EP3861145A1 - Turbocharger, having a steel material for high-temperature applications - Google Patents

Turbocharger, having a steel material for high-temperature applications

Info

Publication number
EP3861145A1
EP3861145A1 EP19782583.9A EP19782583A EP3861145A1 EP 3861145 A1 EP3861145 A1 EP 3861145A1 EP 19782583 A EP19782583 A EP 19782583A EP 3861145 A1 EP3861145 A1 EP 3861145A1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
turbine
steel material
turbine housing
gas turbocharger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19782583.9A
Other languages
German (de)
French (fr)
Inventor
Marc Hiller
Martin Thomas
Achim Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies GmbH
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Publication of EP3861145A1 publication Critical patent/EP3861145A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/005Selecting particular materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/165Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for radial flow, i.e. the vanes turning around axes which are essentially parallel to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • F02B37/162Control of the pumps by bypassing charging air by bypassing, e.g. partially, intake air from pump inlet to pump outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/15Two-dimensional spiral
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/25Three-dimensional helical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/171Steel alloys

Definitions

  • Exhaust gas turbocharger made of a steel material for high-temperature applications
  • the invention relates to an exhaust gas turbocharger, the one
  • Steel material for high-temperature applications in particular a steel material that is suitable for use at high temperatures up to over 1000 ° C.
  • the principle of operation of an exhaust gas turbocharger is to use the energy contained in the exhaust gas flow to increase the pressure in the intake tract of the internal combustion engine and thus to better fill the combustion chamber with air-oxygen and thus more fuel, gasoline or diesel, per combustion process to be able to implement, so to increase the performance of the internal combustion engine.
  • the exhaust gas turbocharger has an exhaust gas turbine arranged in the exhaust tract of the internal combustion engine, a fresh air compressor arranged in the intake tract and an intermediate rotor bearing.
  • the exhaust gas turbine has a turbine housing and a turbine impeller arranged therein, driven by the exhaust gas flow.
  • the fresh air compressor has a compressor housing and a compressor impeller which is arranged therein and builds up a boost pressure.
  • the turbine impeller and the compressor impeller are rotatably arranged on the opposite ends of a common shaft, the so-called rotor shaft, and thus form the so-called turbocharger rotor.
  • the rotor shaft extends axially between the turbine impeller and the compressor impeller through the rotor bearing arranged between the exhaust gas turbine and the fresh air compressor, and is axially and axially rotatably supported therein in relation to the rotor shaft.
  • the turbine impeller driven by the exhaust gas mass flow drives the compressor impeller via the rotor shaft, as a result of which the pressure in the intake tract of the internal combustion engine, based on the
  • Air-oxygen is effected.
  • a device is usually provided in the turbine housing in order to influence the gas mass flow flowing from the turbine impeller.
  • this is a so-called wastegate valve, on the other hand, a so-called variable turbine geometry (VTG).
  • the exhaust gas mass flow can be directed past the turbine impeller directly into the exhaust tract downstream of the exhaust gas turbine via a wastegate valve, whereas the direction and the amount of the exhaust gas mass flow impinging on the turbine impeller can be influenced via the variable turbine geometry.
  • Wastega te valve or the variable turbine geometry is set so that the speed of the turbine and compressor impeller and the pressure ratio, in particular on the exhaust gas turbine, are kept within the desired working range of the exhaust gas turbocharger can be.
  • the exhaust gas temperatures are kept as high as possible. Due to the hot exhaust gases flowing through the turbine housing, this and the components arranged in the exhaust gas mass flow are subjected to a thermal alternating stress with temperatures of over 1000 ° C. Furthermore, there is a demand for high strength and dimensional stability of the components with the lowest possible weight, that is, a reduced use of materials.
  • steel materials with mostly partially austenitic structures and in particular a high nickel content of up to 40% have been used.
  • Such materials are, for example, cast steel materials with the short designation 1.4848 (GX40CrNiSi25-20) and 1.4849
  • the material 1.4848 is characterized by the following material composition: 0.3-0.5% C; 1.0-2.5% Si; Max . 2.0% Mn; max.0.04% P; max 0.03% S; 24.0-27.0% Cr; max 0.5% Mo; 19, 0-22, 0% Ni; Rest of Fe.
  • the material 1.4849 shows the following work
  • the high nickel content increases the strength and durability of the materials, especially at operating temperatures up to 1050 ° C.
  • nickel is a relatively expensive material, which is why cheaper alternatives are sought.
  • the present invention is therefore based on the object of specifying an exhaust gas turbocharger having a steel material for high-temperature applications, which is characterized by low material costs, in particular in the case of a low nickel content of the material, in a temperature range up to over 1050 ° C. by sufficient strength and creep resistance for distinguishes the use in connection with internal combustion engines.
  • an exhaust gas turbocharger with a turbine housing is provided with a receiving area for a turbine impeller of the gas turbocharger arranged centrally to a turbine housing axis and at least one turbine spiral channel tapering helically towards the receiving area for the turbine impeller, with a wastegate valve with a spindle arm in the turbine housing and a flap plate arranged thereon, or a variable exhaust gas guide device with bearing disks and guide vanes is arranged, at least one of the components: turbine housing, spindle arm and valve plate, or bearing disks and guide vane, comprising a steel material for high-temperature applications, the material composition of which, apart from iron, Fe has at least the following alloy components in amounts within the specified limits in percent by weight:
  • Chromium, Cr 19.5-20.5%
  • Nickel, Ni 5.0-0.0.0%
  • Niobium, Nb 1.00-1.5%.
  • At least one of the quantitative proportions of the alloy components silicon and manganese can be set within narrow limits, so that at least one of these components is added at least in quantities within the following limits in percent by weight:
  • the amount of manganese can in particular also be further limited to a proportion of 9.0-12%.
  • the ge called alloy is characterized by high heat resistance with simultaneous corrosion resistance, especially in the aggressive, hot exhaust gases of an internal combustion engine.
  • the material composition according to the invention can be supplemented by adding at least one of the further alloy constituents mentioned below, in proportions up to a maximum of the amounts indicated in percent by weight:
  • Tungsten, W up to 0.6%
  • Vanadium, V up to 0.12%
  • Copper, Cu up to 0.25%
  • Co up to 1.0%
  • Phosphorus, P up to 0.04%.
  • this can have a positive effect on various secondary material properties of the alloy, such as machinability, weldability, castability, etc.
  • unavoidable impurities can be contained in quantities that are negligible in terms of material properties.
  • the steel material used in the exhaust gas turbocharger according to the invention is shows that it has at least one of the above-mentioned further alloy components added to the alloy in proportions of at least the stated amounts in percent by weight:
  • Vanadium, V at least 0.06%
  • Copper, Cu at least 0.1%
  • Cobalt Co: at least 0.5%
  • Phosphorus, P at least 0.02%.
  • W between 0.3 to 0.6%
  • V between 0.06 to 0.12%
  • Cu between 0.1 to 0.25%
  • Co between 0.5 to 1.0%
  • the steel material has at least one of these further elements in a quantity within the specified quantity range.
  • the steel material can also have two, three, four, five or all of the other elements mentioned in quantities within the specified limits.
  • the high manganese content as well as the further alloy components contribute to the further increase of the desired material properties and in particular cause a progressive conversion of ferrite to austenite at higher material temperatures. In addition, the corrosion resistance is increased.
  • a further characteristic of the steel material used in the exhaust gas bolader according to the invention is accordingly characterized in that the steel material has a completely austenitic structure. This leads to a significant reduction in the formation of sigma phases in the Material structure and contributes to achieving and stabilizing the desired material properties.
  • the material properties required for use in turbine housings for exhaust gas turbochargers with respect to the minimum plug-in limit, the tensile strength and the corrosion resistance are achieved, while at the same time the nickel is greatly reduced in comparison with conventional high-temperature materials. Share and thus reduced material costs.
  • the exhaust-gas turbocharger has a turbine housing with a receiving area for a turbine impeller of the exhaust-gas turbocharger, which is arranged centrally to a turbine housing axis, and at least one exhaust-gas spiral channel that tapers towards the receiving area for the turbine-impeller.
  • a wastegate valve with a spindle arm and a flap plate arranged thereon or a variable exhaust gas guide device VTG with bearing disks and guide vanes are arranged in the turbine housing. This essentially corresponds to an arrangement as already described in the introduction.
  • the exhaust gas turbocharger according to the invention is characterized in that at least one of the components: turbine housing, spindle arm and flap plate, or bearing washers and guide vane, has a steel material according to the invention with an alloy composition, as described in one of the embodiments described above.
  • a corresponding exhaust gas turbocharger is characterized by an increased service life with increased operational reliability. This is achieved through materials optimized for the application Properties of the components mentioned, in particular with regard to the high temperature strength, at the same time, compared to conventional components made of high-alloy nickel alloys, reduced price.
  • Figure 1 is a schematic simplified representation of a
  • Figure 2 is a three-dimensional representation of an exhaust gas charger with variable exhaust gas guide, in a quarter-sectional view.
  • a conventional exhaust gas turbocharger 1 As a rule, a conventional exhaust gas turbocharger 1, as shown in FIGS. 1 and 2, has a multi-part structure. There are one in the exhaust system of the internal combustion engine
  • Turbine housing 20 that can be arranged, a compressor housing 30 that can be arranged in the intake tract of the internal combustion engine, and a bearing housing 40 arranged one behind the other on a common turbocharger axis 2 between the turbine housing 20 and the compressor housing 30. organizes and connects with each other in terms of assembly.
  • a further structural unit of the exhaust gas turbocharger 1 is the turbocharger rotor 10, which has a rotor shaft 14, a turbine impeller 12 arranged in the turbine housing 20 and a compressor impeller 13 arranged in the compressor housing 30.
  • the turbine impeller 12 and the compressor impeller 13 are arranged on the opposite ends of the common rotor shaft 14 and rotatably connected to them.
  • the rotor shaft 14 extends axially through the bearing housing 40 in the direction of the turbocharger axis 2 and is rotatably supported axially and radially about its longitudinal axis, the rotor axis of rotation 15, wherein the rotor axis of rotation 15 lies in the turbocharger axis 2, that is to say coincides therewith.
  • the turbine housing axis 2a is also in line with the rotor axis of rotation 15 and the turbocharger axis 2.
  • the exhaust gas mass flow AM through the turbine housing 20 and the fresh air mass flow FM through the compressor housing 30 are each shown with corresponding arrows.
  • the turbine housing 20 has a turbine spiral channel 22, a so-called exhaust gas flow, which is arranged in a ring around the turbocharger axis 2 and the receiving area of the turbine impeller 12, in a helical manner tapering towards the receiving area and the turbine impeller 12, a so-called exhaust gas flow.
  • This exhaust gas flow has a tangentially outwardly directed exhaust gas supply channel 23 with a bend
  • the exhaust gas flow also has an at least part of the inner circumference annular gap opening, the so-called exhaust gas inlet gap 25, which extends in at least a proportionally radial direction towards the turbine impeller 12 and through which the exhaust gas mass flow AM flows onto the turbine impeller 12.
  • the turbine housing 20 furthermore has an exhaust gas discharge duct 26 which runs away from the axial end of the turbine impeller 12 in the direction of the turbocharger axis 2 and has an outlet puff connection piece 27 for connection to the exhaust system (not shown) of the internal combustion engine.
  • the exhaust gas mass flow AM emerging from the turbine impeller 12 is discharged into the exhaust system of the internal combustion engine via this exhaust gas discharge duct 26.
  • the steel material SWst according to the invention, which characterizes the turbine housing 20 and from which the turbine housing 20 is made, is symbolized by the cross hatching.
  • a wastegate valve 29 connects the exhaust gas supply duct 23 in the flow direction of the exhaust gas mass flow AM in front of the turbine impeller 12 to the exhaust gas discharge duct 26 in the flow direction of the exhaust gas mass flow AM behind the turbine impeller 12 via a wastegate duct 291 in the turbine housing 20.
  • the wastegate valve 29 can be closed via a closing device, can be opened or closed.
  • This locking device has a spindle arm 292 which is rotatably mounted in the turbine housing 20 and on which a flap plate 293 is arranged. Both spindle arm 292 and the Klap penteller 293 are made in this example from the steel material SWst according to the invention.
  • the flap plate 293 is placed or closed to close or open the wastegate valve 29 in a sealing manner on the valve seat 294 of the wastegate channel 291.
  • FIG. 2 shows an embodiment of an exhaust gas turbocharger 1 with an exhaust gas guide device, here a variable turbine geometry 50, also referred to as VTG for short.
  • the basic structure of the exhaust gas turbocharger 1 with the turbine housing 20, the compressor housing 30, the bearing housing 40 and the turbocharger rotor 10 essentially corresponds to the exhaust gas turbocharger 1 shown in FIG. Instead of a wastegate valve, however, a VTG 50 is provided here.
  • This consists essentially of two annular bearing disks 51, 52, which are arranged at a certain distance from one another in the annular gap-shaped transition region between the turbine spiral duct 22 and the turbine impeller 12 and thus form the exhaust gas inlet gap 25.
  • Both the turbine housing 20 and the bearing disks 51, 52 and the guide vanes 53 in this embodiment consist of the steel material SWst according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Abstract

