EP2859190B1 - Turbine housing for a turbocharger - Google Patents
Turbine housing for a turbocharger Download PDFInfo
- Publication number
- EP2859190B1 EP2859190B1 EP13726582.3A EP13726582A EP2859190B1 EP 2859190 B1 EP2859190 B1 EP 2859190B1 EP 13726582 A EP13726582 A EP 13726582A EP 2859190 B1 EP2859190 B1 EP 2859190B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- housing
- turbine housing
- turbine
- exhaust
- exhaust gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002184 metal Substances 0.000 claims description 37
- 238000007789 sealing Methods 0.000 claims description 30
- 239000007789 gas Substances 0.000 description 120
- 238000002485 combustion reaction Methods 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000000465 moulding Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 238000005242 forging Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000012805 post-processing Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 241001136792 Alle Species 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/24—Casings; Casing parts, e.g. diaphragms, casing fastenings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
- F01D9/026—Scrolls for radial machines or engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D17/00—Regulating or controlling by varying flow
- F01D17/10—Final actuators
- F01D17/105—Final actuators by passing part of the fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/30—Exhaust heads, chambers, or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B39/00—Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/40—Application in turbochargers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/21—Manufacture essentially without removing material by casting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/23—Manufacture essentially without removing material by permanently joining parts together
- F05D2230/232—Manufacture essentially without removing material by permanently joining parts together by welding
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/25—Manufacture essentially without removing material by forging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/50—Building or constructing in particular ways
- F05D2230/54—Building or constructing in particular ways by sheet metal manufacturing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/10—Metals, alloys or intermetallic compounds
- F05D2300/11—Iron
- F05D2300/111—Cast iron
Definitions
- the invention relates to a turbine housing for an exhaust gas turbocharger.
- Exhaust gas turbochargers are increasingly used to increase performance in automotive internal combustion engines. This happens more frequently with the aim to reduce and the combustion engine with the same or even increased performance in size and weight at the same time the consumption and thus in this respect to reduce in view of increasingly stringent legal requirements, the CO 2 emissions.
- the operating principle is to use the energy contained in the exhaust gas flow to increase the pressure in the intake tract of the engine and thus to better fill the combustion chamber with air-oxygen and thus implement more fuel, gasoline or diesel, per combustion process, so to increase the performance of the internal combustion engine.
- a conventional exhaust gas turbocharger as in FIG. 1 illustrated has an arranged in the exhaust line of the internal combustion engine exhaust gas turbine 101 with a driven by the exhaust stream, arranged in a turbine housing 1 turbine 11 and arranged in the intake air fresh air compressor 102 with a pressure building, arranged in a compressor housing 15 compressor wheel 16.
- Turbine wheel 11 and compressor wheel 16 are rotatably attached to the opposite ends of a rotor shaft 17 and thus form the rotor unit of the exhaust gas turbocharger, here referred to as turbo rotor.
- the rotor shaft 17 is rotatably mounted in the bearing housing 100 in a bearing unit arranged between the exhaust gas turbine 101 and the fresh air compressor 102.
- the hot exhaust gas mass flow AM is directed to the turbine wheel 11.
- the turbine housing 1 and the turbine wheel 11 are so in operation in direct contact with the hot exhaust gas mass flow AM and are thus exposed to very large temperature fluctuations with peak temperatures up to 1000 ° C can be achieved.
- the turbo-rotor rotates at very high rotational speeds of up to 300,000 rpm, whereby in particular the turbine wheel 11 and the turbine housing 1 are exposed to very high mechanical and thermal stresses.
- the turbine housing 1 is connected by means of a Lagergepureaujansches 4 with the centrally disposed bearing housing 100 of the exhaust gas turbocharger. Furthermore, the turbine housing 1 has an exhaust gas inlet duct 2b forming an exhaust gas inlet channel 2 with an exhaust gas inlet flange 2a for connecting the exhaust gas turbocharger to the exhaust manifold (not shown) of an internal combustion engine. Through the exhaust gas inlet channel 2, the hot exhaust gas enters the turbine housing 1, as is illustrated by means of the exhaust gas mass flow AM shown by arrows.
- the turbine housing 1 has a subsequent to the exhaust gas inlet channel 2 spiral channel 5, which extends tapered around a concentrically arranged around the turbine exhaust inlet entrance gap 5a and is open to this, so that the exhaust gas mass flow AM through the spiral channel 5 in at least partially radial / tangential direction is guided through the exhaust gas inlet gap 5a on the turbine wheel 11.
- the exhaust gas flow AM is deflected in the axial direction in an exhaust gas outlet nozzle 7, through which the exhaust gas mass flow AM in the exhaust gas outlet pipe 3b and further into a subsequent exhaust system, which adjoins an exhaust gas outlet flange 3a, is derived.
- the inner contour of the turbine housing of the outer contour of the blading 10 of the turbine wheel 11 is adjusted.
- the contour gap 12 between the inner contour of the turbine housing and the outer contour of the blading 10 of the turbine wheel 11 must be kept as small as possible ,
- the contour gap substantially influences the fluidic and thermodynamic properties of the exhaust gas turbine.
- This region of the inner contour of the turbine housing therefore seals the blading 10 of the turbine wheel approximately over the circumference, which is why this region of the inner contour of the turbine housing is referred to below as a sealing contour region 9 or briefly as a sealing contour 9.
- wastegate device 13 which allow better control of turbine performance under different operating conditions.
- a wastegate device consists of a connecting channel, the wastegate channel 8, between the exhaust gas inlet channel 2 or the spiral channel 5 and the exhaust gas outlet channel 3 and from an associated valve flap 14 with this wastegate channel 8 can be closed or opened as needed.
- the valve flap 14 closes as tightly as possible with a valve seat 8a on or in the wastegate channel 8 if necessary.
- Stripping of the turbine wheel to the sheet in the sealing contour region can also be counteracted by the fact that the sheet is formed correspondingly thick-walled in this region of the turbine housing. Although this counteracts a deformation of the contour region, but in turn increases the manufacturing cost of the turbine housing.
- This turbine housing comprises an inlet funnel, an impeller housing with a gas channel which narrows helically starting from the inlet funnel, a flange for connection to the bearing housing of the exhaust gas turbocharger and a central outlet tube.
- a turbine wheel rotates in the impeller housing.
- the helical gas channel ends in the region of the inlet funnel at a sealing edge.
- the inlet funnel, the impeller housing and the outlet tube consist of non-cutting formed, for example embossed or deep drawn sheet metal.
- the impeller housing consists of two half-shells and is welded to the outlet pipe.
- the inlet funnel and the impeller housing are surrounded by an additional outer housing made of sheet metal. Between the impeller housing and the additional outer housing is an air gap.
- This known turbine housing has inter alia a Lagergepureausch, an exhaust gas inlet channel, a spiral channel, an exhaust gas inlet gap, a sealing contour region and an exhaust gas outlet nozzle. It also has a plurality of interconnected housing parts, to which a central, one-piece, designed as a cast part of the contour part, which is connected to its adjacent housing parts, which are at least partially formed as sheet-metal parts.
- an exhaust gas turbocharger which has a turbine housing and a bearing housing, wherein between the turbine housing and the bearing housing, a support member is provided.
- the turbine housing includes a turbine chamber, an output port connected to the turbine chamber, and a volute. The volute is connected to the output channel and the carrier part.
- the object of the invention is to offer a turbine housing for an exhaust gas turbocharger, which ensures a high thermodynamic efficiency of the exhaust gas turbine at comparatively low production costs of the turbine housing.
- the turbine housing according to the invention for an exhaust gas turbocharger has a bearing housing connection flange, an exhaust gas inlet channel, a spiral channel, an exhaust gas inlet gap, a sealing contour region and an exhaust gas outlet nozzle. It also has a plurality of interconnected housing parts to which a central, one-piece, executed as a cast component or as a forged component contour component is associated with its adjacent housing parts, which are at least partially formed as sheet metal parts, wherein the Lagergebirusean gleichflansch a metal sheet Molded part is.
- a Lagergebirusean gleichflansch facing part of the spiral channel forming spiral housing forms a half-shell of the spiral housing and is formed as a sheet metal molding.
- the central, one-piece contour component is provided on the side facing away from the LagergepureauInstitut für Profussch side of the spiral channel in the turbine housing and forms a further half-shell of the spiral housing.
- the central, one-piece contour component has a wall region of the spiral channel lying on the side facing away from the bearing housing connection flange, a boundary wall of the exhaust gas inlet gap adjoining this wall region and the sealing contour region adjoining this wall region.
- the advantages of the invention are, in particular, that the dimensional stability and accuracy of the housing contour are specifically influenced by a dependent on the application case, the dimensional stability and accuracy of the housing contour and thus the thermodynamic efficiency of the turbine can be specifically improved. Nevertheless, the material costs and thus the manufacturing cost of the turbine housing are kept low, since the other housing parts depending on the load and requirement weaker, can be designed in part as sheet metal parts. Thus, a mix of as needed stronger and weaker dimensioned housing components allows without affecting the efficiency of the exhaust gas turbine negative. Further advantages of the invention are that by a post-processing of the contour region forming member and the bearing housing seat of the turbine housing, after assembly the individual housing parts, can be precisely prefabricated in a clamping of the contour region relative to the turbine wheel.
