EP3864281B1 - Injector - Google Patents

Injector Download PDF

Info

Publication number
EP3864281B1
EP3864281B1 EP19790178.8A EP19790178A EP3864281B1 EP 3864281 B1 EP3864281 B1 EP 3864281B1 EP 19790178 A EP19790178 A EP 19790178A EP 3864281 B1 EP3864281 B1 EP 3864281B1
Authority
EP
European Patent Office
Prior art keywords
injector
injection needle
switch
input line
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19790178.8A
Other languages
German (de)
French (fr)
Other versions
EP3864281A1 (en
Inventor
Norbert SCHÖFBÄNKER
Verena KÖGEL
Richard Pirkl
Bernhard Kopp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liebherr Components Deggendorf GmbH
Original Assignee
Liebherr Components Deggendorf GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liebherr Components Deggendorf GmbH filed Critical Liebherr Components Deggendorf GmbH
Publication of EP3864281A1 publication Critical patent/EP3864281A1/en
Application granted granted Critical
Publication of EP3864281B1 publication Critical patent/EP3864281B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/005Fuel-injectors combined or associated with other devices the devices being sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/005Arrangement of electrical wires and connections, e.g. wire harness, sockets, plugs; Arrangement of electronic control circuits in or on fuel injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1886Details of valve seats not covered by groups F02M61/1866 - F02M61/188
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/20Fuel-injection apparatus with permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/24Fuel-injection apparatus with sensors
    • F02M2200/242Displacement sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/24Fuel-injection apparatus with sensors
    • F02M2200/245Position sensors, e.g. Hall sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8046Fuel injection apparatus manufacture, repair or assembly the manufacture involving injection moulding, e.g. of plastic or metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2700/00Supplying, feeding or preparing air, fuel, fuel air mixtures or auxiliary fluids for a combustion engine; Use of exhaust gas; Compressors for piston engines
    • F02M2700/07Nozzles and injectors with controllable fuel supply
    • F02M2700/072Injection valve actuated by engine for supply of pressurised fuel; Electrically or electromagnetically actuated injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • F02M65/005Measuring or detecting injection-valve lift, e.g. to determine injection timing

