EP3866973A1 - Sample holder - Google Patents

Sample holder

Info

Publication number
EP3866973A1
EP3866973A1 EP19783020.1A EP19783020A EP3866973A1 EP 3866973 A1 EP3866973 A1 EP 3866973A1 EP 19783020 A EP19783020 A EP 19783020A EP 3866973 A1 EP3866973 A1 EP 3866973A1
Authority
EP
European Patent Office
Prior art keywords
layer
sealing
temperature
sample container
height compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19783020.1A
Other languages
German (de)
French (fr)
Inventor
Pierre Dominique Kosse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spindiag GmbH
Original Assignee
Spindiag GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spindiag GmbH filed Critical Spindiag GmbH
Publication of EP3866973A1 publication Critical patent/EP3866973A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/288Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/044 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2274/00Thermoplastic elastomer material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/56Damping, energy absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • B32B2307/736Shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2435/00Closures, end caps, stoppers
    • B32B2435/02Closures, end caps, stoppers for containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles

Definitions

  • the invention relates to a sample container with a sample holder and with a sealing film, which is used in particular for the thermal sealing of a cavity of the sample holder.
  • microfluidic sample carriers which are formed by a substrate into which a number of channel structures and / or chambers (hereinafter generally referred to as “cavity”) are introduced, are already used for diagnostic purposes.
  • cavities for example, components of a liquid can be separated and / or passed to (further) test chambers.
  • these cavities are covered with a sealing film which is usually connected to the substrate. It is important that a predetermined channel cross section is maintained even after being covered with the sealing film in order to maintain a predetermined flow resistance for the fluid carried in the respective cavity.
  • sample carriers In order to be able to produce such sample carriers economically, they are usually designed as an injection molding component, a hard stamping component or as a thermoformed plastic film (thus made of plastic). Thereby a thermal sealing of the channel structures by means of the sealing film is appropriate.
  • the sealing film and possibly also the substrate are heated and pressed onto one another.
  • the sealing film and the substrate usually form an integral connection. Due to the heating, however, there is also an increased risk that the cavities, due to their widths of less than one millimeter, may be deformed by the substrate itself or by a named glass transition temperature heated sealing film to a large extent or completely closed.
  • sealing foils known from the field of food packaging which have a comparatively thick layer of an easily meltable material (for example a heat seal lacquer) to compensate for surface inaccuracies of the substrate, are unfavorable. Because the “melted” material melted under the applied heating temperature and runs under the applied sealing pressure would lead to the dimensions (in particular widths) of the cavities of the microfluidic sample carrier, which are in the range of a few micrometers to approximately 2000 micrometers, being difficult to control.
  • an easily meltable material for example a heat seal lacquer
  • the invention has for its object to improve the sealing of a cavity of a sample carrier.
  • a sealing film - also forming an independent invention - is used for the thermal sealing of a microfluidic cavity of the sample carrier according to the invention.
  • the sealing film assigns a sealing layer Form an adhesive connection to the sample carrier.
  • the sealing layer (in particular its material) has a softening temperature which is in the range from or below a sealing temperature to which the sealing layer is heated during a proper sealing step of a sealing process.
  • the material of the sealing layer is preferably selected to be adhesive to a material forming the sample carrier.
  • the sealing film has an outer layer, which (in particular the material thereof) in turn has an operating temperature which - for at least a brief temperature load - is greater than an intended sealing heating temperature which is greater than or equal to the sealing temperature.
  • the sealing film has a height compensation layer whose softening temperature (in particular that of the material of the height compensation layer) is below the sealing heating temperature, so that the layer temperature present in the height compensation layer - preferably during the sealing process, in particular during the intended sealing step - is lower or is equal to the sealing heating temperature and greater than or equal to the sealing temperature, that the material forming the height compensation layer is in a temperature-related ductile state.
  • the height compensation layer is preferably in the molten state at this layer temperature. In the latter case, the height compensation layer, in particular its material, preferably has a low viscosity above the softening temperature.
  • the sealing film has a decoupling layer.
  • the decoupling layer (the material thereof) has a layer temperature in the decoupling layer that is less than or equal to the sealing heating temperature and greater than or equal to the sealing temperature, preferably during the sealing process, in particular during the intended sealing step, compared to the height compensation layer and the sealing layer increased rigidity many times over. Furthermore, the height compensation layer is arranged between the outer layer and the decoupler layer. The sealing layer is arranged on the outside of the decoupler layer and therefore on the (lower) side of the sealing film facing away from the outer layer.
  • sealing temperature here and in the following means in particular the temperature, specifically the temperature value to which the sealing temperature Layer is heated during the sealing process in order to establish the adhesive connection with the sample carrier in the actual sealing step of the sealing process.
  • the sealing temperature thus represents in particular a kind of target temperature to which the sealing layer is heated in the sealing process.
  • sealing heating temperature here and in the following means in particular the temperature, specifically the temperature value, which is applied to the sealing film with the aim of heating the sealing layer to the sealing temperature described above.
  • a sealing tool in the following also referred to as a “sealing plate” or “stamp”
  • a heating element, a heating fan or the like is used as a heating tool, by means of which the sealing heating temperature is applied, in particular without contact, to the sealing film, in particular to the outer layer.
  • a temperature value that is higher than the sealing temperature is preferably used as the sealing heating temperature and applied to the outer layer of the sealing film by means of the sealing plate or another heating tool.
  • the sealing heating temperature and a process step duration are regularly selected such that a temperature gradient occurs within the process step duration due to heat conduction through the outer layer, the height compensation layer and the decoupler layer, at which the sealing layer is heated to the sealing temperature. This can save overall process time.
  • the temperature value present in the individual layers, in particular the height compensation layer and the decoupling layer is referred to here and below as the “layer temperature” and is therefore between the sealing heating temperature and the sealing temperature.
  • the sealing heating temperature can also be selected equal to the sealing temperature.
  • a “temperature-related ductile condition” is understood here and below in particular to mean that the material of the height compensation layer above the sealing temperature, in particular at the corresponding layer temperature (in contrast to room temperature), has the lowest possible resistance to deformation and thus with the corresponding layer temperature can be plastically deformed comparatively easily (in particular on account of the process forces usually applied by means of the sealing tool in a conventional sealing process), in particular a “sealing pressure”.
  • the sealing layer at the “sealing time” - ie during the sealing step in particular when the sealing layer is warmed to the sealing temperature and is preferably pressed onto the sample holder with the sealing tool - has a high, preferably one over the height compensation layer - that to this
  • the temperature is warmed up to its layer temperature - higher viscosity (hence a lower temperature-related ductile ductility).
  • the decoupling layer (specifically its material) also - particularly at its layer temperature and thus possibly also above the sealing temperature - has a low plastic deformability, in particular in comparison to the height compensation layer and the sealing layer, and therefore a comparatively high strength.
  • the viscosity of the material of the height compensation layer is particularly preferably lower than the viscosity of the sealing layer, at least at the point in time at which the sealing layer is heated to or above the sealing temperature and the layer temperature of the height compensation layer is therefore equal to or greater than the sealing temperature.
  • operating temperature in particular “short-term operating temperature” is understood here and in the following in particular to mean a temperature which a material has without a deformation going beyond predetermined limits, in the case of plastics in particular without melting - at least briefly, in particular for a few seconds to to a few ten seconds - suspended can be. In the case of plastics, this operating temperature regularly forms the limit of what is known as heat resistance.
  • softening temperature is understood here and in the following in particular to mean a temperature (specifically a temperature value) from which in particular a (in particular amorphous) plastic passes into the rubber-elastic region and thus its ability to change shape (in particular its ductility) increases. A transition to the molten state occurs smoothly from the softening temperature.
  • the softening temperature is also referred to as the "glass transition temperature", particularly in the case of amorphous plastics (preferably amorphous thermoplastics).
  • the softening temperature here and in the following in particular is also equated with the melting temperature, from which a crystalline phase of the plastic changes into the molten state. This melting temperature is regularly above a glass transition temperature of the amorphous phase of the partially crystalline plastic.
  • Decoupler layer d. H. if the sealing layer is heated to the sealing temperature, a multiple compared to the flea compensation layer and the sealing layer with increased rigidity, it is understood here and in the following in particular that the decoupling layer has a high deformation resistance at this layer temperature (hence a low "ductility” or " Plasticity ”), whereas a comparable size for the flea compensation layer and preferably also for the sealing layer can be determined due to the temperature, in particular negligibly low or not (especially not due to the temperature).
  • the intended sealing temperature and the material of the sealing layer are preferably selected to be dependent on one another, so that the softening temperature of the sealing layer is in the range from or below the sealing temperature.
  • the material of the sealing layer is preferably chosen such that its softening temperature is, for example, between approximately 50 and 140 ° C., in particular between 70 and 110 ° C. This is usually followed by the sealing process the sealing heating temperature used and, if appropriate, the process step duration selected such that the intended sealing temperature is at or above the softening temperature of the material of the sealing layer.
  • the sealing temperature in this case is typically in a range between 80 and 140 degrees Celsius (° C).
  • the sealing heating temperature which is applied, for example, by means of the sealing plate described above, is, for example - in particular when the process step duration is as short as possible - around 130 to 200 ° C., in particular around 170 ° C. Due to the multilayer structure of the sealing film described above, it can advantageously be prevented that the sealing film deforms to such an extent when the cavity of the sample carrier is thermally sealed that the cross-section of the cavity is reduced beyond application-specific limits.
  • the flea compensation layer is present in the sealing process - in particular at the appropriate layer temperature, preferably above the sealing temperature - in a state which is plastically deformable with only a small force, in particular in the molten state, and is therefore between the outer layer and the decoupler layer comparatively easily deformable “pillow”. Due to the comparatively high stiffness of the decoupling layer, on the other hand, it is prevented that under the effect of the sealing pressure, which is applied by the sealing tool applied to the outer layer, in particular the sealing plate, the molten material of the flue compensation layer becomes too strong in the (specifically microfluidic) cavity of the sample carrier can flow in.
  • Decoupling layer thus has a dampening effect on the (preferably melted) flea compensation layer.
  • the material of the sealing layer is heated above its softening temperature, but due to its comparatively high viscosity, which is preferably higher than that of the flea compensation layer, it has a comparatively low tendency to flow in the surface direction the sealing film, in cooperation with the decoupling layer is also prevented that the material of the sealing layer flows into the cavity.
  • the flea compensation layer serves - especially in the form of the deformable cushion - equal to, in particular, comparatively large (for example up to 50 micrometers, in particular greater than 10 and / or up to 30 micrometers) bumps on a contact surface of the sample carrier (ie in particular height differences which occur, for example, as sink marks caused by production or the like on the sample carrier).
  • the sealing pressure applied by means of the sealing tool can thus be transferred comparatively homogeneously to the subsequent layers and thus also to the (at least approximately) entire contact surface of the sample carrier.
  • the sealing layer can in turn have the above-described high viscosity (in particular increased compared to the height compensation layer), since it does not have to compensate for such large unevenness or only to a minor (residual) proportion.
  • the tendency of the sealing layer to flow into the cavity to be sealed during the sealing process can in turn advantageously be reduced.
  • the operating temperature of the outer layer which is higher than the sealing heating temperature, means that the material of the outer layer does not adhere to the sealing tool and in particular maintains its spatial stability.
  • the outer layer therefore serves as a protective layer of the height-compensating layer, which is molten in the sealing process, with respect to the sealing tool.
  • the outer layer preferably has an increased stiffness at least when heated to the sealing heating temperature or the resulting layer temperature, at least with respect to the height compensation layer and / or the sealing layer, optionally also with respect to the decoupling layer (in particular at its respective resulting layer temperature during the sealing step) , in particular an increased resistance to deformation. Because of this increased rigidity, it is advantageously prevented that the entire sealing film “hangs” into the cavity to be sealed - that is, it bulges into the cavity. That is, The selected stiffness of the outer layer helps to stabilize the entire sealing film in the area of the (respective) cavity.
  • the outer layer also enables the outer layer to form an approximately flat surface (ie without sink marks) to which a heat transfer surface can be connected particularly effectively, for example in laboratory operation.
  • the material of the outer layer has a temperature-dependent tendency to shrink, at least in the surface direction of the sealing film.
  • the material of the outer layer (optionally also that of the decoupling layer) and / or in particular a process sequence during sealing is preferably selected such that the material is temperature-induced
  • the material of the outer layer is a stretched plastic material (for example an stretched film) which, when heated and the associated mobilization of the molecular chains, in particular due to a relaxati - one of the molecular chains (which in particular "clump together") shrinks.
  • the sealing film is heated unlike the sample holder, for example first heated (for example by means of a meat heater or fan heater) and then placed on the particularly cold (ie not heated) or less heated sample holder. This results in a different shrinkage due to the temperature difference (optionally only one
  • a thickness of the decoupling layer is selected as a function of at least one dimension, preferably a width (ie in particular the smallest extent of the cavity in the surface direction of the sample carrier) of the cavity to be sealed.
  • the thickness is expediently preferably chosen with a view to comparatively flat (“shallow”) channels, the depths of which are preferably less than 500 ⁇ m.
  • Decoupling layer is in this case preferably dependent on the width of the cavity to be sealed and in particular also of a predetermined, permissible one Selected the sinking of the sealing film into this cavity.
  • a greater thickness of the decoupler layer is selected.
  • the decoupling layer and thus also the sealing film as a whole are stiffer and sinking into or sagging of the sealing film above the cavity is reduced.
  • the thickness of the decoupler layer is preferably at least 15 micrometers, in particular more than 20 micrometers and particularly preferably approximately 30 micrometers.
  • a thickness of 30 micrometers has proven to be advantageous for use on a sample carrier with several cavities of different widths in that, on average over the different widths of the cavities, the sealing film sinks to a sufficiently small extent, specifically the leveling layer together with the Decoupler layer and the sealing layer in the respective cavity is made possible.
  • the outer layer is formed from a plastic, specifically a thermoplastic.
  • the outer layer is made of a biaxially stretched polyethylene terephthalate (short: BOPET), a cyclo-olefin copolymer (COC, in particular with a correspondingly high glass transition temperature), a polychlorotrifluoroethylene (short: PCTFE), a polypropylene (PP ), a cyclo-olefin polymer (COP), a polyimide (PI), a
  • BOPET biaxially stretched polyethylene terephthalate
  • COC cyclo-olefin copolymer
  • PCTFE polychlorotrifluoroethylene
  • PP polypropylene
  • COP cyclo-olefin polymer
  • PI polyimide
  • the height compensation layer is formed from a thermoplastic which melts particularly low (ie has a low melting temperature) compared to the outer layer.
  • a linear low-density polyethylene (also referred to as “PE-LLD”) is suitable for sealing temperatures (which are particularly present on the sealing surface between the sealing layer and the sample carrier) of less than 90 ° C, while for higher sealing temperatures (for example, higher) 100 ° C) also a low-density polyethylene, in particular a branched polyethylene (also referred to as “PE-LD”) or, if the sealing temperatures are higher, also a high-density polyethylene (“PE-HD”) or a thermoplastic elastomer (TPE) can be used with a suitable (ie in particular lower) melting temperature.
  • PE-HD high-density polyethylene
  • TPE thermoplastic elastomer
  • An ethylene vinyl acetate (EVA) with a correspondingly low melting point can also be used.
  • the design, in particular the material selection, of the height compensation layer is preferably carried out taking into account the decoupler layer. It is taken into account that with increasing flowability of the height compensation layer, the lateral plastic deformability of the height compensation layer increases and thus also comparatively large unevenness in the surface of the sample carrier can be compensated for and / or greater sinking into the cavities can occur. This local sinking into the respective (small dimensions) cavity is preferably counteracted by the decoupling layer, which is chosen to be stiff in accordance with the flowability of the height compensation layer.
  • the decoupling layer in particular its material, has a softening temperature greater than the sealing heating temperature applied by the sealing tool, at least greater than that in the
  • the decoupling layer shows the layer temperature when the outer layer is properly charged with the sealing heating temperature. This advantageously makes it possible for the decoupler layer to retain its shape stability even in the sealing process (ie in particular its rigidity is still sufficiently high), and thus to reduce filling of the cavity to be sealed by the height compensation layer flowing under the sealing pressure in the direction of concave surface structures of the sample carrier or even prevented.
  • the decoupling layer in the above embodiment is optionally formed from aluminum, in particular an aluminum foil. The is also optional
  • the decoupler layer is formed from a plastic, preferably a COC (in particular with a high glass transition temperature), a polycarbonate (PC), a polymethyl methacrylate (in short: PMMA), a polystyrene (PS) or by another of the plastics intended for the outer layer .
  • a plastic preferably a COC (in particular with a high glass transition temperature), a polycarbonate (PC), a polymethyl methacrylate (in short: PMMA), a polystyrene (PS) or by another of the plastics intended for the outer layer .
  • the sealing layer is formed by a separate polymer layer.
  • the sealing layer is in particular one by coextrusion or lamination to the
  • Decoupler layer or a film-like layer applied, if applicable, to the intermediate layer If applicable, to the intermediate layer.
  • the sealing layer is formed by a layer of the decoupler layer which is close to the surface and which is modified by a surface treatment of this (in this embodiment made of a plastic) decoupler layer.
  • the decoupling layer is loosened near the surface by means of a solvent and / or modified by irradiation, plasma treatment or ozone treatment near the surface in such a way that the polymer chains near the surface are heat-sealable at a lower layer temperature than the unaffected “bulk material” are.
  • This near-surface layer of the decoupler layer then has different thermal and in particular also theological properties than the rest of the unmodified decoupler layer.
  • the material of the sealing layer is a COC, which is preferably different from a COC type that forms the outer layer and / or the decoupling layer.
  • the sealing layer is formed by a COC type with a glass transition temperature of approximately 79 ° C.
  • the decoupler layer is, for example, a COC type with a glass transition temperature in the range of approximately
  • the sealing layer is characterized by the surface treatment of the COC type of the decoupler layer.
  • the sealing layer is formed by a hot melt adhesive, also referred to as a “hot melt”.
  • a hot melt adhesive also referred to as a “hot melt”.
  • it is a purely thermoplastic hot melt adhesive.
  • it is a reactive hot melt adhesive, for example based on polyurethane, or a UV pre-crosslinked and / or UV crosslinking (hot melt) adhesive.
  • the thickness of the sealing layer is between approximately 5 and 30 micrometers, preferably approximately 20 micrometers.
  • the sealing film has at least one, optionally a plurality of additional layers, in particular between the layers described above. These serve, for example, to improve the flow of the layers described above, i. H. the outer layer, the flea compensation layer, the decoupling layer and the sealing layer with one another.
  • the sample container according to the invention has the sample carrier described above.
  • the sample carrier has the number of microfluidic cavities (in particular channel structures and / or chambers) for receiving a fluid.
  • the sample container has the sealing film described above.
  • the number of microfluidic cavities can be sealed by means of this sealing film or is already sealed in the intended sealing state.
  • “Microfluidic cavities” here and in the following mean in particular channels or chambers with a width of several tens to several hundred micrometers (possibly also a single-digit number of millimeters). The length of the channels or chambers extends over approximately the same order of magnitude or even up to several 10 millimeters.
  • the sealing film described above is thus preferably used to seal the number of cavities in the sample carrier.
  • the sample container according to the invention thus has the features and advantages described above in connection with the sealing film.
  • the material of the sealing layer and / or of the sample carrier is preferably selected such that they are compatible with one another, in particular with regard to their adhesiveness to one another, so that both materials can be glued together (in particular without a separate filler material).
  • both materials are polar or non-polar.
  • the material of the sample carrier is formed by a COC or another plastic that is compatible with the sealing layer and has a glass transition temperature between 60 and 150 ° C., preferably between 100 and 140 ° C.
  • the sealing temperature is preferably increased, so that the formation of the adhesive connection between the sealing layer and the sample carrier is simplified (due to, in particular, temperature-dependent diffusion effects and the like).
  • the sealing pressure is reduced in order to avoid excessive lateral flow of the material of the height compensation layer.
  • the sample carrier is optionally formed as an injection molding component, a hot stamping component or as a thermoformed plastic film.
  • the conjunction “and / or” is to be understood here and in the following in particular in such a way that the features linked by means of this conjunction can be formed both jointly and as alternatives to one another.
  • An exemplary embodiment of the invention is illustrated in more detail below with reference to a drawing. In it show:
  • FIG. 1 is a schematic and cutaway sectional view of a sealing film
  • FIG. 2 is a view according to FIG. 1 of a sample container, which has a sample carrier with a cavity sealed by the sealing film according to FIG. 1, and
  • FIG 3 shows the sample container with three cavities of different sizes, which are sealed together by means of the sealing film.
  • a sealing film 1 is shown schematically in a cross section.
  • the sealing film 1 is made from several layers formed from different plastics.
  • the sealing layer 1 serves specifically to seal a sample holder 2 shown in FIG. 2, specifically a cavity 4 molded into this sample holder 2.
  • the sample holder 2 is a substrate formed from a COC with a glass transition temperature of approximately 110 ° C. in a number of so-called microfluidic channels and chambers, ie channels or chambers with a width of several tens to several hundred micrometers (possibly also a single-digit number of millimeters) are introduced.
  • the length of the channels or chambers extends over approximately the same order of magnitude or even up to several tens of millimeters.
  • the layer structure of the sealing film 1 comprises an outer layer 8, which in the exemplary embodiment shown is formed by a 12.5 micrometer thick layer of a biaxially stretched polyethylene terephthalate (BOPET). Adjacent to the outer layer 8 is a height compensation layer 10, which is formed from a low-density polyethylene with a thickness of 30 micrometers. The height compensation layer 10 is followed by a decoupler layer 12 which is formed from a 30 micron thick layer of a COC with a glass transition temperature of approximately 135 ° C. On an underside 14 of the sealing film 1 opposite the outer layer 8, the layer structure thereof has a sealing layer 16, which is formed from a COC with a glass transition temperature of approximately 79 ° C.
  • BOPET biaxially stretched polyethylene terephthalate
  • the sealing film 1 is pressed onto the sample holder 2 by means of a sealing tool, not shown, specifically a “sealing plate”.
  • the sealing tool lies against the outer layer 8 and is heated to a sealing heating temperature which is significantly above the softening temperature or glass transition temperature of the sealing layer 16.
  • the sealing heating temperature in the exemplary embodiment described is 170 ° C. in order to enable the sealing film 1 and thus also the sealing layer 16 to be heated as quickly as possible to a sealing temperature which is also above the glass transition temperature of the sealing layer 16. Due to a temperature gradient forming in the sealing film 1 in the present exemplary embodiment, the sealing temperature is approximately 100 to 110 ° C.
  • the sealing film 1 and also a layer of the sample carrier 2 close to the surface is heated by the sealing tool.
  • the sealing layer 16 is softened, so that diffusion processes can take place with the material of the sample holder 2 and thus the sealing film 1 can be melt-bonded and adhered to the sample holder 2.
  • the sealing heating temperature is below the softening temperature of the material as the outer layer 8.
  • a layer temperature of the decoupling layer 12 which arises on account of the temperature gradient is likewise below the softening temperature of the material of the decoupling layer 12.
  • the sealing heating temperature and the resulting layer temperature of the height compensation layer 10 are above the softening temperature, specifically the melting temperature of the material of the height compensation layer 10.
  • the melt of the height compensation layer 10 can be displaced in the surface direction 18 of the sealing film 1 under the effect of the sealing pressure applied by the sealing tool and thus flow in the surface direction 18.
  • sink marks 20 in the substrate of the sample carrier 2 can be filled by an accumulation of material of the height compensation layer 10 by the
  • Decoupler layer 12 and the sealing layer 16 are deflected in the direction of the sink 20.
  • elevations 22 on the sample carrier 2 can also be compensated for by thinning, specifically a lateral displacement of the material of the height compensation layer 10 in the surface direction 18.
  • the decoupling layer 12 Since the decoupling layer 12 has not yet been heated to its softening temperature at its layer temperature, it also has such a high rigidity that the decoupling layer 12 and the sealing layer 16 connected to it sink in excessively (ie beyond application-specific limits) is prevented in the cavity 4. With a width of the cavity 4 of less than 500 micrometers, in particular of less than 100 micrometers, there is only a slight sinking of the sealing film 1 into the cavity 4. The viscosity of the sealing layer 16 is also significantly increased at sealing temperature compared to the viscosity of the height compensation layer 10, so that a flow of the sealing layer 16, specifically the material of the sealing layer 16 in the surface direction 18, is prevented or is only possible to a negligible degree.
  • the outer layer 8 forms a temperature-stable protective layer with respect to the sealing tool, which prevents the material of the sealing film 1 from adhering to the sealing tool heated to the sealing heating temperature. Furthermore, the material, in particular the BOPET of the outer layer 8, has such a high rigidity - even at sealing heating temperature - that the outer layer 8 is effectively prevented from being hooked (or sagging) into the respective cavity 4. Thus, even after the cavity 4 has been sealed, the outer layer 8 forms an at least approximately flat outer surface, to which heat transfer surfaces (for example a heating or cooling surface) can be connected in an intended laboratory operation. If the outer layer 8 should nevertheless be slightly arched into the cavity 4 if the cavity 4 is of sufficient size, it can be arched back to the outside again by the fluid pressure usually prevailing in the cavity 4 during intended laboratory operation.
  • heat transfer surfaces for example a heating or cooling surface
  • FIG. 3 shows a sample carrier 2 with several cavities 4 of different sizes.
  • the effect of the sealing film 1 according to the invention can be clearly described in this way.
  • the cavity 4 shown at the bottom is provided with the smallest cross section.
  • the arching of the sealing film 1 is also slight due to the height compensation layer 10 liquefied in the sealing process.
  • the curvature of the sealing film 1 is slightly larger than the lower cavity 4, but in percentage terms it is even smaller than in the lower cavity 4.
  • the sealing film 1 does not bulge completely in this case - as in the case of the smaller cavities 4 in the lower region of FIG. 3 - One, but the arching takes place only in areas close to the edge 24 of the cavity 4. It has been shown from test results that with the selection of the materials described above and the layer thicknesses of the sealing film 1, an arching of the sealing film 1 in the edge regions 24 is approximately in the range of 500 micrometers in the direction of the center of the Cavity 4 extends.