- thermodynamic efficiency contributes to the further improvement of the thermodynamic efficiency.
- different housing contours which form functional surfaces, such as the sealing contour area, a valve seat or a Lageraufname for a drive linkage of a Wategateklappe be represented by a mechanical post-processing of the component with high accuracy. This has the advantage of a significant reduction in parts costs and the required variety of parts. Furthermore, weight and material savings can be achieved.
- the contour component also has an exhaust gas outlet connection which, downstream with respect to the exhaust gas mass flow, directly adjoins the sealing contour region and defines an outlet cross section of the turbine.
- the outlet cross-section is next to the exhaust gas inlet gap and the contour gap another parameter that influences the thermodynamic efficiency of the turbine.
- a further embodiment of the turbine housing according to the invention is characterized in that the contour component also has at least a part of a wall of the exhaust gas inlet channel opening into the spiral channel.
- the exhaust gas inlet pipe is formed integrally on the contour component.
- this connection represents at least a part of the attachment of the exhaust gas turbocharger to the internal combustion engine, which is exposed to high mechanical loads due to the weight of the exhaust gas turbocharger and the vibrations occurring during operation.
- the at least partial embodiment of the exhaust gas inlet pipe as an integrated part of the dimensionally stable, designed as a cast component or as a forged component contour component increases the stability and load capacity of the connection between the exhaust manifold of the engine and the exhaust gas turbocharger.
- a further embodiment of the turbine housing according to the invention is characterized in that the contour component also has a wastegate channel, arranged in the wall region of the spiral channel (5), of a wastegate device with a valve flap seat.
- the integration of the wastegate channel and the valve seat in the contour component helps to keep a negative effect on the efficiency impact leakage exhaust flow with closed wastegate valve flap low and thus to ensure high efficiency.
- the contour component also has a bearing receptacle for a drive linkage of a wastegate valve device.
- the wastegate valve flap arranged in the turbine housing is actuated by an actuator arranged outside the turbine housing during operation. This makes it necessary to carry out the drive linkage through the housing wall and to mount the drive linkage in the housing wall of the turbine housing.
- the integration of a bearing support for said drive linkage in the contour component allows a well-defined positioning of the bearing and thus the drive linkage and the thereto attached wastegate valve flap and thus also helps to keep a negative effect on the efficiency leakage leakage flow with closed wastegate valve flap low and thus to ensure high efficiency.
- the manufacturing cost of a turbine housing can be kept low and nevertheless the dimensional stability of the turbine housing can be further improved.
- the wall thickness of the contour component is greater than the wall thickness of the formed as a sheet metal molding adjacent housing parts, in particular at least twice the wall thickness of the adjacent sheet-shaped part housing parts. This ensures a sufficiently stable, the preferred manufacturing process adequate execution of the contour component.
- the aforementioned embodiment of the contour component allows post-processing of the important contour and functional surfaces, such as the sealing contour, the outlet cross-section of the turbine, the valve seat of the wastegate port or a bearing receptacle for a drive linkage of the wastegate flap.
- the contour component is welded to its adjacent housing parts.
- This type of connection allows a highly resilient and secure connection between the individual housing parts of different material thickness and is suitable to produce a gas-tight housing shell by a material-locking connection along the resulting seam lines between the individual housing parts.
- the turbine housing is characterized in that the contour component with its adjacent housing parts forms a single-shell turbine housing.
- the contour component gives the single-shell construction the required Stability and thus allows a particularly lightweight construction of the turbine housing by the use of relatively thin-walled housing components in addition to the contour component.
- the turbine housing is characterized in that on the contour component, a wastegate channel is formed by means of adjacent sheet metal molded parts or at least extended.
- a wastegate channel is formed by means of adjacent sheet metal molded parts or at least extended.
- FIG. 1 illustrated exhaust gas turbocharger according to the prior art has already been described in the introduction and shows the basic structure and arrangement of the individual components exhaust gas turbine 101, fresh air compressor 102 and bearing housing 100th Particular attention was paid to the components of the exhaust-gas turbocharger which are essential to the invention, namely the exhaust-gas turbine 101 with turbine housing 1 and turbine runner 11, which has a blading 10.
- the illustrated, conventionally designed as a cast turbine housing 1 for an exhaust gas turbocharger has, inter alia, an exhaust gas inlet channel 2, a spiral channel 5, an exhaust gas inlet gap 5a, a sealing contour region 9 and an exhaust gas outlet 7.
- the arrangement of the wastegate channel 8 and the wastegate valve flap 14 with drive rod 14a is in FIG. 1 shown.
- FIG. 2 shows a turbine housing according to the invention, for clarity, isolated from the other components of the exhaust gas turbocharger and in a sectional, perspective view.
- the turbine housing has a plurality of interconnected housing parts, wherein the contour component 6 of the turbine housing 1, which has a sealing contour region 9, is designed as a cast component or as a forging component, which is connected to its adjacent housing parts, which are designed as sheet-metal parts, in particular welded ,
- the housing parts together with the contour component 6 form a single-shell housing.
- the wall thickness of the contour component 6 is greater than the wall thickness of its adjacent housing parts.
- the illustrated turbine housing 1 has an exhaust gas inlet flange 2a, for example for connection to an exhaust manifold of an internal combustion engine, an exhaust gas outlet flange 3a for connection to an exhaust system of an internal combustion engine and a bearing housing connection flange 4a for connecting the turbine housing 1 to the bearing housing 100 of an exhaust gas turbocharger.
- the Lagergepuran gleichflansch 4a and the exhaust gas outlet flange 3a are designed as sheet-metal parts, in contrast to the exhaust gas inlet flange 2a, which is designed as a solid cast, forged or machined molded part. Further shows FIG.
- each half shell of the spiral housing forming housing parts of the spiral housing are, for example, gas-tight welded together along their line of contact with a continuous weld.
- Wastegatekanal 8 on the attached by the contour component 6, preferably welded and welded together, designed as a sheet-metal parts Wastegatgephaseusemaschine 8b is designed.
- the exhaust gas outlet pipe 3b is arranged, which is composed in this example of at least two sheet metal moldings.
- the exhaust outlet pipe 3b is seated on a shoulder in the outer region of the contour component 6 and connected to the contour component 6 on the entire circumference along the contact line continuously gastight manner, for example, welded.
- the Abgasaustrittsflasch 3a is also on the entire circumference along the line of contact continuously connected gas-tight with the exhaust outlet pipe 3b, for example, welded.
- the exhaust gas inlet pipe 2b is arranged between the exhaust gas inlet flange 2a and the contour component 6, the exhaust gas inlet pipe 2b is arranged.
- the exhaust gas inlet pipe 2b is also composed of at least two shell-shaped sheet-metal parts and on the one hand with the exhaust gas outlet flange 2a and on the other hand with the contour component 6 gas-tight, for example by welds connected.
- the contour component 6, which forms the stabilizing core of the turbine housing 1 has, in addition to the contour for the spiral channel 5, a adjoining wall of the exhaust gas inlet gap 5a and, in turn, subsequently a sealing contour region 9, which merges into the exhaust gas outlet connection 7.
- Both the exhaust gas inlet gap 5a and the sealing contour region 9, the contour gap 12 (see FIG. 1 ), as well as the diameter of the exhaust outlet nozzle 7 significantly characterize the fluidic properties and the thermodynamic efficiency of the turbine housing.
- the contour gap 12 corresponds to the distance of the sealing contour from the outer contour of the blading 10 of the turbine wheel 11 rotating during operation of the exhaust gas turbocharger.
- the contour part 9 of the turbine housing 1 forming contour component 6 designed as a cast component or as a forging, which is welded to its adjacent housing components, for example, and forms a single-shell turbine housing together with these.
- the housing parts adjacent to the contour component 6 are realized in the form of sheet metal parts.
- all the components of the turbine housing with the exception of the contour component 6 and the Abgaseintrittsflansches 2a in the form of sheet-formed parts, while the contour component 6 - as already shown above - is designed as a cast component or as a forging. All previously mentioned, relevant for the function and efficiency contour and scale ranges are defined by the contour component, and can be produced by high-precision machining only this one component cost and stable over the entire operating range of the exhaust gas turbocharger.
- the material used for the contour component 6 is preferably a highly heat-resistant material, for example a GGV material, an E5S material, a cast steel or a steel forging.
- the wall thickness of the contour component 6 is greater than the wall thickness of its adjacent, designed as a sheet metal moldings housing parts, in particular, the contour component has at least twice the wall thickness.
- the first embodiment shown is a single-shell turbine housing 1, in which the exhaust gas inlet pipe 2b, the Abgasaustrittsflansch 3a and the exhaust outlet 3b, the Lagergeophusean gleichflansch 4a and the spiral housing part 4, and the Wastegategeophuseteil 8b are designed as sheet metal moldings, while the Abgaseintrittsflansch 2a and especially the contour component 6 is designed as a solid cast component or as a forging component.
