source 12 preferably has one or more lasers.
- the radiation-conducting solid body 18 is, for example, a glass fiber or a glass fiber bundle.
- the beam weapon 10 has an effective beam optics 22 and an imaging optics 24 and is designed to display the position of a point of impact 26 of the beam weapon 10.
- the effective beam optics 22 are designed to focus and align primary radiation of the beam weapon 10, which is to be emitted as an effective beam 28 or auxiliary beam, into a target plane 30.
- the alignment is carried out, for example, by a movable deflection mirror 32.
- the imaging optics 24 are designed to detect radiation emanating from an object irradiated with the effective beam 28 or the auxiliary beam and to direct it onto a camera 34 of a screen 38 having a target point marking 36.
- the radiation weapon 10 has a screen 38.
- an enlarged, high-resolution image 40 of the point of impact 26 is generated on the camera 34 and the screen 38.
- the imaging optics 24 have an imaging optics 35 as an optical element that is not also part of the effective beam optics.
- the first wavelength or beam splitter 20 is a common component of the imaging optics 24 and the effective beam optics 22.
- the wavelength or beam splitter 20 is based, for example, on a reversal of a wavelength coupling.
- Known wavelength splitters have a special mirror layer that has been vapor-deposited onto a glass substrate. This layer reflects light with wavelengths from a certain wavelength range and transmits light with wavelengths from another wavelength range.
- Such mirrors are known to the person skilled in the art and are commercially available (e.g. from Laseroptik, Garbsen).
- the wavelength or beam splitter 20 reflects the wavelength of the active laser and transmits the wavelength of the illumination laser (auxiliary laser).
- the illumination laser is an independent laser that is moved so that it illuminates the target area with the target over a large area (like a spotlight). Alternatively, you can work without an illumination laser and at any wavelength for the camera image if there is enough daylight.
- the camera could also be a thermal camera and you work with thermal radiation in the near or far infrared.
- Element 20 is then not a wavelength splitter but a beam splitter. This means that element 20 reflects a lot of light (99%) (namely the laser) and only lets a small part (1%) through to the camera.
- wavelength splitters operating according to other principles can also be used.
- the first end 14 of the radiation-conducting solid body 18 is arranged relative to the primary radiation source 12 such that primary radiation emitted by the primary radiation source 12 can be coupled into the solid body 18 via the first end 14, and the second end 16 is arranged relative to the first wavelength or beam splitter 20 such that primary radiation propagating in the solid body 18 can be coupled out of the solid body 18 via the second end 16 and that the first wavelength or beam splitter 20 can be illuminated with the coupled-out primary radiation.
- a collimating optic 42 arranged between the second end 16 and the first wavelength or beam splitter 20 bundles the primary radiation emerging from the second end 16.
- the collimating optic 42 is an optical element of the effective beam optic 22, which is not also part of the imaging optic 24.
- the imaging optics 24 and the effective beam optics 22 are arranged in a housing 50.
- the housing 50 has a Effective beam exit opening 44 which allows radiation to exit from the housing 50 and radiation to enter the housing 50.
- the effective beam optics 22 and the imaging optics 24 have further common optical elements that lie between the first wavelength or beam splitter 20 and the effective beam exit opening 44.
- the further common optical elements are at least a first telescope optics 46 and a second telescope optics 48.
- the common optical elements have a common optical axis 51. Due to their common optical axis 51, the common optical elements ensure that the target plane 30 (laser focus plane) is sharply imaged onto the camera 34.
- the conventional determination of the target point 26 involves irradiating a test target 52 which is located at a large distance, e.g. at a distance of several hundred meters or several kilometers from the radiation weapon 10.
- Figure 1 shows a beam weapon 10 with an effective beam 28 or auxiliary beam that is directed at a distant test target 52 and creates a penetration point there.
- This penetration which marks the actual impact point 26, is recorded by the camera 34 of the imaging optics 24 and displayed as an image 40 of the impact point 26 on the screen 38.
- Figure 2 shows the ray weapon from the Figure 1 with a beam path of radiation 54, which emanates from the test target 52 in the opposite direction to the direction of the effective beam 28 and enters the imaging optics 24 of the beam weapon 10 through the effective beam exit opening 44 of the beam weapon 10.
- This radiation 54 is, for example, visible light or infrared radiation. This radiation can occur as a result of irradiation with the primary radiation, but it can also be emitted independently of the primary radiation, for example as thermal radiation or reflected daylight.