Definitions

  • the present invention relates to an injector, which is also called an injection valve.
  • injectors are typically used in internal combustion engines and generally function according to a servo principle in which an actuator is set in motion by applying a voltage and a nozzle needle of the injector is lifted out of a nozzle needle seat by a hydraulic transmission system, thereby injecting a fuel under high pressure into a combustion chamber.
  • the basic operating principle of an injector is known to those skilled in the art and is only partially explained in the present invention.
  • the nozzle needle and the nozzle needle seat have been used as switches so that when the nozzle needle is raised, a current flowing from the nozzle needle to the nozzle needle seat is interrupted.
  • the actual opening time can be determined in a relatively simple manner using a differential current measurement.
  • the switch formed by the contact pairing of needle tip and needle seat, to the ground potential.
  • the ground potential is typically formed by the engine block in which the injector is located and in which it is screwed in. There is therefore already a connection from the nozzle needle seat to ground via the outer casing of the injector.
  • the problem with this is that under certain circumstances the current flowing through the switch is very high. There are states in the injector where it is energized but the switch is still closed. This is the case, for example, when the energization has only just started and the needle has not yet been lifted out of its seat.
  • the WO 2016/012242 A1 shows a prior art having the features of the preamble of claim 1.
  • a high-temperature resistor chip as a resistor to limit the current flow when a switch is closed is advantageous because such a high-temperature resistor chip is compact in its design and has only a very small change in resistance when the temperature changes.
  • the high-temperature resistor chip is preferably characterized in that its average power in the period of 5000 ⁇ s is in the range of 0.10 to 0.12 W, preferably in the range of 0.11 to 0.12 W.
  • the high-temperature resistance chip can have a working temperature range of -55°C to +300°C, so that it remains usable even with the greatest temperature fluctuations, and/or have a non-magnetic structure.
  • the non-magnetic structure guarantees that no components of the injector are influenced in an unwanted way and their performance is impaired.
  • the high-temperature resistor chip does not contain any organic components.
  • the input line and the output line are connected to an electromagnet, wherein the electromagnet preferably causes the nozzle needle tip to be lifted out of the nozzle needle seat when it is acted upon by current conducted via the input line and the output line.
  • the electromagnet preferably causes the nozzle needle tip to be lifted out of the nozzle needle seat when it is acted upon by current conducted via the input line and the output line.
  • the input line and the output line each represent a contact of a coil which is part of an electromagnet.
  • the contacts of the coil are made of corrosion-resistant stainless steel. This material is particularly resistant to the conditions prevailing in the injector and is in particular not susceptible to fuels dispensed by the injector.
  • the high-temperature resistance chip is attached to the input line or the output line in an electrically conductive state by means of contact adhesive or soldering.
  • a line running from the high-temperature resistance chip to the switch (3) runs in a plastic overmolding of a magnetic coil, wherein the magnetic coil is designed to set the nozzle needle in motion.
  • the plastic overmold not only surrounds a magnetic coil of the injector but also serves as a sheath for a line leading to the switch.
  • This line is typically an intermediate piece that extends from the connection of the input line to the first connection of the switch, typically the nozzle needle.
  • the resistor can also be arranged on or in the plastic overmolding. If it is arranged inside the plastic overmolding, it is also advantageous that the resistor is then better protected against harmful influences.
  • the injector housing is made of an electrically conductive material.
  • the injector housing is connected to the ground potential. This is typically done via an engine block with which an injector interacts during its intended use.
  • the invention further comprises an internal combustion engine with an injector according to one of the variants discussed above and a device according to the variants discussed above.
  • the invention further includes a motor vehicle having the internal combustion engine defined above.
  • Fig.1 shows some parts of an injector 1 according to the invention.
  • the input and output lines 4, 5 can be seen there, which correspond to the coil contacts of the coil for the electromagnet in an electromagnetic conversion of the injector 1.
  • the magnetic coil is surrounded by a fuel coating 8, at the lower end of which a contact leading to the seat plate 9 is arranged.
  • a schematic representation of the switch 3 formed by the nozzle needle and nozzle needle seat can be seen, which is open or closed depending on the state of the injector. What is not shown in the figure is that the end of the switch facing away from the seat plate 9 is connected to ground.
  • a high-temperature resistance chip is provided in the line between a coil contact and the first terminal of the switch 3.
  • Fig.2 shows an enlarged section of the Fig.1 and is also provided with current flow arrows. It can be seen that the current flows from the input line into the electromagnet, more precisely the winding of the electromagnet's coil, and then flows back again via the output line 5. In the process, a small amount of current is tapped from the circuit and flows out via the closed switch. The small amount of current is characterized by smaller arrows.
  • Fig.3 shows an embodiment of the injector 1 according to the invention, which has an injector housing 2, an input line 4 leading into the injector housing 2 and an output line 5 leading out of the injector housing 2.
  • an actuator 8 for controlling a nozzle needle is provided, which can be an electromagnet, for example.
  • the mechanical switch 3 is also shown there, which results from the interaction of the movement of the nozzle needle and the nozzle needle seat. If the nozzle needle is lifted out of its seat and the Nozzle released for injection, switch 3 is in its open position. In contrast, when the needle closes, the contact is closed and switch 3 is in its conductive state.
  • a first connection 6 of switch 3 is connected to input line 4 via a resistor R, a high-temperature resistor chip according to the invention.
  • the second connection 7 of switch 3 is electrically connected to injector housing 2, which is typically equivalent to ground potential 9 during operation.
  • the information as to whether the needle lift switch 3 is closed or open and thus whether the injection takes place or not is detected by the current difference between the input and output lines.
  • the injector When the injector is activated, a voltage is applied to the input line 4 and the input line 5, which causes the nozzle needle to be indirectly set in motion via the actuator 8, which can be designed as an electromagnet.
  • the needle lifts out of its seat and thus opens the contact. As a result, fuel is injected into the combustion chamber.
  • the current flowing into the injector is compared with the current flowing out. If switch 3 is closed, slightly more current flows into injector 1 at one of the connections than out of the second connection. This is because part of the current flows directly to ground 9 via switch 3. This makes it quite easy to detect whether the switch is closed or not.
  • switch 3 is open. If both currents are different, this means that switch 3 is closed. However, this type of detection only works if a voltage is applied to injector 1, since a current flow is required for detection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Analytical Chemistry (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Die vorliegende Erfindung betrifft einen Injektor, der auch Einspritzventil genannt wird. Solche Injektoren finden typischerweise in Verbrennungsmotoren Anwendung und funktionieren in der Regel nach einem Servoprinzip, bei dem durch Anlegen einer Spannung ein Aktuator in Bewegung gesetzt wird und durch ein hydraulisches Übersetzungssystem eine Düsennadel des Injektors aus einem Düsennadelsitz gehoben wird, wodurch eine Einspritzung eines unter hohen Druck stehenden Kraftstoffs in einen Brennraum erfolgt. Das grundsätzliche Wirkprinzip eines Injektors ist dem Fachmann bekannt und wird in der vorliegenden Erfindung nur zu Teilen erläutert.The present invention relates to an injector, which is also called an injection valve. Such injectors are typically used in internal combustion engines and generally function according to a servo principle in which an actuator is set in motion by applying a voltage and a nozzle needle of the injector is lifted out of a nozzle needle seat by a hydraulic transmission system, thereby injecting a fuel under high pressure into a combustion chamber. The basic operating principle of an injector is known to those skilled in the art and is only partially explained in the present invention.

In der Vergangenheit war es so gewesen, dass auch ein verzögertes Reagieren des Injektors auf elektrische Signale ausreichend war, um die Genauigkeit bezüglich der geforderten Rohemissionen am Motor präzise darstellen zu können. Jedoch ist im Zuge von strenger werdenden Emissionsvorschriften ein noch genaueres Betrachten des Einspritzverhaltens des Injektors erforderlich, das gegebenenfalls auch über die Gesamtlebensdauer eines Injektors oder eines Motors korrigierbar sein sollte. Trotz präziser Fertigung verhalten sich Injektoren nicht gleich und unterliegen unterschiedlichen Schwankungen über ihre Lebensdauer hinweg. Ursächlich hierfür sind beispielsweise Verkokungseffekte, ein Verschleiß des Düsensitzes an der Einspritzdüse, applikationsabhängige Rücklaufgegendruckschwankungen, schwankende Temperaturen sowie weitere nicht aufgeführte Parameter.In the past, a delayed reaction of the injector to electrical signals was sufficient to accurately represent the required raw emissions on the engine. However, as emissions regulations become more stringent, an even more precise examination of the injection behavior of the injector is required, which should also be correctable over the entire service life of an injector or engine. Despite precise manufacturing, injectors do not behave the same and are subject to different fluctuations over their service life. The reasons for this include, for example, coking effects, wear of the nozzle seat on the Injection nozzle, application-dependent return back pressure fluctuations, fluctuating temperatures and other parameters not listed.