- FIG. 3 shows a perspective sketch of a sectional view of a turbine housing according to the invention according to a further embodiment. That in the FIG. 3 illustrated turbine housing 1 agrees with the embodiment FIG. 2 in essential parts, which will not be described repeatedly here.
- the contour component 6, which forms the stable core of the turbine housing 1 and above all defines the exhaust gas inlet gap 5a and the sealing contour 9, designed as a cast component or as a forging component, which is connected to its adjacent, designed as sheet metal moldings other housing parts , preferably welded.
- FIG. 3 differs from that in the FIG. 2 shown first embodiment essentially in that a wastegate channel 8 including a valve flap seat 8a and also a bearing receptacle 8c for a drive linkage 14a of a wastegate valve flap 14 is integrally integrated into the run as a cast or forged component contour component 6.
- the exhaust gas inlet pipe at least partially integrated integrally into the contour component 6.
- the one in the FIG. 3 illustrated upper part 2b 'a is an integral part of the contour component 6 executed while the in the FIG. 3 Lower part of the exhaust gas inlet pipe 2b designed as a sheet metal molding with a smaller wall thickness and connected to the upper part 2b ', for example, is welded.
- the Exhaust outlet flange 3a is designed in this embodiment of the turbine housing as a solid cast or forged or machined molded part.
- a turbine housing according to the further embodiment the degree of integration of functionally important contours, areas, dimensions and components is further increased compared to the first embodiment.
- the manufacturing costs can be further reduced and the dimensional accuracy of the turbine housing further improved and thereby the efficiency and reliability can be further improved.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supercharger (AREA)
Description
Die Erfindung betrifft ein Turbinengehäuse für einen Abgasturbolader.The invention relates to a turbine housing for an exhaust gas turbocharger.
Abgasturbolader werden vermehrt zur Leistungssteigerung bei Kraftfahrzeug-Verbrennungsmotoren eingesetzt. Dies geschieht immer häufiger mit dem Ziel den Verbrennungsmotor bei gleicher oder gar gesteigerter Leistung in Baugröße und Gewicht zu reduzieren und gleichzeitig den Verbrauch und somit den CO2-Ausstoß, im Hinblick auf immer strenger werdende gesetzliche Vorgaben diesbezüglich, zu verringern. Das Wirkprinzip besteht darin, die im Abgasstrom enthaltene Energie zu nutzen um den Druck im Ansaugtrakt des Verbrennungsmotors zu erhöhen und so eine bessere Befüllung des Brennraumes mit Luft-Sauerstoff zu bewirken und somit mehr Treibstoff, Benzin oder Diesel, pro Verbrennungsvorgang umsetzen zu können, also die Leistung des Verbrennungsmotors zu erhöhen.Exhaust gas turbochargers are increasingly used to increase performance in automotive internal combustion engines. This happens more frequently with the aim to reduce and the combustion engine with the same or even increased performance in size and weight at the same time the consumption and thus in this respect to reduce in view of increasingly stringent legal requirements, the CO 2 emissions. The operating principle is to use the energy contained in the exhaust gas flow to increase the pressure in the intake tract of the engine and thus to better fill the combustion chamber with air-oxygen and thus implement more fuel, gasoline or diesel, per combustion process, so to increase the performance of the internal combustion engine.
Ein herkömmlicher Abgasturbolader, wie in
Durch das Turbinengehäuse 1 wird der heiße Abgas-Massenstrom AM auf das Turbinenrad 11 geleitet. Das Turbinengehäuse 1 und das Turbinenrad 11 befinden sich so im Betrieb in direktem Kontakt mit dem heißen Abgas-Massenstrom AM und sind somit sehr großen Temperaturschwankungen ausgesetzt wobei Spitzentemperaturen bis über 1000°C erreicht werden. Gleichzeitig rotiert der Turborotor mit sehr hohen Drehzahlen von bis zu 300.000 U/min wodurch insbesondere das Turbinenrad 11 und das Turbinengehäuse 1 sehr hohen mechanischen und thermischen Beanspruchungen ausgesetzt sind.Through the turbine housing 1, the hot exhaust gas mass flow AM is directed to the turbine wheel 11. The turbine housing 1 and the turbine wheel 11 are so in operation in direct contact with the hot exhaust gas mass flow AM and are thus exposed to very large temperature fluctuations with peak temperatures up to 1000 ° C can be achieved. At the same time, the turbo-rotor rotates at very high rotational speeds of up to 300,000 rpm, whereby in particular the turbine wheel 11 and the turbine housing 1 are exposed to very high mechanical and thermal stresses.
Bei herkömmlich aufgebauten Abgasturboladern, wie in
Übergang zwischen dem Abgaseintrittsspalt 5a und dem Abgasaustrittsstutzen 7 ist die Innenkontur des Turbinengehäuses der Außenkontur der Beschaufelung 10 des Turbinenrades 11 angepasst. Um zu gewährleisten, dass ein möglichst großer Anteil des Abgas-Massenstromes durch die Beschaufelung 10 des Turbinenrades 11 strömt, und somit das Turbinenrad 11 antreibt, muss der Konturspalt 12 zwischen Innenkontur des Turbinengehäuses und der Außenkontur der Beschaufelung 10 des Turbinenrades 11 möglichst klein gehalten werden. Der Konturspalt beeinflusst die strömungstechnischen und die thermodynamischen Eigenschaften der Abgasturbine wesentlich. Dieser Bereich der Innenkontur des Turbinengehäuses dichtet also quasi die Beschaufelung 10 des Turbinenrades über den Umfang ab, weshalb dieser Bereich der Innenkontur des Turbinengehäuses im Weiteren als Dichtkonturbereich 9 oder kurz als Dichtkontur 9 bezeichnet wird.Transition between the exhaust
Aufgrund des oben genannten möglichst klein auszulegenden Konturspalts 12 ist die Form- und Lagestabilität der Dichtkontur 9 von großer Bedeutung, da eine Berührung des im Betrieb schnell drehenden Turbinenrades 11 mit der Dichtkontur 9 unweigerlich zur Zerstörung der Abgasturbine führen würde.Because of the above-mentioned
Weiterhin weisen Abgasturbinen moderner Konzeption eine sogenannte Wastegate-Einrichtung 13 auf, die eine bessere Regelung der Turbinenleistung bei unterschiedlichen Betriebsbedingungen ermöglichen. Eine solche Wastegate-Einrichtung besteht aus einem Verbindungskanal, dem Wastegatekanal 8, zwischen dem Abgaseintrittskanal 2 oder dem Spiralkanal 5 und dem Abgasaustrittskanal 3 sowie aus einer dazugehörigen Ventilklappe 14 mit der dieser Wastegatekanal 8 nach Bedarf geschlossen oder geöffnet werden kann. Um mögliche Verluste möglichst gering zu halten, muss auch hier gewährleistet sein, dass die Ventilklappe 14 im Bedarfsfall mit einem Ventilsitz 8a am oder im Wastegatekanal 8 möglichst dicht schließt.Furthermore, exhaust gas turbines of modern design, a so-called
Um den hohen Anforderungen an Form und Lagegenauigkeit bei gleichzeitig hohen thermischen und mechanischen Belastungen gerecht werden zu können und auch Aufgrund der komplexen Innen- und Außengeometrien der Turbinengehäuse, sind herkömmliche Turbinengehäuse deshalb als sehr massive Gussteile ausgelegt und hergestellt. Diese Ausführung der Turbinengehäuse hat neben dem hohen Gewicht und der hohen Wärmekapazität auch hohe Material- und Herstellkosten zur Folge, was sich nachteilig auf den Einsatz, den Betrieb und die Kosten solcher Abgasturbolader auswirkt.
Es bestehen deshalb Bestrebungen die Turbinengehäuse aus vergleichsweise dünnen, leichten Form-Blechteilen aufzubauen.Due to the complex internal and external geometries of the turbine housings, traditional turbine housings are designed and manufactured as very solid castings in order to meet the high requirements in terms of form and positional accuracy with simultaneous high thermal and mechanical loads. This embodiment of the turbine housing in addition to the high weight and high heat capacity and high material and manufacturing costs result, which adversely affects the use, operation and cost of such exhaust gas turbocharger.
There are therefore efforts to build the turbine housing from comparatively thin, lightweight sheet metal parts.
Bei in Abgasturboladern verwendeten, aus Blechteilen zusammengesetzten Turbinengehäusen kommt es, aufgrund der oben genannten anspruchsvollen Einsatzbedingungen, im Betrieb leicht zu unerwünschten Verformungen des ebenfalls aus Blech bestehenden Dichtkonturbereiches. Unerwünschte Verformungen des Dichtkonturbereiches des Turbinengehäuses führen zu einer Verschlechterung des thermodynamischen Wirkungsgrades oder schlimmstenfalls auch zu einem Anstreifen des sich im Betrieb mit hoher Drehzahl drehenden Turbinenrades an das Blech im Dichtkonturbereich des Turbinengehäuses.When used in exhaust gas turbochargers, composed of sheet metal parts turbine housings, it is due to the above demanding conditions, in operation easily undesirable deformations of the also consisting of sheet sealing contour area. Unwanted deformations of the sealing contour region of the turbine housing lead to a deterioration of the thermodynamic efficiency or at worst also to a rubbing of the rotating at high speed turbine wheel to the plate in the sealing contour region of the turbine housing.