The invention relates to a turbocharger (1), comprising a turbine housing (21), which has an accommodating region for a turbine rotor disk (12) of the turbocharger (1), which accommodating region is arranged centrally with respect to a turbine housing axis (2a), and at least one turbine spiral channel (22), which tapers helically toward the accommodating region for the turbine rotor disk (12), wherein a wastegate valve, having a spindle arm and a valve plate arranged on the spindle arm, or a variable exhaust-gas guiding device, having bearing disks and guide vanes, is arranged in the turbine housing, characterized in that at least one of the following components: turbine housing, spindle arm and valve plate, or bearing disks and guide vanes, has a steel material (21a) for high-temperature applications, the material composition of which comprises, in addition to iron, Fe, at least the following alloying constituents in amounts within the specified limits in weight percent: carbon, C: 0.4-0.5%; silicon, Si: 1.25-1.75%; manganese, Mn: 3.0-12.0%; chromium, Cr: 19.5-20.5%; nickel, Ni: 5.0-6.0%; niobium, Nb: 1.00-1.5%. Said material composition ensures sufficient temperature resistance of the components, while having a lower nickel content and being less expensive in comparison with other high-temperature materials.

Description

Beschreibung description
Abgasturbolader, der einen Stahl-Werkstoff für Hochtempera tur-Anwendungen aufweist Exhaust gas turbocharger made of a steel material for high-temperature applications
Die Erfindung betrifft einen Abgasturbolader, der einen The invention relates to an exhaust gas turbocharger, the one
Stahl-Werkstoff für Hochtemperatur-Anwendungen aufweist, insbesondere einen Stahl-Werkstoff, der sich zum Einsatz bei hohen Temperaturen bis über 1000°C eignet. Steel material for high-temperature applications, in particular a steel material that is suitable for use at high temperatures up to over 1000 ° C.
Die Entwicklung neuer Technologien sowie die Weiterentwicklung entsprechender Vorrichtungen und Verfahren hin zu höherer Leistung und Effizienz bei gleichzeitiger Reduzierung des Ressourceneinsatzes gehen sehr häufig einher mit gesteigerten Anforderungen an die verwendeten Werkstoffe in Bezug auf Festigkeit, Temperaturbeständigkeit, Korrosionsbeständigkeit und Bearbeitbarkeit. Des Weiteren spielt beim industriellen Einsatz natürlich auch der Preis eine bedeutende Rolle. The development of new technologies as well as the further development of appropriate devices and processes towards higher performance and efficiency while reducing the use of resources very often go hand in hand with increased demands on the materials used in terms of strength, temperature resistance, corrosion resistance and machinability. Furthermore, price also plays an important role in industrial use.
Einer solchen technologischen Herausforderung, die immer höhere Anforderungen stellt, ist traditionell der Fahrzeugbau und insbesondere die Entwicklung der darin eingesetzten Verbren nungsmotoren unterworfen. Such a technological challenge, which places ever increasing demands, is traditionally subject to vehicle construction and in particular the development of the internal combustion engines used in it.
Zur Reduzierung des Kraftstoffverbrauchs und des Schad stoff-Ausstoßes bei gleichbleibender oder sogar gesteigerter Leistung des Verbrennungsmotors werden vermehrt kleinvolumige Motorkonzepte, sogenannte Downsizing-Konzepte, zugrunde gelegt, die zur Leistungssteigerung mit Abgasturboladern ausgestattet sind. Hierbei stellen insbesondere bei Otto-Verbrennungsmotoren die vorherrschenden hohen Abgastemperaturen bis über 1000 °C eine starke Herausforderung für die in der Abgasturbine eingesetzten Werkstoffe dar. Hierbei besteht die Tendenz, die Betriebs temperaturen weiter zu steigern, um die bei der Verbrennung entstehende Wärmeenergie effizienter nutzen zu können. Weiterhin besteht auch bei Otto-Verbrennungsmotoren die Tendenz hin zu einem mageren Betrieb mit Lambda nahe 1, wodurch die Abgas- temperaturen zusätzlich steigen. Die thermische Belastung der im Abgasbereich, also auch im Turbolader, eingesetzten Werkstoffe steigt also. To reduce fuel consumption and pollutant emissions while maintaining or even increasing the performance of the internal combustion engine, small-volume engine concepts, so-called downsizing concepts, are increasingly being used, which are equipped with exhaust gas turbochargers to increase performance. The prevailing high exhaust gas temperatures up to over 1000 ° C represent a strong challenge for the materials used in the exhaust gas turbine, particularly in gasoline internal combustion engines. There is a tendency to further increase the operating temperatures in order to use the thermal energy generated during combustion more efficiently can. Furthermore, there is also a tendency towards lean operation with lambda close to 1 in Otto combustion engines, as a result of which the exhaust gas temperatures also increase. The thermal load on the materials used in the exhaust gas area, i.e. also in the turbocharger, increases.
Das Wirkprinzip eines Abgasturboladers besteht darin, die im Abgasstrom enthaltene Energie zu nutzen, um den Druck im An saugtrakt des Verbrennungsmotors zu erhöhen und so eine bessere Befüllung des Brennraumes mit Luft-Sauerstoff zu bewirken und somit mehr Treibstoff, Benzin oder Diesel, pro Verbrennungs vorgang umsetzen zu können, also die Leistung des Verbren nungsmotors zu erhöhen. The principle of operation of an exhaust gas turbocharger is to use the energy contained in the exhaust gas flow to increase the pressure in the intake tract of the internal combustion engine and thus to better fill the combustion chamber with air-oxygen and thus more fuel, gasoline or diesel, per combustion process to be able to implement, so to increase the performance of the internal combustion engine.
Dazu weist der Abgasturbolader eine im Abgastrakt des Ver brennungsmotors angeordnete Abgasturbine, einen im Ansaugtrakt angeordneten Frischluftverdichter und ein dazwischen ange ordnetes Läuferlager auf. Die Abgasturbine weist ein Turbi nengehäuse und ein darin angeordnetes, durch den Abgasmas senstrom angetriebenes Turbinenlaufrad auf. Der Frischluft verdichter weist ein Verdichtergehäuse und ein darin ange ordnetes, einen Ladedruck aufbauendes Verdichterlaufrad auf . Das Turbinenlaufrad und das Verdichterlaufrad sind auf den sich gegenüberliegenden Enden einer gemeinsamen Welle, der soge nannten Läuferwelle, drehfest angeordnet und bilden so den sogenannten Turboladerläufer. Die Läuferwelle erstreckt sich axial zwischen Turbinenlaufrad und Verdichterlaufrad durch das zwischen Abgasturbine und Frischluftverdichter angeordnete Läuferlager und ist in diesem, in Bezug auf die Läuferwel lenachse, radial und axial drehgelagert. Gemäß diesem Aufbau treibt das vom Abgasmassenstrom angetriebene Turbinenlaufrad über die Läuferwelle das Verdichterlaufrad an, wodurch der Druck im Ansaugtrakt des Verbrennungsmotors, bezogen auf den For this purpose, the exhaust gas turbocharger has an exhaust gas turbine arranged in the exhaust tract of the internal combustion engine, a fresh air compressor arranged in the intake tract and an intermediate rotor bearing. The exhaust gas turbine has a turbine housing and a turbine impeller arranged therein, driven by the exhaust gas flow. The fresh air compressor has a compressor housing and a compressor impeller which is arranged therein and builds up a boost pressure. The turbine impeller and the compressor impeller are rotatably arranged on the opposite ends of a common shaft, the so-called rotor shaft, and thus form the so-called turbocharger rotor. The rotor shaft extends axially between the turbine impeller and the compressor impeller through the rotor bearing arranged between the exhaust gas turbine and the fresh air compressor, and is axially and axially rotatably supported therein in relation to the rotor shaft. According to this construction, the turbine impeller driven by the exhaust gas mass flow drives the compressor impeller via the rotor shaft, as a result of which the pressure in the intake tract of the internal combustion engine, based on the
Frischluftmassenstrom hinter dem Frischluftverdichter, erhöht und dadurch eine bessere Befüllung des Brennraumes mit Fresh air mass flow behind the fresh air compressor, increased and thereby better filling of the combustion chamber with
Luft-Sauerstoff bewirkt wird. Air-oxygen is effected.