- the Figure 1 shows that the second end 16 of the radiation-conducting solid body, which in a sense represents the source of the primary radiation for the radiation weapon 10, is imaged by a first image in the target plane 30.
- the first image is conveyed by the effective beam 28.
- the image lying in the target plane 30 corresponds to the point of impact 26 on the test target 52.
- Figure 2 shows the same structure as the Figure 1 with a beam path in the opposite direction.
- Figure 2 This makes it clear that this meeting point 26 is imaged sharply on the camera 34 in a second optical image by the imaging optics 24 and is displayed as an image 40 of the meeting point 26 on the screen 38.
- This double optical image can be viewed as an indirect image of the second end 16 of the radiation-conducting solid body 18.
- FIG 3 shows an embodiment of a beam weapon 10.
- This beam weapon 10 has all the elements of the Figures 1 and 2 explained beam weapon 10 and differs from it by an additional optical auxiliary element 56.
- This optical auxiliary element 56 is characterized in that, due to its shape, dimensions and arrangement, it is designed to cover a beam cross-section of an effective beam 28 or auxiliary beam emerging from the beam weapon 10 and to reflect primary radiation directed out of the beam weapon 10 into the imaging optics 24 of the beam weapon 10.
- the imaging optics 24 are designed to capture primary radiation of the effective beam 28 or the auxiliary beam reflected by the reflective optical auxiliary element 56 and to direct it as an image of the second end 16 onto the camera 34 and to display this image as a meeting point 40 on the screen 38.
- the optical auxiliary element 56 is a flat mirror 58 that is arranged perpendicular to the optical axis 51. To do this, the mirror must reflect the beam exactly into itself. To do this, the mirror would have to be precisely adjusted in angle, which is not easy. Therefore, a retroreflector 60 is preferably used as an auxiliary element: The retroreflector reflects the beam into itself without angle adjustment.
- a retroreflector is a device that incident electromagnetic radiation is reflected in the direction from which the radiation is incident, largely independent of its direction of incidence and the orientation of the retroreflector. An incident beam is reflected laterally offset by 180°. Such a retroreflector 60 is therefore designed to reflect incident primary radiation as reflected radiation and in directions opposite to the directions of the incident primary radiation.
- the retroreflector can have a much smaller diameter than the beam diameter.
- the retroreflector does not necessarily have to be positioned in the center of the beam; a small retroreflector in the outer beam area is also possible.
- the Figure 3 shows a large retroreflector (area corresponds to the clear width of the housing opening) that is centered on the beam. This solution perhaps provides the greatest accuracy. But it also works with a small retroreflector that is not centered. For example, it is sufficient to glue a small retroreflector to the inside of the lid. The lid is then closed light-tight for the procedure. Since there are no angle adjustments for the retroreflector, or position requirements, the procedure can be carried out immediately without adjustments.
- the optical auxiliary element 56 can preferably be fastened to an edge of the effective beam exit opening 44 in the form of a cover that closes the effective beam exit opening 44.
- Such fastening can be carried out in various ways, for example by means of screws or clamps. In any case, the fastenings must be detachable.
- the optical auxiliary element 56 is attached to the housing 50 in a captive manner and can be folded by means of a joint 62. In a first folding position, the optical auxiliary element 56 leaves the effective beam outlet opening 44 free, and in a second folding position it closes the effective beam outlet opening 44.
- the first folding position is in the Figure 3 represented by the dashed representation of the optical auxiliary element 56.
- the second folding position is in the Figure 3 represented by the solid representation of the optical auxiliary element 56.
- the reflective side of the optical auxiliary element 56 is arranged on the side of the optical auxiliary element 56 which, in the closed state, faces the interior of the housing 50.
- other designs are also possible, such as a sliding closure or a closure that swings away to the side.
- the closure is preferably designed so that the housing is closed light-tight when the method is carried out.
- the closure of a cover that closes the housing is preferably monitored for safety reasons. This ensures that no laser radiation can escape when the process is carried out, so that no safety measures are necessary.
- FIG. 3 shows the Figure 3 a direct optical imaging of the beam exit of the second end 16 (or the beam exit of an auxiliary beam collinear with the active beam) onto the camera 34.
- the direct optical imaging takes place with the aid of the auxiliary optical element 56.