Abstract

The invention relates to a sample holder (6) with a sample carrier (2) and a sealing foil (1) for thermally sealing a microfluidic cavity (4) of the sample carrier (2). The sealing foil (1) has a sealing layer (16) for forming an adhesive connection with the sample carrier (2), wherein the seal layer (16) has a softening temperature in the region of or below a sealing temperature, to which the sealing layer (16) is heated during a correct sealing step. The sealing foil (1) further comprises an outer layer (8) which has a use temperature that is greater than a correct sealing heating temperature, which is greater than or equal to the sealing temperature. The sealing foil (1) further comprises a height-equalizing layer (10) which has a softening temperature below the sealing heating temperature so that, in the case of the height-equalizing layer (10) being at a layer temperature that is less than or equal to the sealing heating temperature and greater than or equal to the sealing temperature, a material forming the height-equalizing layer (10) is in a temperature-imposed state in which it can undergo ductile deformation. The sealing foil (1) further comprises a de-coupler layer (12) which, in the case of the de-coupler layer (12) being at a layer temperature that is less than or equal to the sealing heating temperature or greater than or equal to the sealing temperature, the de-coupler layer has a stiffness that is a multiple greater than the height-equalizing layer (10) and the sealing layer (16). The height-equalizing layer (10) is in that context arranged between the outer layer (8) and the de-coupler layer (12) and the sealing layer (16) is arranged externally with respect to the de-coupler layer (12).