Sämtliche dieser Einflussgrößen lassen sich nicht herausmessen und bei der Fertigung eines Injektors als Tabelle im Steuergerät hinterlegen. Demnach besteht seit einiger Zeit der Wunsch, eine Rückmeldung von einem Injektor zu erhalten, um Rückschlüsse auf sein Schaltverhalten zu generieren. Mithilfe solcher Signale lassen sich Systeme realisieren, die über eine geschlossene Regelschleife verfügen und so Abweichungen vom Idealfall ausregeln können. Damit wird erreicht, dass über die Lebensdauer eines Verbrennungsmotors die Emissionen und auch die Leistungsparameter trotz Änderung an der Einspritzdüse, aber auch natürlicher Einflüsse, die zur Schwankung der Präzision führen, konstant in einem spezifizierten Bereich gehalten werden können. Insbesondere hinsichtlich der immer herausfordernder werdenden Emissionsvorschriften ist dies von besonderem Vorteil.All of these influencing factors cannot be measured and stored as a table in the control unit when an injector is manufactured. For some time now, there has been a desire to receive feedback from an injector in order to draw conclusions about its switching behavior. Such signals can be used to create systems that have a closed control loop and can thus compensate for deviations from the ideal case. This ensures that emissions and performance parameters can be kept constant within a specified range over the service life of a combustion engine, despite changes to the injection nozzle and natural influences that lead to fluctuations in precision. This is particularly advantageous in view of the increasingly challenging emissions regulations.

Daher ist in letzter Zeit dazu übergegangen worden, die Düsennadel und den Düsennadelsitz als Schalter zu verwenden, so dass in einem die Düsennadel ausgehobenen Zustand ein von Düsennadel hin zum Düsennadelsitz fließender Strom unterbrochen wird.Therefore, in recent times, the nozzle needle and the nozzle needle seat have been used as switches so that when the nozzle needle is raised, a current flowing from the nozzle needle to the nozzle needle seat is interrupted.

Da die Kontaktpaarung von Düsennadel und Düsennadelsitz einen mechanischen Schalter erzeugt, der bei einem Kontakt der Düsennadelspitze mit dem Düsennadelsitz einen geschlossenen Zustand und bei einer Unterbrechung des Kontakts einen offenen Zustand einnimmt, kann mit Hilfe einer Differenzstrommessung auf relativ einfache Art und Weise die tatsächliche Öffnungsdauer ermittelt werden.Since the contact pairing of nozzle needle and nozzle needle seat creates a mechanical switch that assumes a closed state when the nozzle needle tip comes into contact with the nozzle needle seat and an open state when the contact is interrupted, the actual opening time can be determined in a relatively simple manner using a differential current measurement.

Für die beschriebene Injektorzustandserkennung ist es demnach erforderlich, dass ein Strom über den Schalter, gebildet durch die Kontaktpaarung von Nadelspitze und Nadelsitz, hin zum Massepotential strömt. Das Massepotential wird dabei typischerweise durch den Motorblock gebildet, in dem sich der Injektor befindet und in dem er eingeschraubt ist. Es existiert daher bereits eine vom Düsennadelsitz abgehende Verbindung zur Masse über das Außengehäuse des Injektors. Problematisch hieran ist, dass unter gewissen Umständen der über den Schalter abfließende Strom sehr groß ist. So gibt es Zustände in dem Injektor, bei dem dieser bestromt ist, der Schalter aber noch geschlossen ist. Dies ist bspw. der Fall, wenn die Bestromung gerade erst angefangen hat und ein Ausheben der Nadel aus ihrem Sitz aber noch nicht erfolgt ist. Hierbei kann es dazu kommen, dass die elektronische Steuereinheit des Einspritzsystems fehlerhafterweise einen Kurzschluss detektiert, obwohl der detektierte Strom zur Zustandserkennung des Injektors absichtlich auf Masse geleitet wird. Daher sollte der nach Masse abfließende Strom lediglich eine Größenordnung von einigen Milliampere haben, so dass eine fehlerhafte Detektion auf einen tatsächlich nicht vorliegenden Kurzschluss nicht von der Steuereinheit detektiert wird.For the described injector status detection, it is therefore necessary that a current flows through the switch, formed by the contact pairing of needle tip and needle seat, to the ground potential. The ground potential is typically formed by the engine block in which the injector is located and in which it is screwed in. There is therefore already a connection from the nozzle needle seat to ground via the outer casing of the injector. The problem with this is that under certain circumstances the current flowing through the switch is very high. There are states in the injector where it is energized but the switch is still closed. This is the case, for example, when the energization has only just started and the needle has not yet been lifted out of its seat. This can result in the electronic control unit of the injection system incorrectly detecting a short circuit, even though the detected current is intentionally directed to ground to detect the status of the injector. The current flowing to ground should therefore only be on the order of a few milliamperes so that an incorrect detection of a short circuit that is not actually present is not detected by the control unit.