Ein derartiges Anstreifen des Turbinenrades an das Blech kann durch eine Vergrößerung des Konturspaltes in radialer und axialer Richtung verhindert werden. Eine derartige Vergrößerung des Konturspaltes wirkt sich jedoch negativ auf den thermodynamischen Wirkungsgrad der Turbine aus. Des Weiteren kann, aufgrund des Herstellungsverfahrens, die Maßhaltigkeit der Dichtkontur gegenüber dem Turbinenrad nachteilig sein, da sich die Toleranzen der einzelnen miteinander verbundenen Blechteile gegebenenfalls ungünstig addieren, was wiederum einer konstruktiven Vergrößerung des Konturspaltes aus Sicherheitsgründen bedarf und mit negativen Auswirkungen auf den thermodynamischen Wirkungsgrad einhergeht.Such a rubbing of the turbine wheel against the sheet metal can be prevented by an enlargement of the contour gap in the radial and axial direction. However, such an enlargement of the contour gap has a negative effect on the thermodynamic efficiency of the turbine. Furthermore, due to the manufacturing process, the dimensional accuracy of the sealing contour relative to the turbine wheel can be disadvantageous, since the tolerances of the individual interconnected sheet metal parts may add unfavorably, which in turn requires a constructive enlargement of the contour gap for safety reasons and is associated with negative effects on the thermodynamic efficiency ,
Einem Anstreifen des Turbinenrades an das Blech im Dichtkonturbereich kann auch dadurch entgegengewirkt werden, dass das Blech im diesem Bereich des Turbinengehäuses entsprechend dickwandig ausgebildet wird. Dies wirkt zwar einer Verformung des Konturbereiches entgegen, erhöht jedoch wiederum die Herstellungskosten des Turbinengehäuses.Stripping of the turbine wheel to the sheet in the sealing contour region can also be counteracted by the fact that the sheet is formed correspondingly thick-walled in this region of the turbine housing. Although this counteracts a deformation of the contour region, but in turn increases the manufacturing cost of the turbine housing.
Des Weiteren ist es zu einer Reduzierung der Verformungen des den Dichtkonturbereich bildenden Blechteiles bereits bekannt, doppelwandige Turbinengehäuse mit Schiebesitzen herzustellen, die die auftretenden Lasten aufnehmen. Auch ein derartiges Vorgehen erhöht die Herstellungskosten des Turbinengehäuses.Furthermore, it is already known to produce a reduction in the deformations of the sealing contour region forming sheet metal part, double-walled turbine housing with sliding seats that absorb the loads occurring. Such a procedure also increases the manufacturing costs of the turbine housing.
Aus der
Aus der
Aus der
Aus der
Die Aufgabe der Erfindung besteht darin, ein Turbinengehäuse für einen Abgasturbolader anzubieten, das bei vergleichsweise geringen Herstellungskosten des Turbinengehäuses einen hohen thermodynamischen Wirkungsgrad der Abgasturbine gewährleistet.The object of the invention is to offer a turbine housing for an exhaust gas turbocharger, which ensures a high thermodynamic efficiency of the exhaust gas turbine at comparatively low production costs of the turbine housing.
Diese Aufgabe wird durch ein Turbinengehäuse mit den im Folgenden angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen angegeben.This object is achieved by a turbine housing with the features indicated below. Advantageous embodiments and further developments of the invention are specified in the dependent claims.
Das erfindungsgemäße Turbinengehäuse für einen Abgasturbolader weist einen Lagergehäuseanschlussflansch, einen Abgaseintrittskanal, einen Spiralkanal, einen Abgaseintrittsspalt, einen Dichtkonturbereich und einen Abgasaustrittsstutzen auf. Es hat des Weiteren mehrere miteinander verbundene Gehäuseteile, zu denen ein zentrales, einstückiges, als Gussbauteil oder als Schmiedebauteil ausgeführtes Konturbauteil gehört, welches mit seinen benachbarten Gehäuseteilen, die zumindest zum Teil als Blech-Formteile ausgebildet sind, verbunden ist, wobei der Lagergehäuseanschlussflansch ein Blech-Formteil ist. Ein dem Lagergehäuseanschlussflansch zugewandter Teil des den Spiralkanal ausbildenden Spiralgehäuses bildet eine Halbschale des Spiralgehäuses und ist als Blech-Formteil ausgebildet. Das zentrale, einstückige Konturbauteil ist auf der vom Lagergehäuseanschlussflansch abgewandten Seite des Spiralkanals im Turbinengehäuse vorgesehen und bildet eine weitere Halbschale des Spiralgehäuses. Das zentrale, einstückige Konturbauteil weist einen auf der vom Lagergehäuseanschlussflansch abgewandten Seite liegenden Wandbereich des Spiralkanals, eine an diesen Wandbereich anschließende Begrenzungswand des Abgaseintrittsspalts und den an diesen Wandbereich anschließenden Dichtkonturbereich auf.The turbine housing according to the invention for an exhaust gas turbocharger has a bearing housing connection flange, an exhaust gas inlet channel, a spiral channel, an exhaust gas inlet gap, a sealing contour region and an exhaust gas outlet nozzle. It also has a plurality of interconnected housing parts to which a central, one-piece, executed as a cast component or as a forged component contour component is associated with its adjacent housing parts, which are at least partially formed as sheet metal parts, wherein the Lagergehäuseanschlussflansch a metal sheet Molded part is. A Lagergehäuseanschlussflansch facing part of the spiral channel forming spiral housing forms a half-shell of the spiral housing and is formed as a sheet metal molding. The central, one-piece contour component is provided on the side facing away from the Lagergehäuseanschlussflansch side of the spiral channel in the turbine housing and forms a further half-shell of the spiral housing. The central, one-piece contour component has a wall region of the spiral channel lying on the side facing away from the bearing housing connection flange, a boundary wall of the exhaust gas inlet gap adjoining this wall region and the sealing contour region adjoining this wall region.
Die Vorteile der Erfindung bestehen insbesondere darin, dass durch eine vom Anwendungsfall abhängige Wahl der Geometrie, des Werkstoffes, der Materialdicke und/oder der Materialverteilung des Konturbauteils die Formbeständigkeit und Genauigkeit der Gehäusekontur gezielt beeinflusst und somit der thermodynamische Wirkungsgrad der Turbine gezielt verbessert werden kann. Gleichwohl werden die Materialkosten und damit die Herstellungskosten des Turbinengehäuses niedrig gehalten, da die weiteren Gehäuseteile je nach Beanspruchung und Erfordernis schwächer, zum Teil als Blechteile ausgelegt werden können. So wird ein Mix an nach Bedarf stärker und schwächer dimensionierten Gehäusebauteilen ermöglicht, ohne den Wirkungsgrad der Abgasturbine negativ zu beeinflussen.
Weitere Vorteile der Erfindung bestehen darin, dass durch eine Nachbearbeitung des den Konturbereich bildenden Bauteils und des Lagergehäusesitzes des Turbinengehäuses, nach dem Zusammenbau der einzelnen Gehäuseteile, in einer Aufspannung der Konturbereich relativ zum Turbinenrad präzise vorgefertigt werden kann. Dies trägt zur weiteren Verbesserung des thermodynamischen Wirkungsgrades bei.
Des Weiteren können mit demselben Bauteil verschiedene Gehäusekonturen, die Funktionsflächen bilden, wie zum Beispiel den Dichtkonturbereich, einen Ventilsitz oder eine Lageraufname für ein Antriebsgestänge einer Wategateklappe durch eine mechanische Nachbearbeitung des Bauteils mit hoher Genauigkeit dargestellt werden. Dies hat den Vorteil einer deutlichen Reduzierung der Teilekosten und der benötigten Teilevielfalt. Ferner können Gewichts- und Materialeinsparungen erreicht werden.The advantages of the invention are, in particular, that the dimensional stability and accuracy of the housing contour are specifically influenced by a dependent on the application case, the dimensional stability and accuracy of the housing contour and thus the thermodynamic efficiency of the turbine can be specifically improved. Nevertheless, the material costs and thus the manufacturing cost of the turbine housing are kept low, since the other housing parts depending on the load and requirement weaker, can be designed in part as sheet metal parts. Thus, a mix of as needed stronger and weaker dimensioned housing components allows without affecting the efficiency of the exhaust gas turbine negative.
Further advantages of the invention are that by a post-processing of the contour region forming member and the bearing housing seat of the turbine housing, after assembly the individual housing parts, can be precisely prefabricated in a clamping of the contour region relative to the turbine wheel. This contributes to the further improvement of the thermodynamic efficiency.