Description

Beschreibung  description
Probenbehälter  Sample container
Die Erfindung betrifft einen Probenbehälter mit einem Probenträger und mit einer Siegelfolie, die insbesondere zum thermischen Versiegeln einer Kavität des Pro- benträgers dient. The invention relates to a sample container with a sample holder and with a sealing film, which is used in particular for the thermal sealing of a cavity of the sample holder.
Zu Diagnosezwecken kommen bereits sogenannte mikrofluidische Probenträger zum Einsatz, die durch ein Substrat gebildet sind, in das eine Anzahl von Kanal- Strukturen und/oder Kammern (im Folgenden allgemein als„Kavität“ bezeichnet) eingebracht ist. In diesen Kavitäten können bspw. Bestandteile einer Flüssigkeit separiert und/oder zu (weiteren) Testkammern geleitet werden. Um ein abge- schlossenes Kanalsystem auszubilden, werden diese Kavitäten mit einer Siegelfo- lie abgedeckt, die üblicherweise mit dem Substrat verbunden wird. Dabei ist es wichtig, dass ein vorgegebener Kanalquerschnitt auch nach dem Abdecken mit der Siegelfolie beibehalten wird, um einen vorgegebenen Strömungswiderstand für das in der jeweiligen Kavität geführte Fluid einzuhalten. So-called microfluidic sample carriers, which are formed by a substrate into which a number of channel structures and / or chambers (hereinafter generally referred to as “cavity”) are introduced, are already used for diagnostic purposes. In these cavities, for example, components of a liquid can be separated and / or passed to (further) test chambers. In order to form a closed channel system, these cavities are covered with a sealing film which is usually connected to the substrate. It is important that a predetermined channel cross section is maintained even after being covered with the sealing film in order to maintain a predetermined flow resistance for the fluid carried in the respective cavity.
Um solche Probenträger wirtschaftlich hersteilen zu können, sind diese meist als Spritzgießbauteil, Fleißprägebauteil oder als thermogeformte Kunststofffolie (mit- hin aus Kunststoff) ausgebildet. Dadurch bietet sich eine thermische Versiegelung der Kanalstrukturen mittels der Siegelfolie an. Dazu werden die Siegelfolie und gegebenenfalls auch das Substrat erwärmt und aufeinander gepresst. Die Siegel- folie und das Substrat gehen dabei üblicherweise eine stoffschlüssige Verbindung ein. Aufgrund der Erwärmung wird allerdings auch das Risiko erhöht, dass die Ka- vitäten aufgrund ihrer häufig im Bereich von weniger als einem Millimeter liegen- den Breiten durch Verformung des Substrats selbst oder von der über eine söge- nannte Glasübergangstemperatur erwärmten Siegelfolie zu einem großen Teil oder ganz verschlossen werden. In order to be able to produce such sample carriers economically, they are usually designed as an injection molding component, a hard stamping component or as a thermoformed plastic film (thus made of plastic). Thereby a thermal sealing of the channel structures by means of the sealing film is appropriate. For this purpose, the sealing film and possibly also the substrate are heated and pressed onto one another. The sealing film and the substrate usually form an integral connection. Due to the heating, however, there is also an increased risk that the cavities, due to their widths of less than one millimeter, may be deformed by the substrate itself or by a named glass transition temperature heated sealing film to a large extent or completely closed.
Aus diesem Grund sind auch aus dem Bereich der Lebensmittelverpackung be- kannte Siegelfolien, die zum Ausgleich von Oberflächen-Ungenauigkeiten des Substrats eine vergleichsweise dicke Schicht aus einem leicht schmelzbaren Ma- terial (zum Beispiel einem Heißsiegellack) aufweisen, ungünstig. Denn das unter der aufgebrachten Heiztemperatur aufgeschmolzene und unter dem aufgebrach- ten Siegeldruck verlaufende („verquetschte“) Material würde zu einem nur schwer beherrschbaren Verschließen der im Bereich weniger Mikrometer bis etwa 2000 Mikrometer liegenden Abmessungen (insbesondere Breiten) der Kavitäten des mikrofluidischen Probenträgers führen. For this reason, sealing foils known from the field of food packaging, which have a comparatively thick layer of an easily meltable material (for example a heat seal lacquer) to compensate for surface inaccuracies of the substrate, are unfavorable. Because the “melted” material melted under the applied heating temperature and runs under the applied sealing pressure would lead to the dimensions (in particular widths) of the cavities of the microfluidic sample carrier, which are in the range of a few micrometers to approximately 2000 micrometers, being difficult to control.
Deshalb wird teilweise versucht, ein vorgegebene Toleranzen überschreitendes Einfließen von erweichten Teilen der Siegelfolie in die Kavitäten dadurch zu un- terbinden, dass eine vergleichsweise steife Siegelfolie, bspw. auch das gleiche Material wie für das Substrat - z. B. ein Cyclo-Olefin-Copolymer („COC“) - heran- gezogen wird. Hierbei tritt häufig jedoch das Problem auf, dass die vorstehend angesprochenen Oberflächen-Ungenauigkeiten aufgrund der vergleichsweise ho- hen Steifigkeit der Siegelfolie nicht ausgeglichen werden können und somit ein dichtes Verschließen der Kanalstrukturen nicht sichergestellt werden kann. For this reason, attempts are sometimes made to prevent softened parts of the sealing film from flowing into the cavities beyond a predetermined tolerance by using a comparatively stiff sealing film, for example the same material as for the substrate - e.g. B. a cyclo-olefin copolymer ("COC") - is used. However, the problem frequently arises here that the surface inaccuracies mentioned above cannot be compensated for due to the comparatively high rigidity of the sealing film, and therefore a tight sealing of the channel structures cannot be ensured.
Der Erfindung liegt die Aufgabe zugrunde, die Versiegelung einer Kavität eines Probenträgers zu verbessern. The invention has for its object to improve the sealing of a cavity of a sample carrier.
Diese Aufgabe wird erfindungsgemäß gelöst durch einen Probenbehälter mit den Merkmalen des Anspruchs 1. Weitere vorteilhafte sowie teils für sich erfinderische Ausführungsformen und Weiterbildungen der Erfindung sind in den Unteransprü- chen und der nachfolgenden Beschreibung dargelegt. This object is achieved according to the invention by a sample container with the features of claim 1. Further advantageous and partly inventive embodiments and developments of the invention are set out in the subclaims and the description below.
Eine - auch eine eigenständige Erfindung bildende - Siegelfolie dient erfindungs- gemäß zum thermischen Versiegeln einer mikrofluidischen Kavität des erfin- dungsgemäßen Probenträgers. Dazu weist die Siegelfolie eine Siegelschicht zur Ausbildung einer Haftverbindung zu dem Probenträger auf. Die Siegelschicht (insbesondere deren Material) weist dabei eine Erweichungstemperatur auf, die im Bereich von oder unterhalb einer Siegeltemperatur liegt, auf die die Siegel- schicht während eines bestimmungsgemäßen Siegelschritts eines Siegelprozes- ses erwärmt ist. Vorzugsweise ist das Material der Siegelschicht zu einem den Probenträger bildenden Material klebfähig gewählt. Außerdem weist die Siegelfo- lie eine Außenschicht auf, die (insbesondere deren Material) wiederum eine Ein- satztemperatur aufweist, die - für eine zumindest kurzzeitige Temperaturbelas- tung - größer als eine bestimmungsgemäße Siegelheiztemperatur ist, die größer oder gleich der Siegeltemperatur ist. Des Weiteren weist die Siegelfolie eine Höhenausgleichsschicht auf, deren Erweichungstemperatur (insbesondere die des Materials der Höhenausgleichsschicht) unterhalb der Siegelheiztemperatur liegt, so dass bei einer - vorzugsweise während des Siegelprozesses, insbeson- dere des bestimmungsgemäßen Siegelschritts - in der Höhenausgleichsschicht vorliegenden Schichttemperatur, die kleiner oder gleich der Siegelheiztemperatur und größer oder gleich der Siegeltemperatur ist, das die Höhenausgleichsschicht bildende Material in einem temperaturbedingt duktilen Zustand vorliegt. Vorzugs- weise liegt die Höhenausgleichsschicht bei dieser Schichttemperatur im schmelz- flüssigen Zustand vor. In letzterem Fall weist die Höhenausgleichsschicht, insbe- sondere deren Material dabei vorzugsweise oberhalb der Erweichungstemperatur eine niedrige Viskosität auf. Ferner weist die Siegelfolie eine Entkopplerschicht auf. Die Entkopplerschicht (deren Material) weist dabei bei einer - vorzugsweise während des Siegelprozesses, insbesondere des bestimmungsgemäßen Siegel- schritts - in der Entkopplerschicht vorliegenden Schichttemperatur, die kleiner oder gleich der Siegelheiztemperatur und größer oder gleich der Siegeltemperatur ist, gegenüber der Höhenausgleichsschicht und der Siegelschicht eine um ein Vielfaches erhöhte Steifigkeit auf. Des Weiteren ist die Höhenausgleichsschicht zwischen der Außenschicht und der Entkopplerschicht angeordnet. Die Siegel- schicht ist außenseitig zu der Entkopplerschicht und mithin auf der der Außen- Schicht abgewandten (Unter-) Seite der Siegelfolie angeordnet. According to the invention, a sealing film - also forming an independent invention - is used for the thermal sealing of a microfluidic cavity of the sample carrier according to the invention. For this purpose, the sealing film assigns a sealing layer Form an adhesive connection to the sample carrier. The sealing layer (in particular its material) has a softening temperature which is in the range from or below a sealing temperature to which the sealing layer is heated during a proper sealing step of a sealing process. The material of the sealing layer is preferably selected to be adhesive to a material forming the sample carrier. In addition, the sealing film has an outer layer, which (in particular the material thereof) in turn has an operating temperature which - for at least a brief temperature load - is greater than an intended sealing heating temperature which is greater than or equal to the sealing temperature. Furthermore, the sealing film has a height compensation layer whose softening temperature (in particular that of the material of the height compensation layer) is below the sealing heating temperature, so that the layer temperature present in the height compensation layer - preferably during the sealing process, in particular during the intended sealing step - is lower or is equal to the sealing heating temperature and greater than or equal to the sealing temperature, that the material forming the height compensation layer is in a temperature-related ductile state. The height compensation layer is preferably in the molten state at this layer temperature. In the latter case, the height compensation layer, in particular its material, preferably has a low viscosity above the softening temperature. Furthermore, the sealing film has a decoupling layer. The decoupling layer (the material thereof) has a layer temperature in the decoupling layer that is less than or equal to the sealing heating temperature and greater than or equal to the sealing temperature, preferably during the sealing process, in particular during the intended sealing step, compared to the height compensation layer and the sealing layer increased rigidity many times over. Furthermore, the height compensation layer is arranged between the outer layer and the decoupler layer. The sealing layer is arranged on the outside of the decoupler layer and therefore on the (lower) side of the sealing film facing away from the outer layer.
Unter dem Begriff„Siegeltemperatur“ wird hier und im Folgenden insbesondere die Temperatur, konkret der Temperaturwert verstanden, auf den die Siegel- Schicht während des Siegelprozesses erwärmt wird, um in dem eigentlichen Sie- gelschritt des Siegelprozesses die Haftverbindung mit dem Probenträger einzuge- hen. Die Siegeltemperatur stellt also insbesondere eine Art Zieltemperatur dar, auf die die Siegelschicht im Siegelprozess erwärmt wird. The term “sealing temperature” here and in the following means in particular the temperature, specifically the temperature value to which the sealing temperature Layer is heated during the sealing process in order to establish the adhesive connection with the sample carrier in the actual sealing step of the sealing process. The sealing temperature thus represents in particular a kind of target temperature to which the sealing layer is heated in the sealing process.
Unter dem Begriff„Siegelheiztemperatur“ wird hier und im Folgenden insbesonde- re die Temperatur, konkret der Temperaturwert verstanden, der auf die Siegelfolie mit dem Ziel aufgebracht wird, die Siegelschicht auf die vorstehend beschriebene Siegeltemperatur zu erwärmen. Beispielsweise weist ein in dem Siegelprozess, insbesondere in dem Siegelschritt an der Außenschicht anliegendes Siegelwerk- zeug (im Folgenden auch als„Siegelplatte“ oder„Stempel“ bezeichnet), in diesem Fall insbesondere eine Art Heizplatte, die Siegelheiztemperatur auf. Alternativ kommt als ein Heizwerkzeug ein Heizstrahler, ein Heizgebläse oder dergleichen zum Einsatz, mittels dessen die Siegelheiztemperatur insbesondere berührungs- los auf die Siegelfolie, insbesondere auf die Außenschicht aufgebracht wird. The term “sealing heating temperature” here and in the following means in particular the temperature, specifically the temperature value, which is applied to the sealing film with the aim of heating the sealing layer to the sealing temperature described above. For example, in the sealing process, in particular in the sealing step, a sealing tool (in the following also referred to as a “sealing plate” or “stamp”), in this case in particular a type of heating plate, has the sealing heating temperature. Alternatively, a heating element, a heating fan or the like is used as a heating tool, by means of which the sealing heating temperature is applied, in particular without contact, to the sealing film, in particular to the outer layer.