- the auxiliary optical element 56 is arranged directly in front of the active beam exit opening 44 of the beam weapon 10 and reflects the active beam 28 exiting from the active beam exit opening 44 along the optical axis 51 back into the common part of the imaging optics 24 and the active beam optics 22.
- the direction of the rays incident on the auxiliary optical element 56 is reversed during reflection at the auxiliary optical element 56, so that the reflected radiation in the imaging optics 24 propagates to the camera 34 as if this radiation originated from a distant test target that is located in a distant test target-side focal point of the active beam 28.
- the direct imaging is thus carried out in such a way that the direct optical image of the beam exit of the effective beam or auxiliary beam (i.e. the second end 16) corresponds to the image of the point of impact 26 of the effective beam 28 on a distant test target 52. Therefore, the image of the second end 16 thus generated can be used to determine and display the actual point of impact.
- This optical method can be carried out in such a way that the active beam 28 does not leave the housing 50, so that no test station is required for its implementation and no safety precautions have to be taken.
- the effective beam of one or more lasers is guided to the effective beam optics using a glass fiber or a bundle of glass fibers.
- the optical imaging is equivalent to the imaging of the second end 16, at which primary radiation emerges from a fiber end face.
- a laser beam of a different wavelength auxiliary beam, pilot laser
- the laser beam is guided from the laser beam source to the optics without fiber.
- the laser beam is then introduced into the optics as a free beam.
- the adjustment is then made to the optical axis of the optics.
- the laser beam is then usually coupled into the optics as a collimated beam of parallel light.
- the collimation optics (42) are then omitted.
- the coupling of a divergent beam is also conceivable.
- Figure 4 shows a flow chart as an embodiment of a method according to the invention for representing the position of a point of impact of a beam weapon 10 having an effective beam optics 22 and an imaging optics 24.
- a beam cross-section of an effective beam 28 or auxiliary beam emerging from the beam weapon 10 is covered with an auxiliary optical element 56 reflecting the incident effective beam 28 or auxiliary beam.
- a second step 102 the active beam 28 or the auxiliary beam is triggered when the beam cross-section is covered.
- a third step 104 radiation emanating from an object irradiated with the active beam 28 or auxiliary beam is detected by the imaging optics 24 and directed onto a camera 34 of a screen 38 which has a target point marking 36.
- the irradiated object is a remote test target 26.
- the object is the auxiliary optical element 56.
- a fourth step 106 the radiation spot generated by the camera 34 is displayed as the actual impact point 40 on the screen 38.
- the effective beam optics 22 and the imaging optics 24 have as a common component the deflection mirror 32, which is arranged and aligned such that it reflects incident primary radiation from the first wavelength or beam splitter 20 in the direction of the first telescope optics 46 and reflects incident reflected radiation from the direction of the auxiliary optical element 56 to the first wavelength or beam splitter 20.
- the first wavelength or beam splitter 20 directs at least a portion of the reflected radiation incident from the deflection mirror 32 onto at least one camera 34, 34' of the imaging optics.
- the imaging optics have a first camera 34 and a second camera 34' and a second wavelength or beam splitter 64, which separates reflected radiation incident from the first wavelength or beam splitter 20 into a reflected portion and a transmitted portion.
- the first camera 34 is arranged such that it can be illuminated with the reflected portion, and the second camera 34' is arranged such that it can be illuminated with the transmitted portion.
- the alignment of the deflection mirror 32 can be adjusted manually or automatically in one embodiment.
- An optical element 66 is arranged between the first wavelength or beam splitter 20 and a deflection mirror 68.
- Another optical element 70 is arranged between the deflection mirror 68 and the second wavelength or beam splitter 64.
- a second deflection mirror 72 is arranged between the second wavelength or beam splitter 64 and the first camera.
- the optical elements can each be implemented as a lens or as a spherical mirror.