Furthermore, with the same component, different housing contours, which form functional surfaces, such as the sealing contour area, a valve seat or a Lageraufname for a drive linkage of a Wategateklappe be represented by a mechanical post-processing of the component with high accuracy. This has the advantage of a significant reduction in parts costs and the required variety of parts. Furthermore, weight and material savings can be achieved.
In einer Weiterbildung des erfindungsgemäßen Turbinengehäuses weist dass das Konturbauteil auch einen Abgasaustrittsstutzen auf, der sich stromabwärts, in Bezug auf den Abgas-Massenstrom, unmittelbar an den Dichtkonturbereich anschließt und einen Austrittsquerschnitt der Turbine definiert. Der Austrittsquerschnitt ist neben dem Abgaseintrittsspalt und dem Konturspalt ein weiterer Parameter, der den thermodynamischen Wirkungsgrad der Turbine beeinflusst. Durch die Integration des Abgasaustrittsstutzens in das formstabile Konturbauteil kann ein genau definierter Austrittsquerschnitt auf einfache Weise gewährleistet werden, der zum Beispiel im Zuge einer Nachbearbeitung der weiteren Kontur- und Funktionsflächen des Konturbauteils hergestellt werden kann. Dies trägt ebenfalls zur weiteren Verbesserung des thermodynamischen Wirkungsgrades beiIn a further development of the turbine housing according to the invention, the contour component also has an exhaust gas outlet connection which, downstream with respect to the exhaust gas mass flow, directly adjoins the sealing contour region and defines an outlet cross section of the turbine. The outlet cross-section is next to the exhaust gas inlet gap and the contour gap another parameter that influences the thermodynamic efficiency of the turbine. By integrating the exhaust outlet nozzle in the dimensionally stable contour component, a precisely defined outlet cross-section can be ensured in a simple manner, which can be prepared, for example, in the course of post-processing the other contour and functional surfaces of the contour component. This also contributes to the further improvement of the thermodynamic efficiency
Eine weitere Ausführung des erfindungsgemäßen Turbinengehäuses ist dadurch gekennzeichnet, dass das Konturbauteil auch zumindest einen Teil einer Wandung des in den Spiralkanal einmündenden Abgaseintrittskanals aufweist. Mit anderen Worten ist am Konturbauteil zumindest ein Teil des Abgaseintrittsrohrs integriert ausgebildet. Das Abgaseintrittsrohr steht mittels des Abgaseintrittsflansches in Verbindung mit dem Abgaskrümmer eines Verbrennungsmotors und stellt so die Positionierung des Abgasturboladers relativ zum Verbrennungsmotor sicher. In dieser Funktion wird zumindest ein Teil der auf den Abgasturbolader wirkenden Massenkräfte über das Abgaseintrittsrohr auf den Verbrennungsmotor übertragen. Mit anderen Worten stellt diese Verbindung zumindest einen Teil der Befestigung des Abgasturboladers am Verbrennungsmotor dar, die Aufgrund des Gewichts des Abgasturboladers und der im Betrieb auftretenden Vibrationen hohen mechanischen Belastungen ausgesetzt ist. Die zumindest teilweise Ausführung des Abgaseintrittsrohres als integrierter Teil des formstabilen, als Gussbauteil oder als Schmiedebauteil ausgelegten Konturbauteils erhöht die Stabilität und Belastbarkeit der Verbindung zwischen Abgaskrümmer des Verbrennungsmotors und dem Abgasturbolader. Eine weitere Ausführung des erfindungsgemäßen Turbinengehäuses ist dadurch gekennzeichnet, dass das Konturbauteil auch einen im Wandbereich des Spiralkanals (5) angeordneten Wastegatekanal einer Wastegateeinrichtung mit einem Ventilklappensitz aufweist. Die Genauigkeit und Formhaltigkeit des Wastegatekanals und insbesondere des Ventilklappensitzes, auf dem im Betrieb einen geschlossene Wastegate-Ventilklappe dichtend aufsitzt, beeinflusst den Wirkungsgrad der Turbine. Die Integration des Wastegatekanals und des Ventilklappensitzes in das Konturbauteil trägt dazu bei, einen sich negativ auf den Wirkungsgrad auswirkenden Leckage-Abgasstrom bei geschlossener Wastegate-Ventilklappe gering zu halten und so einen hohen Wirkungsgrad zu gewährleisten.A further embodiment of the turbine housing according to the invention is characterized in that the contour component also has at least a part of a wall of the exhaust gas inlet channel opening into the spiral channel. In other words, at least part of the exhaust gas inlet pipe is formed integrally on the contour component. By means of the exhaust gas inlet flange, the exhaust gas inlet pipe is in connection with the exhaust manifold of an internal combustion engine and thus ensures the positioning of the exhaust gas turbocharger relative to the internal combustion engine. In this Function, at least part of the mass forces acting on the exhaust gas turbocharger is transmitted via the exhaust gas inlet pipe to the internal combustion engine. In other words, this connection represents at least a part of the attachment of the exhaust gas turbocharger to the internal combustion engine, which is exposed to high mechanical loads due to the weight of the exhaust gas turbocharger and the vibrations occurring during operation. The at least partial embodiment of the exhaust gas inlet pipe as an integrated part of the dimensionally stable, designed as a cast component or as a forged component contour component increases the stability and load capacity of the connection between the exhaust manifold of the engine and the exhaust gas turbocharger. A further embodiment of the turbine housing according to the invention is characterized in that the contour component also has a wastegate channel, arranged in the wall region of the spiral channel (5), of a wastegate device with a valve flap seat. The accuracy and dimensional stability of the wastegate channel and in particular of the valve flap seat, on which a closed wastegate valve flap is sealingly seated during operation, influences the efficiency of the turbine. The integration of the wastegate channel and the valve seat in the contour component helps to keep a negative effect on the efficiency impact leakage exhaust flow with closed wastegate valve flap low and thus to ensure high efficiency.
In Weiterbildung der vorgenannten Ausführung des Turbinengehäuses weist das Konturbauteil auch eine Lageraufnahme für ein Antriebsgestänge einer Wastegate-Ventileinrichtung auf. Mit Hilfe des genannten Antriebsgestänges wird im Betrieb die im Turbinengehäuse angeordnete Wastegate-Ventilklappe von einem außerhalb des Turbinengehäuses angeordneten Aktuator betätigt. Dies macht eine Durchführung des Antriebsgestänges durch die Gehäusewand und eine Lagerung des Antriebsgestänges in der Gehäusewand des Turbinengehäuses erforderlich. Die Integration einer Lageraufnahme für das genannte Antriebsgestänge im Konturbauteil ermöglicht eine genau definierte Positionierung der Lagerung und somit des Antriebsgestänges und der daran befestigten Wastegate-Ventilklappe und trägt so ebenfalls dazu bei, einen sich negativ auf den Wirkungsgrad auswirkenden Leckage-Abgasstrom bei geschlossener Wastegate-Ventilklappe gering zu halten und so einen hohen Wirkungsgrad zu gewährleisten. Darüber hinaus können auf diese Weise die Herstellungskosten eines Turbinengehäuses niedrig gehalten werden und gleichwohl die Maßhaltigkeit des Turbinengehäuses weiter verbessert werden.In a further development of the aforementioned embodiment of the turbine housing, the contour component also has a bearing receptacle for a drive linkage of a wastegate valve device. With the aid of said drive linkage, the wastegate valve flap arranged in the turbine housing is actuated by an actuator arranged outside the turbine housing during operation. This makes it necessary to carry out the drive linkage through the housing wall and to mount the drive linkage in the housing wall of the turbine housing. The integration of a bearing support for said drive linkage in the contour component allows a well-defined positioning of the bearing and thus the drive linkage and the thereto attached wastegate valve flap and thus also helps to keep a negative effect on the efficiency leakage leakage flow with closed wastegate valve flap low and thus to ensure high efficiency. In addition, in this way, the manufacturing cost of a turbine housing can be kept low and nevertheless the dimensional stability of the turbine housing can be further improved.
Bei der erfindungsgemäßen Ausführung des Turbinengehäuses hat es sich als vorteilhaft erwiesen, wenn die Wandstärke des Konturbauteils größer ist als die Wandstärke der als Blech-Formteil ausgeführten benachbarten Gehäuseteile, insbesondere zumindest die doppelte Wandstärke der benachbarten Blech-Formteil-Gehäuseteile aufweist. Dies gewährleistet eine ausreichend stabile, den bevorzugten Herstellverfahren angemessene Ausführung des Konturbauteils.In the embodiment of the turbine housing according to the invention, it has proved to be advantageous if the wall thickness of the contour component is greater than the wall thickness of the formed as a sheet metal molding adjacent housing parts, in particular at least twice the wall thickness of the adjacent sheet-shaped part housing parts. This ensures a sufficiently stable, the preferred manufacturing process adequate execution of the contour component.