Die WO 2016/012242 A1 zeigt einen Stand der Technik, der die Merkmale aus dem Oberbegriff des Anspruchs 1 aufweist.The WO 2016/012242 A1 shows a prior art having the features of the preamble of claim 1.

Das vorliegend diskutierte Problem wird mit einem Injektor gelöst, der sämtliche Merkmale des Anspruchs 1 aufweist. Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen wiedergegeben.The problem discussed here is solved with an injector which has all the features of claim 1. Advantageous embodiments of the invention are set out in the dependent claims.

Das Verwenden eines Hochtemperatur-Widerstandschips als Widerstand zum Begrenzen des Stromflusses bei einem geschlossenen Schalter ist vorteilhaft, da ein solcher Hochtemperatur-Widerstandschip kompakt in seiner Bauform ist und bei Temperaturänderungen lediglich eine sehr geringe Widerstandsänderung aufweist.Using a high-temperature resistor chip as a resistor to limit the current flow when a switch is closed is advantageous because such a high-temperature resistor chip is compact in its design and has only a very small change in resistance when the temperature changes.

Der Hochtemperatur-Widerstandschip zeichnet sich vorzugsweise dadurch aus, dass seine mittlere Leistung im Zeitraum von 5000µs im Bereich von 0,10 bis 0,12 W liegt, bevorzugterweise im Bereich von 0,11 bis 0,12 W.The high-temperature resistor chip is preferably characterized in that its average power in the period of 5000 µs is in the range of 0.10 to 0.12 W, preferably in the range of 0.11 to 0.12 W.

Weiter kann der Hochtemperatur-Widerstandschip einen Arbeitstemperaturbereich von -55°C bis +300°C besitzen, so dass er auch bei höchsten Temperaturschwankungen einsatzfähig bleibt, und/oder einen nicht-magnetischen Aufbau besitzen. Der nicht-magnetische Aufbau garantiert, dass keine Bestandteile des Injektors in ungewollter Weise beeinflusst werden und deren Leistungsfähigkeit beeinträchtigt.Furthermore, the high-temperature resistance chip can have a working temperature range of -55°C to +300°C, so that it remains usable even with the greatest temperature fluctuations, and/or have a non-magnetic structure. The non-magnetic structure guarantees that no components of the injector are influenced in an unwanted way and their performance is impaired.

Ebenfalls von Vorteil ist, wenn der Hochtemperatur-Widerstandschip keine organischen Bestandteile umfasst.It is also advantageous if the high-temperature resistor chip does not contain any organic components.

Zudem kann vorgesehen sein, dass die Eingangsleitung und die Ausgangsleitung mit einem Elektromagneten verbunden sind, wobei vorzugsweise der Elektromagnet bei einer Beaufschlagung mit über die Eingangsleitung und die Ausgangsleitung geführtem Strom ein Ausheben der Düsennadelspitze aus dem Düsennadelsitz bewirkt. Durch ein solches Ausheben strömt bei einem in Betrieb befindlichen Injektor Kraftstoff unter hohem Druck in einen Brennraum ein.In addition, it can be provided that the input line and the output line are connected to an electromagnet, wherein the electromagnet preferably causes the nozzle needle tip to be lifted out of the nozzle needle seat when it is acted upon by current conducted via the input line and the output line. As a result of such lifting, fuel flows into a combustion chamber under high pressure when an injector is in operation.

Nach der vorliegenden Erfindung ist vorgesehen, dass die Eingangsleitung und die Ausgangsleitung jeweils einen Kontakt einer Spule darstellen, die Teil eines Elektromagneten ist.According to the present invention, the input line and the output line each represent a contact of a coil which is part of an electromagnet.

Lässt man durch die Spule einen Strom fließen, so verursacht die dabei entstehende Magnetkraft, dass sich die Düsennadel aus ihrem Düsensitz abhebt und Kraftstoff aus dem Injektor austritt. Da sich demnach der Schalter öffnet, ändert sich die Menge an Strom, die von der Spule zurückfließt, da nun kein Stromanteil über den Schalter mehr abfließt.If a current is allowed to flow through the coil, the resulting magnetic force causes the nozzle needle to lift from its nozzle seat and fuel to escape from the injector. As the switch opens, the amount of current flowing back from the coil changes, as no more current flows through the switch.

Nach der Erfindung kann es sich als vorteilhaft erweisen, wenn die Kontakte der Spule aus korrosionsbeständigem Edelstahl bestehen. Dieses Material ist besonders widerstandsfähig gegenüber den im Injektor herrschenden Bedingungen und ist insbesondere nicht anfällig gegenüber Kraftstoffen, die durch den Injektor ausgegeben werden.According to the invention, it can prove advantageous if the contacts of the coil are made of corrosion-resistant stainless steel. This material is particularly resistant to the conditions prevailing in the injector and is in particular not susceptible to fuels dispensed by the injector.