Weiterhin ist im Turbinengehäuse in der Regel eine Einrichtung vorgesehen um den auf das Turbinenlaufrad strömenden Ab gas-Massenstrom zu beeinflussen. Hier gibt es im Wesentlichen zwei unterschiedliche Einrichtungen, die wahlweise vorgesehen werden. Zum einen ist dies ein sogenanntes Wastegate-Ventil , zum anderen eine sogenannte Variable Turbinengeometrie (VTG) . Furthermore, a device is usually provided in the turbine housing in order to influence the gas mass flow flowing from the turbine impeller. Here is essentially two different facilities that are optionally provided. On the one hand, this is a so-called wastegate valve, on the other hand, a so-called variable turbine geometry (VTG).
Über ein Wastegate-Ventil kann der Abgasmassenstrom bei Bedarf am Turbinenlaufrad vorbei direkt in den Abgastrakt stromabwärts der Abgasturbine geleitet werden, wogegen über die Variable Turbinengeometrie die Richtung und die Menge des auf das Turbinenlaufrad auftreffenden Abgasmassenstroms beeinflusst werden kann. If necessary, the exhaust gas mass flow can be directed past the turbine impeller directly into the exhaust tract downstream of the exhaust gas turbine via a wastegate valve, whereas the direction and the amount of the exhaust gas mass flow impinging on the turbine impeller can be influenced via the variable turbine geometry.
Je nach Drehzahl und Abgasmassenstrom des Verbrennungsmotors wird in Abhängigkeit von den Lastanforderungen das Wastega te-Ventil bzw. die Variable Turbinengeometrie so eingestellt, dass die Drehzahl von Turbinen- und Verdichterlaufrad sowie das Druckverhältnis, insbesondere an der Abgasturbine, innerhalb des gewünschten Arbeitsbereichs des Abgasturboladers gehalten werden kann. Depending on the speed and exhaust gas mass flow of the internal combustion engine, depending on the load requirements, the Wastega te valve or the variable turbine geometry is set so that the speed of the turbine and compressor impeller and the pressure ratio, in particular on the exhaust gas turbine, are kept within the desired working range of the exhaust gas turbocharger can be.
Um die bei der Verbrennung im Verbrennungsmotor entstehende Wärmeenergie mit höheren Wirkungsgraden durch den Abgastur bolader nutzen zu können, werden, wie bereits erwähnt, die Abgastemperaturen möglichst hoch gehalten. Durch die heißen Abgase, die durch das Turbinengehäuse strömen, wird dieses und die im Abgasmassenstrom angeordneten Bauteile mit einer thermischen Wechselbeanspruchung mit Temperaturen bis über 1000°C beaufschlagt. Des Weiteren besteht die Forderung nach hoher Festigkeit und Formbeständigkeit der Bauteile bei einem möglichst geringen Gewicht, also einem reduzierten Material einsatz . In order to be able to use the thermal energy generated during combustion in the internal combustion engine with higher degrees of efficiency by the exhaust gas turbocharger, as already mentioned, the exhaust gas temperatures are kept as high as possible. Due to the hot exhaust gases flowing through the turbine housing, this and the components arranged in the exhaust gas mass flow are subjected to a thermal alternating stress with temperatures of over 1000 ° C. Furthermore, there is a demand for high strength and dimensional stability of the components with the lowest possible weight, that is, a reduced use of materials.
Um diese hohen Anforderungen erfüllen zu können wurden bisher Stahl-Werkstoffe mit zumeist teilweise austenitischem Gefüge und insbesondere einem hohen Nickelgehalt bis zu 40% eingesetzt. Solche Werkstoffe sind zum Beispiel Stahlguss-Werkstoffe mit der Kurzbezeichnung 1.4848 (GX40CrNiSi25-20) und 1.4849 In order to be able to meet these high requirements, steel materials with mostly partially austenitic structures and in particular a high nickel content of up to 40% have been used. Such materials are, for example, cast steel materials with the short designation 1.4848 (GX40CrNiSi25-20) and 1.4849
(GX40NiCrSiNb38-l 9) . Dabei zeichnet sich der Werkstoff 1.4848 durch die folgende Werkstoff-Zusammensetzung aus: 0,3-0, 5% C; 1,0-2, 5% Si; max . 2,0% Mn; max.0,04% P; max.0,03% S; 24,0-27,0% Cr; max.0,5% Mo; 19, 0-22, 0% Ni; Rest Fe. (GX40NiCrSiNb38-l 9). The material 1.4848 is characterized by the following material composition: 0.3-0.5% C; 1.0-2.5% Si; Max . 2.0% Mn; max.0.04% P; max 0.03% S; 24.0-27.0% Cr; max 0.5% Mo; 19, 0-22, 0% Ni; Rest of Fe.
Der Werkstoff 1.4849 weist die folgende Werk  The material 1.4849 shows the following work
stoff-Zusammensetzung auf: 0,3-0, 5% C; 1,0-2, 5% Si; max . 2,0% Mn ; max.0,03% S; 18,0-21,0% Cr; max.0,5% Mo; 36,0-39,0% Ni; fabric composition on: 0.3-0.5% C; 1.0-2.5% Si; Max . 2.0% Mn; max 0.03% S; 18.0-21.0% Cr; max 0.5% Mo; 36.0-39.0% Ni;
1,2-1, 8%Nb; Rest Fe.  1.2-1.8% Nb; Rest of Fe.
Der hohe Nickelgehalt erhöht die Festigkeit und Haltbarkeit der Werkstoffe insbesondere bei Betriebstemperaturen bis zu 1050°C. Jedoch ist Nickel ein verhältnismäßig teurer Werkstoff, weshalb kostengünstigere Alternativen gesucht werden.  The high nickel content increases the strength and durability of the materials, especially at operating temperatures up to 1050 ° C. However, nickel is a relatively expensive material, which is why cheaper alternatives are sought.
Ein weiterer hochwarmfester Werkstoff mit sehr niedrigem Ni ckelanteil, der insbesondere eingesetzt wird im Druck und Dampfkesselbau sowie in Luft- und Raumfahrttechnik und Tur binenbau ist der Werkstoff 1.4923 (X22CrMoV12-l ) , der folgende Zusammensetzung aufweist: 0,18-0,24% C; 11,0-12,5% Cr; 0,3-0, 8% Ni; 0,8-1, 2% V; Rest Fe. Bei diesem Werkstoff wirdeine Erhöhung der Zeitdehn- und Zeitstandfestigkeit durch den Vanadium-Anteil und den erhöhten Molybdänzusatz bewirkt. Die Festigkeitswerte fallen jedoch bereits bei Temperaturen über 500°C erheblich ab, was die Verwendung für Abgasturbinengehäuse, wie oben be schrieben, erheblich einschränkt. Another highly heat-resistant material with a very low nickel content, which is used in particular in pressure and steam boiler construction as well as in aerospace engineering and turbine construction, is material 1.4923 (X22CrMoV12-l), which has the following composition: 0.18-0.24% C; 11.0-12.5% Cr; 0.3-0.8% Ni; 0.8-1.2% V; Rest of Fe. With this material, the elongation and creep strength are increased by the vanadium content and the increased addition of molybdenum. However, the strength values already drop significantly at temperatures above 500 ° C, which considerably limits the use for exhaust gas turbine housings, as described above.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, einen einen Stahl-Werkstoff für Hochtemperatur-Anwendungen aufweisenden Abgasturbolader anzugeben, der sich durch niedrige Materialkosten, also insbesondere bei niedrigem Nickelanteil des Werkstoffes, in einem Temperaturbereich bis über 1050°C durch ausreichend Festigkeit und Zeitstandfestigkeit für den Einsatz in Verbindung mit Verbrennungsmotoren auszeichnet. The present invention is therefore based on the object of specifying an exhaust gas turbocharger having a steel material for high-temperature applications, which is characterized by low material costs, in particular in the case of a low nickel content of the material, in a temperature range up to over 1050 ° C. by sufficient strength and creep resistance for distinguishes the use in connection with internal combustion engines.
Diese Aufgabe wird durch einen Abgasturbolader mit den Merkmalen gemäß Patentanspruch 1 gelöst. Vorteilhafte Aus- und Weiter bildungen, welche einzeln oder, sofern es sich nicht um sich gegenseitig ausschließende Alternativen handelt, in Kombination miteinander eingesetzt werden können, sind Gegenstand der abhängigen Ansprüche. This object is achieved by an exhaust gas turbocharger with the features according to claim 1. Advantageous training and further education, which individually or, if they are not mutually exclusive alternatives, in combination can be used together are the subject of the dependent claims.
Erfindungsgemäß wird ein Abgasturbolader mit einem Turbinen gehäuse mit einem zentrisch zu einer Turbinengehäuseachse angeordneten Aufnahmebereich für ein Turbinenlaufrad des Ab gasturboladers und zumindest einem, sich schneckenförmig zum Aufnahmebereich für das Turbinenlaufrad hin verjüngenden Turbinen-Spiralkanal offenbart, wobei im Turbinengehäuse ein Wastegate-Ventil mit einem Spindelarm und einem daran ange ordneten Klappenteller, oder eine variable Abgasleiteinrichtung mit Lagerscheiben und Leitschaufein angeordnet ist, wobei zumindest eines der Bauteile: Turbinengehäuse, Spindelarm und Klappenteller, oder Lagerscheiben und Leitschaufein, einen Stahl-Werkstoff für Hochtemperatur-Anwendungen aufweist, dessen WerkstoffZusammensetzung außer Eisen, Fe zumindest folgende Legierungsbestandteile in Mengen in den angegebenen Grenzen in Gewichtsprozent aufweist: According to the invention, an exhaust gas turbocharger with a turbine housing is provided with a receiving area for a turbine impeller of the gas turbocharger arranged centrally to a turbine housing axis and at least one turbine spiral channel tapering helically towards the receiving area for the turbine impeller, with a wastegate valve with a spindle arm in the turbine housing and a flap plate arranged thereon, or a variable exhaust gas guide device with bearing disks and guide vanes is arranged, at least one of the components: turbine housing, spindle arm and valve plate, or bearing disks and guide vane, comprising a steel material for high-temperature applications, the material composition of which, apart from iron, Fe has at least the following alloy components in amounts within the specified limits in percent by weight:
Kohlenstoff, C: 0, 4-0,5%;  Carbon, C: 0.4-0.5%;
Silizium, Si: 1,25-1,75%;  Silicon, Si: 1.25-1.75%;
Mangan, Mn : 3,0-12,0%;  Manganese, Mn: 3.0-12.0%;
Chrom, Cr: 19,5-20,5%;  Chromium, Cr: 19.5-20.5%;
Nickel, Ni: 5, 0-6,0%;  Nickel, Ni: 5.0-0.0.0%;
Niob, Nb: 1,00-1,5%.  Niobium, Nb: 1.00-1.5%.
In weiterer Ausführung des beim erfindungsgemäßen Abgastur bolader verwendeten Stahl-Werkstoffs kann insbesondere zu mindest einer der Mengenanteile der Legierungsbestandteile Silizium und Mangan in engere Grenzen gefasst werden, so dass zumindest einer dieser Bestandteile zumindest in Mengen in den folgenden Grenzen in Gewichtsprozent zugefügt wird: In a further embodiment of the steel material used in the exhaust gas bolader according to the invention, in particular at least one of the quantitative proportions of the alloy components silicon and manganese can be set within narrow limits, so that at least one of these components is added at least in quantities within the following limits in percent by weight:
Silizium, Si: 1,35-1,65%;  Silicon, Si: 1.35-1.65%;
Mangan, Mn: 7,0-12,0%.  Manganese, Mn: 7.0-12.0%.
Die Menge an Mangan kann insbesondere auch weiter, auf einen Anteil von 9, 0 - 12%, eingegrenzt werden.  The amount of manganese can in particular also be further limited to a proportion of 9.0-12%.
Damit können die gewünschten Werkstoffeigenschaften auf höherem Niveau mit höherer Zuverlässigkeit erzielt werden. Bei den oben angegebenen Legierungszusammensetzungen sind gegenüber bekannten Stahlwerkstoffen für Hochtempera This enables the desired material properties to be achieved at a higher level with greater reliability. In the alloy compositions given above, compared to known steel materials for high temperatures
tur-Anwendungen insbesondere die in Kombination erhöhten Anteile an Mangan, Chrom und Niob, bei moderater Zugabe von Nickel für die erzielten Werkstoffeigenschaften verantwortlich. Die ge nannte Legierung zeichnet sich dabei durch hohe Warm-Festigkeit bei gleichzeitiger Korrosionsbeständigkeit insbesondere in den aggressiven, heißen Abgasen eines Verbrennungsmotors aus. In particular, the increased proportions of manganese, chromium and niobium in combination with moderate addition of nickel are responsible for the material properties achieved. The ge called alloy is characterized by high heat resistance with simultaneous corrosion resistance, especially in the aggressive, hot exhaust gases of an internal combustion engine.
Weiterhin können, zur Erzielung bestimmter Eigenschaften ggf. zusätzliche Legierungsbestandteile zugefügt sein. So kann die erfindungsgemäße WerkstoffZusammensetzung beispielsweise durch Zugabe von zumindest einer der im Folgenden genannten weiteren Legierungsbestandteile, in Anteilen bis zu maximal den jeweils angegebenen Mengen in Gewichtsprozent, ergänzt sein: Furthermore, additional alloy components may be added to achieve certain properties. For example, the material composition according to the invention can be supplemented by adding at least one of the further alloy constituents mentioned below, in proportions up to a maximum of the amounts indicated in percent by weight:
Wolfram, W: bis zu 0,6%;  Tungsten, W: up to 0.6%;
Vanadium, V: bis zu 0,12%;  Vanadium, V: up to 0.12%;
Kupfer, Cu: bis zu 0,25%;  Copper, Cu: up to 0.25%;
Kobalt, Co: bis zu 1,0%;  Cobalt, Co: up to 1.0%;
Schwefel, S: bis zu 0,03% und  Sulfur, S: up to 0.03% and
Phosphor, P: bis zu 0,04%. Phosphorus, P: up to 0.04%.
Das heißt, zumindest eines dieser Elemente wird in messbarer Menge, jedoch in einer Menge bis zu der jeweils angegebenen Grenze zugegeben. Es können jedoch auch zwei, drei, vier, fünf oder alle dieser Elemente in unterschiedlicher Kombination, jedes jedoch nur in einer Menge bis zu der jeweils angegebenen Grenze, zugegeben werden.  This means that at least one of these elements is added in a measurable amount, but in an amount up to the specified limit. However, two, three, four, five or all of these elements can also be added in different combinations, but each only in an amount up to the respectively specified limit.
Dies kann, je nach Kombination, verschieden sekundäre Werk stoffeigenschaften der Legierung, wie zum Beispiel die Zer spanbarkeit, die Schweißbarkeit, die Gießbarkeit etc., positiv beeinflussen .  Depending on the combination, this can have a positive effect on various secondary material properties of the alloy, such as machinability, weldability, castability, etc.
Darüber hinaus können unvermeidbare Verunreinigungen in Men genanteilen, die in Bezug auf die Werkstoffeigenschaften vernachlässigbar sind, enthalten sein. In addition, unavoidable impurities can be contained in quantities that are negligible in terms of material properties.
In weiter verfeinerter Ausführung ist der beim erfindungsgemäßen Abgasturbolader verwendete Stahl-Werkstoff dadurch gekenn- zeichnet, dass er den zumindest einen der oben genannten, der Legierung zugefügten weitere Legierungsbestandteile in Anteilen von jeweils zumindest den angegebenen Mengen in Gewichtsprozent aufweist : In a further refined embodiment, the steel material used in the exhaust gas turbocharger according to the invention is shows that it has at least one of the above-mentioned further alloy components added to the alloy in proportions of at least the stated amounts in percent by weight:
Wolfram, W: zumindest 0,3%;  Tungsten, W: at least 0.3%;
Vanadium, V: zumindest 0,06%;  Vanadium, V: at least 0.06%;
Kupfer, Cu: zumindest 0,1%;  Copper, Cu: at least 0.1%;
Kobalt, Co: zumindest 0,5%;  Cobalt, Co: at least 0.5%;
Schwefel, S: zumindest 0,013% und  Sulfur, S: at least 0.013% and
Phosphor, P: zumindest 0,02%. Phosphorus, P: at least 0.02%.
So ergibt sich, in Kombination mit den zuvor festgelegten Obergrenzen der Zugabemengen der weiteren Legierungsbestand teile jeweils ein Mengenbereich: In combination with the previously defined upper limits for the addition quantities of the other alloy components, this results in a quantity range:
für Wolfram, W: zwischen 0,3 bis 0,6%; for tungsten, W: between 0.3 to 0.6%;
für Vanadium, V: zwischen 0,06 bis 0,12%; for vanadium, V: between 0.06 to 0.12%;
für Kupfer, Cu: zwischen 0,1 bis0,25%; for copper, Cu: between 0.1 to 0.25%;
für Kobalt, Co: zwischen 0,5 bis 1,0%; for cobalt, Co: between 0.5 to 1.0%;
für Schwefel, S: zwischen 0,013 bis 0,03% und for sulfur, S: between 0.013 and 0.03% and
für Phosphor, P: zwischen 0,02 bis 0,04%. for phosphorus, P: between 0.02 to 0.04%.
Dabei weist der Stahl-Werkstoff zumindest eines dieser weiteren Elemente in einer Menge innerhalb des angegebenen Mengenbereichs auf. Der Stahl-Werkstoff kann jedoch auch zwei, drei, vier, fünf oder alle der genannten weiteren Elemente in Mengen innerhalb der angegebenen Grenzen aufweisen.  The steel material has at least one of these further elements in a quantity within the specified quantity range. However, the steel material can also have two, three, four, five or all of the other elements mentioned in quantities within the specified limits.
Der hohe Mangananteil sowie die weiteren Legierungsbestandteile tragen zur weiteren Steigerung der gewünschten Werkstoffei genschaften bei und bewirken insbesondere eine fortschreitende Umwandlung von Ferrit in Austenit bei erhöhten Werkstofftem- peraturen. Darüber hinaus ist die Korrosionsbeständigkeit erhöht . The high manganese content as well as the further alloy components contribute to the further increase of the desired material properties and in particular cause a progressive conversion of ferrite to austenite at higher material temperatures. In addition, the corrosion resistance is increased.
