EP2859190B1 - Turbine housing for a turbocharger - Google Patents

Turbine housing for a turbocharger Download PDF

Info

Publication number
EP2859190B1
EP2859190B1 EP13726582.3A EP13726582A EP2859190B1 EP 2859190 B1 EP2859190 B1 EP 2859190B1 EP 13726582 A EP13726582 A EP 13726582A EP 2859190 B1 EP2859190 B1 EP 2859190B1
Authority
EP
European Patent Office
Prior art keywords
housing
turbine housing
turbine
exhaust
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13726582.3A
Other languages
German (de)
French (fr)
Other versions
EP2859190A1 (en
Inventor
Marc Hiller
Christian Uhlig
Holger Fäth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP2859190A1 publication Critical patent/EP2859190A1/en
Application granted granted Critical
Publication of EP2859190B1 publication Critical patent/EP2859190B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/026Scrolls for radial machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/105Final actuators by passing part of the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/25Manufacture essentially without removing material by forging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/50Building or constructing in particular ways
    • F05D2230/54Building or constructing in particular ways by sheet metal manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/11Iron
    • F05D2300/111Cast iron

Definitions

  • the invention relates to a turbine housing for an exhaust gas turbocharger.
  • Exhaust gas turbochargers are increasingly used to increase performance in automotive internal combustion engines. This happens more frequently with the aim to reduce and the combustion engine with the same or even increased performance in size and weight at the same time the consumption and thus in this respect to reduce in view of increasingly stringent legal requirements, the CO 2 emissions.
  • the operating principle is to use the energy contained in the exhaust gas flow to increase the pressure in the intake tract of the engine and thus to better fill the combustion chamber with air-oxygen and thus implement more fuel, gasoline or diesel, per combustion process, so to increase the performance of the internal combustion engine.
  • a conventional exhaust gas turbocharger as in FIG. 1 illustrated has an arranged in the exhaust line of the internal combustion engine exhaust gas turbine 101 with a driven by the exhaust stream, arranged in a turbine housing 1 turbine 11 and arranged in the intake air fresh air compressor 102 with a pressure building, arranged in a compressor housing 15 compressor wheel 16.
  • Turbine wheel 11 and compressor wheel 16 are rotatably attached to the opposite ends of a rotor shaft 17 and thus form the rotor unit of the exhaust gas turbocharger, here referred to as turbo rotor.
  • the rotor shaft 17 is rotatably mounted in the bearing housing 100 in a bearing unit arranged between the exhaust gas turbine 101 and the fresh air compressor 102.
  • the hot exhaust gas mass flow AM is directed to the turbine wheel 11.
  • the turbine housing 1 and the turbine wheel 11 are so in operation in direct contact with the hot exhaust gas mass flow AM and are thus exposed to very large temperature fluctuations with peak temperatures up to 1000 ° C can be achieved.
  • the turbo-rotor rotates at very high rotational speeds of up to 300,000 rpm, whereby in particular the turbine wheel 11 and the turbine housing 1 are exposed to very high mechanical and thermal stresses.
  • the turbine housing 1 is connected by means of a Lagergepureaujansches 4 with the centrally disposed bearing housing 100 of the exhaust gas turbocharger. Furthermore, the turbine housing 1 has an exhaust gas inlet duct 2b forming an exhaust gas inlet channel 2 with an exhaust gas inlet flange 2a for connecting the exhaust gas turbocharger to the exhaust manifold (not shown) of an internal combustion engine. Through the exhaust gas inlet channel 2, the hot exhaust gas enters the turbine housing 1, as is illustrated by means of the exhaust gas mass flow AM shown by arrows.
  • the turbine housing 1 has a subsequent to the exhaust gas inlet channel 2 spiral channel 5, which extends tapered around a concentrically arranged around the turbine exhaust inlet entrance gap 5a and is open to this, so that the exhaust gas mass flow AM through the spiral channel 5 in at least partially radial / tangential direction is guided through the exhaust gas inlet gap 5a on the turbine wheel 11.
  • the exhaust gas flow AM is deflected in the axial direction in an exhaust gas outlet nozzle 7, through which the exhaust gas mass flow AM in the exhaust gas outlet pipe 3b and further into a subsequent exhaust system, which adjoins an exhaust gas outlet flange 3a, is derived.
  • the inner contour of the turbine housing of the outer contour of the blading 10 of the turbine wheel 11 is adjusted.
  • the contour gap 12 between the inner contour of the turbine housing and the outer contour of the blading 10 of the turbine wheel 11 must be kept as small as possible ,
  • the contour gap substantially influences the fluidic and thermodynamic properties of the exhaust gas turbine.
  • This region of the inner contour of the turbine housing therefore seals the blading 10 of the turbine wheel approximately over the circumference, which is why this region of the inner contour of the turbine housing is referred to below as a sealing contour region 9 or briefly as a sealing contour 9.
  • wastegate device 13 which allow better control of turbine performance under different operating conditions.
  • a wastegate device consists of a connecting channel, the wastegate channel 8, between the exhaust gas inlet channel 2 or the spiral channel 5 and the exhaust gas outlet channel 3 and from an associated valve flap 14 with this wastegate channel 8 can be closed or opened as needed.
  • the valve flap 14 closes as tightly as possible with a valve seat 8a on or in the wastegate channel 8 if necessary.
  • Stripping of the turbine wheel to the sheet in the sealing contour region can also be counteracted by the fact that the sheet is formed correspondingly thick-walled in this region of the turbine housing. Although this counteracts a deformation of the contour region, but in turn increases the manufacturing cost of the turbine housing.
  • This turbine housing comprises an inlet funnel, an impeller housing with a gas channel which narrows helically starting from the inlet funnel, a flange for connection to the bearing housing of the exhaust gas turbocharger and a central outlet tube.
  • a turbine wheel rotates in the impeller housing.
  • the helical gas channel ends in the region of the inlet funnel at a sealing edge.
  • the inlet funnel, the impeller housing and the outlet tube consist of non-cutting formed, for example embossed or deep drawn sheet metal.
  • the impeller housing consists of two half-shells and is welded to the outlet pipe.
  • the inlet funnel and the impeller housing are surrounded by an additional outer housing made of sheet metal. Between the impeller housing and the additional outer housing is an air gap.
  • This known turbine housing has inter alia a Lagergepureausch, an exhaust gas inlet channel, a spiral channel, an exhaust gas inlet gap, a sealing contour region and an exhaust gas outlet nozzle. It also has a plurality of interconnected housing parts, to which a central, one-piece, designed as a cast part of the contour part, which is connected to its adjacent housing parts, which are at least partially formed as sheet-metal parts.
  • an exhaust gas turbocharger which has a turbine housing and a bearing housing, wherein between the turbine housing and the bearing housing, a support member is provided.