Ferner kann vorgesehen sein, dass der Hochtemperatur-Widerstandchip mittels Kontaktkleber oder Lötung in einem elektrisch leitenden Zustand an der Eingangsleitung oder der Ausgangsleitung befestigt ist.Furthermore, it can be provided that the high-temperature resistance chip is attached to the input line or the output line in an electrically conductive state by means of contact adhesive or soldering.

Nach einer weiteren optionalen Fortbildung der Erfindung verläuft eine vom Hochtemperatur-Widerstandchip zum Schalter (3) verlaufende Leitung in einer Kunststoffumspritzung einer Magnetspule, wobei die Magnetspule dazu ausgelegt ist, die Düsennadel in Bewegung zu versetzen.According to a further optional development of the invention, a line running from the high-temperature resistance chip to the switch (3) runs in a plastic overmolding of a magnetic coil, wherein the magnetic coil is designed to set the nozzle needle in motion.

Dadurch wird auf einfache Art und Weise sichergestellt, dass die Leitung keinen Umwelteinflüssen ausgesetzt wird. Die Kunststoffumspritzung umgibt demnach nicht nur eine Magnetspule des Injektors sondern dient auch als Umhüllung für eine zum Schalter führende Leitung. Diese Leitung ist typischerweise ein Zwischenstück, das sich von dem Anschluss der Eingangsleitung hin zu dem ersten Anschluss des Schalters, also typischerweise der Düsennadel, erstreckt.This is a simple way of ensuring that the line is not exposed to environmental influences. The plastic overmold not only surrounds a magnetic coil of the injector but also serves as a sheath for a line leading to the switch. This line is typically an intermediate piece that extends from the connection of the input line to the first connection of the switch, typically the nozzle needle.

Nach eine bevorzugten Ausführungsform kann dabei auch der Widerstand an oder in der Kunststoffumspritzung angeordnet sein. Bei einer Anordnung im Inneren der Kunststoffumspritzung ist ebenfalls von Vorteil, dass der Widerstand dann vor schädlichen Einflüssen besser geschützt ist.According to a preferred embodiment, the resistor can also be arranged on or in the plastic overmolding. If it is arranged inside the plastic overmolding, it is also advantageous that the resistor is then better protected against harmful influences.

Weiter kann vorgesehen sein, dass das Injektorgehäuse aus einem elektrisch leitenden Material ist.Furthermore, it can be provided that the injector housing is made of an electrically conductive material.

Weiter kann vorgesehen sein, dass das Injektorgehäuse mit dem Massepotential verbunden ist. Dies geschieht typischerweise über einen Motorblock, mit dem ein Injektor während seines bestimmungsgemäßen Gebrauchs zusammenwirkt.Furthermore, it can be provided that the injector housing is connected to the ground potential. This is typically done via an engine block with which an injector interacts during its intended use.

Die Erfindung umfasst ferner eine Brennkraftmaschine mit einem Injektor nach einer der vorstehend diskutierten Varianten und einer Vorrichtung entsprechend den vorstehend diskutierten Varianten.The invention further comprises an internal combustion engine with an injector according to one of the variants discussed above and a device according to the variants discussed above.

Ferner umfasst von der Erfindung ist ein Kraftfahrzeug, das die vorstehend definierte Brennkraftmaschine aufweist.The invention further includes a motor vehicle having the internal combustion engine defined above.

Weitere Vorteile, Einzelheiten und Merkmale der vorliegenden Erfindung werden anhand der nachfolgenden Figurenbeschreibung ersichtlich. Dabei zeigen:

Fig. 1:
ausgewählte eines erfindungsgemäßen Injektors,
Fig. 2:
eine vergrößerte Teilansicht der Fig. 1 mit Stromflüssen, und
Fig. 3:
eine Prinzipskizze des erfindungsgemäßen Injektors.
Further advantages, details and features of the present invention will become apparent from the following description of the figures.
Fig.1:
selected from an injector according to the invention,
Fig. 2:
an enlarged partial view of the Fig.1 with current flows, and
Fig. 3:
a schematic diagram of the injector according to the invention.

Fig. 1 zeigt einige Teile eines erfindungsgemäßen Injektors 1. So ist dort die Eingangs- und Ausgangsleitung 4, 5 zu sehen, die bei einer elektromagnetischen Umsetzung des Injektors 1 den Spulenkontakten der Spule für den Elektromagneten entsprechen. Die Magnetspule ist dabei von einer Kraftstoffumspritzung 8 umgeben, an deren unterem Ende ein weiterführender Kontakt hin zur Sitzplatte 9 angeordnet ist. Von dort ist in einer schematischen Darstellung der aus Düsennadel und Düsennadelsitz gebildete Schalter 3 zu sehen, der je nach Zustand des Injektors offen oder geschlossen ist. In der Figur nicht dargestellt ist, das der Schalter mit seinem von der Sitzplatte 9 abgewandten Ende mit Masse verbunden ist. Fig.1 shows some parts of an injector 1 according to the invention. The input and output lines 4, 5 can be seen there, which correspond to the coil contacts of the coil for the electromagnet in an electromagnetic conversion of the injector 1. The magnetic coil is surrounded by a fuel coating 8, at the lower end of which a contact leading to the seat plate 9 is arranged. From there, a schematic representation of the switch 3 formed by the nozzle needle and nozzle needle seat can be seen, which is open or closed depending on the state of the injector. What is not shown in the figure is that the end of the switch facing away from the seat plate 9 is connected to ground.