Eine weitere Ausprägung des beim erfindungsgemäßen Abgastur bolader verwendeten Stahl-Werkstoffs ist demnach dadurch ge kennzeichnet, dass der Stahl-Werkstoff ein vollständig aus- tenitisch ausgebildetes Gefüge, aufweist. Dies führt zu einer signifikanten Reduktion der Bildung von Sigma-Phasen im Werkstoffgefüge und trägt zur Erzielung und Stabilisierung der gewünschten Werkstoffeigenschaften bei. A further characteristic of the steel material used in the exhaust gas bolader according to the invention is accordingly characterized in that the steel material has a completely austenitic structure. This leads to a significant reduction in the formation of sigma phases in the Material structure and contributes to achieving and stabilizing the desired material properties.
Mit der angegebenen WerkstoffZusammensetzung des beim erfin dungsgemäßen Abgasturbolader verwendeten Stahl-Werkstoffes werden die für den Einsatz bei Turbinengehäusen für Abgas turbolader erforderlichen Materialeigenschaften in Bezug auf die Mindeststeckgrenze, die Zugfestigkeit und die Korrosionsbe ständigkeit erzielt bei gleichzeitig gegenüber bisher ge bräuchlichen Hochtemperaturwerkstoffen stark reduziertem Ni ckel-Anteil und somit reduzierten Materialkosten. With the specified material composition of the steel material used in the exhaust gas turbocharger according to the invention, the material properties required for use in turbine housings for exhaust gas turbochargers with respect to the minimum plug-in limit, the tensile strength and the corrosion resistance are achieved, while at the same time the nickel is greatly reduced in comparison with conventional high-temperature materials. Share and thus reduced material costs.
Dies wird unter anderem dadurch erzielt, dass die Legie rungsbestandteile in Zusammensetzung und Menge so aufeinander abgestimmt und ggf. in engen Grenzen definiert sind, dass ein hoher Anteil an austenitischem Gefüge, ausgebildet ist, im Idealfall bis zu 100%. This is achieved, among other things, by coordinating the alloy components in terms of composition and quantity and possibly defining them within narrow limits so that a high proportion of the austenitic structure is formed, ideally up to 100%.
Der erfindungsgemäße Abgasturbolader weist ein Turbinengehäuse mit einem zentrisch zu einer Turbinengehäuseachse angeordneten Aufnahmebereich für ein Turbinenlaufrad des Abgasturboladers und zumindest einem, sich schneckenförmig zum Aufnahmebereich für das Turbinenlaufrad hin verjüngenden, Abgas-Spiralkanal auf. Im Turbinengehäuse ist ein Wastegate-Ventil mit einen Spindelarm und einem daran angeordneten Klappenteller oder eine variable Abgasleiteinrichtung VTG mit Lagerscheiben und Leitschaufein angeordnet. Dies entspricht im Wesentlichen einer Anordnung wie einleitend bereits beschrieben. Der erfindungsgemäße Abgas turbolader ist dadurch gekennzeichnet, dass zumindest eines der Bauteile: Turbinengehäuse, Spindelarm und Klappenteller, oder Lagerscheiben und Leitschaufein, einen erfindungsgemäßen Stahl-Werkstoff mit einer Legierungszusammensetzung, wie in einer der vorausgehend beschriebenen Ausführungen beschrieben, aufweist . The exhaust-gas turbocharger according to the invention has a turbine housing with a receiving area for a turbine impeller of the exhaust-gas turbocharger, which is arranged centrally to a turbine housing axis, and at least one exhaust-gas spiral channel that tapers towards the receiving area for the turbine-impeller. A wastegate valve with a spindle arm and a flap plate arranged thereon or a variable exhaust gas guide device VTG with bearing disks and guide vanes are arranged in the turbine housing. This essentially corresponds to an arrangement as already described in the introduction. The exhaust gas turbocharger according to the invention is characterized in that at least one of the components: turbine housing, spindle arm and flap plate, or bearing washers and guide vane, has a steel material according to the invention with an alloy composition, as described in one of the embodiments described above.
Ein entsprechender Abgasturbolader zeichnet sich durch eine erhöhte Lebensdauer bei erhöhter Betriebssicherheit aus. Dies wird erzielt durch für den Einsatzfall optimierte Werkstof- feigenschaften der genannten Bauteile, insbesondere in Bezug auf die Hochtemperaturfestigkeit, bei gleichzeitig, gegenüber herkömmlichen Bauteilen aus hochlegierten Nickel-Legierungen, reduziertem Preis. A corresponding exhaust gas turbocharger is characterized by an increased service life with increased operational reliability. This is achieved through materials optimized for the application Properties of the components mentioned, in particular with regard to the high temperature strength, at the same time, compared to conventional components made of high-alloy nickel alloys, reduced price.
Die Merkmale und Merkmalskombinationen der vorstehend in der Beschreibung genannten Ausführungen des erfindungsgemäßen Gegenstandes sind, soweit diese nicht alternativ anwendbar sind oder sich gar gegenseitig ausschließen, einzeln, zum Teil oder insgesamt, auch in gegenseitiger Kombination oder gegenseitiger Ergänzung, in Fortbildung des erfindungsgemäßen Gegenstands anzuwenden, ohne den Rahmen der Erfindung zu verlassen. The features and combinations of features of the embodiments of the subject matter according to the invention mentioned above in the description, insofar as they cannot be used alternatively or are mutually exclusive, can be used individually, in part or as a whole, also in a mutual combination or complement, in a further development of the subject matter, without leaving the scope of the invention.
Entsprechende Ausführungen erfindungsgemäßer Abgasturbolader werden mit Hilfe der Figuren näher erläutert, dabei zeigt: Corresponding designs of exhaust gas turbochargers according to the invention are explained in more detail with the aid of the figures, in which:
Figur 1 eine schematisch vereinfachte Darstellung eines Figure 1 is a schematic simplified representation of a
Abgasturboladers mit Wastegate-Ventil , in Halb schnittdarstellung, und  Exhaust gas turbocharger with wastegate valve, in half sectional view, and
Figur 2 eine dreidimensionale Darstellung eines Abgastur boladers mit variabler Abgasleiteinrichtung, in ViertelSchnittdarstellung .  Figure 2 is a three-dimensional representation of an exhaust gas charger with variable exhaust gas guide, in a quarter-sectional view.
Funktions- und Benennungsgleiche Teile sind in den Figuren durchgehend mit denselben Bezugszeichen gekennzeichnet. Parts with the same function and designation are identified throughout in the figures with the same reference symbols.
Anhand der Figur ist der prinzipielle Aufbau eines Abgastur boladers 1, mit einem Wastegate-Ventil, wie einführend bereits grob beschrieben, in schematisch vereinfachter Halb Based on the figure, the basic structure of an exhaust gas bolader 1 with a wastegate valve, as already described roughly in the introduction, is in a schematically simplified half
schnitt-Darstellung gezeigt. Sectional representation shown.
In der Regel weist ein gebräuchlicher Abgasturbolader 1, wie in den Figuren 1 und 2 dargestellt, einen mehrteiligen Aufbau auf. Dabei sind eine im Abgastrakt des Verbrennungsmotors As a rule, a conventional exhaust gas turbocharger 1, as shown in FIGS. 1 and 2, has a multi-part structure. There are one in the exhaust system of the internal combustion engine
anordenbares Turbinengehäuse 20, ein im Ansaugtrakt des Ver brennungsmotors anordenbares Verdichtergehäuse 30 und zwischen Turbinengehäuse 20 und Verdichtergehäuse 30 ein Lagergehäuse 40 auf einer gemeinsamen Turboladerachse 2 hintereinander ange- ordnet und montagetechnisch miteinander verbunden. Eine weitere Baueinheit des Abgasturboladers 1 stellt der Turboladerläufer 10 dar, der eine Läuferwelle 14, ein in dem Turbinengehäuse 20 angeordnetes Turbinenlaufrad 12 und ein in dem Verdichtergehäuse 30 angeordnetes Verdichterlaufrad 13 aufweist. Das Turbinen laufrad 12 und das Verdichterlaufrad 13 sind auf den sich gegenüberliegenden Enden der gemeinsamen Läuferwelle 14 an geordnet und mit diesen drehfest verbunden. Die Läuferwelle 14 erstreckt sich in Richtung der Turboladerachse 2 axial durch das Lagergehäuse 40 und ist in diesem axial und radial um seine Längsachse, die Läuferdrehachse 15, drehgelagert, wobei die Läuferdrehachse 15 in der Turboladerachse 2 liegt, also mit dieser zusammenfällt. Dabei liegt auch die Turbinengehäuseachse 2a in einer Linie mit der Läuferdrehachse 15 und der Turbolader achse 2. Der Abgasmassenstrom AM durch das Turbinengehäuse 20 und der Frischluftmassenstrom FM durch das Verdichtergehäuse 30 sind jeweils mit entsprechenden Pfeilen dargestellt. Turbine housing 20 that can be arranged, a compressor housing 30 that can be arranged in the intake tract of the internal combustion engine, and a bearing housing 40 arranged one behind the other on a common turbocharger axis 2 between the turbine housing 20 and the compressor housing 30. organizes and connects with each other in terms of assembly. A further structural unit of the exhaust gas turbocharger 1 is the turbocharger rotor 10, which has a rotor shaft 14, a turbine impeller 12 arranged in the turbine housing 20 and a compressor impeller 13 arranged in the compressor housing 30. The turbine impeller 12 and the compressor impeller 13 are arranged on the opposite ends of the common rotor shaft 14 and rotatably connected to them. The rotor shaft 14 extends axially through the bearing housing 40 in the direction of the turbocharger axis 2 and is rotatably supported axially and radially about its longitudinal axis, the rotor axis of rotation 15, wherein the rotor axis of rotation 15 lies in the turbocharger axis 2, that is to say coincides therewith. The turbine housing axis 2a is also in line with the rotor axis of rotation 15 and the turbocharger axis 2. The exhaust gas mass flow AM through the turbine housing 20 and the fresh air mass flow FM through the compressor housing 30 are each shown with corresponding arrows.