Weiterhin ermöglicht die vorgenannte Ausführung des Konturbauteils eine Nachbearbeitung der wichtigen Kontur- und Funktionsflächen, wie zum Beispiel die Dichtkontur, den Austrittsquerschnitt der Turbine, den Ventilklappensitz des Wastegatekanals oder eine Lageraufnahme für ein Antriebsgestänge der Wastegateklappe.Furthermore, the aforementioned embodiment of the contour component allows post-processing of the important contour and functional surfaces, such as the sealing contour, the outlet cross-section of the turbine, the valve seat of the wastegate port or a bearing receptacle for a drive linkage of the wastegate flap.
Gemäß einer weiteren Ausführungsform des erfindungsgemäßen Turbinengehäuses ist das Konturbauteil mit seinen benachbarten Gehäuseteilen verschweißt. Dies Art der Verbindung ermöglicht eine hoch belastbare und sichere Verbindung zwischen den einzelnen Gehäuseteilen unterschiedlicher Materialstärke und ist geeignet eine gasdichte Gehäuseschale zu erzeugen durch eine Materialschlüssige Verbindung entlang der entstehenden Nahtlinien zwischen den einzelnen Gehäuseteilen.According to a further embodiment of the turbine housing according to the invention, the contour component is welded to its adjacent housing parts. This type of connection allows a highly resilient and secure connection between the individual housing parts of different material thickness and is suitable to produce a gas-tight housing shell by a material-locking connection along the resulting seam lines between the individual housing parts.
In einer weiteren Ausführung ist das Turbinengehäuse dadurch gekennzeichnet, dass das Konturbauteil mit seinen benachbarten Gehäuseteilen ein einschaliges Turbinengehäuse bildet. Das Konturbauteil verleiht dem einschaligen Aufbau die erforderliche Stabilität und ermöglicht so einen besonders leichten Aufbau des Turbinengehäuses durch die Verwendung verhältnismäßig dünnwandiger Gehäusebauteile neben dem Konturbauteil.In a further embodiment, the turbine housing is characterized in that the contour component with its adjacent housing parts forms a single-shell turbine housing. The contour component gives the single-shell construction the required Stability and thus allows a particularly lightweight construction of the turbine housing by the use of relatively thin-walled housing components in addition to the contour component.
In einer weiteren Ausführung ist das Turbinengehäuse dadurch gekennzeichnet, dass am Konturbauteil ein Wastegatekanal mittels benachbarter Blech-Formteile ausgebildet oder zumindest erweitert ist. Hier ist also alternativ zu der vorgenannten Ausführung, bei der der komplette Wastegatekanal einschließlich Ventilklappensitz mit dem Konturbauteil einstückig integriert ausgebildet ist, nicht der komplette Wastegatekanal durch das Konturbauteil ausgebildet. So kann beispielsweise nur eine entsprechende Öffnung im Konturbauteil vorgesehen sein, an die sich dann ein aus einem Blech-Formteil oder mehreren Blech-Formteilen, die am Konturbauteil befestigt sind, gestalteter Wastegatekanal anschließt. Dieser Aufbau ermöglicht eine weitere Gewichtsreduzierung eines erfindungsgemäßen Turbinengehäuses mit Wastegatevorrichtung.In a further embodiment, the turbine housing is characterized in that on the contour component, a wastegate channel is formed by means of adjacent sheet metal molded parts or at least extended. Here, then, as an alternative to the aforementioned embodiment, in which the complete wastegate channel including valve flap seat with the contour component is formed integrally integrated, not the complete wastegate channel formed by the contour component. Thus, for example, only a corresponding opening in the contour component can be provided, to which then a made of a sheet metal molding or a plurality of sheet-metal shaped parts, which are fastened to the contour component, designed Wastegatekanal connects. This structure allows a further weight reduction of a turbine housing according to the invention with wastegate device.
Bei der Ausgestaltung eines erfindungsgemäßen Turbinengehäuses ist zumindest einer der folgenden Gehäuseteile des Turbinengehäuses zumindest zum Teil aus Blech-Formteilen aufgebaut:
- ein Abgaseintrittsrohr, das den Abgaseintrittskanal bildet,
- ein Abgaseintrittsflansch, der am Abgaseintrittsrohr anschließt und mit dem das Turbinengehäuse mit einem Abgasrohr eines Verbrennungsmotors verbunden ist,
- ein Abgasaustrittsrohr, das den Abgasaustrittsstutzen umfasst und das den Abgasaustrittskanal ausbildet, durch den das Abgas stromabwärts der Abgasturbine in Richtung eines Abgassystems einer Verbrennungsmaschine geleitet wird,
- ein Abgasaustrittsflansch, der am Abgasaustrittsrohr anschließt und mit dem die Verbindung zwischen Abgasaustrittsrohr des Turbinengehäuses und einem Abgassystem einer Verbrennungsmaschine hergestellt werden kann,
- ein dem Lagergehäuseanschlussflansch zugewandter Teil des den Spiralkanal ausbildenden Spiralgehäuses, der beispielsweise als Halb-Schalenelement ausgebildet ist und zusammen mit dem Konturbauteil das Spiralgehäuse ergibt und
- der Lagergehäuseanschlussflansch über den das Turbinengehäuse mit einem Lagergehäuse des Abgasturboladers verbunden ist. Dabei können die genannten Gehäuseteile selbst wiederum aus mehreren Einzelteilen aufgebaut sein, die alle oder nur zum Teil als Blech-Formteile ausgebildet sind. Je mehr dieser einzelnen Gehäuseteile als dünnwandige Blech-Formteile ausgebildet sind, desto größer ist die Gewichtsreduzierung gegenüber herkömmlichen Turbinengehäuse-Konzepten.
- an exhaust gas inlet pipe, which forms the exhaust gas inlet channel,
- an exhaust gas inlet flange, which adjoins the exhaust gas inlet pipe and with which the turbine housing is connected to an exhaust pipe of an internal combustion engine,
- an exhaust gas outlet tube, which comprises the exhaust gas outlet nozzle and which forms the exhaust gas outlet channel, through which the exhaust gas is conducted downstream of the exhaust gas turbine in the direction of an exhaust system of an internal combustion engine,
- an exhaust gas outlet flange, which adjoins the exhaust gas outlet pipe and with which the connection between the exhaust gas outlet pipe of the turbine housing and an exhaust system of an internal combustion engine can be produced,
- a Lagergehäuseanschlussflansch facing part of the spiral channel forming spiral housing, which is formed for example as a half-shell element and together with the Contour component results in the spiral housing and
- the Lagergehäuseanschlussflansch over which the turbine housing is connected to a bearing housing of the exhaust gas turbocharger. The said housing parts themselves may in turn be constructed of several individual parts which are all or only partially formed as sheet-metal parts. The more of these individual housing parts are designed as thin-walled sheet-metal parts, the greater the weight reduction compared to conventional turbine housing concepts.
Die Merkmale der vorgenannten Ausführungen des erfindungsgemäßen Gegenstandes sind, soweit diese nicht alternativ anwendbar sind oder sich gar gegenseitig ausschließen, zum Teil oder insgesamt auch in Kombination oder gegenseitiger Ergänzung anzuwenden.The features of the aforementioned embodiments of the article according to the invention, insofar as they are not alternatively applicable or even mutually exclusive, to be applied in part or in total also in combination or mutual supplementation.
Anhand der Figuren werden im Folgenden besonders vorteilhafte Ausführungsbeispiele der Erfindung näher erläutert, obgleich der Gegenstand der Erfindung nicht auf diese Beispiele begrenzt ist. Es zeigt:
- Figur 1
- eine vereinfachte Schnittdarstellung eines Abgasturboladers nach dem Stand der Technik
- Figur 2
- eine perspektivische Schnittdarstellung eines Turbinengehäuses gemäß einem Ausführungsbeispiel der Erfindung und
Figur 3- eine perspektivische Schnittdarstellung eines Turbinengehäuses gemäß einem weiteren Ausführungsbeispiel der Erfindung.
- FIG. 1
- a simplified sectional view of an exhaust gas turbocharger according to the prior art
- FIG. 2
- a perspective sectional view of a turbine housing according to an embodiment of the invention and
- FIG. 3
- a perspective sectional view of a turbine housing according to another embodiment of the invention.
Funktions- und Benennungsgleiche Komponenten sind in den Figuren durchgehend mit den gleichen Bezugszeichen gekennzeichnet.Function and designation components are denoted by the same reference numerals throughout the figures.