  • the turbine housing includes a turbine chamber, an output port connected to the turbine chamber, and a volute. The volute is connected to the output channel and the carrier part.
  • the object of the invention is to offer a turbine housing for an exhaust gas turbocharger, which ensures a high thermodynamic efficiency of the exhaust gas turbine at comparatively low production costs of the turbine housing.
  • the turbine housing according to the invention for an exhaust gas turbocharger has a bearing housing connection flange, an exhaust gas inlet channel, a spiral channel, an exhaust gas inlet gap, a sealing contour region and an exhaust gas outlet nozzle. It also has a plurality of interconnected housing parts to which a central, one-piece, executed as a cast component or as a forged component contour component is associated with its adjacent housing parts, which are at least partially formed as sheet metal parts, wherein the Lagergebirusean gleichflansch a metal sheet Molded part is.
  • a Lagergebirusean gleichflansch facing part of the spiral channel forming spiral housing forms a half-shell of the spiral housing and is formed as a sheet metal molding.
  • the central, one-piece contour component is provided on the side facing away from the LagergepureauInstitut für Profussch side of the spiral channel in the turbine housing and forms a further half-shell of the spiral housing.
  • the central, one-piece contour component has a wall region of the spiral channel lying on the side facing away from the bearing housing connection flange, a boundary wall of the exhaust gas inlet gap adjoining this wall region and the sealing contour region adjoining this wall region.
  • the advantages of the invention are, in particular, that the dimensional stability and accuracy of the housing contour are specifically influenced by a dependent on the application case, the dimensional stability and accuracy of the housing contour and thus the thermodynamic efficiency of the turbine can be specifically improved. Nevertheless, the material costs and thus the manufacturing cost of the turbine housing are kept low, since the other housing parts depending on the load and requirement weaker, can be designed in part as sheet metal parts. Thus, a mix of as needed stronger and weaker dimensioned housing components allows without affecting the efficiency of the exhaust gas turbine negative. Further advantages of the invention are that by a post-processing of the contour region forming member and the bearing housing seat of the turbine housing, after assembly the individual housing parts, can be precisely prefabricated in a clamping of the contour region relative to the turbine wheel.
  • thermodynamic efficiency contributes to the further improvement of the thermodynamic efficiency.
  • different housing contours which form functional surfaces, such as the sealing contour area, a valve seat or a Lageraufname for a drive linkage of a Wategateklappe be represented by a mechanical post-processing of the component with high accuracy. This has the advantage of a significant reduction in parts costs and the required variety of parts. Furthermore, weight and material savings can be achieved.
  • the contour component also has an exhaust gas outlet connection which, downstream with respect to the exhaust gas mass flow, directly adjoins the sealing contour region and defines an outlet cross section of the turbine.
  • the outlet cross-section is next to the exhaust gas inlet gap and the contour gap another parameter that influences the thermodynamic efficiency of the turbine.
  • a further embodiment of the turbine housing according to the invention is characterized in that the contour component also has at least a part of a wall of the exhaust gas inlet channel opening into the spiral channel.
  • the exhaust gas inlet pipe is formed integrally on the contour component.
  • this connection represents at least a part of the attachment of the exhaust gas turbocharger to the internal combustion engine, which is exposed to high mechanical loads due to the weight of the exhaust gas turbocharger and the vibrations occurring during operation.
  • the at least partial embodiment of the exhaust gas inlet pipe as an integrated part of the dimensionally stable, designed as a cast component or as a forged component contour component increases the stability and load capacity of the connection between the exhaust manifold of the engine and the exhaust gas turbocharger.
  • a further embodiment of the turbine housing according to the invention is characterized in that the contour component also has a wastegate channel, arranged in the wall region of the spiral channel (5), of a wastegate device with a valve flap seat.
  • the integration of the wastegate channel and the valve seat in the contour component helps to keep a negative effect on the efficiency impact leakage exhaust flow with closed wastegate valve flap low and thus to ensure high efficiency.
  • the contour component also has a bearing receptacle for a drive linkage of a wastegate valve device.
  • the wastegate valve flap arranged in the turbine housing is actuated by an actuator arranged outside the turbine housing during operation. This makes it necessary to carry out the drive linkage through the housing wall and to mount the drive linkage in the housing wall of the turbine housing.
  • the integration of a bearing support for said drive linkage in the contour component allows a well-defined positioning of the bearing and thus the drive linkage and the thereto attached wastegate valve flap and thus also helps to keep a negative effect on the efficiency leakage leakage flow with closed wastegate valve flap low and thus to ensure high efficiency.
  • the manufacturing cost of a turbine housing can be kept low and nevertheless the dimensional stability of the turbine housing can be further improved.
  • the wall thickness of the contour component is greater than the wall thickness of the formed as a sheet metal molding adjacent housing parts, in particular at least twice the wall thickness of the adjacent sheet-shaped part housing parts. This ensures a sufficiently stable, the preferred manufacturing process adequate execution of the contour component.
  • the aforementioned embodiment of the contour component allows post-processing of the important contour and functional surfaces, such as the sealing contour, the outlet cross-section of the turbine, the valve seat of the wastegate port or a bearing receptacle for a drive linkage of the wastegate flap.
  • the contour component is welded to its adjacent housing parts.
  • This type of connection allows a highly resilient and secure connection between the individual housing parts of different material thickness and is suitable to produce a gas-tight housing shell by a material-locking connection along the resulting seam lines between the individual housing parts.
  • the turbine housing is characterized in that the contour component with its adjacent housing parts forms a single-shell turbine housing.
  • the contour component gives the single-shell construction the required Stability and thus allows a particularly lightweight construction of the turbine housing by the use of relatively thin-walled housing components in addition to the contour component.
  • the turbine housing is characterized in that on the contour component, a wastegate channel is formed by means of adjacent sheet metal molded parts or at least extended.
  • a wastegate channel is formed by means of adjacent sheet metal molded parts or at least extended.