- the telescope optics, collimation optics and imaging optics can also each be implemented as lenses or spherical mirrors.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
Claims (14)
- Procédé d'affichage de la position d'un point d'impact (26) d'une arme à énergie dirigée (10) comprenant une optique à faisceau actif (22) et une optique d'imagerie (24), dans lequel l'optique d'imagerie (24) et l'optique à faisceau actif (22) sont disposées dans un boîtier (50) qui présente une ouverture de sortie de faisceau actif (44) qui permet au rayonnement de sortir du boîtier (50) et au rayonnement d'entrer dans le boîtier (50) ainsi qu'un élément auxiliaire optique réfléchissant (56), et dans lequel une émission de rayonnement primaire de l'arme à énergie dirigée (10), qui est à focaliser et à diriger par l'optique à faisceau actif (22), est déclenchée en tant que faisceau actif (28) ou faisceau auxiliaire colinéaire au faisceau actif, et un rayonnement émis par un objet irradié avec le faisceau actif (28) ou bien le faisceau auxiliaire est détecté par l'optique d'imagerie (24) et est dirigé sur une première caméra (34) d'un écran (38), dans lequel une section transversale de faisceau d'un faisceau actif (28) ou bien d'un faisceau auxiliaire sortant de l'arme à énergie dirigée (10) est recouverte par l'élément auxiliaire optique (56) réfléchissant le faisceau actif (28) ou bien le faisceau auxiliaire, dans lequel une face réfléchissante de l'élément auxiliaire optique réfléchissant (56) est disposée sur un côté de l'élément auxiliaire optique réfléchissant (56), qui montre vers l'intérieur du boîtier (50), le déclenchement du faisceau actif (28) ou bien du faisceau auxiliaire se fait avec la section transversale de faisceau recouverte, et du rayonnement primaire du faisceau actif (28) ou bien du faisceau auxiliaire, qui est réfléchi par l'élément auxiliaire optique réfléchissant (56) est détecté par l'optique d'imagerie (24) et est dirigé sur un point de la caméra (34), lequel point est affiché en tant que point d'impact (40) sur l'écran (38), caractérisé par le fait que, lors de la mise en oeuvre du procédé, l'élément auxiliaire optique réfléchissant (56) est fixé sur un bord de l'ouverture de sortie de faisceau actif (44) sous la forme d'un couvercle qui ferme de manière étanche à la lumière l'ouverture de sortie de faisceau actif (44), ou que l'élément auxiliaire optique réfléchissant (56) est un dispositif de fermeture coulissant ou un dispositif de fermeture escamotable vers le côté, chacun étant construit de telle sorte que, lors de la mise en oeuvre du procédé, l'ouverture de sortie de faisceau actif (44) soit fermée de manière étanche à la lumière; et que, lors de la mise en oeuvre du procédé, le boîtier est fermé de manière étanche à la lumière de sorte qu'aucun rayonnement primaire n'est émis dans l'environnement sous la forme d'un faisceau actif ou bien d'un faisceau auxiliaire.
- Arme à énergie dirigée (10) comprenant une optique à faisceau actif (22) et une optique d'imagerie (24) et conçue pour afficher la position d'un point d'impact (26) de l'arme à énergie dirigée (10), dans laquelle l'optique d'imagerie (24) et l'optique à faisceau actif (22) sont disposées dans un boîtier (50) qui présente une ouverture de sortie de faisceau actif (44) qui permet au rayonnement de sortir du boîtier (50) et au rayonnement d'entrer dans le boîtier (50) ainsi qu'un élément auxiliaire optique réfléchissant (56) qui présente une face réfléchissante sur le côté de l'élément auxiliaire optique (56), laquelle peut être tournée vers l'intérieur du boîtier (50), et dans laquelle l'optique à faisceau actif (22) est conçue pour focaliser et diriger un rayonnement primaire de l'arme à énergie dirigée (10), qui est à émettre en tant que faisceau actif (28) ou faisceau auxiliaire colinéaire au faisceau actif, et dans laquelle l'optique d'imagerie (24) est conçue pour détecter un rayonnement émis par un objet irradié avec le faisceau actif (28) ou bien le faisceau auxiliaire et pour diriger celui-ci sur une première caméra (34), dans laquelle l'élément auxiliaire optique (56) permet de recouvrir une section transversale de faisceau d'un faisceau actif (28) ou bien d'un faisceau auxiliaire sortant de l'arme à énergie dirigée (10) et de réfléchir un rayonnement primaire sortant de manière dirigée de l'arme à énergie dirigée, et dans laquelle l'optique d'imagerie (24) est conçue pour détecter un rayonnement primaire du faisceau actif (28) ou bien du faisceau auxiliaire, qui est réfléchi par l'élément auxiliaire optique réfléchissant (56) et pour diriger celui-ci sur un point de la caméra (34) et pour afficher ledit point en tant que point d'impact (40) sur l'écran (38), caractérisé par le fait que l'élément auxiliaire optique réfléchissant (56) peut être fixé sur un bord de l'ouverture de sortie de faisceau actif (44) sous la forme d'un couvercle qui ferme de manière étanche à la lumière l'ouverture de sortie de faisceau actif (44), ou que l'élément auxiliaire optique réfléchissant (56) est un dispositif de fermeture coulissant ou un dispositif de fermeture escamotable vers le côté, chacun étant construit de telle sorte que l'ouverture de sortie de faisceau actif (44) puisse être fermée de manière étanche à la lumière; et que, en état fermé, le boîtier est fermé de manière étanche à la lumière de sorte qu'aucun rayonnement primaire n'est émis dans l'environnement sous la forme d'un faisceau actif ou bien d'un faisceau auxiliaire, dans laquelle, en état fermé, la face réfléchissante de l'élément auxiliaire optique réfléchissant (56) est disposée sur le côté de l'élément auxiliaire optique qui montre vers l'intérieur du boîtier.