Der in
Das dargestellte, konventionell als Gussteil ausgelegte Turbinengehäuse 1 für einen Abgasturbolader weist, unter Anderem, einen Abgaseintrittskanal 2, einen Spiralkanal 5, einen Abgaseintrittsspalt 5a, einen Dichtkonturbereich 9 und einen Abgasaustrittsstutzen 7 auf. Auch die Anordnung des Wastegatekanals 8 und der Wastegate-Ventilklappe 14 mit Antriebsgestänge 14a ist in
The illustrated, conventionally designed as a cast turbine housing 1 for an exhaust gas turbocharger has, inter alia, an exhaust gas inlet channel 2, a
Vorzugsweise ist die Wandstärke des Konturbauteils 6 größer als die Wandstärke seiner benachbarten Gehäuseteile. Diese Maßnahmen tragen dazu bei, die Formstabilität des Turbinengehäuses 1 eines Abgasturboladers zu erhöhen und damit im Betrieb des Abgasturboladers die thermodynamischen Eigenschaften der Turbine zu verbessern. Die im Betrieb des Abgasturboladers auftretenden Verformungen des Turbinengehäuses 1, insbesondere im Bereich der Dichtkontur 9 , sind im Vergleich zum Stand der Technik reduziert, wobei gleichzeitig die Herstellkosten des Turbinengehäuses 1 und dessen Gewicht niedrig gehalten werden. Desweiteren ist eine gute Maßgenauigkeit gewährleistet durch Nachbearbeitung der wichtigen Kontur- und Funktionsflächen der Dichtkontur, des Austrittsquerschnits der Turbine und des Ventilklappensitzes des Wastegatekanals.Preferably, the wall thickness of the
Das dargestellte Turbinengehäuse 1 weist einen Abgaseintrittsflansch 2a zum Beispiel zum Anschluss an einen Abgaskrümmer einer Verbrennungskraftmaschine, einen Abgasaustrittsflansch 3a zum Anschluss an ein Abgassystem einer Verbrennungskraftmaschine und einen Lagergehäuseanschlussflansch 4a zum Anschluss des Turbinengehäuses 1 an das Lagergehäuse 100 eines Abgasturboladers auf. Der Lagergehäuseanschlussflansch 4a und der Abgasaustrittsflansch 3a sind als Blech-Formteile ausgelegt, im Gegensatz zum Abgaseintrittsflansch 2a, der als massives Guss-, Schmiede- oder spanend hergestelltes Formteil ausgelegt ist. Weiterhin zeigt
Zwischen dem Abgaseintrittsflansch 2a und dem Konturbauteil 6 ist das Abgaseintrittsrohr 2b angeordnet. Das Abgaseintrittsrohr 2b ist ebenfalls aus zumindest zwei schalenförmigen Blech-Formteilen zusammengesetzt und einerseits mit dem Abgasaustrittsflansch 2a und andererseits mit dem Konturbauteil 6 gasdicht, beispielsweise durch Schweißnähte, verbunden. Darüber hinaus weist das in
Between the exhaust
Das Konturbauteil 6, das den stabilisierenden Kern des Turbinengehäuses 1 bildet, weist neben der Kontur für den Spiralkanal 5 eine sich daran anschließende Wand des Abgaseintrittsspalts 5a und sich wiederum daran anschließend einen Dichtkonturbereich 9 auf, der in den Abgasaustrittsstutzen 7 übergeht. Sowohl der Abgaseintrittsspalt 5a als auch der Dichtkonturbereich 9, der den Konturspalt 12 (siehe
Um derartige unerwünschte Verformungen des Turbinengehäuses 1 im Betrieb des Abgasturboladers zu vermeiden, ist bei einem Turbinengehäuse gemäß der Erfindung das den Dichtkonturbereich 9 des Turbinengehäuses 1 bildende Konturbauteil 6 als Gussbauteil oder als Schmiedebauteil ausgeführt, welches mit seinen benachbarten Gehäusebauteilen beispielsweise verschweißt ist und zusammen mit diesen ein einschaliges Turbinengehäuse bildet. Um das Gewicht des Turbinengehäuses und damit des gesamten Abgasturboladers möglichst gering zu halten, sind die dem Konturbauteil 6 benachbarten Gehäuseteile in Form von Blechteilen realisiert. Vorzugsweise sind bei diesem Ausführungsbeispiel alle Bauteile des Turbinengehäuses mit Ausnahme des Konturbauteils 6 und des Abgaseintrittsflansches 2a in Form von Blech-Formteilen ausgeführt, während das Konturbauteil 6 - wie bereits oben dargestellt - als Gussbauteil oder als Schmiedebauteil ausgeführt ist. Alle bereits oben genannten, für die Funktion und den Wirkungsgrad maßgeblichen Kontur- und Maßbereiche werden so durch das Konturbauteil definiert, und können durch hochgenaue Bearbeitung nur dieses einen Bauteils kostengünstig hergestellt und über den gesamten Betriebsbereich des Abgasturboladers stabil gewährleistet werden.In order to avoid such undesirable deformations of the turbine housing 1 during operation of the exhaust gas turbocharger is at a Turbine housing according to the invention, the
Als Werkstoff für das Konturbauteil 6 wird vorzugsweise ein hochwarmfester Werkstoff, beispielsweise ein GGV-Werkstoff, ein E5S-Werkstoff, ein Stahlguss oder ein Stahlschmiedeteil verwendet.
Vorzugsweise ist die Wandstärke des Konturbauteils 6 größer als die Wandstärke seiner benachbarten, als Blech-Formteile ausgeführten Gehäuseteile, insbesondere weist das Konturbauteil zumindest die doppelte Wandstärke auf. Diese Maßnahmen tragen dazu bei, die Formstabilität des Turbinengehäuses 1 eines Abgasturboladers zu gewährleisten und damit im Betrieb des Abgasturboladers den thermodynamischen Wirkungsgrad der Turbine zu verbessern. Die im Betrieb des Abgasturboladers auftretenden Verformungen des Turbinengehäuses, insbesondere im Bereich der Dichtkontur des Konturbauteils, sind im Vergleich zum Stand der Technik reduziert, wobei gleichzeitig die Herstellkosten des Turbinengehäuses 1 und dessen Gewicht niedrig gehalten werden.The material used for the
Preferably, the wall thickness of the
Bei dem in der
Die
Auch bei diesem weiteren Ausführungsbeispiel ist das Konturbauteil 6, das den stabilen Kern des Turbinengehäuses 1 bildet und vor allem den Abgaseintrittsspalt 5a sowie die Dichtkontur 9 definiert, als Gussbauteil oder als Schmiedebauteil ausgeführt, welches mit seinen benachbarten, als Blech-Formteile ausgeführten weiteren Gehäuseteilen verbunden, vorzugsweise verschweißt ist.Also in this further embodiment, the
Dieses weitere Ausführungsbeispiel unterscheidet sich von dem in der
Bei einem Turbinengehäuse gemäß dem weiteren Ausführungsbeispiel ist der Grad der Integration von funktionswichtigen Konturen, Flächen, Maßen und Komponenten gegenüber dem ersten Ausführungsbeispiel weiter erhöht. Dadurch können die Herstellungskosten weiter reduziert und die Maßhaltigkeit des Turbinengehäuses weiter verbessert und dadurch der Wirkungsgrad und die Funktionssicherheit weiter verbessert werden.In a turbine housing according to the further embodiment, the degree of integration of functionally important contours, areas, dimensions and components is further increased compared to the first embodiment. As a result, the manufacturing costs can be further reduced and the dimensional accuracy of the turbine housing further improved and thereby the efficiency and reliability can be further improved.
Claims (11)
- Turbine housing (1) for an exhaust-gas turbocharger, having a bearing housing attachment flange (4a), having an exhaust-gas inlet duct (2), having a spiral duct (5), having an exhaust-gas inlet gap (5a), having a sealing contour region (9), and having an exhaust-gas outlet connector (7), said turbine housing having multiple interconnected housing parts, which include a central, unipartite contoured component (6) formed as a cast component or as a forged component which is connected to the housing parts adjacent thereto, which are formed at least partially as sheet-metal molded parts, characterized in that the bearing housing attachment flange (4a) is a sheet-metal molded part,- a part (4), which faces towards the bearing housing attachment flange (4a), of the spiral housing forming the spiral duct (5) forms a half-shell of the spiral housing and is formed as a sheet-metal molded part,- the central, unipartite contoured component (6) is provided in the turbine housing (1) on that side of the spiral duct (5) which faces away from the bearing housing attachment flange (4a), and forms a further half-shell of the spiral housing, and- the central, unipartite contoured component (6) has a wall region, situated on the side facing away from the bearing housing attachment flange (4a), of the spiral duct (5), a boundary wall, adjoining said wall region, of the exhaust-gas inlet gap (5a), and the sealing contour region (9) adjoining said wall region.
- Turbine housing according to Claim 1, characterized in that the contoured component (6) also has an exhaust-gas outlet connector (7) directly adjoining the sealing contour region.
- Turbine housing according to Claim 1 to 2, characterized in that the contoured component (6) also has at least a part of a wall of the exhaust-gas inlet duct (2b') which issues into the spiral duct (5).
- Turbine housing according in one of the preceding claims, characterized in that the contoured component (6) also has a wastegate duct (8) which is arranged in the wall region of the spiral duct (5) and which has a valve flap seat (8a).
- Turbine housing according to Claim 4, characterized in that the contoured component (6) also has a bearing receptacle (8c) for a drive linkage (14a) of a wastegate valve device (14).
- Turbine housing according to one of the preceding claims, characterized in that the wall thickness of the contoured component (6) is greater than the wall thickness of the adjacent housing parts formed as sheet-metal molded parts, in particular has at least twice the wall thickness of the adjacent housing parts formed as sheet-metal molded parts.
- Turbine housing according to one of the preceding claims, characterized in that the contoured component (6) has reworked contour and functional surfaces.