Vorzugsweise wird in dem bestimmungsgemäßen Siegelprozess als Siegelheiz- temperatur ein gegenüber der Siegeltemperatur erhöhter Temperaturwert heran- gezogen und auf die Außenschicht der Siegelfolie mittels der Siegelplatte oder eines anderen Heizwerkzeugs aufgebracht. Die Siegelheiztemperatur und eine Prozessschrittdauer ist dabei regelmäßig derart gewählt, dass sich innerhalb der Prozessschrittdauer aufgrund von Wärmeleitung durch die Außenschicht, die Höhenausgleichsschicht und die Entkopplerschicht ein Temperaturgefälle einstellt, bei dem die Siegelschicht auf die Siegeltemperatur erwärmt ist. Dadurch kann insgesamt Prozesszeit eingespart werden. Der hierbei in den einzelnen Schichten, insbesondere der Höhenausgleichsschicht und der Entkopplerschicht vorliegende Temperaturwert wird hier und im Folgenden als„Schichttemperatur“ bezeichnet und liegt mithin zwischen der Siegelheiztemperatur und der Siegeltemperatur. Al ternativ kann - in einer„statischen“ Variante - die Siegelheiztemperatur auch gleich der Siegeltemperatur gewählt sein. In diesem Fall wird abgewartet, bis sich die gesamte Siegelfolie und somit alle Schichten auf die Siegeltemperatur er- wärmt haben. Unter einem„temperaturbedingt duktilen Zustand“ wird hier und im Folgenden insbesondere verstanden, dass das Material der Höhenausgleichsschicht ober- halb der Siegeltemperatur, insbesondere bei der entsprechenden Schichttempera- tur (im Gegensatz zur Raumtemperatur) einen möglichst geringen Verformungs- widerstand aufweist und somit bei der entsprechenden Schichttemperatur ver- gleichsweise einfach (insbesondere aufgrund der bei einem herkömmlichen Sie- gelprozess üblicherweise mittels des Siegelwerkzeugs aufgebrachten Prozess- kräfte, insbesondere einem„Siegeldruck“) plastisch verformt werden kann. Vorzugsweise weist die Siegelschicht zum„Siegelzeitpunkt“ - d. h. während des Siegelschritts, insbesondere wenn die Siegelschicht auf die Siegeltemperatur er- wärmt ist und vorzugsweise mit dem Siegelwerkzeug an den Probenträger ange- drückt wird - eine hohe, bevorzugt eine gegenüber der Höhenausgleichsschicht - die zu diesem Zeitpunkt somit auf ihre Schichttemperatur erwärmt ist - höhere Viskosität (mithin eine geringere temperaturbedingte duktile Verformbarkeit) auf. In the intended sealing process, a temperature value that is higher than the sealing temperature is preferably used as the sealing heating temperature and applied to the outer layer of the sealing film by means of the sealing plate or another heating tool. The sealing heating temperature and a process step duration are regularly selected such that a temperature gradient occurs within the process step duration due to heat conduction through the outer layer, the height compensation layer and the decoupler layer, at which the sealing layer is heated to the sealing temperature. This can save overall process time. The temperature value present in the individual layers, in particular the height compensation layer and the decoupling layer, is referred to here and below as the “layer temperature” and is therefore between the sealing heating temperature and the sealing temperature. Alternatively - in a "static" variant - the sealing heating temperature can also be selected equal to the sealing temperature. In this case, wait until the entire sealing film and thus all layers have warmed up to the sealing temperature. A “temperature-related ductile condition” is understood here and below in particular to mean that the material of the height compensation layer above the sealing temperature, in particular at the corresponding layer temperature (in contrast to room temperature), has the lowest possible resistance to deformation and thus with the corresponding layer temperature can be plastically deformed comparatively easily (in particular on account of the process forces usually applied by means of the sealing tool in a conventional sealing process), in particular a “sealing pressure”. Preferably, the sealing layer at the “sealing time” - ie during the sealing step, in particular when the sealing layer is warmed to the sealing temperature and is preferably pressed onto the sample holder with the sealing tool - has a high, preferably one over the height compensation layer - that to this Thus, when the temperature is warmed up to its layer temperature - higher viscosity (hence a lower temperature-related ductile ductility).
Vorzugsweise weist die Entkopplerschicht (konkret deren Material) auch - insbe- sondere bei ihrer Schichttemperatur und somit gegebenenfalls auch oberhalb der Siegeltemperatur - eine insbesondere im Vergleich zur Höhenausgleichsschicht und der Siegelschicht geringe plastische Verformbarkeit, mithin eine vergleichs- weise hohe Festigkeit auf. Preferably, the decoupling layer (specifically its material) also - particularly at its layer temperature and thus possibly also above the sealing temperature - has a low plastic deformability, in particular in comparison to the height compensation layer and the sealing layer, and therefore a comparatively high strength.
Besonders bevorzugt ist die Viskosität des Materials der Höhenausgleichsschicht zumindest zu dem Zeitpunkt, zu dem die Siegelschicht auf oder über die Siegel- temperatur erwärmt ist und somit die Schichttemperatur der Höhenausgleichs- schicht gleich oder größer der Siegeltemperatur ist, geringer als die Viskosität der Siegelschicht. The viscosity of the material of the height compensation layer is particularly preferably lower than the viscosity of the sealing layer, at least at the point in time at which the sealing layer is heated to or above the sealing temperature and the layer temperature of the height compensation layer is therefore equal to or greater than the sealing temperature.
Unter dem Begriff„Einsatztemperatur“, insbesondere„kurzzeitige Einsatztempera- tur“ wird hier und im Folgenden insbesondere eine Temperatur verstanden, der ein Material ohne eine über vorgegebene Grenzen hinausgehende Deformation, bei Kunststoffen insbesondere ohne Aufschmelzen - zumindest kurzzeitig, d. h. insbesondere für wenige Sekunden bis zu einigen zehn Sekunden - ausgesetzt werden kann. Bei Kunststoffen bildet diese Einsatztemperatur regelmäßig eine Grenze einer sogenannten Wärmeformbeständigkeit. The term “operating temperature”, in particular “short-term operating temperature” is understood here and in the following in particular to mean a temperature which a material has without a deformation going beyond predetermined limits, in the case of plastics in particular without melting - at least briefly, in particular for a few seconds to to a few ten seconds - suspended can be. In the case of plastics, this operating temperature regularly forms the limit of what is known as heat resistance.
Unter dem Begriff„Erweichungstemperatur“ wird hier und im Folgenden insbe- sondere eine Temperatur (konkret ein Temperaturwert) verstanden, ab der insbe- sondere ein (insbesondere amorpher) Kunststoff in den gummielastischen Bereich übergeht und somit sein Formänderungsvermögen (insbesondere seine Duktilität) zunimmt. Ein Übergang in den schmelzflüssigen Zustand erfolgt ab der Erwei- chungstemperatur fließend. Die Erweichungstemperatur wird insbesondere bei amorphen Kunststoffen (vorzugsweise amorphen Thermoplasten) auch als„Glas- übergangstemperatur“ bezeichnet. Im Zusammenhang vorzugsweise mit teilkris- tallinen Kunststoffen wird die Erweichungstemperatur hier und im Folgenden ins- besondere auch mit der Schmelztemperatur, ab der eine kristalline Phase des Kunststoffs in den schmelzflüssigen Zustand übergeht, gleichgesetzt. Diese Schmelztemperatur liegt dabei regelmäßig über einer Glasübergangstemperatur der amorphen Phase des teilkristallinen Kunststoffs. The term “softening temperature” is understood here and in the following in particular to mean a temperature (specifically a temperature value) from which in particular a (in particular amorphous) plastic passes into the rubber-elastic region and thus its ability to change shape (in particular its ductility) increases. A transition to the molten state occurs smoothly from the softening temperature. The softening temperature is also referred to as the "glass transition temperature", particularly in the case of amorphous plastics (preferably amorphous thermoplastics). In connection with preferably partially crystalline plastics, the softening temperature here and in the following in particular is also equated with the melting temperature, from which a crystalline phase of the plastic changes into the molten state. This melting temperature is regularly above a glass transition temperature of the amorphous phase of the partially crystalline plastic.
Unter der bei der bestimmungsgemäßen Schichttemperatur der Under the at the intended layer temperature of
Entkopplerschicht, d. h. wenn die Siegelschicht auf die Siegeltemperatur erwärmt ist, um ein Vielfaches gegenüber der Flöhenausgleichsschicht und der Siegel- schicht erhöhten Steifigkeit wird hier und im Folgenden insbesondere verstanden, dass die Entkopplerschicht bei dieser Schichttemperatur einen hohen Verfor- mungswiderstand (mithin eine geringe„Duktilität“ oder„Plastizität“) aufweist, wo- hingegen eine vergleichbare Größe bei der Flöhenausgleichsschicht und vorzugs- weise auch bei der Siegelschicht temperaturbedingt insbesondere vernachlässig- bar gering oder nicht (insbesondere temperaturbedingt nicht mehr) feststellbar ist. Decoupler layer, d. H. if the sealing layer is heated to the sealing temperature, a multiple compared to the flea compensation layer and the sealing layer with increased rigidity, it is understood here and in the following in particular that the decoupling layer has a high deformation resistance at this layer temperature (hence a low "ductility" or " Plasticity ”), whereas a comparable size for the flea compensation layer and preferably also for the sealing layer can be determined due to the temperature, in particular negligibly low or not (especially not due to the temperature).
Vorzugsweise sind die bestimmungsgemäße Siegeltemperatur und das Material der Siegelschicht voneinander abhängig gewählt, so dass die Erweichungstempe- ratur der Siegelschicht im Bereich von oder unterhalb der Siegeltemperatur liegt. Das Material der Siegelschicht ist vorzugsweise derart gewählt, dass dessen Er- weichungstemperatur bspw. zwischen etwa 50 und 140°C, insbesondere zwi- schen 70 und 110°C liegt. Anschließend wird üblicherweise die im Siegelprozess herangezogene Siegelheiztemperatur und gegebenenfalls die Prozessschrittdauer derart gewählt, dass die bestimmungsgemäße Siegeltemperatur bei oder oberhalb der Erweichungstemperatur des Materials der Siegelschicht liegt. Beispielsweise liegt die Siegeltemperatur in diesem Fall typischerweise in einem Bereich zwi- sehen 80 und 140 Grad Celsius (°C). Die Siegelheiztemperatur, die bspw. mittels der vorstehend beschriebenen Siegelplatte aufgebracht wird, liegt in diesem Fall beispielsweise - insbesondere bei einer möglichst kurzen Prozessschrittdauer - bei etwa 130 bis 200°C, insbesondere bei etwa 170°C. Aufgrund des vorstehend beschriebenen mehrschichtigen Aufbaus der Siegelfolie kann vorteilhafterweise verhindert werden, dass die Siegelfolie beim thermischen Versiegeln der Kavität des Probenträgers sich derart stark verformt, dass die Kavi- tät über anwendungsbezogen vorgegebene Grenzen hinaus in ihrem Querschnitt verringert wird. Dies wird insbesondere dadurch ermöglicht, dass die Flöhenaus- gleichsschicht im Siegelprozess - also insbesondere bei der entsprechenden Schichttemperatur, vorzugsweise oberhalb der Siegeltemperatur - in einem mit nur geringer Krafteinwirkung plastisch deformierbaren Zustand, insbesondere im schmelzflüssigen Zustand vorliegt und dadurch zwischen der Außenschicht und der Entkopplerschicht ein vergleichsweise einfach deformierbares„Kissen“ bildet. Aufgrund der vergleichsweise hohen Steifigkeit der Entkopplerschicht wird dage- gen verhindert, dass unter Wirkung des Siegeldrucks, der durch das an die Au- ßenschicht angelegte Siegelwerkzeug, insbesondere die Siegelplatte aufgebracht wird, das schmelzflüssige Material der Flöhenausgleichsschicht zu stark in die (konkret mikrofluidische) Kavität des Probenträgers einfließen kann. Die The intended sealing temperature and the material of the sealing layer are preferably selected to be dependent on one another, so that the softening temperature of the sealing layer is in the range from or below the sealing temperature. The material of the sealing layer is preferably chosen such that its softening temperature is, for example, between approximately 50 and 140 ° C., in particular between 70 and 110 ° C. This is usually followed by the sealing process the sealing heating temperature used and, if appropriate, the process step duration selected such that the intended sealing temperature is at or above the softening temperature of the material of the sealing layer. For example, the sealing temperature in this case is typically in a range between 80 and 140 degrees Celsius (° C). In this case, the sealing heating temperature, which is applied, for example, by means of the sealing plate described above, is, for example - in particular when the process step duration is as short as possible - around 130 to 200 ° C., in particular around 170 ° C. Due to the multilayer structure of the sealing film described above, it can advantageously be prevented that the sealing film deforms to such an extent when the cavity of the sample carrier is thermally sealed that the cross-section of the cavity is reduced beyond application-specific limits. This is made possible in particular by the fact that the flea compensation layer is present in the sealing process - in particular at the appropriate layer temperature, preferably above the sealing temperature - in a state which is plastically deformable with only a small force, in particular in the molten state, and is therefore between the outer layer and the decoupler layer comparatively easily deformable “pillow”. Due to the comparatively high stiffness of the decoupling layer, on the other hand, it is prevented that under the effect of the sealing pressure, which is applied by the sealing tool applied to the outer layer, in particular the sealing plate, the molten material of the flue compensation layer becomes too strong in the (specifically microfluidic) cavity of the sample carrier can flow in. The
Entkopplerschicht wirkt somit dämpfend auf die (vorzugsweise aufgeschmolzene) Flöhenausgleichsschicht. Insbesondere für den Fall, dass im auf die Siegeltempe- ratur erwärmten Zustand das Material der Siegelschicht zwar über seine Erwei- chungstemperatur erwärmt ist, aber aufgrund seiner vergleichsweise hohen - vor- zugsweise gegenüber der Flöhenausgleichsschicht erhöhten - Viskosität eine ver- gleichsweise geringe Fließneigung in Flächenrichtung der Siegelfolie aufweist, wird außerdem in Zusammenwirkung mit der Entkopplerschicht verhindert, dass das Material der Siegelschicht in die Kavität einfließt. Die Flöhenausgleichsschicht dient dagegen - insbesondere in Form des deformierbaren Kissens - zum Aus- gleich von insbesondere vergleichsweise großen (bspw. bis zu 50 Mikrometer, insbesondere größer 10 und/oder bis zu 30 Mikrometer) Unebenheiten auf einer Kontaktfläche des Probenträgers (d. h. insbesondere Höhenunterschiede, die bspw. als fertigungsbedingte Einfallstellen oder dergleichen an dem Probenträger auftreten). Der mittels des Siegelwerkzeugs aufgebrachte Siegeldruck kann somit vergleichsweise homogen auf die nachfolgenden Schichten und somit auch auf die (zumindest näherungsweise) gesamte Kontaktfläche des Probenträgers über- tragen werden. Außerdem kann dadurch wiederum die Siegelschicht die vorste- hend beschriebene hohe (insbesondere gegenüber der Höhenausgleichsschicht erhöhte) Viskosität aufweisen, da diese derartig große Unebenheiten nicht oder nur noch zu einem geringfügigen (Rest-) Anteil ausgleichen muss. Somit kann wiederum vorteilhafterweise die Neigung der Siegelschicht, während des Siegel- prozesses in die zu versiegelnde Kavität zu fließen, verringert werden. Des Weite- ren wird durch die gegenüber der Siegelheiztemperatur erhöhte Einsatztemperatur der Außenschicht ermöglicht, dass das Material der Außenschicht nicht an dem Siegelwerkzeug anhaftet und insbesondere seine räumliche Stabilität beibehält.Decoupling layer thus has a dampening effect on the (preferably melted) flea compensation layer. Particularly in the case that when the material is heated to the sealing temperature, the material of the sealing layer is heated above its softening temperature, but due to its comparatively high viscosity, which is preferably higher than that of the flea compensation layer, it has a comparatively low tendency to flow in the surface direction the sealing film, in cooperation with the decoupling layer is also prevented that the material of the sealing layer flows into the cavity. The flea compensation layer, on the other hand, serves - especially in the form of the deformable cushion - equal to, in particular, comparatively large (for example up to 50 micrometers, in particular greater than 10 and / or up to 30 micrometers) bumps on a contact surface of the sample carrier (ie in particular height differences which occur, for example, as sink marks caused by production or the like on the sample carrier). The sealing pressure applied by means of the sealing tool can thus be transferred comparatively homogeneously to the subsequent layers and thus also to the (at least approximately) entire contact surface of the sample carrier. In addition, the sealing layer can in turn have the above-described high viscosity (in particular increased compared to the height compensation layer), since it does not have to compensate for such large unevenness or only to a minor (residual) proportion. The tendency of the sealing layer to flow into the cavity to be sealed during the sealing process can in turn advantageously be reduced. Furthermore, the operating temperature of the outer layer, which is higher than the sealing heating temperature, means that the material of the outer layer does not adhere to the sealing tool and in particular maintains its spatial stability.