Das Turbinengehäuse 20 weist einen, in anderen Ausführungen ggf. auch mehrere, ringförmig um die Turboladerachse 2 und den Aufnahmebereich des Turbinenlaufrads 12 angeordneten, sich schneckenförmig zum Aufnahmebereich und dem Turbinenlaufrad 12 hin verjüngenden Turbinen-Spiralkanal 22, eine sogenannte Abgasflute, auf. Diese Abgasflute weist einen tangential nach außen gerichteten Abgaszuführkanal 23 mit einem Krüm The turbine housing 20 has a turbine spiral channel 22, a so-called exhaust gas flow, which is arranged in a ring around the turbocharger axis 2 and the receiving area of the turbine impeller 12, in a helical manner tapering towards the receiving area and the turbine impeller 12, a so-called exhaust gas flow. This exhaust gas flow has a tangentially outwardly directed exhaust gas supply channel 23 with a bend
mer-Anschlussstutzen 24 zum Anschluss an einen Abgaskrümmer (nicht dargestellt) eines Verbrennungsmotors auf, durch den der Abgasmassenstrom AM in die jeweilige Abgasflute strömt. Die Abgasflute weist weiterhin eine zumindest über einen Teil des Innenumfanges verlaufende Ringspaltöffnung, den sogenannten Abgas-Eintrittsspalt 25, auf, der in zumindest anteilmäßig radialer Richtung auf das Turbinenlaufrad 12 hin gerichtet verläuft und durch den der Abgasmassenstrom AM auf das Tur binenlaufrad 12 strömt. mer connection piece 24 for connection to an exhaust manifold (not shown) of an internal combustion engine, through which the exhaust gas mass flow AM flows into the respective exhaust gas flow. The exhaust gas flow also has an at least part of the inner circumference annular gap opening, the so-called exhaust gas inlet gap 25, which extends in at least a proportionally radial direction towards the turbine impeller 12 and through which the exhaust gas mass flow AM flows onto the turbine impeller 12.
Das Turbinengehäuse 20 weist weiterhin einen Abgasabführkanal 26 auf, der vom axialen Ende des Turbinenlaufrades 12 weg in Richtung der Turboladerachse 2 verläuft und einen Aus- puff-Anschlussstutzen 27 zum Anschluss an das AuspuffSystem (nicht dargestellt) des Verbrennungsmotors aufweist. Über diesen Abgasabführkanal 26 wird der aus dem Turbinenlaufrad 12 aus tretende Abgasmassenstrom AM in das AuspuffSystem des Ver brennungsmotors abgeführt. Der das Turbinengehäuse 20 kenn zeichnende erfindungsgemäße Stahl-Werkstoff SWst, aus dem das Turbinengehäuse 20 gefertigt ist, ist dabei durch die Kreuz schraffur symbolisiert. The turbine housing 20 furthermore has an exhaust gas discharge duct 26 which runs away from the axial end of the turbine impeller 12 in the direction of the turbocharger axis 2 and has an outlet puff connection piece 27 for connection to the exhaust system (not shown) of the internal combustion engine. The exhaust gas mass flow AM emerging from the turbine impeller 12 is discharged into the exhaust system of the internal combustion engine via this exhaust gas discharge duct 26. The steel material SWst according to the invention, which characterizes the turbine housing 20 and from which the turbine housing 20 is made, is symbolized by the cross hatching.
Ein Wastegate-Ventil 29 verbindet den Abgaszuführkanal 23 in Strömungsrichtung des Abgasmassenstroms AM vor dem Turbinen laufrad 12 mit dem Abgasabführkanal 26 in Strömungsrichtung des Abgasmassenstroms AM hinter dem Turbinenlaufrad 12 über einen Wastegatekanal 291 im Turbinengehäuse 20. Das Wastegate-Ventil 29 kann über eine Schließvorrichtung, geöffnet oder gelschlossen werden. Diese Schließvorrichtung weist einen im Turbinengehäuse 20 drehgelagerten Spindelarm 292 auf, an dem ein Klappenteller 293 angeordnet ist. Sowohl Spindelarm 292 als auch der Klap penteller 293 sind in diesem Beispiel aus dem erfindungsgemäßen Stahl-Werkstoff SWst hergestellt. Durch Betätigung des Spin delarms 292 mittels eines externen Aktuators (nicht darge stellt) , wird der Klappenteller 293 zum Schließen bzw. zum Öffnen des Wastegate-Ventils 29 dichtend auf den Ventilsitz 294 des Wastegatekanals 291 aufgelegt oder von diesem abgehoben. A wastegate valve 29 connects the exhaust gas supply duct 23 in the flow direction of the exhaust gas mass flow AM in front of the turbine impeller 12 to the exhaust gas discharge duct 26 in the flow direction of the exhaust gas mass flow AM behind the turbine impeller 12 via a wastegate duct 291 in the turbine housing 20. The wastegate valve 29 can be closed via a closing device, can be opened or closed. This locking device has a spindle arm 292 which is rotatably mounted in the turbine housing 20 and on which a flap plate 293 is arranged. Both spindle arm 292 and the Klap penteller 293 are made in this example from the steel material SWst according to the invention. By actuating the spin delarm 292 by means of an external actuator (not shown), the flap plate 293 is placed or closed to close or open the wastegate valve 29 in a sealing manner on the valve seat 294 of the wastegate channel 291.
Figur 2 zeigt dagegen eine Ausführung eines Abgasturboladers 1 mit einer Abgasleiteinrichtung, hier einer Variablen Turbi nengeometrie 50, auch kurz als VTG bezeichnet. Der prinzipielle Aufbau des Abgasturboladers 1 mit Turbinengehäuse 20, Ver dichtergehäuse 30, Lagergehäuse 40 und dem Turboladerläufer 10 stimmt dabei im Wesentlichen mit dem in Figur 1 gezeigten Abgasturbolader 1 überein. Statt eines Wastegate-Ventils ist hier jedoch eine VTG 50 vorgesehen. Diese besteht im Wesentlichen aus zwei ringförmigen Lagerscheiben 51, 52, die in einem be stimmten Abstand zueinander in dem ringspaltförmigen Über gangsbereich zwischen dem Turbinen-Spiralkanal 22 und dem Turbinenlaufrad 12 angeordnet sind und so den Ab- gas-Eintrittsspalt 25 bilden. Zwischen den Lagerscheiben 51, 52 sind im Abgas-Eintrittsspalt 25, über den Umfang des Ab- gas-Eintrittsspalts verteilt, mehrere Leitschaufein angeordnet. Diese sind zumindest in einer der Lagerscheiben drehgelagert aufgenommen und ihre Drehlage kann mittels einer auf der Rückseite dieser Lagerscheibe angeordneten Betätigungsmechanik 55 und einem externen Aktuator (nicht dargestellt) eingestellt werden. Sowohl das Turbinengehäuse 20 als auch die Lagerscheiben 51, 52 und die Leitschaufein 53 bestehen bei dieser Ausführung aus dem erfindungsgemäßen Stahl-Werkstoff SWst. FIG. 2, on the other hand, shows an embodiment of an exhaust gas turbocharger 1 with an exhaust gas guide device, here a variable turbine geometry 50, also referred to as VTG for short. The basic structure of the exhaust gas turbocharger 1 with the turbine housing 20, the compressor housing 30, the bearing housing 40 and the turbocharger rotor 10 essentially corresponds to the exhaust gas turbocharger 1 shown in FIG. Instead of a wastegate valve, however, a VTG 50 is provided here. This consists essentially of two annular bearing disks 51, 52, which are arranged at a certain distance from one another in the annular gap-shaped transition region between the turbine spiral duct 22 and the turbine impeller 12 and thus form the exhaust gas inlet gap 25. Between the bearing disks 51, 52 are arranged in the exhaust gas inlet gap 25, distributed over the circumference of the exhaust gas inlet gap, several guide vanes. These are accommodated in a rotatably mounted manner in at least one of the bearing disks and their rotational position can be set by means of an actuating mechanism 55 arranged on the rear side of this bearing disk and an external actuator (not shown). Both the turbine housing 20 and the bearing disks 51, 52 and the guide vanes 53 in this embodiment consist of the steel material SWst according to the invention.