  • FIG. 1 illustrated exhaust gas turbocharger according to the prior art has already been described in the introduction and shows the basic structure and arrangement of the individual components exhaust gas turbine 101, fresh air compressor 102 and bearing housing 100th Particular attention was paid to the components of the exhaust-gas turbocharger which are essential to the invention, namely the exhaust-gas turbine 101 with turbine housing 1 and turbine runner 11, which has a blading 10.
  • the illustrated, conventionally designed as a cast turbine housing 1 for an exhaust gas turbocharger has, inter alia, an exhaust gas inlet channel 2, a spiral channel 5, an exhaust gas inlet gap 5a, a sealing contour region 9 and an exhaust gas outlet 7.
  • the arrangement of the wastegate channel 8 and the wastegate valve flap 14 with drive rod 14a is in FIG. 1 shown.
  • FIG. 2 shows a turbine housing according to the invention, for clarity, isolated from the other components of the exhaust gas turbocharger and in a sectional, perspective view.
  • the turbine housing has a plurality of interconnected housing parts, wherein the contour component 6 of the turbine housing 1, which has a sealing contour region 9, is designed as a cast component or as a forging component, which is connected to its adjacent housing parts, which are designed as sheet-metal parts, in particular welded ,
  • the housing parts together with the contour component 6 form a single-shell housing.
  • the wall thickness of the contour component 6 is greater than the wall thickness of its adjacent housing parts.
  • the illustrated turbine housing 1 has an exhaust gas inlet flange 2a, for example for connection to an exhaust manifold of an internal combustion engine, an exhaust gas outlet flange 3a for connection to an exhaust system of an internal combustion engine and a bearing housing connection flange 4a for connecting the turbine housing 1 to the bearing housing 100 of an exhaust gas turbocharger.
  • the Lagergepuran gleichflansch 4a and the exhaust gas outlet flange 3a are designed as sheet-metal parts, in contrast to the exhaust gas inlet flange 2a, which is designed as a solid cast, forged or machined molded part. Further shows FIG.
  • each half shell of the spiral housing forming housing parts of the spiral housing are, for example, gas-tight welded together along their line of contact with a continuous weld.
  • Wastegatekanal 8 on the attached by the contour component 6, preferably welded and welded together, designed as a sheet-metal parts Wastegatgephaseusemaschine 8b is designed.
  • the exhaust gas outlet pipe 3b is arranged, which is composed in this example of at least two sheet metal moldings.
  • the exhaust outlet pipe 3b is seated on a shoulder in the outer region of the contour component 6 and connected to the contour component 6 on the entire circumference along the contact line continuously gastight manner, for example, welded.
  • the Abgasaustrittsflasch 3a is also on the entire circumference along the line of contact continuously connected gas-tight with the exhaust outlet pipe 3b, for example, welded.
  • the exhaust gas inlet pipe 2b is arranged between the exhaust gas inlet flange 2a and the contour component 6, the exhaust gas inlet pipe 2b is arranged.
  • the exhaust gas inlet pipe 2b is also composed of at least two shell-shaped sheet-metal parts and on the one hand with the exhaust gas outlet flange 2a and on the other hand with the contour component 6 gas-tight, for example by welds connected.
  • the contour component 6, which forms the stabilizing core of the turbine housing 1 has, in addition to the contour for the spiral channel 5, a adjoining wall of the exhaust gas inlet gap 5a and, in turn, subsequently a sealing contour region 9, which merges into the exhaust gas outlet connection 7.
  • Both the exhaust gas inlet gap 5a and the sealing contour region 9, the contour gap 12 (see FIG. 1 ), as well as the diameter of the exhaust outlet nozzle 7 significantly characterize the fluidic properties and the thermodynamic efficiency of the turbine housing.
  • the contour gap 12 corresponds to the distance of the sealing contour from the outer contour of the blading 10 of the turbine wheel 11 rotating during operation of the exhaust gas turbocharger.
  • the contour part 9 of the turbine housing 1 forming contour component 6 designed as a cast component or as a forging, which is welded to its adjacent housing components, for example, and forms a single-shell turbine housing together with these.
  • the housing parts adjacent to the contour component 6 are realized in the form of sheet metal parts.
  • all the components of the turbine housing with the exception of the contour component 6 and the Abgaseintrittsflansches 2a in the form of sheet-formed parts, while the contour component 6 - as already shown above - is designed as a cast component or as a forging. All previously mentioned, relevant for the function and efficiency contour and scale ranges are defined by the contour component, and can be produced by high-precision machining only this one component cost and stable over the entire operating range of the exhaust gas turbocharger.
  • the material used for the contour component 6 is preferably a highly heat-resistant material, for example a GGV material, an E5S material, a cast steel or a steel forging.
  • the wall thickness of the contour component 6 is greater than the wall thickness of its adjacent, designed as a sheet metal moldings housing parts, in particular, the contour component has at least twice the wall thickness.
  • the first embodiment shown is a single-shell turbine housing 1, in which the exhaust gas inlet pipe 2b, the Abgasaustrittsflansch 3a and the exhaust outlet 3b, the Lagergeophusean gleichflansch 4a and the spiral housing part 4, and the Wastegategeophuseteil 8b are designed as sheet metal moldings, while the Abgaseintrittsflansch 2a and especially the contour component 6 is designed as a solid cast component or as a forging component.
  • FIG. 3 shows a perspective sketch of a sectional view of a turbine housing according to the invention according to a further embodiment. That in the FIG. 3 illustrated turbine housing 1 agrees with the embodiment FIG. 2 in essential parts, which will not be described repeatedly here.
  • the contour component 6, which forms the stable core of the turbine housing 1 and above all defines the exhaust gas inlet gap 5a and the sealing contour 9, designed as a cast component or as a forging component, which is connected to its adjacent, designed as sheet metal moldings other housing parts , preferably welded.
  • FIG. 3 differs from that in the FIG. 2 shown first embodiment essentially in that a wastegate channel 8 including a valve flap seat 8a and also a bearing receptacle 8c for a drive linkage 14a of a wastegate valve flap 14 is integrally integrated into the run as a cast or forged component contour component 6.
  • the exhaust gas inlet pipe at least partially integrated integrally into the contour component 6.
  • the one in the FIG. 3 illustrated upper part 2b 'a is an integral part of the contour component 6 executed while the in the FIG. 3 Lower part of the exhaust gas inlet pipe 2b designed as a sheet metal molding with a smaller wall thickness and connected to the upper part 2b ', for example, is welded.
  • the Exhaust outlet flange 3a is designed in this embodiment of the turbine housing as a solid cast or forged or machined molded part.
  • a turbine housing according to the further embodiment the degree of integration of functionally important contours, areas, dimensions and components is further increased compared to the first embodiment.
  • the manufacturing costs can be further reduced and the dimensional accuracy of the turbine housing further improved and thereby the efficiency and reliability can be further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Description