Die Außenschicht dient mithin als Schutzschicht der im Siegelprozess schmelz- flüssigen Höhenausgleichsschicht gegenüber dem Siegelwerkzeug. In einer bevorzugten Ausführung weist die Außenschicht vorzugsweise wenigs- tens im auf die Siegelheiztemperatur oder die resultierende Schichttemperatur erwärmten Zustand zumindest gegenüber der Höhenausgleichsschicht und/oder der Siegelschicht, optional auch gegenüber der Entkopplerschicht (insbesondere bei deren jeweiliger resultierenden Schichttemperatur während des Siegelschritts) eine erhöhte Steifigkeit, insbesondere einen erhöhten Verformungswiderstand auf. Aufgrund dieser erhöhten Steifigkeit wird vorteilhafterweise verhindert, dass die gesamte Siegelfolie in die zu versiegelnde Kavität„einhängt“ - d. h. sich in die Kavität einwölbt. D. h. die gewählte Steifigkeit der Außenschicht trägt zu einer Stabilisierung der gesamten Siegelfolie im Bereich der (jeweiligen) Kavität bei. Des Weiteren wird dadurch auch ermöglicht, dass die Außenschicht eine nähe- rungsweise ebene Oberfläche (d. h. ohne Einfallstellen) bildet, an die beispiels weise im Laborbetrieb eine Wärmeübertragungsfläche besonders effektiv ange- bunden werden kann. In einer weiteren bevorzugten Ausführung weist das Material der Außenschicht eine temperaturabhängige Schrumpfneigung zumindest in Flächenrichtung der Siegelfolie auf. Vorzugsweise ist hierbei das Material der Außenschicht (optional auch das der Entkopplerschicht) und/oder insbesondere ein Prozessablauf beim Versiegeln derart gewählt, dass das Material einen temperatur-induzierten The outer layer therefore serves as a protective layer of the height-compensating layer, which is molten in the sealing process, with respect to the sealing tool. In a preferred embodiment, the outer layer preferably has an increased stiffness at least when heated to the sealing heating temperature or the resulting layer temperature, at least with respect to the height compensation layer and / or the sealing layer, optionally also with respect to the decoupling layer (in particular at its respective resulting layer temperature during the sealing step) , in particular an increased resistance to deformation. Because of this increased rigidity, it is advantageously prevented that the entire sealing film “hangs” into the cavity to be sealed - that is, it bulges into the cavity. That is, The selected stiffness of the outer layer helps to stabilize the entire sealing film in the area of the (respective) cavity. Furthermore, this also enables the outer layer to form an approximately flat surface (ie without sink marks) to which a heat transfer surface can be connected particularly effectively, for example in laboratory operation. In a further preferred embodiment, the material of the outer layer has a temperature-dependent tendency to shrink, at least in the surface direction of the sealing film. In this case, the material of the outer layer (optionally also that of the decoupling layer) and / or in particular a process sequence during sealing is preferably selected such that the material is temperature-induced
Schrumpf aufweist. Beispielsweise handelt es sich bei dem Material der Außen- schicht (optional auch bei dem der Entkopplerschicht) um ein verstrecktes Kunst- stoff-Material (bspw. eine gereckte Folie), das bei Erwärmung und damit einher- gehender Mobilisierung der Molekülketten insbesondere aufgrund einer Relaxati- on der Molekülketten (die sich hierbei insbesondere„zusammenknäulen“) schrumpft. Zusätzlich oder alternativ wird die Siegelfolie ungleich zum Probenträ- ger erwärmt, bspw. zuerst erwärmt (bspw. mittels eines Fleizstrahlers oder Heizlüf- ters) und anschließend auf den insbesondere kalten (d. h. nicht erwärmten) oder geringer erwärmten Probenträger aufgelegt. Dadurch ergibt sich aufgrund des Temperaturunterschieds ein unterschiedlicher Schrumpf (optional nur ein Has shrinkage. For example, the material of the outer layer (optionally also that of the decoupling layer) is a stretched plastic material (for example an stretched film) which, when heated and the associated mobilization of the molecular chains, in particular due to a relaxati - one of the molecular chains (which in particular "clump together") shrinks. Additionally or alternatively, the sealing film is heated unlike the sample holder, for example first heated (for example by means of a meat heater or fan heater) and then placed on the particularly cold (ie not heated) or less heated sample holder. This results in a different shrinkage due to the temperature difference (optionally only one
Schrumpf der Siegelfolie) bei Abkühlung auf Raumtemperatur. Optional wird bei Einsatz der vorstehend beschriebenen Heizplatte ein Durchwärmen des Proben- trägers nicht abgewartet, so dass sich dadurch eine ungleiche Erwärmung ergibt. Ein Schrumpfen der Außenschicht beim Versiegeln ist dahingehend vorteilhaft, dass auf diese Weise eine Bildung von Wellen und somit eine unebene Oberflä- che der Siegelfolie vermieden werden kann. Eine Ausdehnung der Außenschicht würde hingegen Einfallstellen und somit ein Durchhängen der Außenschicht bzw. der gesamten Siegelfolie im Bereich der jeweiligen Kavität begünstigen. Shrinking of the sealing film) when cooling to room temperature. If the heating plate described above is used, there is optionally no waiting for the sample carrier to be warmed through, so that this results in uneven heating. Shrinking the outer layer during sealing is advantageous in that in this way the formation of waves and thus an uneven surface of the sealing film can be avoided. On the other hand, an expansion of the outer layer would favor sink marks and thus sagging of the outer layer or the entire sealing film in the area of the respective cavity.
In einer weiteren zweckmäßigen Ausführung ist eine Dicke der Entkopplerschicht in Abhängigkeit von wenigstens einer Abmessung, vorzugsweise einer Breite (d. h. insbesondere die kleinste Erstreckung der Kavität in Flächenrichtung des Pro- benträgers) der zu versiegelnden Kavität gewählt. Zweckmäßigerweise erfolgt die Wahl der Dicke vorzugsweise im Hinblick auf vergleichsweise flache („seichte“) Kanäle, deren Tiefen vorzugweise kleiner als 500 pm sind. Die Dicke der In a further expedient embodiment, a thickness of the decoupling layer is selected as a function of at least one dimension, preferably a width (ie in particular the smallest extent of the cavity in the surface direction of the sample carrier) of the cavity to be sealed. The thickness is expediently preferably chosen with a view to comparatively flat (“shallow”) channels, the depths of which are preferably less than 500 μm. The thickness of the
Entkopplerschicht wird hierbei vorzugsweise in Abhängigkeit von der Breite der zu versiegelnden Kavität und insbesondere auch eines vorgegebenen, zulässigen Einsinkens der Siegelfolie in diese Kavität ausgewählt. Insbesondere wenn die Einsinktiefe reduziert werden soll und/oder eine breite (sowie insbesondere fla che) Kavität (Breite vorzugsweise kleiner als 1 ,5 Millimeter) von der Siegelfolie überspannt werden soll, wird eine größere Dicke der Entkopplerschicht gewählt. Dadurch werden die Entkopplerschicht und somit auch die Siegelfolie insgesamt steifer und ein Einsinken in die oder ein Durchhängen der Siegelfolie oberhalb der Kavität verringert. Vorzugsweise beträgt die Dicke der Entkopplerschicht jedoch mindestens 15 Mikrometer, insbesondere mehr als 20 Mikrometer und besonders bevorzugt etwa 30 Mikrometer. Eine Dicke von 30 Mikrometer hat sich dabei für eine Anwendung auf einem Probenträger mit mehreren unterschiedlich breiten Kavitäten als vorteilhaft dahingehend erwiesen, dass im Mittel über die unter- schiedliche Breiten der Kavitäten ein hinreichend geringes Einsinken der Siegelfo- lie, konkret der Höhenausgleichsschicht gemeinsam mit der Entkopplerschicht und der Siegelschicht in die jeweilige Kavität ermöglicht wird. Decoupling layer is in this case preferably dependent on the width of the cavity to be sealed and in particular also of a predetermined, permissible one Selected the sinking of the sealing film into this cavity. In particular, if the sinking depth is to be reduced and / or a wide (and in particular flat surface) cavity (width preferably less than 1.5 millimeters) is to be spanned by the sealing film, a greater thickness of the decoupler layer is selected. As a result, the decoupling layer and thus also the sealing film as a whole are stiffer and sinking into or sagging of the sealing film above the cavity is reduced. However, the thickness of the decoupler layer is preferably at least 15 micrometers, in particular more than 20 micrometers and particularly preferably approximately 30 micrometers. A thickness of 30 micrometers has proven to be advantageous for use on a sample carrier with several cavities of different widths in that, on average over the different widths of the cavities, the sealing film sinks to a sufficiently small extent, specifically the leveling layer together with the Decoupler layer and the sealing layer in the respective cavity is made possible.
In einer bevorzugten Ausführung ist die Außenschicht aus einem Kunststoff, kon- kret einem thermoplastischen Kunststoff gebildet. In a preferred embodiment, the outer layer is formed from a plastic, specifically a thermoplastic.
In einer zweckmäßigen Weiterbildung ist die Außenschicht dabei aus einem biaxial verstreckten Polyethylenterephtalat (kurz: BOPET), einem Cyclo-Olefin- Copolymer (COC, insbesondere mit einer entsprechend hohen Glasübergangs- temperatur), einem Polychlortrifluorethylen (kurz: PCTFE), einem Polypropylen (PP), einem Cyclo-Olefin-Polymer (COP), einem Polyimid (PI), einem In an expedient development, the outer layer is made of a biaxially stretched polyethylene terephthalate (short: BOPET), a cyclo-olefin copolymer (COC, in particular with a correspondingly high glass transition temperature), a polychlorotrifluoroethylene (short: PCTFE), a polypropylene (PP ), a cyclo-olefin polymer (COP), a polyimide (PI), a
Polyetheretherketon (PEEK) oder einem Polyamid (PA) gebildet. Die vorstehend beschriebenen Kunststoffe haben dabei den Vorteil, dass diese eine vergleichs- weise hohe kurzzeitige Gebrauchstemperatur (d. h. die vorstehend beschriebene Einsatztemperatur) aufweisen und somit eine Schädigung, ein Aufschmelzen oder dergleichen bei der Siegelheiztemperatur effektiv vermieden wird. Die Höhenausgleichsschicht ist in einer bevorzugten Ausführung aus einem ins- besondere im Vergleich zu der Außenschicht niedrigschmelzenden (d. h. eine niedrige Schmelztemperatur aufweisenden) thermoplastischen Kunststoff ausge- bildet. Durch die Wahl des Kunststoffs, insbesondere seine duktile Verformbarkeit und/oder seine erhöhte Fließfähigkeit während die Siegelheiztemperatur wirkt, kann die Eignung zum Höhenausgleich von Unebenheiten auf dem Probenträger beeinflusst werden. Bei Siegeltemperaturen (die insbesondere an der Siegelfläche zwischen der Siegelschicht und dem Probenträger vorliegen) von weniger als 90°C eignet sich ein lineares Polyethylen niedriger Dichte (auch als„PE-LLD“ be- zeichnet), während für höhere Siegeltemperaturen (bspw. größer 100°C) auch ein Polyethylen niedriger Dichte, insbesondere ein verzweigtes Polyethylen (auch als „PE-LD“ bezeichnet) oder bei weiter erhöhten Siegeltemperaturen auch ein Polye- thylen hoher Dichte („PE-HD“) oder ein thermoplastisches Elastomer (TPE) mit geeigneter (d. h. insbesondere niedriger) Schmelztemperatur eingesetzt werden können. Ebenfalls kann auch ein Ethylen Vinyl Acetat (EVA) mit entsprechend niedrigem Schmelzpunkt zum Einsatz kommen. Die Auslegung, insbesondere die Materialauswahl der Höhenausgleichsschicht erfolgt vorzugsweise unter Berück- sichtigung der Entkopplerschicht. Dabei wird berücksichtigt, dass bei steigender Fließfähigkeit der Höhenausgleichsschicht die laterale plastische Verformbarkeit der Höhenausgleichsschicht zunimmt und somit auch vergleichsweise große Oberflächenunebenheiten des Probenträgers kompensiert werden können und/oder größeres Einsinken in die Kavitäten auftreten kann. Diesem lokalen Ein- sinken in die jeweilige (kleine Dimensionen aufweisende) Kavität wirkt dabei vor- zugsweise die entsprechend zur Fließfähigkeit der Höhenausgleichsschicht steif gewählte Entkopplerschicht entgegen. Polyetheretherketone (PEEK) or a polyamide (PA) is formed. The plastics described above have the advantage that they have a comparatively high short-term use temperature (ie the use temperature described above) and thus damage, melting or the like is effectively avoided at the sealing heating temperature. In a preferred embodiment, the height compensation layer is formed from a thermoplastic which melts particularly low (ie has a low melting temperature) compared to the outer layer. The choice of plastic, especially its ductile ductility and / or its increased flowability while the sealing heating temperature is acting, the suitability for height compensation can be influenced by unevenness on the sample carrier. A linear low-density polyethylene (also referred to as “PE-LLD”) is suitable for sealing temperatures (which are particularly present on the sealing surface between the sealing layer and the sample carrier) of less than 90 ° C, while for higher sealing temperatures (for example, higher) 100 ° C) also a low-density polyethylene, in particular a branched polyethylene (also referred to as “PE-LD”) or, if the sealing temperatures are higher, also a high-density polyethylene (“PE-HD”) or a thermoplastic elastomer (TPE) can be used with a suitable (ie in particular lower) melting temperature. An ethylene vinyl acetate (EVA) with a correspondingly low melting point can also be used. The design, in particular the material selection, of the height compensation layer is preferably carried out taking into account the decoupler layer. It is taken into account that with increasing flowability of the height compensation layer, the lateral plastic deformability of the height compensation layer increases and thus also comparatively large unevenness in the surface of the sample carrier can be compensated for and / or greater sinking into the cavities can occur. This local sinking into the respective (small dimensions) cavity is preferably counteracted by the decoupling layer, which is chosen to be stiff in accordance with the flowability of the height compensation layer.
In einer bevorzugten Ausführung weist die Entkopplerschicht, insbesondere deren Material eine Erweichungstemperatur größer als die von dem Siegelwerkzeug aufgebrachte Siegelheiztemperatur, zumindest größer als die in der In a preferred embodiment, the decoupling layer, in particular its material, has a softening temperature greater than the sealing heating temperature applied by the sealing tool, at least greater than that in the