Befindet sich der Schalter 3 im geschlossenen Zustand und strömt ein Strom durch die Spule, wie es bspw. am Anfang eines Aushebevorgangs der Nadel der Fall ist, so fließt ein Teil des Stroms von dem eigentlichen Stromkreis der Eingangs- und der Ausgangsleitung 4, 5 über den Widerstand R und den Schalter in Richtung Massepotential ab.If the switch 3 is in the closed state and a current flows through the coil, as is the case, for example, at the beginning of a needle lifting process, a part of the current flows from the actual circuit of the input and output lines 4, 5 via the resistor R and the switch towards ground potential.

Um die Höhe des abfließenden Stroms zu begrenzen und diesen dabei gleichzeitig in einer detektierbaren Größe zu halten, wird erfindungsgemäß ein Hochtemperatur-Widerstandschip in der Leitung zwischen einem Spulenkontakt und dem ersten Anschluss des Schalters 3 vorgesehen.In order to limit the level of the current flowing out and at the same time to keep it at a detectable level, according to the invention a high-temperature resistance chip is provided in the line between a coil contact and the first terminal of the switch 3.

Fig. 2 zeigt einen vergrößerten Ausschnitt der Fig. 1 und ist darüber hinaus mit Stromflusspfeilen versehen. Man erkennt, dass der Strom von der Eingangsleitung in den Elektromagneten, genauer die Wicklung der Spule des Elektromagneten hineinfließt und danach wieder über die Ausgangsleitung 5 zurückströmt. Dabei wird eine kleine Menge Strom von dem Kreislauf abgezapft, die über den geschlossenen Schalter abfließt. Die geringe Strommenge wird dabei mit kleineren Pfeilen charakterisiert. Fig.2 shows an enlarged section of the Fig.1 and is also provided with current flow arrows. It can be seen that the current flows from the input line into the electromagnet, more precisely the winding of the electromagnet's coil, and then flows back again via the output line 5. In the process, a small amount of current is tapped from the circuit and flows out via the closed switch. The small amount of current is characterized by smaller arrows.

Fig. 3 zeigt eine Ausführungsform des erfindungsgemäßen Injektors 1, der über ein Injektorgehäuse 2 eine in das Injektorgehäuse 2 führende Eingangsleitung 4 und aus dem Injektorgehäuse 2 heraus führende Ausgangsleitung 5 verfügt. Ferner dazu ist ein Aktuator 8 zum Ansteuern einer Düsennadel vorgesehen, der beispielsweise ein Elektromagnet sein kann. Weiter ist dort auch der mechanische Schalter 3 dargestellt, der sich durch das Zusammenspiel der Bewegung der Düsennadel und des Düsennadelsitzes ergibt. Wird die Düsennadel aus ihrem Sitz gehoben und die Düse zur Einspritzung freigegeben, ist der Schalter 3 in seiner offenen Stellung. Im Gegensatz hierzu wird der Kontakt beim Schließen der Nadel geschlossen und der Schalter 3 ist in seinem leitenden Zustand. Ein erster Anschluss 6 des Schalters 3 ist dabei über einen Widerstand R, nach der Erfindung ein Hochtemperatur-Widerstandschip, mit der Eingangsleitung 4 verbunden. Der zweite Anschluss 7 des Schalters 3 ist mit dem Injektorgehäuse 2 elektrisch verbunden, das typischerweise im Betrieb mit Massepotential 9 gleichzusetzen ist. Fig.3 shows an embodiment of the injector 1 according to the invention, which has an injector housing 2, an input line 4 leading into the injector housing 2 and an output line 5 leading out of the injector housing 2. In addition, an actuator 8 for controlling a nozzle needle is provided, which can be an electromagnet, for example. The mechanical switch 3 is also shown there, which results from the interaction of the movement of the nozzle needle and the nozzle needle seat. If the nozzle needle is lifted out of its seat and the Nozzle released for injection, switch 3 is in its open position. In contrast, when the needle closes, the contact is closed and switch 3 is in its conductive state. A first connection 6 of switch 3 is connected to input line 4 via a resistor R, a high-temperature resistor chip according to the invention. The second connection 7 of switch 3 is electrically connected to injector housing 2, which is typically equivalent to ground potential 9 during operation.

Die Information, ob der Nadelhubschalter 3 geschlossen oder offen ist und somit, ob die Einspritzung erfolgt oder nicht, wird durch die Stromdifferenz von Eingangs- zu Ausgangsleitung erfasst.The information as to whether the needle lift switch 3 is closed or open and thus whether the injection takes place or not is detected by the current difference between the input and output lines.

Bei der Aktivierung des Injektors wird eine Spannung an die Eingangsleitung 4 und die Eingangsleitung 5 gelegt, welche dazu führt, dass über den Aktuator 8, der als Elektromagnet ausgeführt sein kann, die Düsennadel indirekt in Bewegung versetzt wird. Die Nadel hebt sich aus ihrem Sitz und öffnet somit den Kontakt. Infolgedessen wird Kraftstoff in den Brennraum eingespritzt.When the injector is activated, a voltage is applied to the input line 4 and the input line 5, which causes the nozzle needle to be indirectly set in motion via the actuator 8, which can be designed as an electromagnet. The needle lifts out of its seat and thus opens the contact. As a result, fuel is injected into the combustion chamber.