Claims

Patentansprüche Claims
1. Abgasturbolader (1) mit einem Turbinengehäuse (21) mit einem zentrisch zu einer Turbinengehäuseachse (2a) angeordneten Aufnahmebereich für ein Turbinenlaufrad (12) des Abgasturbo laders (1) und zumindest einem, sich schneckenförmig zum Aufnahmebereich für das Turbinenlaufrad (12) hin verjüngenden, Turbinen-Spiralkanal (22), 1. Exhaust gas turbocharger (1) with a turbine housing (21) with a receiving area for a turbine wheel (12) of the exhaust gas turbocharger (1) arranged centrally to a turbine housing axis (2a) and at least one helical to the receiving area for the turbine wheel (12) tapered, turbine spiral channel (22),
wobei im Turbinengehäuse ein Wastegate-Ventil mit einem being a wastegate valve with a
Spindelarm und einem daran angeordneten Klappenteller, oder eine variable Abgasleiteinrichtung mit Lagerscheiben und Leitschaufein angeordnet ist, Spindle arm and a flap plate arranged thereon, or a variable exhaust gas guide device with bearing disks and guide vanes is arranged,
dadurch gekennzeichnet, dass zumindest eines der Bauteile: Turbinengehäuse, Spindelarm und Klappenteller, oder Lager scheiben und Leitschaufein, einen Stahl-Werkstoff (21a) für Hochtemperatur-Anwendungen aufweist, dessen WerkstoffZusam mensetzung außer Eisen, Fe, zumindest folgende Legierungsbe standteile in Mengen in den angegebenen Grenzen in Gewichts prozent aufweist: characterized in that at least one of the components: turbine housing, spindle arm and flap plate, or bearing washers and guide vane, has a steel material (21a) for high-temperature applications, the material of which, apart from iron, Fe, contains at least the following alloy components in quantities in the specified limits in percent by weight:
Kohlenstoff, C: 0, 4-0,5%;  Carbon, C: 0.4-0.5%;
Silizium, Si: 1,25-1,75%;  Silicon, Si: 1.25-1.75%;
Mangan, Mn : 3,0-12,0%;  Manganese, Mn: 3.0-12.0%;
Chrom, Cr: 19,5-20,5%;  Chromium, Cr: 19.5-20.5%;
Nickel, Ni: 5, 0-6,0%;  Nickel, Ni: 5.0-0.0.0%;
Niob, Nb: 1,00-1,5%.  Niobium, Nb: 1.00-1.5%.
2. Abgasturbolader nach Anspruch 1 , dadurch gekennzeichnet, dass der Stahlwerkstoff zumindest einen der angegebenen Legie rungsbestandteile zumindest in Mengen in den folgenden Grenzen in Gewichtsprozent aufweist: 2. Exhaust gas turbocharger according to claim 1, characterized in that the steel material has at least one of the specified alloying constituents at least in quantities within the following limits in percent by weight:
Silizium, Si: 1,35-1,65%;  Silicon, Si: 1.35-1.65%;
Mangan, Mn: 7,0-12,0%, insbesondere 9,0-12%.  Manganese, Mn: 7.0-12.0%, especially 9.0-12%.
3. Abgasturbolader nach Anspruch 1 oder 2, dadurch gekenn zeichnet, dass der Stahlwerkstoff zumindest einen der weiteren Legierungsbestandteile in Anteilen bis zu maximal den ange gebenen Mengen in Gewichtsprozent enthält: 3. Exhaust gas turbocharger according to claim 1 or 2, characterized in that the steel material contains at least one of the further alloy components in proportions up to a maximum of the stated amounts in percent by weight:
Wolfram, W: bis zu 0,6%; Vanadium, V: bis zu 0,12%; Tungsten, W: up to 0.6%; Vanadium, V: up to 0.12%;
Kupfer, Cu: bis zu 0,25%;  Copper, Cu: up to 0.25%;
Kobalt, Co: bis zu 1,0%;  Cobalt, Co: up to 1.0%;
Schwefel, S: bis zu 0,03% und  Sulfur, S: up to 0.03% and
Phosphor, P: bis zu 0,04%. Phosphorus, P: up to 0.04%.
4. Abgasturbolader nach Anspruch 3, dadurch gekennzeichnet, dass der Stahlwerkstoff den zumindest einen der weiteren Legie rungsbestandteile in Anteilen von jeweils zumindest den an gegebenen Mengen in Gewichtsprozent enthält: 4. Exhaust gas turbocharger according to claim 3, characterized in that the steel material contains the at least one of the other alloying constituents in proportions of at least the given amounts in percent by weight:
Wolfram, W: zumindest 0,3%;  Tungsten, W: at least 0.3%;
Vanadium, V: zumindest 0,06%;  Vanadium, V: at least 0.06%;
Kupfer, Cu: zumindest 0,1%;  Copper, Cu: at least 0.1%;
Kobalt, Co: zumindest 0,5%;  Cobalt, Co: at least 0.5%;
Schwefel, S: zumindest 0,013% und  Sulfur, S: at least 0.013% and
Phosphor, P: zumindest 0,02%. Phosphorus, P: at least 0.02%.
5. Abgasturbolader nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Stahl-Werkstoff ein vollständig austenitisch ausgebildetes Gefüge aufweist. 5. Exhaust gas turbocharger according to one of the preceding claims, characterized in that the steel material has a completely austenitic structure.
EP19782583.9A 2018-10-05 2019-10-01 Turbocharger, having a steel material for high-temperature applications Pending EP3861145A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018217057.6A DE102018217057A1 (en) 2018-10-05 2018-10-05 Steel material for high-temperature applications and exhaust gas turbochargers made of this steel material
PCT/EP2019/076651 WO2020070163A1 (en) 2018-10-05 2019-10-01 Turbocharger, having a steel material for high-temperature applications