Entkopplerschicht auftretende Schichttemperatur bei bestimmungsgemäßer Be- aufschlagung der Außenschicht mit der Siegelheiztemperatur auf. Damit wird vor- teilhafterweise ermöglicht, dass die Entkopplerschicht auch im Siegelprozess ihre Formstabilität beibehält (d. h. insbesondere ihre Steifigkeit noch hinreichend hoch ist), und somit ein Ausfüllen der zu versiegelnden Kavität durch die unter dem Siegeldruck in Richtung von konkaven Oberflächenstrukturen des Probenträgers fließenden Höhenausgleichsschicht verringert oder sogar unterbunden wird. Optional ist die Entkopplerschicht in der vorstehenden Ausführung aus Aluminium, insbesondere einer Aluminiumfolie gebildet. Weiter optional ist die The decoupling layer shows the layer temperature when the outer layer is properly charged with the sealing heating temperature. This advantageously makes it possible for the decoupler layer to retain its shape stability even in the sealing process (ie in particular its rigidity is still sufficiently high), and thus to reduce filling of the cavity to be sealed by the height compensation layer flowing under the sealing pressure in the direction of concave surface structures of the sample carrier or even prevented. The decoupling layer in the above embodiment is optionally formed from aluminum, in particular an aluminum foil. The is also optional
Entkopplerschicht aber aus einem Kunststoff, vorzugsweise einem COC (insbe- sondere mit hoher Glasübergangstemperatur), einem Polycarbonat (PC), einem Polymethylmethacrylat (kurz: PMMA), einem Polystyrol (PS) oder durch einen an- deren der für die Außenschicht vorgesehenen Kunststoffe gebildet. However, the decoupler layer is formed from a plastic, preferably a COC (in particular with a high glass transition temperature), a polycarbonate (PC), a polymethyl methacrylate (in short: PMMA), a polystyrene (PS) or by another of the plastics intended for the outer layer .
In einer zweckmäßigen Ausführung ist die Siegelschicht durch eine separate Polymerschicht gebildet. In diesem Fall handelt es sich bei der Siegelschicht also insbesondere um eine durch Coextrusion oder Kaschieren auf die In an expedient embodiment, the sealing layer is formed by a separate polymer layer. In this case, the sealing layer is in particular one by coextrusion or lamination to the
Entkopplerschicht oder eine gegebenenfalls vorhandene Zwischenschicht aufge- brachte folienartige Schicht.  Decoupler layer or a film-like layer applied, if applicable, to the intermediate layer.
In einer alternativen Ausführungsform ist die Siegelschicht durch eine oberflä- chennahe Schicht der Entkopplerschicht gebildet, die durch eine Oberflächenbe- handlung eben dieser (in dieser Ausführung aus einem Kunststoff gebildeten) Entkopplerschicht modifiziert ist. Beispielsweise wird hierzu mittels eines Lö- sungsmittels die Entkopplerschicht oberflächennah angelöst und/oder durch Be- strahlung, Plasmabehandlung oder Ozon-Behandlung oberflächennah derart mo- difiziert, dass die oberflächennahen Polymerketten bei einer geringeren Schicht- temperatur als das unbeeinflusste„Bulk-Material“ heißsiegelfähig sind. Diese oberflächennahe Schicht der Entkopplerschicht weist anschließend also andere thermische und insbesondere auch Theologische Eigenschaften als die restliche, nicht-modifizierte Entkopplerschicht auf. In an alternative embodiment, the sealing layer is formed by a layer of the decoupler layer which is close to the surface and which is modified by a surface treatment of this (in this embodiment made of a plastic) decoupler layer. For this purpose, for example, the decoupling layer is loosened near the surface by means of a solvent and / or modified by irradiation, plasma treatment or ozone treatment near the surface in such a way that the polymer chains near the surface are heat-sealable at a lower layer temperature than the unaffected “bulk material” are. This near-surface layer of the decoupler layer then has different thermal and in particular also theological properties than the rest of the unmodified decoupler layer.
In einer weiteren zweckmäßigen Ausführung handelt es sich bei dem Material der Siegelschicht um ein COC, das vorzugsweise zu einer die Außenschicht und/oder die Entkopplerschicht bildenden COC-Type unterschiedlich ist. Beispielsweise ist die Siegelschicht durch eine COC-Type mit einer Glasübergangstemperatur von etwa 79°C gebildet. Die Entkopplerschicht ist in diesem Fall beispielsweise durch eine COC-Type mit einer Glasübergangstemperatur im Bereich von etwa In a further expedient embodiment, the material of the sealing layer is a COC, which is preferably different from a COC type that forms the outer layer and / or the decoupling layer. For example, the sealing layer is formed by a COC type with a glass transition temperature of approximately 79 ° C. In this case, the decoupler layer is, for example, a COC type with a glass transition temperature in the range of approximately
135°Celsius gebildet. Alternativ ist die Siegelschicht durch die vorstehend be- schriebene Oberflächenbehandlung der COC-Type der Entkopplerschicht ausge- bildet. 135 ° Celsius. Alternatively, the sealing layer is characterized by the surface treatment of the COC type of the decoupler layer.
In einer weiteren alternativen Variante ist die Siegelschicht durch einen Schmelz- klebstoff, auch als„Hotmelt“ bezeichnet, gebildet. Optional handelt es sich dabei um einen rein thermoplastischen Schmelzklebstoff. Alternativ handelt um einen reaktiven Schmelzklebstoff, beispielsweise auf Basis von Polyurethan oder um einen UV-vorvernetzten und/oder UV-vernetzenden (Schmelz-) Klebstoff. In einer bevorzugten Ausführung liegt eine Dicke der Siegelschicht zwischen etwa 5 und 30 Mikrometer, vorzugsweise bei etwa 20 Mikrometer. Bei dieser Dicke ist vorteilhafterweise ein Einsinken oder Eindringen des über die Erweichungstempe- ratur erwärmten Materials der Siegelschicht im Siegelprozess in die Kavität hinrei chend gering, aber es wird dennoch ein Ausgleich von vergleichsweise scharfkan- tigen und/oder vergleichsweise kleinen („flachen“) Unebenheiten in der Größen- ordnung bis zu 10 oder 15 Mikrometern auf der Oberfläche des Probenträgers - die beispielsweise von Frässpuren oder Kratzern in einem Fertigungswerkzeug herrühren - ermöglicht. In einer optionalen Ausführung weist die Siegelfolie wenigstens eine, optional mehrere zusätzliche, insbesondere zwischen den vorstehend beschriebenen Schichten liegende Schichten auf. Diese dienen beispielsweise zur verbesserten Flaftung der vorstehend beschriebenen Schichten, d. h. der Außenschicht, der Flöhenausgleichsschicht, der Entkopplerschicht und der Siegelschicht untereinan- der. In a further alternative variant, the sealing layer is formed by a hot melt adhesive, also referred to as a “hot melt”. Optionally, it is a purely thermoplastic hot melt adhesive. Alternatively, it is a reactive hot melt adhesive, for example based on polyurethane, or a UV pre-crosslinked and / or UV crosslinking (hot melt) adhesive. In a preferred embodiment, the thickness of the sealing layer is between approximately 5 and 30 micrometers, preferably approximately 20 micrometers. With this thickness, the sinking or penetration of the material of the sealing layer heated via the softening temperature into the cavity during the sealing process is sufficiently small, but it nevertheless compensates for comparatively sharp-edged and / or comparatively small ("flat") unevenness in the order of up to 10 or 15 micrometers on the surface of the sample carrier - which may result, for example, from milling marks or scratches in a production tool. In an optional embodiment, the sealing film has at least one, optionally a plurality of additional layers, in particular between the layers described above. These serve, for example, to improve the flow of the layers described above, i. H. the outer layer, the flea compensation layer, the decoupling layer and the sealing layer with one another.
Der erfindungsgemäße Probenbehälter weist den vorstehend beschriebenen Pro- benträger auf. Der Probenträger weist wie vorstehend beschrieben die Anzahl von mikrofluidischen Kavitäten (insbesondere Kanalstrukturen und/oder Kammern) zur Aufnahme eines Fluids auf. Außerdem weist der Probenbehälter die vorstehend beschriebene Siegelfolie auf. Mittels dieser Siegelfolie kann die Anzahl von mikro- fluidischen Kavitäten versiegelt werden oder ist in einem bestimmungsgemäßen Siegelzustand bereits versiegelt. Unter„mikrofluidischen Kavitäten“ werden hier und im Folgenden insbesondere Kanäle oder Kammern mit einer Breite von mehreren zehn bis mehreren 100 Mik- rometer (gegebenenfalls auch einer einstelligen Zahl an Millimeter) verstanden Eine Länge der Kanäle oder Kammern erstreckt sich dabei über etwa die gleiche Größenordnung oder sogar bis zu mehreren 10 Millimetern. The sample container according to the invention has the sample carrier described above. As described above, the sample carrier has the number of microfluidic cavities (in particular channel structures and / or chambers) for receiving a fluid. In addition, the sample container has the sealing film described above. The number of microfluidic cavities can be sealed by means of this sealing film or is already sealed in the intended sealing state. “Microfluidic cavities” here and in the following mean in particular channels or chambers with a width of several tens to several hundred micrometers (possibly also a single-digit number of millimeters). The length of the channels or chambers extends over approximately the same order of magnitude or even up to several 10 millimeters.
Die vorstehend beschriebene Siegelfolie wird somit vorzugsweise verwendet, um die Anzahl von Kavitäten des Probenträgers zu versiegeln. The sealing film described above is thus preferably used to seal the number of cavities in the sample carrier.
Der erfindungsgemäße Probenbehälter weist somit die vorstehend im Zusam- menhang mit der Siegelfolie beschriebenen Merkmale und Vorteile gleichermaßen auf. Vorzugsweise ist das Material der Siegelschicht und/oder des Probenträgers der- art gewählt, dass diese zueinander kompatibel insbesondere hinsichtlich einer Haftfähigkeit aneinander sind, mithin dass beide Materialien miteinander verklebt werden können (insbesondere ohne separaten Zusatzwerkstoff). Beispielsweise sind beide Materialien polar oder unpolar. The sample container according to the invention thus has the features and advantages described above in connection with the sealing film. The material of the sealing layer and / or of the sample carrier is preferably selected such that they are compatible with one another, in particular with regard to their adhesiveness to one another, so that both materials can be glued together (in particular without a separate filler material). For example, both materials are polar or non-polar.
Beispielsweise ist das Material des Probenträgers durch ein COC oder einen an- deren, mit der Siegelschicht kompatiblen Kunststoff mit einer Glasübergangstem- peratur zwischen 60 und 150°C, vorzugsweise zwischen 100 und 140°C gebildet. Bei einer Glasübergangstemperatur von größer 135°C ist vorzugsweise die Sie- geltemperatur erhöht, so dass die Ausbildung der Haftverbindung zwischen der Siegelschicht und dem Probenträger vereinfacht wird (aufgrund von insbesondere temperaturabhängigen Diffusionseffekten und dergleichen). Im bestimmungsge- mäßen Siegelschritt wird hierbei der Siegeldruck reduziert, um ein zu starkes late rales Fließen des Materials der Höhenausgleichsschicht zu vermeiden. For example, the material of the sample carrier is formed by a COC or another plastic that is compatible with the sealing layer and has a glass transition temperature between 60 and 150 ° C., preferably between 100 and 140 ° C. At a glass transition temperature of greater than 135 ° C., the sealing temperature is preferably increased, so that the formation of the adhesive connection between the sealing layer and the sample carrier is simplified (due to, in particular, temperature-dependent diffusion effects and the like). In the intended sealing step, the sealing pressure is reduced in order to avoid excessive lateral flow of the material of the height compensation layer.
Der Probenträger ist hierbei optional als Spritzgießbauteil, Heißprägebauteil oder als thermogeformte Kunststofffolie gebildet. Die Konjunktion„und/oder“ ist hier und im Folgenden insbesondere derart zu ver- stehen, dass die mittels dieser Konjunktion verknüpften Merkmale sowohl ge- meinsam als auch als Alternativen zueinander ausgebildet sein können. Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung näher dargestellt. Darin zeigen: The sample carrier is optionally formed as an injection molding component, a hot stamping component or as a thermoformed plastic film. The conjunction “and / or” is to be understood here and in the following in particular in such a way that the features linked by means of this conjunction can be formed both jointly and as alternatives to one another. An exemplary embodiment of the invention is illustrated in more detail below with reference to a drawing. In it show:
Fig. 1 in einer schematischen und ausschnitthaften Schnittansicht eine Siegel- folie, 1 is a schematic and cutaway sectional view of a sealing film,
Fig. 2 in Ansicht gemäß Fig. 1 einen Probenbehälter, der einen Probenträger mit einer durch die Siegelfolie gemäß Figur 1 versiegelte Kavität auf- weist, und FIG. 2 is a view according to FIG. 1 of a sample container, which has a sample carrier with a cavity sealed by the sealing film according to FIG. 1, and
Fig. 3 in Ansicht gemäß Fig. 2 den Probenbehälter mit drei unterschiedlich großen Kavitäten, die gemeinsam mittels der Siegelfolie versiegelt sind.  3 shows the sample container with three cavities of different sizes, which are sealed together by means of the sealing film.
Einander entsprechende Teile sind in allen Figuren stets mit gleichen Bezugszei- chen versehen. Corresponding parts are always provided with the same reference symbols in all figures.