- Arme à énergie dirigée (10) selon la revendication 2, caractérisée par le fait que l'arme à énergie dirigée (10) comprend une source de rayonnement primaire (12) et au moins un corps solide conducteur de rayonnement (18) présentant une première extrémité (14) et une deuxième extrémité (16), ainsi qu'un premier séparateur de longueur d'onde ou de faisceau (20) qui est un composant commun de l'optique d'imagerie (24) et de l'optique de faisceau actif (22), dans laquelle la première extrémité (14) est disposée par rapport à la source de rayonnement primaire (12) de telle sorte que du rayonnement primaire émis par la source de rayonnement primaire (12) puisse être couplé dans le corps solide (18) via la première extrémité (14) et puisse être découplé du corps solide (18) via la deuxième extrémité (16) et que le premier séparateur de longueur d'onde ou de faisceau (20) est disposé dans un trajet de faisceau du rayonnement primaire apte à être découplé, de manière à pouvoir être éclairé par le rayonnement primaire découplé.
- Arme à énergie dirigée (10) selon la revendication 3, caractérisée par le fait que l'optique à faisceau actif (22) et l'optique d'imagerie (24) présentent, comme autres composants communs, des éléments optiques qui se situent entre le premier séparateur de longueur d'onde ou de faisceau (20) et une ouverture de sortie de faisceau actif (44) de l'arme à énergie dirigée (10).
- Arme à énergie dirigée (10) selon la revendication 4, caractérisée par le fait que les éléments optiques présentent un axe optique commun (51).
- Arme à énergie dirigée (10) selon la revendication 5, caractérisée par le fait que les autres éléments optiques communs comprennent au moins une première optique télescopique (46) et une deuxième optique télescopique (48).
- Arme à énergie dirigée (10) selon l'une quelconque des revendications 5 à 6, caractérisée par le fait que l'élément auxiliaire optique (56) est un miroir plan (58) qui est disposé perpendiculairement à l'axe optique (51) .
- Arme à énergie dirigée (10) selon l'une quelconque des revendications 2 à 4, caractérisée par le fait que l'élément auxiliaire optique (56) comprend au moins un rétroréflecteur (60) qui est conçu pour réfléchir du rayonnement primaire incident dans des directions qui sont opposées à des directions du rayonnement primaire incident.
- Arme à énergie dirigée (10) selon la revendication 3, caractérisée par le fait que l'optique à faisceau actif (22) et l'optique d'imagerie (24) présentent, comme autre composant commun, un miroir de déflexion (32) qui est disposé et aligné de manière à ce qu'il réfléchisse du rayonnement primaire incident provenant du premier séparateur de longueur d'onde ou de faisceau (20), dans la direction de l'ouverture de sortie de faisceau actif (44) et à ce qu'il réfléchisse du rayonnement réfléchi incident depuis la direction de l'élément auxiliaire optique (56), vers le premier séparateur de longueur d'onde ou de faisceau (20).
- Arme à énergie dirigée (10) selon la revendication 9, caractérisée par le fait que le premier séparateur de longueur d'onde ou de faisceau (20) dirige au moins une partie du rayonnement réfléchi incident depuis le miroir de déflexion (32) sur la première caméra (34).