Bei der Verwendung eines solchen Injektors kann zur Detektion die Differenzstrommethode (= Fehlstromerkennung) herangezogen werden. Dabei wird der in den Injektor hineinfließende Strom mit dem herausfließendem Strom verglichen. Ist der Schalter 3 geschlossen, fließt an einem der Anschlüsse etwas mehr Strom in den Injektor 1 hinein als über den zweiten Anschluss hinaus. Das liegt daran, dass ein Teil des Stroms über den Schalter 3 direkt nach Masse 9 fließt. So lässt sich recht gut detektieren, ob der Schalter geschlossen ist oder nicht.When using such an injector, the differential current method (= fault current detection) can be used for detection. The current flowing into the injector is compared with the current flowing out. If switch 3 is closed, slightly more current flows into injector 1 at one of the connections than out of the second connection. This is because part of the current flows directly to ground 9 via switch 3. This makes it quite easy to detect whether the switch is closed or not.

Ist hingegen der in den Injektor hineinfließende Strom identisch mit dem aus dem Injektor hinausfließendem Strom, so ist der Schalter 3 offen. Sind beide Ströme unterschiedlich, lässt sich daraus ein geschlossener Schalter 3 folgern. Diese Art der Detektion funktioniert allerdings nur dann, wenn am Injektor 1 eine Spannung anliegt, da zur Detektion ein Stromfluss erforderlich ist.If, however, the current flowing into the injector is identical to the current flowing out of the injector, switch 3 is open. If both currents are different, this means that switch 3 is closed. However, this type of detection only works if a voltage is applied to injector 1, since a current flow is required for detection.

Claims (12)

  1. Injector (1) for fuel injection, comprising:
    an injector housing (2),
    a movable injection needle, which is arranged in the injector housing (2) and has an injection needle tip, and
    an injection needle seat for accommodating the injection needle tip, wherein
    a contact pairing of injection needle and injection needle seat represents a mechanical switch (3), which assumes a closed state upon contact between injection needle tip and injection needle seat and an open state upon interruption of contact,
    the injector (1) has an input line (4) and an output line (5) for controlling a movement of the injection needle,
    the input line (4) and output line (5) each represent a contact of a coil which forms part of an electromagnet (8),
    the injector is characterized in that
    the switch (3) has a first connection (6) which is connected to the input line (4) and a second connection (7) which is connected to the injector housing (2), and
    a resistor (R) is connected between the first connection (6) of the switch (3) and the input line (4),
    wherein the resistor (R) is a high-temperature resistor chip.
  2. Injector (1) according to the preceding claim 1, wherein an average power of the high-temperature resistance chip is, in the interval of 5000 µs, in the range of 0.10 to 0.12 W, preferably in the range of 0.11 to 0.12 W.
  3. Injector (1) according to one of the preceding claims, wherein an operating temperature range of the high-temperature resistance chip comprises -55°C to - 300°C, so that it is operational even at the highest temperature variations.
  4. Injector (1) according to one of the preceding claims, wherein the high-temperature resistance chip has a non-magnetic construction and/or no organic constituents.
  5. Injector (1) according to one of the preceding claims, wherein the input line (4) and the output line (5) are connected to an electromagnet (8), wherein the electromagnet (8) preferably causes the injection needle tip to lift out of the injection needle seat when subjected to the action of a current flowing through the input line (4) and the output line (5).
  6. Injector (1) according to one of the preceding claims, wherein the coil contacts are made of corrosion-resistant alloy steel.
  7. Injector (1) according to one of the preceding claims, wherein the high-temperature resistance chip is attached to the input line (4) or output line (5), in an electrically conductive state, by contact adhesive or soldering.
  8. Injector (1) according to one of the preceding claims, wherein a line extending from the high-temperature resistance chip to the switch (3) extends in a plastic encapsulation of an electromagnet coil, wherein the electromagnet coil is configured to set the injection needle in motion.
  9. Injector (1) according to one of the preceding claims, wherein the injector housing (2) is made of an electrically conductive material.
  10. Device according to one of the preceding claims, wherein the injector housing (2) is connected to a ground potential.
  11. Internal combustion engine, comprising an injector (1) according to one of the preceding claims.
  12. Motor vehicle, comprising an internal combustion engine as claimed in claim 11.
EP19790178.8A 2018-10-17 2019-10-16 Injector Active EP3864281B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018125803.8A DE102018125803A1 (en) 2018-10-17 2018-10-17 Injector
PCT/EP2019/078043 WO2020079050A1 (en) 2018-10-17 2019-10-16 Injector

Publications (2)

Publication Number Publication Date
EP3864281A1 EP3864281A1 (en) 2021-08-18
EP3864281B1 true EP3864281B1 (en) 2024-05-08

Family

ID=68290232

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19790178.8A Active EP3864281B1 (en) 2018-10-17 2019-10-16 Injector

Country Status (5)