In Fig. 1 ist eine Siegelfolie 1 schematisch in einem Querschnitt dargestellt. Die Siegelfolie 1 ist aus mehreren, aus unterschiedlichen Kunststoffen gebildeten Schichten hergestellt. Die Siegelschicht 1 dient konkret zum Versiegeln eines in Fig. 2 dargestellten Probenträgers 2, konkret einer in diesen Probenträger 2 eingeformten Kavität 4. Bei dem Probenträger 2 handelt es sich um ein aus einem COC mit einer Glasübergangstemperatur von etwa 110°C gebildetes Substrat, in das eine Anzahl von sogenannten mikrofluidischen Kanälen und Kammern, d. h. Kanäle oder Kammern mit einer Breite von mehreren zehn bis mehreren 100 Mik- rometer (gegebenenfalls auch einer einstelligen Zahl an Millimeter) eingebracht sind. Eine Länge der Kanäle oder Kammern erstreckt sich dabei über etwa die gleiche Größenordnung oder sogar bis zu mehreren 10 Millimetern. Diese Kanäle und Kammern bilden jeweils eine Kavität 4 aus. Gemeinsam mit diesem Proben- träger 2 bildet die Siegelfolie 1 einen Probenbehälter 6 (s. Figur 2). Der Schichtaufbau der Siegelfolie 1 umfasst eine Außenschicht 8, die im darge- stellten Ausführungsbeispiel durch eine 12,5 Mikrometer dicke Schicht eines biaxial verstreckten Polyethylenterephtalats (BOPET) gebildet ist. An die Außen- schicht 8 grenzt eine Höhenausgleichsschicht 10 an, die aus einem Polyethylen niedriger Dichte mit einer Dicke von 30 Mikrometer gebildet ist. An die Höhenaus- gleichsschicht 10 schließt eine Entkopplerschicht 12 an, die aus einer 30 Mikro- meter starken Schicht eines COC mit einer Glasübergangstemperatur von etwa 135°C gebildet ist. Auf einer der Außenschicht 8 gegenüberliegenden Unterseite 14 der Siegelfolie 1 weist deren Schichtaufbau eine Siegelschicht 16 auf, die aus einem COC mit einer Glasübergangstemperatur von etwa 79°C gebildet ist. In Fig. 1, a sealing film 1 is shown schematically in a cross section. The sealing film 1 is made from several layers formed from different plastics. The sealing layer 1 serves specifically to seal a sample holder 2 shown in FIG. 2, specifically a cavity 4 molded into this sample holder 2. The sample holder 2 is a substrate formed from a COC with a glass transition temperature of approximately 110 ° C. in a number of so-called microfluidic channels and chambers, ie channels or chambers with a width of several tens to several hundred micrometers (possibly also a single-digit number of millimeters) are introduced. The length of the channels or chambers extends over approximately the same order of magnitude or even up to several tens of millimeters. These channels and chambers each form a cavity 4. Together with this sample carrier 2, the sealing film 1 forms a sample container 6 (see FIG. 2). The layer structure of the sealing film 1 comprises an outer layer 8, which in the exemplary embodiment shown is formed by a 12.5 micrometer thick layer of a biaxially stretched polyethylene terephthalate (BOPET). Adjacent to the outer layer 8 is a height compensation layer 10, which is formed from a low-density polyethylene with a thickness of 30 micrometers. The height compensation layer 10 is followed by a decoupler layer 12 which is formed from a 30 micron thick layer of a COC with a glass transition temperature of approximately 135 ° C. On an underside 14 of the sealing film 1 opposite the outer layer 8, the layer structure thereof has a sealing layer 16, which is formed from a COC with a glass transition temperature of approximately 79 ° C.
Zum Versiegeln der Kavität 4 des Probenträgers 2 wird die Siegelfolie 1 mittels eines nicht näher dargestellten Siegelwerkzeugs, konkret einer„Siegelplatte“ an den Probenträger 2 angedrückt. Das Siegelwerkzeug liegt dabei an der Außen- Schicht 8 an und ist auf eine Siegelheiztemperatur erwärmt, die deutlich oberhalb der Erweichungstemperatur oder Glasübergangstemperatur der Siegelschicht 16 liegt. Konkret liegt die Siegelheiztemperatur im beschriebenen Ausführungsbei- spiel bei 170°C, um eine möglichst schnelle Erwärmung der Siegelfolie 1 und da- mit auch der Siegelschicht 16 auf eine Siegeltemperatur, die ebenfalls oberhalb der Glasübergangstemperatur der Siegelschicht 16 liegt, zu ermöglichen. Die Sie- geltemperatur liegt aufgrund eines sich in der Siegelfolie 1 ausbildenden Tempe- raturgradienten im vorliegenden Ausführungsbeispiel bei etwa 100 bis 110°C - bei einer vergleichsweise kurzen Erwärmungszeit von wenigen Sekunden (bspw. bis zu 5, 10 oder bis zu 20 Sekunden). Dabei wird durch das Siegelwerkzeug die Sie- gelfolie 1 sowie auch eine oberflächennahe Schicht des Probenträgers 2 erwärmt. Bei der Siegeltemperatur ist die Siegelschicht 16 erweicht, sodass Diffusionsvor- gänge mit dem Material des Probenträgers 2 erfolgen können und somit eine Schmelzklebung und Anhaftung der Siegelfolie 1 an dem Probenträger 2 erfolgen kann. To seal the cavity 4 of the sample holder 2, the sealing film 1 is pressed onto the sample holder 2 by means of a sealing tool, not shown, specifically a “sealing plate”. The sealing tool lies against the outer layer 8 and is heated to a sealing heating temperature which is significantly above the softening temperature or glass transition temperature of the sealing layer 16. Specifically, the sealing heating temperature in the exemplary embodiment described is 170 ° C. in order to enable the sealing film 1 and thus also the sealing layer 16 to be heated as quickly as possible to a sealing temperature which is also above the glass transition temperature of the sealing layer 16. Due to a temperature gradient forming in the sealing film 1 in the present exemplary embodiment, the sealing temperature is approximately 100 to 110 ° C. with a comparatively short heating time of a few seconds (for example up to 5, 10 or up to 20 seconds). The sealing film 1 and also a layer of the sample carrier 2 close to the surface is heated by the sealing tool. At the sealing temperature, the sealing layer 16 is softened, so that diffusion processes can take place with the material of the sample holder 2 and thus the sealing film 1 can be melt-bonded and adhered to the sample holder 2.
Die Siegelheiztemperatur liegt unterhalb der Erweichungstemperatur des Materi- als der Außenschicht 8. Eine sich aufgrund des Temperaturgradienten einstellen- de Schichttemperatur der Entkopplerschicht 12 liegt ebenfalls unterhalb der Er- weichungstemperatur des Materials der Entkopplerschicht 12. Die Siegelheiztem- peratur und die sich einstellende Schichttemperatur der Höhenausgleichsschicht 10 liegen dagegen oberhalb der Erweichungstemperatur, konkret der Schmelz- temperatur des Materials der Höhenausgleichsschicht 10. Somit geht bei der Er- wärmung der Siegelfolie 1 im Siegelprozess das Material der Höhenausgleichs- schicht 10 in den leicht plastisch verformbaren, konkret schmelzflüssigen Zustand über. Da das Polyethylen niedriger Dichte der Höhenausgleichsschicht 10 im schmelzflüssigen Zustand eine vergleichsweise niedrige Viskosität aufweist, kann die Schmelze der Höhenausgleichsschicht 10 unter Wirkung des von dem Siegel- Werkzeug aufgebrachten Siegeldrucks in Flächenrichtung 18 der Siegelfolie 1 ver- drängt werden und somit in Flächenrichtung 18 fließen. The sealing heating temperature is below the softening temperature of the material as the outer layer 8. A layer temperature of the decoupling layer 12 which arises on account of the temperature gradient is likewise below the softening temperature of the material of the decoupling layer 12. The sealing heating temperature and the resulting layer temperature of the height compensation layer 10, on the other hand, are above the softening temperature, specifically the melting temperature of the material of the height compensation layer 10. Thus, when the sealing film 1 is heated, the material passes in the sealing process the leveling layer 10 into the easily plastically deformable, specifically molten state. Since the low-density polyethylene of the height compensation layer 10 has a comparatively low viscosity in the molten state, the melt of the height compensation layer 10 can be displaced in the surface direction 18 of the sealing film 1 under the effect of the sealing pressure applied by the sealing tool and thus flow in the surface direction 18.
Durch dieses seitliche Fließen des Materials der Höhenausgleichsschicht 10 kön- nen Einfallstellen 20 im Substrat des Probenträgers 2 durch eine Ansammlung von Material der Höhenausgleichsschicht 10 gefüllt werden, indem die As a result of this lateral flow of the material of the height compensation layer 10, sink marks 20 in the substrate of the sample carrier 2 can be filled by an accumulation of material of the height compensation layer 10 by the
Entkopplerschicht 12 und die Siegelschicht 16 in Richtung der Einfallstelle 20 ausgelenkt werden. Entsprechend umgekehrt können Erhöhungen 22 auf dem Probenträger 2 durch eine Ausdünnung, konkret ein seitliches Verdrängen des Materials der Höhenausgleichsschicht 10 in Flächenrichtung 18 ebenfalls ausge- glichen werden.  Decoupler layer 12 and the sealing layer 16 are deflected in the direction of the sink 20. Conversely, elevations 22 on the sample carrier 2 can also be compensated for by thinning, specifically a lateral displacement of the material of the height compensation layer 10 in the surface direction 18.
Da die Entkopplerschicht 12 bei ihrer Schichttemperatur noch nicht auf ihre Erwei- chungstemperatur erwärmt ist, weist diese ebenfalls eine derart hohe Steifigkeit auf, dass ein übermäßiges (d. h. über anwendungsspezifisch vorgegebene Gren- zen hinaus) Einsinken der Entkopplerschicht 12 und der an diese angebundenen Siegelschicht 16 in die Kavität 4 verhindert wird. Bei einer Breite der Kavität 4 von unter 500 Mikrometer, insbesondere von unter 100 Mikrometer erfolgt dabei ledig lich ein geringfügiges Einsinken der Siegelfolie 1 in die Kavität 4. Die Viskosität der Siegelschicht 16 ist auch bei Siegeltemperatur gegenüber der Viskosität der Höhenausgleichsschicht 10 deutlich erhöht, sodass ein Fließen der Siegelschicht 16, konkret des Materials der Siegelschicht 16 in Flächenrichtung 18 unterbunden oder nur zu einem vernachlässigbaren Grad möglich ist. Die Außenschicht 8 bildet eine temperaturstabile Schutzschicht gegenüber dem Siegelwerkzeug, die verhindert, dass Material der Siegelfolie 1 an dem auf die Siegelheiztemperatur erwärmten Siegelwerkzeug anhaften bleibt. Des Weiteren weist das Material, insbesondere das BOPET der Außenschicht 8 eine derart ho- he Steifigkeit - auch bei Siegelheiztemperatur - auf, dass ein Einhängen (oder Durchhängen) der Außenschicht 8 in die jeweilige Kavität 4 effektiv unterbunden ist. Somit bildet die Außenschicht 8 auch nach den Versiegeln der Kavität 4 eine zumindest näherungsweise ebene Außenfläche, an die in einem bestimmungs- gemäßen Laborbetrieb Wärmeübertragungsflächen (beispielsweise eine Heiz- oder Kühlfläche) angebunden werden können. Sollte bei hinreichender Größe der Kavität 4 die Außenschicht 8 dennoch geringfügig in die Kavität 4 eingewölbt sein, kann diese durch den im bestimmungsgemäßen Laborbetrieb üblicherweise in der Kavität 4 herrschenden Fluiddruck wieder zur Außenseite zurückgewölbt werden. Since the decoupling layer 12 has not yet been heated to its softening temperature at its layer temperature, it also has such a high rigidity that the decoupling layer 12 and the sealing layer 16 connected to it sink in excessively (ie beyond application-specific limits) is prevented in the cavity 4. With a width of the cavity 4 of less than 500 micrometers, in particular of less than 100 micrometers, there is only a slight sinking of the sealing film 1 into the cavity 4. The viscosity of the sealing layer 16 is also significantly increased at sealing temperature compared to the viscosity of the height compensation layer 10, so that a flow of the sealing layer 16, specifically the material of the sealing layer 16 in the surface direction 18, is prevented or is only possible to a negligible degree. The outer layer 8 forms a temperature-stable protective layer with respect to the sealing tool, which prevents the material of the sealing film 1 from adhering to the sealing tool heated to the sealing heating temperature. Furthermore, the material, in particular the BOPET of the outer layer 8, has such a high rigidity - even at sealing heating temperature - that the outer layer 8 is effectively prevented from being hooked (or sagging) into the respective cavity 4. Thus, even after the cavity 4 has been sealed, the outer layer 8 forms an at least approximately flat outer surface, to which heat transfer surfaces (for example a heating or cooling surface) can be connected in an intended laboratory operation. If the outer layer 8 should nevertheless be slightly arched into the cavity 4 if the cavity 4 is of sufficient size, it can be arched back to the outside again by the fluid pressure usually prevailing in the cavity 4 during intended laboratory operation.
In Fig.3 ist beispielhaft ein Probenträger 2 mit mehreren unterschiedlich großen Kavitäten 4 dargestellt. Daran lässt sich der Effekt der erfindungsgemäßen Siegel- folie 1 deutlich beschreiben. In Fig. 3 ist die zuunterst dargestellte Kavität 4 mit dem kleinsten Querschnitt versehen. Entsprechend fällt auch die Einwölbung der Siegelfolie 1 aufgrund der im Siegelprozess verflüssigten Höhenausgleichsschicht 10 gering aus. Bei der darüberliegend (in der Mitte) dargestellten, vergrößerten Kavität 4 ist die Einwölbung der Siegelfolie 1 gegenüber der unteren Kavität 4 ge- ringfügig größer, jedoch prozentual gesehen sogar kleiner als bei der unteren Ka- vität 4. Somit kann die Siegelfolie 1 aufgrund der vorstehend beschriebenen An- passung an Oberflächenunebenheiten des Probenträgers 2 mittels der Höhen- ausgleichsschicht 10 vollflächig an die Oberfläche des Probenträgers 2 angebun- den werden. Aber dennoch kann auch ein zu starkes Verschließen der jeweiligen Kavität 4 vermieden werden. Wie anhand der in Fig. 3 oben dargestellten Kavität 4, deren Breite im Bereich von etwa zwei Millimetern liegt, erkennbar ist, wölbt sich die Siegelfolie 1 in die sem Fall nicht vollständig - wie bei den kleineren Kavitäten 4 im unteren Bereich von Fig. 3 - ein, sondern die Einwölbung erfolgt lediglich in randnahen Bereichen 24 der Kavität 4. Aus Versuchsergebnissen hat sich dabei gezeigt, dass bei der vorstehend beschriebenen Wahl der Materialien sowie der Schichtdicken der Sie- gelfolie 1 eine Einwölbung der Siegelfolie 1 in den Randbereichen 24 sich etwa im Bereich von 500 Mikrometer in Richtung auf die Mitte der Kavität 4 erstreckt. 3 shows a sample carrier 2 with several cavities 4 of different sizes. The effect of the sealing film 1 according to the invention can be clearly described in this way. 3, the cavity 4 shown at the bottom is provided with the smallest cross section. Correspondingly, the arching of the sealing film 1 is also slight due to the height compensation layer 10 liquefied in the sealing process. In the case of the enlarged cavity 4 shown above (in the middle), the curvature of the sealing film 1 is slightly larger than the lower cavity 4, but in percentage terms it is even smaller than in the lower cavity 4. Thus, due to the The above-described adaptation to unevenness in the surface of the sample carrier 2 is connected to the entire surface of the surface of the sample carrier 2 by means of the height compensation layer 10. However, excessive closing of the respective cavity 4 can also be avoided. As can be seen from the cavity 4 shown at the top in FIG. 3, the width of which is in the range of approximately two millimeters, the sealing film 1 does not bulge completely in this case - as in the case of the smaller cavities 4 in the lower region of FIG. 3 - One, but the arching takes place only in areas close to the edge 24 of the cavity 4. It has been shown from test results that with the selection of the materials described above and the layer thicknesses of the sealing film 1, an arching of the sealing film 1 in the edge regions 24 is approximately in the range of 500 micrometers in the direction of the center of the Cavity 4 extends.
Der Gegenstand der Erfindung ist nicht auf das vorstehend beschriebene Ausfüh- rungsbeispiel beschränkt. Vielmehr können weitere Ausführungsformen der Erfin dung von dem Fachmann aus der vorstehenden Beschreibung abgeleitet werden. The subject matter of the invention is not restricted to the exemplary embodiment described above. Rather, other embodiments of the invention can be derived by the person skilled in the art from the above description.
Bezugszeichenliste Reference list
1 Siegelfolie 1 sealing film
2 Probenträger  2 sample carriers
4 Kavität 4 cavity
6 Probenbehälter  6 sample containers
8 Außenschicht  8 outer layer
10 Höhenausgleichsschicht 12 Entkopplerschicht 14 Unterseite  10 leveling layer 12 decoupler layer 14 underside
16 Siegelschicht  16 sealing layer
18 Flächenrichtung  18 surface direction
20 Einfallstelle  20 sink
22 Erhöhung  22 increase
24 Randbereich  24 edge area