Die Erfindung betrifft ein Turbinengehäuse für einen Abgasturbolader.The invention relates to a turbine housing for an exhaust gas turbocharger.

Abgasturbolader werden vermehrt zur Leistungssteigerung bei Kraftfahrzeug-Verbrennungsmotoren eingesetzt. Dies geschieht immer häufiger mit dem Ziel den Verbrennungsmotor bei gleicher oder gar gesteigerter Leistung in Baugröße und Gewicht zu reduzieren und gleichzeitig den Verbrauch und somit den CO2-Ausstoß, im Hinblick auf immer strenger werdende gesetzliche Vorgaben diesbezüglich, zu verringern. Das Wirkprinzip besteht darin, die im Abgasstrom enthaltene Energie zu nutzen um den Druck im Ansaugtrakt des Verbrennungsmotors zu erhöhen und so eine bessere Befüllung des Brennraumes mit Luft-Sauerstoff zu bewirken und somit mehr Treibstoff, Benzin oder Diesel, pro Verbrennungsvorgang umsetzen zu können, also die Leistung des Verbrennungsmotors zu erhöhen.Exhaust gas turbochargers are increasingly used to increase performance in automotive internal combustion engines. This happens more frequently with the aim to reduce and the combustion engine with the same or even increased performance in size and weight at the same time the consumption and thus in this respect to reduce in view of increasingly stringent legal requirements, the CO 2 emissions. The operating principle is to use the energy contained in the exhaust gas flow to increase the pressure in the intake tract of the engine and thus to better fill the combustion chamber with air-oxygen and thus implement more fuel, gasoline or diesel, per combustion process, so to increase the performance of the internal combustion engine.