Publications (1)

Publication Number Publication Date
EP3861145A1 true EP3861145A1 (en) 2021-08-11

Family

ID=68136413

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19782583.9A Pending EP3861145A1 (en) 2018-10-05 2019-10-01 Turbocharger, having a steel material for high-temperature applications

Country Status (5)

Country Link
US (1) US11454132B2 (en)
EP (1) EP3861145A1 (en)
CN (1) CN112771192A (en)
DE (1) DE102018217057A1 (en)
WO (1) WO2020070163A1 (en)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE959681C (en) * 1943-08-14 1957-03-07 Eisen & Stahlind Ag Blades and similarly stressed components of gas turbines and other similarly or similarly stressed objects
DE19727140C1 (en) * 1997-06-26 1998-12-17 Daimler Benz Ag Internal combustion engine - turbocharger system
CN100535423C (en) * 2003-03-31 2009-09-02 日立金属株式会社 Piston for internal combustion engine and preparation method thereof
US7914732B2 (en) 2006-02-23 2011-03-29 Daido Tokushuko Kabushiki Kaisha Ferritic stainless steel cast iron, cast part using the ferritic stainless steel cast iron, and process for producing the cast part
DE102007025758A1 (en) * 2007-06-01 2008-12-04 Mahle International Gmbh seal
CN102149838A (en) * 2008-09-25 2011-08-10 博格华纳公司 Turbocharger and adjustable blade therefor
WO2010036533A2 (en) * 2008-09-25 2010-04-01 Borgwarner Inc. Turbocharger and blade bearing ring therefor
DE102011110481A1 (en) * 2011-08-17 2013-02-21 Voith Patent Gmbh Exhaust gas flow component, preferably housing, which is positioned within e.g. exhaust gas turbocharger and partly made of alloy comprising aluminum, boron, carbon, niobium, zirconium, titanium, tungsten, tantalum, silicon and vanadium
US10975718B2 (en) 2013-02-12 2021-04-13 Garrett Transportation I Inc Stainless steel alloys, turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same
CN104651743A (en) * 2013-11-22 2015-05-27 南红艳 Multielement composite heat-resistant steel
US9534281B2 (en) 2014-07-31 2017-01-03 Honeywell International Inc. Turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same
KR102165108B1 (en) * 2016-03-23 2020-10-13 닛테츠 스테인레스 가부시키가이샤 Manufacturing method of austenitic stainless steel sheet for exhaust parts and turbocharger parts with excellent heat resistance and workability, and austenitic stainless steel sheet for exhaust parts
DE102016208301A1 (en) * 2016-05-13 2017-11-16 Continental Automotive Gmbh Steel material for high temperature applications and turbine housings made of this material
US10227916B2 (en) * 2016-07-24 2019-03-12 Garrett Transportation I Inc. Turbocharger turbine wastegate assembly
DE102016215905A1 (en) 2016-08-24 2018-03-01 Continental Automotive Gmbh Iron material for high-temperature resistant bushes, bearing bush made of this material and turbocharger with such a bushing

Also Published As

Publication number Publication date
DE102018217057A1 (en) 2020-04-09
WO2020070163A1 (en) 2020-04-09
US20210388738A1 (en) 2021-12-16
US11454132B2 (en) 2022-09-27
CN112771192A (en) 2021-05-07

Similar Documents

Publication Publication Date Title
WO2018036757A1 (en) Iron material for high-temperature-resistant bearing bushings, bearing bushing made of said material, and turbocharger having such a bearing bushing
EP2339142A1 (en) Turbocharger
DE112010001123T5 (en) turbocharger
DE102009046940B4 (en) Multi-stage supercharger group, supercharging system and internal combustion engine, each with the multi-stage supercharger group
EP2859190B1 (en) Turbine housing for a turbocharger
EP3628755B1 (en) Austenitic stainless steel alloys and turbocharger kinematic components formed from stainless steel alloys
EP2573357A1 (en) Turbocharger waste-gate valve
DE102012001236A1 (en) Guide for a turbine of an exhaust gas turbocharger
DE102018218406A1 (en) Method for operating an internal combustion engine system
EP3861145A1 (en) Turbocharger, having a steel material for high-temperature applications
WO2017194282A1 (en) Steel material for high-temperature applications, and turbine casing made of said material
EP3933064A1 (en) Austenitic stainless steel alloys and turbocharger kinematic components formed from stainless steel alloys
EP1878893A1 (en) Exhaust gas turbo charger assembly
DE102012014189A1 (en) Internal combustion engine has exhaust conduits to provide lower and higher pressure drop for flowing exhaust gas, and exhaust turbine whose first cross-section of flow passage is smaller than second cross-section of flow passage
DE102012013595A1 (en) Internal combustion engine and method for operating an internal combustion engine
DE102014220680A1 (en) Internal combustion engine with mixed-flow turbine comprising a guide
WO2022228803A1 (en) Turbocharger comprising an integral housing and variable turbine geometry, and integral housing for a turbocharger
EP3867505A1 (en) Exhaust gas turbine of an exhaust gas turbocharger with a sealed wastegate valve device, and exhaust gas turbocharger
CN116179922A (en) High silicon stainless steel alloy and turbocharger kinematic component formed therefrom
DE102014220679A1 (en) Internal combustion engine with mixed-flow turbine comprising a guide and exhaust gas recirculation
DE102014215888B4 (en) Internal combustion engine with variable mixed-flow turbine
DE102021100301A1 (en) Compressor rear wall of a compressor housing of an exhaust gas turbocharger and exhaust gas turbocharger
DE102018209078A1 (en) Turbine for an exhaust gas turbocharger, turbocharger for a drive device and corresponding drive device
WO2007107290A1 (en) Turbocharger arrangement
DE102004045372A1 (en) Exhaust gas turbocharger`s compressor, has runner wheel that is moved between coupling and decoupling positions, where runner wheel and compressor wheel are connected in torque-proof manner if runner wheel is in coupling position

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210506

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VITESCO TECHNOLOGIES GMBH

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240205