Claims

Ansprüche Expectations
1. Probenbehälter (6), 1. sample container (6),
mit einem Probenträger (2), der eine Anzahl von mikrofluidischen Kavitäten (4) zur Aufnahme eines Fluids aufweist, und mit einer Siegelfolie (1 ), mittels derer die Anzahl von Kavitäten (4) versiegelbar oder in einem bestimmungs- gemäßen Siegelzustand versiegelt ist,  with a sample carrier (2), which has a number of microfluidic cavities (4) for holding a fluid, and with a sealing film (1), by means of which the number of cavities (4) can be sealed or sealed in a proper sealing state,
wobei die Siegelfolie (1 ) aufweist  wherein the sealing film (1)
- eine Siegelschicht (16) zur Ausbildung einer Haftverbindung zu dem Pro- benträger (2), wobei die Siegelschicht (16) eine Erweichungstemperatur im Bereich von oder unterhalb einer Siegeltemperatur, auf die die Siegel- schicht (16) während eines bestimmungsgemäßen Siegelschritts erwärmt ist, aufweist,  - A sealing layer (16) for forming an adhesive connection to the sample carrier (2), the sealing layer (16) having a softening temperature in the range from or below a sealing temperature to which the sealing layer (16) is heated during a proper sealing step , having,
- eine Außenschicht (8), die eine Einsatztemperatur größer einer bestim- mungsgemäßen Siegelheiztemperatur, die größer oder gleich der Siegel- temperatur ist, aufweist,  an outer layer (8) which has an operating temperature greater than an intended sealing heating temperature which is greater than or equal to the sealing temperature,
- eine Höhenausgleichsschicht (10), die eine Erweichungstemperatur un- terhalb der Siegelheiztemperatur aufweist, sodass bei einer in der Höhen- ausgleichsschicht (10) vorliegenden Schichttemperatur, die kleiner oder gleich der Siegelheiztemperatur und größer oder gleich der Siegeltempe- ratur ist, ein die Höhenausgleichsschicht (10) bildendes Material in einem temperaturbedingt duktil verformbaren Zustand vorliegt, und  - A height compensation layer (10) which has a softening temperature below the sealing heating temperature, so that at a layer temperature present in the height compensation layer (10) that is less than or equal to the sealing heating temperature and greater than or equal to the sealing temperature, the height compensation layer (10) forming material is in a temperature-related ductile deformable state, and
- eine Entkopplerschicht (12), die bei einer in der Entkopplerschicht (12) vorliegenden Schichttemperatur, die kleiner oder gleich der Siegelheiz- temperatur und größer oder gleich der Siegeltemperatur ist, gegenüber der Höhenausgleichsschicht (10) und der Siegelschicht (16) eine um ein Vielfaches erhöhte Steifigkeit aufweist,  - A decoupling layer (12), one at a present in the decoupling layer (12) layer temperature that is less than or equal to the sealing heating temperature and greater than or equal to the sealing temperature compared to the height compensation layer (10) and the sealing layer (16) Has increased rigidity many times over,
wobei die Höhenausgleichsschicht (10) zwischen der Außenschicht (8) und der Entkopplerschicht (12) und die Siegelschicht (16) außenseitig zur der Entkopplerschicht (12) angeordnet sind. wherein the height compensation layer (10) between the outer layer (8) and the decoupler layer (12) and the sealing layer (16) on the outside to the decoupler layer (12) are arranged.
2. Probenbehälter (6) nach Anspruch 1 , 2. sample container (6) according to claim 1,
wobei die Außenschicht (8) der Siegelfolie (1 ) gegenüber zumindest der Höhenausgleichsschicht (10) und/oder der Siegelschicht (16) eine erhöhte Steifigkeit aufweist.  the outer layer (8) of the sealing film (1) being more rigid than at least the height compensation layer (10) and / or the sealing layer (16).
3. Probenbehälter (6) nach Anspruch 1 oder 2, 3. sample container (6) according to claim 1 or 2,
wobei die Außenschicht (8) eine temperatur-abhängige Schrumpfneigung zumindest in Flächenrichtung (18) aufweist.  wherein the outer layer (8) has a temperature-dependent tendency to shrink at least in the surface direction (18).
4. Probenbehälter (6) nach einem der Ansprüche 1 bis 3, 4. sample container (6) according to any one of claims 1 to 3,
wobei eine Dicke der Entkopplerschicht (12) in Abhängigkeit von einer Ab- messung der zu versiegelnden Kavität (4) unterschiedlich gewählt ist.  the thickness of the decoupler layer (12) being chosen differently depending on a dimension of the cavity (4) to be sealed.
5. Probenbehälter (6) nach einem der Ansprüche 1 bis 4, 5. sample container (6) according to one of claims 1 to 4,
wobei die Außenschicht (8) aus einem BOPET, einem COC, einem PCTFE, einem PP, einem COP, einem PI, einem PEEK oder einem PA gebildet ist.  wherein the outer layer (8) is formed from a BOPET, a COC, a PCTFE, a PP, a COP, a PI, a PEEK or a PA.
6. Probenbehälter (6) nach einem der Ansprüche 1 bis 5, 6. sample container (6) according to one of claims 1 to 5,
wobei die Höhenausgleichsschicht (10) aus einem PE-LD, einem PE-LLD, einem PE-HD, einem EVA oder einem TPE gebildet ist.  wherein the height compensation layer (10) is formed from a PE-LD, a PE-LLD, a PE-HD, an EVA or a TPE.
7. Probenbehälter (6) nach einem der Ansprüche 1 bis 6, 7. sample container (6) according to one of claims 1 to 6,
wobei die Entkopplerschicht (12) eine Erweichungstemperatur größer als die in einem bestimmungsgemäßen Siegelprozess in der Entkopplerschicht (12) vorliegenden Schichttemperatur aufweist, und/oder wobei die  wherein the decoupling layer (12) has a softening temperature greater than the layer temperature present in the decoupling layer (12) in an intended sealing process, and / or wherein the
Entkopplerschicht (12) aus einem Aluminium, einem COC, einem PC, einem PMMA, einem COP, einem PI, einem PA, einem PEEK oder einem PS ge- bildet ist.  Decoupler layer (12) is formed from an aluminum, a COC, a PC, a PMMA, a COP, a PI, a PA, a PEEK or a PS.
8. Probenbehälter (6) nach einem der Ansprüche 1 bis 7, 8. sample container (6) according to one of claims 1 to 7,
wobei die Siegelschicht (16) durch eine separate Polymerschicht gebildet ist.  wherein the sealing layer (16) is formed by a separate polymer layer.
9. Probenbehälter (6) nach einem der Ansprüche 1 bis 7, wobei die Siegelschicht (16) durch eine durch Oberflächenbehandlung modi- fizierte oberflächennahe Schicht der Entkopplerschicht (12) gebildet ist. 9. sample container (6) according to one of claims 1 to 7, wherein the sealing layer (16) is formed by a layer of the decoupling layer (12) which is close to the surface and modified by surface treatment.
10. Probenbehälter (6) nach einem der Ansprüche 1 bis 9, 10. sample container (6) according to one of claims 1 to 9,
wobei die Siegelschicht (16) aus einem COC oder einem Schmelzklebstoff gebildet ist.  wherein the sealing layer (16) is formed from a COC or a hot melt adhesive.
11. Probenbehälter (6) nach einem der Ansprüche 1 bis 10, 11. sample container (6) according to one of claims 1 to 10,
wobei eine Dicke der Siegelschicht (16) zwischen 5 und 30 Mikrometer, vor- zugsweise bei etwa 20 Mikrometer liegt.  the thickness of the sealing layer (16) being between 5 and 30 micrometers, preferably around 20 micrometers.
EP19783020.1A 2018-10-19 2019-10-04 Sample holder Pending EP3866973A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018217907.7A DE102018217907B3 (en) 2018-10-19 2018-10-19 sample container
PCT/EP2019/076870 WO2020078736A1 (en) 2018-10-19 2019-10-04 Sample holder

Publications (1)

Publication Number Publication Date
EP3866973A1 true EP3866973A1 (en) 2021-08-25

Family

ID=68138108

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19783020.1A Pending EP3866973A1 (en) 2018-10-19 2019-10-04 Sample holder

Country Status (7)

Country Link
US (1) US11654432B2 (en)
EP (1) EP3866973A1 (en)
JP (1) JP2022512257A (en)
CN (1) CN112867565A (en)
CA (1) CA3153549A1 (en)
DE (1) DE102018217907B3 (en)
WO (1) WO2020078736A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230212000A1 (en) * 2020-05-29 2023-07-06 Zeon Corporation Microchannel chip and method for manufacturing same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4236886C2 (en) * 1992-10-31 1997-11-20 Klocke Verpackungs Service Containers for aromatic substances
US6123798A (en) * 1998-05-06 2000-09-26 Caliper Technologies Corp. Methods of fabricating polymeric structures incorporating microscale fluidic elements
EP1426181A1 (en) 2002-12-06 2004-06-09 NewPack Consulting ApS Polyolefin packaging film
EP1488921A1 (en) 2003-06-17 2004-12-22 Alcan Technology & Management Ltd. Cold-formable laminate
US20050139505A1 (en) * 2003-12-15 2005-06-30 Miller Mark R. Child-resistant blister package
GB2445738A (en) * 2007-01-16 2008-07-23 Lab901 Ltd Microfluidic device
US20090074615A1 (en) * 2007-09-17 2009-03-19 Ysi Incorporated Microfluidic module including an adhesiveless self-bonding rebondable polyimide
WO2010018791A1 (en) * 2008-08-12 2010-02-18 住友ベークライト株式会社 Cover tape for packaging electronic part and electronic-part package
CN103341371B (en) 2008-10-28 2015-04-15 藤仓化成株式会社 Liquid passage device and manufacturing method
DE102010031519A1 (en) * 2010-07-19 2012-01-19 Eppendorf Ag Closure system for sealing microtiter plate utilized in bioanalytical processes for analysis of small sample volumes, has base foil layer connected with frame-shaped reinforcement and comprising perforation along reinforcement
JP2015020750A (en) * 2013-07-16 2015-02-02 旭化成ケミカルズ株式会社 Cover tape and electronic component packing body
JP6241113B2 (en) * 2013-07-31 2017-12-06 大日本印刷株式会社 Packaging materials
CN105452908B (en) * 2013-08-27 2017-11-21 琳得科株式会社 Hard conating stack and its manufacture method
DE102013113285A1 (en) 2013-11-29 2015-06-03 Buergofol GmbH Film unit, film composite, use of such a composite film and manufacturing process
JP6131337B2 (en) * 2013-12-27 2017-05-17 株式会社朝日Fr研究所 Thermally conductive microchemical chip
KR20160114602A (en) * 2014-01-29 2016-10-05 스미또모 베이크라이트 가부시키가이샤 Cover tape for electronic parts packaging
JP2016074439A (en) * 2014-10-03 2016-05-12 凸版印刷株式会社 Sealing lid member and container using the same
GB2530596B (en) * 2015-02-02 2016-08-24 Atlas Genetics Ltd Improved blister assembly
JP6938149B2 (en) * 2016-12-22 2021-09-22 リンテック株式会社 Inspection cover film, inspection member, and manufacturing method of inspection member

Also Published As

Publication number Publication date
CA3153549A1 (en) 2020-04-23
DE102018217907B3 (en) 2019-12-19
US20210237061A1 (en) 2021-08-05
WO2020078736A1 (en) 2020-04-23
CN112867565A (en) 2021-05-28
JP2022512257A (en) 2022-02-02
US11654432B2 (en) 2023-05-23

Similar Documents

Publication Publication Date Title
EP2121304B1 (en) Method for producing a hybrid plastic/metal component and metal/plastic composite
DE102008015202B4 (en) Connecting shape memory polymer workpieces with other components and using a composite body according to the invention for the separation of the individual components from each other
EP1577226B1 (en) Two layer lid
DE69629953T2 (en) Packaging container and process for its manufacture
EP2647435B1 (en) System with a fluidic cell and a tempering element
EP1407878B1 (en) Use of a composite material comprising films and bitumen& x9;& x9;
DE10159804A1 (en) Deckelgefäß
DE10066211B4 (en) microtiter plate
WO2020078736A1 (en) Sample holder
EP2783752A1 (en) Normally closed valve for microfluidic components of polymeric multilayers and method
EP2206655B1 (en) Lid for closing a container opening, packaging with a container and such a lid and method for sealing a container with such a lid
DE19514072C2 (en) Containers and process for their manufacture
AT501789A1 (en) METHOD FOR PRODUCING A COVER WITH REMOVAL OPENING
DE102007058750A1 (en) Multi-layer solar cell, particularly for slanted roofs, has layer made of photovoltaic thin film laminate, where another layer, made of polymer modified bitumen, is coated at lower side of former layer
DE102019101494B4 (en) Assembly aid, use of an assembly aid and body part with assembly aid
DE102013011481A1 (en) Lid for a container, packaging with a container and such a lid and method for sealing a container with such a lid
EP2789449B1 (en) Method for sealing an aperture in a component, substrate film with a sealing membrane and sealing device
DE102005044800B3 (en) Dimpled sheet, in particular for building purposes and preferably for use as a foundation wall protection or drainage membrane, and method for producing such a dimpled sheet
DE19758566A1 (en) EPDM substrate
EP1525143B1 (en) Sealing device for a packaging container
DE102018215939A1 (en) Tool for applying a film
DE2848736C2 (en) Rigid, sterilizable, deep-drawn packaging
WO2012010412A1 (en) Microfluidic device and method for producing same
EP1357054A1 (en) Microwavable food package having a peelable lid and venting valve
EP3395707A1 (en) Beverage can made from uniform aluminium alloy

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)