Ein herkömmlicher Abgasturbolader, wie in Figur 1 dargestellt weist dazu eine im Abgasstrang des Verbrennungsmotors angeordnete Abgasturbine 101 mit einem durch den Abgasstrom angetriebenen, in einem Turbinengehäuse 1 angeordneten Turbinenrad 11 und einen im Ansaugtrakt angeordneten Frischluftverdichter 102 mit einem den Druck aufbauenden, in einem Verdichtergehäuse 15 angeordneten Verdichterrad 16 auf. Turbinenrad 11 und Verdichterrad 16 sind drehfest an den gegenüberliegenden Enden einer Rotorwelle 17 befestigt und bilden so die hier als Turborotor bezeichnete Läufereinheit des Abgasturboladers. Die Rotorwelle 17 ist in einer zwischen Abgasturbine 101 und Frischluftverdichter 102 angeordneten Lagereinheit im Lagergehäuse 100 drehgelagert. Somit wird mit Hilfe des Abgasmassenstroms AM (mit Pfeilen angedeutet), das Turbinenrad 11 und über die Rotorwelle 17 wiederum das Verdichterrad 16 angetrieben und die Abgasenergie so zum Druckaufbau im Ansaugtrakt genutzt, wo der Frischluft-Massenstrom FM (ebenfalls durch Pfeile angedeutet) auf erhöhten Druck gebracht wird.A conventional exhaust gas turbocharger, as in FIG. 1 illustrated has an arranged in the exhaust line of the internal combustion engine exhaust gas turbine 101 with a driven by the exhaust stream, arranged in a turbine housing 1 turbine 11 and arranged in the intake air fresh air compressor 102 with a pressure building, arranged in a compressor housing 15 compressor wheel 16. Turbine wheel 11 and compressor wheel 16 are rotatably attached to the opposite ends of a rotor shaft 17 and thus form the rotor unit of the exhaust gas turbocharger, here referred to as turbo rotor. The rotor shaft 17 is rotatably mounted in the bearing housing 100 in a bearing unit arranged between the exhaust gas turbine 101 and the fresh air compressor 102. Thus, with the aid of the exhaust gas mass flow AM (indicated by arrows), the turbine wheel 11 and via the rotor shaft 17, in turn, the compressor 16 is driven and the exhaust gas energy to Pressure build-up used in the intake, where the fresh air mass flow FM (also indicated by arrows) is brought to increased pressure.

Durch das Turbinengehäuse 1 wird der heiße Abgas-Massenstrom AM auf das Turbinenrad 11 geleitet. Das Turbinengehäuse 1 und das Turbinenrad 11 befinden sich so im Betrieb in direktem Kontakt mit dem heißen Abgas-Massenstrom AM und sind somit sehr großen Temperaturschwankungen ausgesetzt wobei Spitzentemperaturen bis über 1000°C erreicht werden. Gleichzeitig rotiert der Turborotor mit sehr hohen Drehzahlen von bis zu 300.000 U/min wodurch insbesondere das Turbinenrad 11 und das Turbinengehäuse 1 sehr hohen mechanischen und thermischen Beanspruchungen ausgesetzt sind.Through the turbine housing 1, the hot exhaust gas mass flow AM is directed to the turbine wheel 11. The turbine housing 1 and the turbine wheel 11 are so in operation in direct contact with the hot exhaust gas mass flow AM and are thus exposed to very large temperature fluctuations with peak temperatures up to 1000 ° C can be achieved. At the same time, the turbo-rotor rotates at very high rotational speeds of up to 300,000 rpm, whereby in particular the turbine wheel 11 and the turbine housing 1 are exposed to very high mechanical and thermal stresses.

Bei herkömmlich aufgebauten Abgasturboladern, wie in Figur 1 dargestellt, ist das Turbinengehäuse 1 mittels eines Lagergehäuseanschlussflansches 4 mit dem zentral angeordneten Lagergehäuse 100 des Abgasturboladers verbunden. Weiterhin weist das Turbinengehäuse 1 ein einen Abgaseintrittskanal 2 bildendes Abgaseintrittsrohr 2b mit einem Abgaseintrittsflansch 2a zum Anschluss des Abgasturboladers an den Abgaskrümmer (nicht dargestellt) eines Verbrennungsmotors auf. Durch den Abgaseintrittskanal 2 tritt das heiße Abgas in das Turbinengehäuse 1 ein, wie mittels des durch Pfeile dargestellten Abgas-Massenstroms AM verdeutlicht ist. Weiterhin weist das Turbinengehäuse 1 einen sich an den Abgaseintrittskanal 2 anschließenden Spiralkanal 5 auf, der sich verjüngend um einen konzentrisch um das Turbinenrad angeordneten Abgaseintrittsspalt 5a verläuft und zu diesem hin geöffnet ist, so dass der Abgas-Massenstrom AM durch den Spiralkanal 5 in zumindest anteilig radialer/tangentialer Richtung durch den Abgaseintrittsspalt 5a auf das Turbinenrad 11 geführt wird. Durch das Turbinenrad 11 wird der Abgasstrom AM in axiale Richtung in einen Abgasaustrittsstutzen 7 umgelenkt, durch den der Abgas-Massenstrom AM in das Abgasaustrittsrohr 3b und weiter in ein sich anschließendes Abgassystem, das an einem Abgasaustrittsflansch 3a anschließt, abgeleitet wird. ImIn conventionally constructed turbochargers, as in FIG. 1 illustrated, the turbine housing 1 is connected by means of a Lagergehäuseanschlussflansches 4 with the centrally disposed bearing housing 100 of the exhaust gas turbocharger. Furthermore, the turbine housing 1 has an exhaust gas inlet duct 2b forming an exhaust gas inlet channel 2 with an exhaust gas inlet flange 2a for connecting the exhaust gas turbocharger to the exhaust manifold (not shown) of an internal combustion engine. Through the exhaust gas inlet channel 2, the hot exhaust gas enters the turbine housing 1, as is illustrated by means of the exhaust gas mass flow AM shown by arrows. Furthermore, the turbine housing 1 has a subsequent to the exhaust gas inlet channel 2 spiral channel 5, which extends tapered around a concentrically arranged around the turbine exhaust inlet entrance gap 5a and is open to this, so that the exhaust gas mass flow AM through the spiral channel 5 in at least partially radial / tangential direction is guided through the exhaust gas inlet gap 5a on the turbine wheel 11. By the turbine wheel 11, the exhaust gas flow AM is deflected in the axial direction in an exhaust gas outlet nozzle 7, through which the exhaust gas mass flow AM in the exhaust gas outlet pipe 3b and further into a subsequent exhaust system, which adjoins an exhaust gas outlet flange 3a, is derived. in the