- Arme à énergie dirigée (10) selon la revendication 10, caractérisée par le fait que l'optique d'imagerie (24) comprend, en plus de la première caméra (34), une deuxième caméra (34') et un deuxième séparateur de longueur d'onde ou de faisceau (64) qui sépare un rayonnement réfléchi incident depuis le premier séparateur de longueur d'onde ou de faisceau (20) en une partie réfléchie et une partie transmise et que la première caméra (34) est agencée de telle manière qu'elle peut être éclairée avec la partie réfléchie et que la deuxième caméra (34') est agencée de manière à pouvoir être éclairée avec la partie transmise.
- Arme à énergie dirigée (10) selon la revendication 11, caractérisée par le fait que l'alignement du miroir de déflexion (32) peut être réglé manuellement ou automatiquement.
- Arme à énergie dirigée (10) selon la revendication 12, caractérisée par le fait qu'un élément optique (66) est disposé entre le premier séparateur de longueur d'onde ou de faisceau (20) et un miroir de déviation (68) et qu'un autre élément optique (70) est disposé entre le miroir de déviation (68) et le deuxième séparateur de longueur d'onde ou de faisceau (64) et qu'un deuxième miroir de déviation (72) est disposé entre le deuxième séparateur de longueur d'onde ou de faisceau (64) et la première caméra (34).
- Arme à énergie dirigée (10) selon l'une quelconque des revendications 2 à 13, caractérisée par le fait que l'élément auxiliaire optique (56) est fixé de manière imperdable et de manière à pouvoir être plié au moyen d'une articulation (62), dans laquelle l'élément auxiliaire optique (56) libère l'ouverture de sortie de faisceau actif (44) dans une première position de pliage et ferme l'ouverture de sortie de faisceau actif (44) dans une deuxième position de pliage.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018126833.5A DE102018126833A1 (de) | 2018-10-26 | 2018-10-26 | Strahlenwaffe und Verfahren zur Darstellung der Lage eines Treffpunkts der Strahlenwaffe |
PCT/EP2019/079143 WO2020084107A1 (fr) | 2018-10-26 | 2019-10-25 | Arme à énergie dirigée et procédé de représentation de la position d'un point d'impact de l'arme à énergie dirigée |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3870927A1 EP3870927A1 (fr) | 2021-09-01 |
EP3870927B1 true EP3870927B1 (fr) | 2024-09-11 |
Family
ID=68344870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19794537.1A Active EP3870927B1 (fr) | 2018-10-26 | 2019-10-25 | Arme à énergie dirigée et procédé de représentation de la position d'un point d'impact de l'arme à énergie dirigée |
Country Status (8)
Country | Link |
---|---|
US (1) | US11867482B2 (fr) |
EP (1) | EP3870927B1 (fr) |
JP (1) | JP7416777B2 (fr) |
AU (1) | AU2019366763A1 (fr) |
DE (1) | DE102018126833A1 (fr) |
DK (1) | DK3870927T3 (fr) |
IL (1) | IL282543A (fr) |
WO (1) | WO2020084107A1 (fr) |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3752587A (en) * | 1971-09-09 | 1973-08-14 | Philco Ford Corp | Apparatus for boresighting a laser beam emitter device |
US4155096A (en) * | 1977-03-22 | 1979-05-15 | Martin Marietta Corporation | Automatic laser boresighting |
GB2165957B (en) * | 1984-10-18 | 1988-05-25 | Ferranti Plc | Checking aiming apparatus alignment |
US5410815A (en) * | 1994-04-29 | 1995-05-02 | Cubic Defense Systems, Inc. | Automatic player identification small arms laser alignment system |
JP4718832B2 (ja) * | 2004-12-28 | 2011-07-06 | 株式会社東芝 | 光伝送システムおよび光伝送方法 |
US8203109B2 (en) * | 2009-05-08 | 2012-06-19 | Raytheon Company | High energy laser beam director system and method |
DE102011015779B4 (de) * | 2011-04-01 | 2022-03-24 | Mbda Deutschland Gmbh | Strahler für gerichtete Energie |
DE102012022039B4 (de) | 2012-11-09 | 2020-03-26 | Mbda Deutschland Gmbh | Modulare Laserbestrahlungseinheit |
IL234036B (en) * | 2014-08-10 | 2018-11-29 | Rafael Advanced Defense Systems Ltd | A directed energy based weapon |
DE102015016274B4 (de) | 2015-12-16 | 2023-10-19 | Mbda Deutschland Gmbh | Optisches System und Verfahren zum Justieren eines Signalstrahls |
-
2018