- Turbine housing according to one of the preceding claims, characterized in that the contoured component (6) is welded to the housing parts adjacent thereto.
- Turbine housing according to one of the preceding claims, characterized in that the contoured component (6) forms, with the housing parts adjacent thereto, a single-shell turbine housing.
- Turbine housing according to one of Claims 1 to 3, characterized in that, on the contoured component (6), a wastegate duct (8) is formed or at least extended by means of adjacent sheet-metal molded parts (8b).
- Turbine housing according to one of the preceding claims, characterized in that at least one of the following further housing parts of the turbine housing is at least partially constructed from sheet-metal molded parts: an exhaust-gas inlet pipe (2b), an exhaust-gas inlet flange (2a), an exhaust-gas outlet pipe (3b) and an exhaust-gas outlet flange (3a).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012209562.4A DE102012209562B4 (en) | 2012-06-06 | 2012-06-06 | Turbine housing for an exhaust gas turbocharger |
PCT/EP2013/061626 WO2013182619A1 (en) | 2012-06-06 | 2013-06-05 | Turbine housing for a turbocharger |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2859190A1 EP2859190A1 (en) | 2015-04-15 |
EP2859190B1 true EP2859190B1 (en) | 2017-05-10 |
Family
ID=48570185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13726582.3A Active EP2859190B1 (en) | 2012-06-06 | 2013-06-05 | Turbine housing for a turbocharger |
Country Status (5)
Country | Link |
---|---|
US (1) | US9752457B2 (en) |
EP (1) | EP2859190B1 (en) |
CN (1) | CN104350236B (en) |
DE (1) | DE102012209562B4 (en) |
WO (1) | WO2013182619A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015054180A1 (en) * | 2013-10-09 | 2015-04-16 | Borgwarner Inc. | Method of controlling wastegate flow using port side wall contour |
DE102013226665A1 (en) * | 2013-12-19 | 2015-06-25 | Bosch Mahle Turbo Systems Gmbh & Co. Kg | Turbine housing for an exhaust gas turbocharger |
DE102014209666A1 (en) * | 2013-12-19 | 2015-06-25 | Bosch Mahle Turbo Systems Gmbh & Co. Kg | Turbine housing for an exhaust gas turbocharger |
DE102015006188A1 (en) * | 2014-11-14 | 2016-05-19 | Audi Ag | Charger device for an internal combustion engine, corresponding internal combustion engine and method for operating an internal combustion engine |
DE102017103980A1 (en) * | 2017-02-27 | 2018-08-30 | Man Diesel & Turbo Se | turbocharger |
WO2020065600A1 (en) * | 2018-09-28 | 2020-04-02 | Fb Design S.R.L. | Improved turbocharger assembly |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE29909018U1 (en) * | 1999-05-26 | 2000-09-28 | Heinrich Gillet GmbH & Co. KG, 67480 Edenkoben | Turbine housing for exhaust gas turbochargers |
DE10061846B4 (en) * | 2000-12-12 | 2004-09-09 | Daimlerchrysler Ag | Exhaust gas turbocharger for an internal combustion engine |
CN201246213Y (en) | 2008-06-24 | 2009-05-27 | 吴疆富 | Coaxial type mechanical supercharger |
CN102203390A (en) * | 2008-09-22 | 2011-09-28 | 柔性金属有限公司 | Fabricated turbine housing |
DE102009042260B4 (en) * | 2009-09-22 | 2015-12-10 | Benteler Automobiltechnik Gmbh | turbocharger |
FR2951497B1 (en) * | 2009-10-15 | 2013-08-02 | Faurecia Sys Echappement | EFFORT RETRIEVAL ELEMENT FOR A TURBOCHARGER OF AN EXHAUST LINE. |
JP5357738B2 (en) | 2009-12-21 | 2013-12-04 | 三菱重工業株式会社 | Turbine housing |
DE102010005761A1 (en) * | 2010-01-25 | 2011-07-28 | Benteler Automobiltechnik GmbH, 33102 | exhaust assembly |
JP2011179370A (en) * | 2010-02-26 | 2011-09-15 | Toyota Motor Corp | Turbocharger and wheel housing thereof |
DE102011017419B4 (en) | 2010-04-19 | 2021-11-18 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | Deflection unit for a gas flow in a compressor and a compressor that contains it |
US9021802B2 (en) | 2010-08-26 | 2015-05-05 | Honeywell International Inc. | Turbine housing assembly with wastegate |
DE102011009634B4 (en) * | 2011-01-27 | 2017-03-09 | Tenneco Gmbh | turbocharger |
WO2012105004A1 (en) * | 2011-02-02 | 2012-08-09 | 三菱重工業株式会社 | Sheet metal turbine housing |
-
2012
- 2012-06-06 DE DE102012209562.4A patent/DE102012209562B4/en not_active Expired - Fee Related
-
2013
- 2013-06-05 CN CN201380029642.8A patent/CN104350236B/en active Active
- 2013-06-05 EP EP13726582.3A patent/EP2859190B1/en active Active
- 2013-06-05 US US14/406,383 patent/US9752457B2/en active Active
- 2013-06-05 WO PCT/EP2013/061626 patent/WO2013182619A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
DE102012209562A1 (en) | 2013-12-12 |
US9752457B2 (en) | 2017-09-05 |
EP2859190A1 (en) | 2015-04-15 |
US20150184542A1 (en) | 2015-07-02 |
DE102012209562B4 (en) | 2017-08-31 |
CN104350236B (en) | 2016-08-24 |
WO2013182619A1 (en) | 2013-12-12 |
CN104350236A (en) | 2015-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2859190B1 (en) | Turbine housing for a turbocharger | |
EP2388455B1 (en) | Exhaust gas turbocharger | |
DE29909018U1 (en) | Turbine housing for exhaust gas turbochargers | |
WO2010003537A2 (en) | Turbine housing for an exhaust gas turbocharger of an internal combustion engine | |
EP3440319B1 (en) | Turbocharger for an internal combustion engine | |
DE102017216329A1 (en) | Radial compressor with an iris diaphragm mechanism for a charging device of an internal combustion engine, charging device and blade for the iris diaphragm mechanism | |
WO2019072486A1 (en) | Valve flap device for a bypass valve of a turbocharger, and turbocharger | |
EP3452702B1 (en) | Turbine housing for a turbocharger of an internal combustion engine, and turbocharger | |
DE102022210936A1 (en) | HEAT SHIELD FOR A CHARGER | |
DE102014214226A1 (en) | Composite compressor housing | |
EP2553275B1 (en) | Turbocharger casing including valve housing and manufacturing process of such a casing | |
WO2012062407A1 (en) | Insert element for a turbine of an exhaust gas turbocharger, exhaust gas turbocharger, and turbine for an exhaust gas turbocharger | |
EP2112332B1 (en) | Supporting ring for a guide vane assembly with an air-sealed channel | |
EP3339601B1 (en) | Turbocharger assembly | |
WO2010102696A2 (en) | Exhaust gas turbocharger | |
DE102012001236A1 (en) | Guide for a turbine of an exhaust gas turbocharger | |
DE102012205198A1 (en) | Turbocharger for internal combustion engine, particularly gasoline engine or diesel engine of vehicle, comprises turbine housing, which has multiple outlet worms, where each outlet worm is adapted to generate turbulent flow of exhaust gas | |
DE102020202967A1 (en) | Exhaust gas turbocharger with integral housing | |
DE102012022647A1 (en) | Exhaust gas turbocharger for lifting cylinder internal combustion engine of motor vehicle, has portion limited by spine in axial direction, where spine comprises blade elements partially arranged in portion for compressing blade | |
WO2017001140A1 (en) | Turbine-wheel housing for a turbocharger having a bypass valve which has a valve seat ring, and turbocharger, and method for producing a valve seat ring | |
DE10028161A1 (en) | Exhaust turbocharger turbine casing cast by thin walled precision casting | |
DE102006028553B4 (en) | Exhaust gas turbocharger and internal combustion engine with such an exhaust gas turbocharger | |
EP3601739A1 (en) | Turbocharger for an internal combustion engine, and turbine housing | |
DE102022213729A1 (en) | ADJUSTMENT RING FOR VARIABLE TURBINE GEOMETRY | |
WO2022228803A1 (en) | Turbocharger comprising an integral housing and variable turbine geometry, and integral housing for a turbocharger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150107 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170116 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 892557 Country of ref document: AT Kind code of ref document: T Effective date: 20170515 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013007233 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170510 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170810 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170910 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170810 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013007233 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
26N | No opposition filed |
Effective date: 20180213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170605 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170630 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170605 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170630 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130605 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 892557 Country of ref document: AT Kind code of ref document: T Effective date: 20180605 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180605 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502013007233 Country of ref document: DE Owner name: VITESCO TECHNOLOGIES GMBH, DE Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502013007233 Country of ref document: DE Owner name: VITESCO TECHNOLOGIES GMBH, DE Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 502013007233 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20230427 AND 20230503 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240620 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240630 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240628 Year of fee payment: 12 |