Übergang zwischen dem Abgaseintrittsspalt 5a und dem Abgasaustrittsstutzen 7 ist die Innenkontur des Turbinengehäuses der Außenkontur der Beschaufelung 10 des Turbinenrades 11 angepasst. Um zu gewährleisten, dass ein möglichst großer Anteil des Abgas-Massenstromes durch die Beschaufelung 10 des Turbinenrades 11 strömt, und somit das Turbinenrad 11 antreibt, muss der Konturspalt 12 zwischen Innenkontur des Turbinengehäuses und der Außenkontur der Beschaufelung 10 des Turbinenrades 11 möglichst klein gehalten werden. Der Konturspalt beeinflusst die strömungstechnischen und die thermodynamischen Eigenschaften der Abgasturbine wesentlich. Dieser Bereich der Innenkontur des Turbinengehäuses dichtet also quasi die Beschaufelung 10 des Turbinenrades über den Umfang ab, weshalb dieser Bereich der Innenkontur des Turbinengehäuses im Weiteren als Dichtkonturbereich 9 oder kurz als Dichtkontur 9 bezeichnet wird.Transition between the exhaust gas inlet gap 5a and the exhaust gas outlet nozzle 7, the inner contour of the turbine housing of the outer contour of the blading 10 of the turbine wheel 11 is adjusted. In order to ensure that the largest possible proportion of the exhaust gas mass flow flows through the blading 10 of the turbine wheel 11, and thus drives the turbine wheel 11, the contour gap 12 between the inner contour of the turbine housing and the outer contour of the blading 10 of the turbine wheel 11 must be kept as small as possible , The contour gap substantially influences the fluidic and thermodynamic properties of the exhaust gas turbine. This region of the inner contour of the turbine housing therefore seals the blading 10 of the turbine wheel approximately over the circumference, which is why this region of the inner contour of the turbine housing is referred to below as a sealing contour region 9 or briefly as a sealing contour 9.

Aufgrund des oben genannten möglichst klein auszulegenden Konturspalts 12 ist die Form- und Lagestabilität der Dichtkontur 9 von großer Bedeutung, da eine Berührung des im Betrieb schnell drehenden Turbinenrades 11 mit der Dichtkontur 9 unweigerlich zur Zerstörung der Abgasturbine führen würde.Because of the above-mentioned contour gap 12, which is to be designed as small as possible, the shape and positional stability of the sealing contour 9 is of great importance, since touching the rapidly rotating turbine wheel 11 with the sealing contour 9 would inevitably lead to the destruction of the exhaust gas turbine.

Weiterhin weisen Abgasturbinen moderner Konzeption eine sogenannte Wastegate-Einrichtung 13 auf, die eine bessere Regelung der Turbinenleistung bei unterschiedlichen Betriebsbedingungen ermöglichen. Eine solche Wastegate-Einrichtung besteht aus einem Verbindungskanal, dem Wastegatekanal 8, zwischen dem Abgaseintrittskanal 2 oder dem Spiralkanal 5 und dem Abgasaustrittskanal 3 sowie aus einer dazugehörigen Ventilklappe 14 mit der dieser Wastegatekanal 8 nach Bedarf geschlossen oder geöffnet werden kann. Um mögliche Verluste möglichst gering zu halten, muss auch hier gewährleistet sein, dass die Ventilklappe 14 im Bedarfsfall mit einem Ventilsitz 8a am oder im Wastegatekanal 8 möglichst dicht schließt.Furthermore, exhaust gas turbines of modern design, a so-called wastegate device 13, which allow better control of turbine performance under different operating conditions. Such a wastegate device consists of a connecting channel, the wastegate channel 8, between the exhaust gas inlet channel 2 or the spiral channel 5 and the exhaust gas outlet channel 3 and from an associated valve flap 14 with this wastegate channel 8 can be closed or opened as needed. In order to minimize possible losses, it must also be ensured here that the valve flap 14 closes as tightly as possible with a valve seat 8a on or in the wastegate channel 8 if necessary.