- 2018-10-26 DE DE102018126833.5A patent/DE102018126833A1/de active Pending
-
2019
- 2019-10-25 DK DK19794537.1T patent/DK3870927T3/da active
- 2019-10-25 AU AU2019366763A patent/AU2019366763A1/en active Pending
- 2019-10-25 EP EP19794537.1A patent/EP3870927B1/fr active Active
- 2019-10-25 JP JP2021522016A patent/JP7416777B2/ja active Active
- 2019-10-25 WO PCT/EP2019/079143 patent/WO2020084107A1/fr unknown
-
2021
- 2021-04-21 IL IL282543A patent/IL282543A/en unknown
- 2021-04-26 US US17/240,807 patent/US11867482B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
IL282543A (en) | 2021-06-30 |
AU2019366763A1 (en) | 2021-05-13 |
WO2020084107A1 (fr) | 2020-04-30 |
US20220307803A1 (en) | 2022-09-29 |
JP7416777B2 (ja) | 2024-01-17 |
JP2022514174A (ja) | 2022-02-10 |
US11867482B2 (en) | 2024-01-09 |
EP3870927A1 (fr) | 2021-09-01 |
DE102018126833A1 (de) | 2020-04-30 |
DK3870927T3 (da) | 2024-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2238497B1 (fr) | Système optique pour projeter un signal d'essai ir ou uv avec une orientation optique de l'axe de projection dans le domaine spectral visible | |
DE2710904C2 (fr) | ||
EP3583390B1 (fr) | Procédé et dispositif de détection d'une position focale d'un faisceau laser | |
DE69109852T2 (de) | Ausrichtungskontrollvorrichtung und ihre verwendung. | |
DE2208838C1 (de) | Fernrohranordnung | |
CH633638A5 (de) | Rundblickperiskop mit umschaltbarer tagsicht- und waermebild-optik. | |
DE102012022039A1 (de) | Modulare Laserbestrahlungseinheit | |
EP1688761B1 (fr) | Procédé et dispositif destinés à la découverte de systèmes optiques dans une zone de terrain | |
EP2694911B1 (fr) | Émetteur pour énergie dirigée | |
DE1905605A1 (de) | Geraet zum Ausrichten von zwei oder mehreren optischen Achsen | |
EP1303738B1 (fr) | Dispositif de mesure optique de distance ou de vitesse | |
DE202007019050U1 (de) | Suchkopf für einen zielsuchenden Flugkörper | |
DE2722796C3 (de) | Vorrichtung zum Ausrichten der optischen Achsen mehrerer optischer Geräte parallel zueinander | |
DE69402849T2 (de) | Verfahren zur uberwachung der justierung einer ziel-oder uberwachungssensorreihe | |
EP3870927B1 (fr) | Arme à énergie dirigée et procédé de représentation de la position d'un point d'impact de l'arme à énergie dirigée | |
DE3838381C2 (fr) | ||
EP0315892A1 (fr) | Dispositif de test pour la vérification du simbleautage et du parallélisme d'arme et de dispositif de visée d'un véhicule de combat | |
DE2321059C3 (de) | Einrichtung zur Prüfung der Justierung der Visierlinien eines Zielfernrohres und eines Infrarotgoniometers | |
DE102023108855A1 (de) | Beobachtungseinrichtung für ein EUV-Lichtsystem und entsprechendes EUV-Lichtsystem | |
EP4423547A2 (fr) | Dispositif optique pour détecter une scène d'objet | |
DE10122932A1 (de) | Vermessungsinstrument mit einer Phasendifferenz-Schärfenerfassungsvorrichtung | |
DE102021106492A1 (de) | Laserstrahlvorrichtung mit einer Einkopplung eines Beleuchtungslaserstrahls in einen Wirklaserstrahl | |
EP3805787A1 (fr) | Dispositif de mesure optique de la distance à un objet cible dispersant ou à un objet cible réfléchissant | |
DE102008057096A1 (de) | Nahfeldmikroskop und Beobachtungseinheit dafür | |
DE2321059B2 (de) | Einrichtung zur Prüfung der Justierung der Visierlinien eines Zielfernrohres und eines Infrarotgoniometers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210507 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20240318 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAL | Information related to payment of fee for publishing/printing deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
INTC | Intention to grant announced (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20240725 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20240919 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502019012122 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20240923 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240913 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240913 Year of fee payment: 6 |