Country Link
US (1) US11421638B2 (en)
EP (1) EP3864281B1 (en)
CN (1) CN112955644B (en)
DE (1) DE102018125803A1 (en)
WO (1) WO2020079050A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020111787A1 (en) 2020-04-30 2021-11-04 Liebherr-Components Deggendorf Gmbh Device for detecting the condition of a fuel injector

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129483A (en) * 1983-12-14 1985-07-10 Diesel Kiki Co Ltd Solenoid valve
US4957085A (en) * 1989-02-16 1990-09-18 Anatoly Sverdlin Fuel injection system for internal combustion engines
JP3740733B2 (en) * 1996-02-13 2006-02-01 いすゞ自動車株式会社 Fuel injection device for internal combustion engine
DE10319329A1 (en) * 2003-04-29 2004-11-25 Siemens Ag Injector with seat contact switch
JP2007515618A (en) * 2003-09-30 2007-06-14 エフエーファオ モトレンテクニーク ゲゼルシャフト ミット ベシュレンクテル ハフツング Sensor device
DE102004046192B4 (en) * 2004-09-23 2006-12-28 Siemens Ag Circuit arrangement and method for charging and discharging at least one capacitive load
EP2224123A1 (en) * 2009-02-25 2010-09-01 Delphi Technologies Holding S.à.r.l. Piezoelectric actuator
DE102013220528B4 (en) * 2013-10-11 2015-05-07 Continental Automotive Gmbh Injection valve and method for operating an injection valve
FR3023875A1 (en) * 2014-07-15 2016-01-22 Delphi Int Operations Luxembourg Sarl FUEL INJECTOR
FR3024183B1 (en) * 2014-07-22 2019-07-26 Delphi Technologies Ip Limited FUEL INJECTOR
CN104763568B (en) * 2015-04-09 2017-06-30 中国第一汽车股份有限公司无锡油泵油嘴研究所 A kind of electromagnetic jet valve and the method for operating electromagnetic jet valve
DE102017116379A1 (en) * 2017-07-20 2019-01-24 Liebherr-Components Deggendorf Gmbh Device for condition detection of an injector
DE202018100337U1 (en) * 2018-01-22 2019-04-24 Liebherr-Components Deggendorf Gmbh Injector and device for detecting the state of such an injector
DE102018214135A1 (en) * 2018-08-22 2020-02-27 Robert Bosch Gmbh Method for controlling an injector
DE102018221683A1 (en) * 2018-12-13 2020-06-18 Hyundai Motor Company Method for operating a fuel injection system of a motor vehicle and fuel injection system

Also Published As

Publication number Publication date
CN112955644A (en) 2021-06-11
US11421638B2 (en) 2022-08-23
EP3864281A1 (en) 2021-08-18
US20210388802A1 (en) 2021-12-16
CN112955644B (en) 2024-02-23
WO2020079050A1 (en) 2020-04-23
DE102018125803A1 (en) 2020-04-23

Similar Documents

Publication Publication Date Title
DE102011005672B4 (en) Method, device and computer program for the electrical control of an actuator for determining the time of an anchor stop
EP1979598B1 (en) Device for switching inductive fuel injection valves
WO1990005845A1 (en) Solenoid valve, in particular for fuel injection pumps
EP0807757A1 (en) Fuel injection valve for internal combustion engines
DE19932548A1 (en) Dual solenoids with a single circuit and fuel injector that uses them
EP3743613B1 (en) Device for detecting the condition of an injector
DE19880737B4 (en) Method for monitoring the function of an electromagnetic actuator
WO2017102208A1 (en) Fuel injection nozzle
DE102006016892A1 (en) Method for controlling at least one solenoid valve
DE102005049259B3 (en) Valve device, especially injection valve for internal combustion engine, has electrically conducting valve body, electrically insulated integrated conducting valve needle guide in valve body that forms contact switch(es) with valve body
EP3864281B1 (en) Injector
DE3507130A1 (en) DRIVER CIRCUIT FOR A MAGNETIC COIL
EP0573437B1 (en) Device for determining the start of injection in a fuel-injection valve
DE3873194T2 (en) SAFETY CONTROL DEVICE FOR AN ACTUATOR TYPE OF FLAP RETURN ELECTROVALVE WITH SOLENOID.
EP2496824B1 (en) Control valve assembly
DE102006025360B3 (en) Method for enhanced response inductive fuel injectors for IC engines by generating currents to counteract the residual currents due to magnetic remanence at the end of the injector pulse
EP1511928A1 (en) Method and device for measuring and regulating the closing and opening period of a piezo control valve
DE19854306A1 (en) Actuator with capacitive element e.g. for controlling fuel injection valves in IC engine, has Ohmic resistance connected in parallel with capacitive element dimensioned so that element discharges in time greater than maximum drive duration
DE102004029906B4 (en) Method and device for controlling an injection valve and computer program
DE102016219189B4 (en) Determining a solenoid valve opening time
DE10140093A1 (en) Method and device for controlling a solenoid valve
EP2357353B1 (en) Method for recognising the closing point of an injection valve body in a fuel injection valve and fuel injection valve
DE102020213169B3 (en) Method and device for diagnosing the movement of an armature of a magnetic valve
DE102017219571A1 (en) Method for checking a magnetic actuator
DE102011077059A1 (en) Fuel injection valve

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210510

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220324

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231208

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240326

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019011245

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240508

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240508