Um den hohen Anforderungen an Form und Lagegenauigkeit bei gleichzeitig hohen thermischen und mechanischen Belastungen gerecht werden zu können und auch Aufgrund der komplexen Innen- und Außengeometrien der Turbinengehäuse, sind herkömmliche Turbinengehäuse deshalb als sehr massive Gussteile ausgelegt und hergestellt. Diese Ausführung der Turbinengehäuse hat neben dem hohen Gewicht und der hohen Wärmekapazität auch hohe Material- und Herstellkosten zur Folge, was sich nachteilig auf den Einsatz, den Betrieb und die Kosten solcher Abgasturbolader auswirkt.
Es bestehen deshalb Bestrebungen die Turbinengehäuse aus vergleichsweise dünnen, leichten Form-Blechteilen aufzubauen.
Due to the complex internal and external geometries of the turbine housings, traditional turbine housings are designed and manufactured as very solid castings in order to meet the high requirements in terms of form and positional accuracy with simultaneous high thermal and mechanical loads. This embodiment of the turbine housing in addition to the high weight and high heat capacity and high material and manufacturing costs result, which adversely affects the use, operation and cost of such exhaust gas turbocharger.
There are therefore efforts to build the turbine housing from comparatively thin, lightweight sheet metal parts.

Bei in Abgasturboladern verwendeten, aus Blechteilen zusammengesetzten Turbinengehäusen kommt es, aufgrund der oben genannten anspruchsvollen Einsatzbedingungen, im Betrieb leicht zu unerwünschten Verformungen des ebenfalls aus Blech bestehenden Dichtkonturbereiches. Unerwünschte Verformungen des Dichtkonturbereiches des Turbinengehäuses führen zu einer Verschlechterung des thermodynamischen Wirkungsgrades oder schlimmstenfalls auch zu einem Anstreifen des sich im Betrieb mit hoher Drehzahl drehenden Turbinenrades an das Blech im Dichtkonturbereich des Turbinengehäuses.When used in exhaust gas turbochargers, composed of sheet metal parts turbine housings, it is due to the above demanding conditions, in operation easily undesirable deformations of the also consisting of sheet sealing contour area. Unwanted deformations of the sealing contour region of the turbine housing lead to a deterioration of the thermodynamic efficiency or at worst also to a rubbing of the rotating at high speed turbine wheel to the plate in the sealing contour region of the turbine housing.

Ein derartiges Anstreifen des Turbinenrades an das Blech kann durch eine Vergrößerung des Konturspaltes in radialer und axialer Richtung verhindert werden. Eine derartige Vergrößerung des Konturspaltes wirkt sich jedoch negativ auf den thermodynamischen Wirkungsgrad der Turbine aus. Des Weiteren kann, aufgrund des Herstellungsverfahrens, die Maßhaltigkeit der Dichtkontur gegenüber dem Turbinenrad nachteilig sein, da sich die Toleranzen der einzelnen miteinander verbundenen Blechteile gegebenenfalls ungünstig addieren, was wiederum einer konstruktiven Vergrößerung des Konturspaltes aus Sicherheitsgründen bedarf und mit negativen Auswirkungen auf den thermodynamischen Wirkungsgrad einhergeht.Such a rubbing of the turbine wheel against the sheet metal can be prevented by an enlargement of the contour gap in the radial and axial direction. However, such an enlargement of the contour gap has a negative effect on the thermodynamic efficiency of the turbine. Furthermore, due to the manufacturing process, the dimensional accuracy of the sealing contour relative to the turbine wheel can be disadvantageous, since the tolerances of the individual interconnected sheet metal parts may add unfavorably, which in turn requires a constructive enlargement of the contour gap for safety reasons and is associated with negative effects on the thermodynamic efficiency ,

Einem Anstreifen des Turbinenrades an das Blech im Dichtkonturbereich kann auch dadurch entgegengewirkt werden, dass das Blech im diesem Bereich des Turbinengehäuses entsprechend dickwandig ausgebildet wird. Dies wirkt zwar einer Verformung des Konturbereiches entgegen, erhöht jedoch wiederum die Herstellungskosten des Turbinengehäuses.Stripping of the turbine wheel to the sheet in the sealing contour region can also be counteracted by the fact that the sheet is formed correspondingly thick-walled in this region of the turbine housing. Although this counteracts a deformation of the contour region, but in turn increases the manufacturing cost of the turbine housing.

Des Weiteren ist es zu einer Reduzierung der Verformungen des den Dichtkonturbereich bildenden Blechteiles bereits bekannt, doppelwandige Turbinengehäuse mit Schiebesitzen herzustellen, die die auftretenden Lasten aufnehmen. Auch ein derartiges Vorgehen erhöht die Herstellungskosten des Turbinengehäuses.Furthermore, it is already known to produce a reduction in the deformations of the sealing contour region forming sheet metal part, double-walled turbine housing with sliding seats that absorb the loads occurring. Such a procedure also increases the manufacturing costs of the turbine housing.

Aus der DE 100 22 052 C2 ist bereits ein Turbinengehäuse für einen Abgasturbolader bekannt. Dieses Turbinengehäuse umfasst einen Einlasstrichter, ein Laufradgehäuse mit einem Gaskanal, der sich vom Einlasstrichter ausgehend schneckenförmig verengt, einen Flansch zur Verbindung mit dem Lagergehäuse des Abgasturboladers und ein zentrales Auslassrohr. Im Laufradgehäuse rotiert ein Turbinenrad. Der schneckenförmige Gaskanal endet im Bereich des Einlasstrichters an einer Dichtkante. Der Einlasstrichter, das Laufradgehäuse und das Auslassrohr bestehen aus spanlos umgeformtem, beispielsweise geprägtem oder tief gezogenem Blech. Das Laufradgehäuse besteht aus zwei Halbschalen und ist mit dem Auslassrohr verschweißt. Der Einlasstrichter und das Laufradgehäuse sind von einem zusätzlichen Außengehäuse aus Blech umgeben. Zwischen dem Laufradgehäuse und dem zusätzlichen Außengehäuse liegt ein Luftspalt vor.From the DE 100 22 052 C2 already a turbine housing for an exhaust gas turbocharger is known. This turbine housing comprises an inlet funnel, an impeller housing with a gas channel which narrows helically starting from the inlet funnel, a flange for connection to the bearing housing of the exhaust gas turbocharger and a central outlet tube. A turbine wheel rotates in the impeller housing. The helical gas channel ends in the region of the inlet funnel at a sealing edge. The inlet funnel, the impeller housing and the outlet tube consist of non-cutting formed, for example embossed or deep drawn sheet metal. The impeller housing consists of two half-shells and is welded to the outlet pipe. The inlet funnel and the impeller housing are surrounded by an additional outer housing made of sheet metal. Between the impeller housing and the additional outer housing is an air gap.

Aus der WO2011/104596 A2 ist bereits ein Turbinengehäuse für einen Abgasturbolader bekannt. Dieses bekannte Turbinengehäuse weist unter anderem einen Lagergehäuseanschlussflansch, einen Abgaseintrittskanal, einen Spiralkanal, einen Abgaseintrittsspalt, einen Dichtkonturbereich und einen Abgasausstrittsstutzen auf. Es weist des Weiteren mehrere miteinander verbundene Gehäuseteile auf, zu denen ein zentrales, einstückiges, als Gussteil ausgeführtes Konturbauteil gehört, welches mit seinen benachbarten Gehäuseteilen, die zumindest zum Teil als Blech-Formteile ausgebildet sind, verbunden ist.From the WO2011 / 104596 A2 already a turbine housing for an exhaust gas turbocharger is known. This known turbine housing has inter alia a Lagergehäuseanschlussflansch, an exhaust gas inlet channel, a spiral channel, an exhaust gas inlet gap, a sealing contour region and an exhaust gas outlet nozzle. It also has a plurality of interconnected housing parts, to which a central, one-piece, designed as a cast part of the contour part, which is connected to its adjacent housing parts, which are at least partially formed as sheet-metal parts.

Aus der EP 2 423 446 A2 ist ein Turbinengehäuse bekannt, welches eine Wastegatevorrichtung aufweist.From the EP 2 423 446 A2 a turbine housing is known, which has a wastegate device.

Aus der WO2011/045521 A1 ist ein Abgasturbolader bekannt, welcher ein Turbinengehäuse und ein Lagergehäuse aufweist, wobei zwischen dem Turbinengehäuse und dem Lagergehäuse ein Trägerteil vorgesehen ist. Das Turbinengehäuse enthält eine Turbinenkammer, einen mit der Turbinenkammer verbundenen Ausgangskanal und eine Volute auf. Die Volute ist mit dem Ausgangskanal und dem Trägerteil verbunden.From the WO2011 / 045521 A1 an exhaust gas turbocharger is known, which has a turbine housing and a bearing housing, wherein between the turbine housing and the bearing housing, a support member is provided. The turbine housing includes a turbine chamber, an output port connected to the turbine chamber, and a volute. The volute is connected to the output channel and the carrier part.

Die Aufgabe der Erfindung besteht darin, ein Turbinengehäuse für einen Abgasturbolader anzubieten, das bei vergleichsweise geringen Herstellungskosten des Turbinengehäuses einen hohen thermodynamischen Wirkungsgrad der Abgasturbine gewährleistet.The object of the invention is to offer a turbine housing for an exhaust gas turbocharger, which ensures a high thermodynamic efficiency of the exhaust gas turbine at comparatively low production costs of the turbine housing.

Diese Aufgabe wird durch ein Turbinengehäuse mit den im Folgenden angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen angegeben.This object is achieved by a turbine housing with the features indicated below. Advantageous embodiments and further developments of the invention are specified in the dependent claims.

Das erfindungsgemäße Turbinengehäuse für einen Abgasturbolader weist einen Lagergehäuseanschlussflansch, einen Abgaseintrittskanal, einen Spiralkanal, einen Abgaseintrittsspalt, einen Dichtkonturbereich und einen Abgasaustrittsstutzen auf. Es hat des Weiteren mehrere miteinander verbundene Gehäuseteile, zu denen ein zentrales, einstückiges, als Gussbauteil oder als Schmiedebauteil ausgeführtes Konturbauteil gehört, welches mit seinen benachbarten Gehäuseteilen, die zumindest zum Teil als Blech-Formteile ausgebildet sind, verbunden ist, wobei der Lagergehäuseanschlussflansch ein Blech-Formteil ist. Ein dem Lagergehäuseanschlussflansch zugewandter Teil des den Spiralkanal ausbildenden Spiralgehäuses bildet eine Halbschale des Spiralgehäuses und ist als Blech-Formteil ausgebildet. Das zentrale, einstückige Konturbauteil ist auf der vom Lagergehäuseanschlussflansch abgewandten Seite des Spiralkanals im Turbinengehäuse vorgesehen und bildet eine weitere Halbschale des Spiralgehäuses. Das zentrale, einstückige Konturbauteil weist einen auf der vom Lagergehäuseanschlussflansch abgewandten Seite liegenden Wandbereich des Spiralkanals, eine an diesen Wandbereich anschließende Begrenzungswand des Abgaseintrittsspalts und den an diesen Wandbereich anschließenden Dichtkonturbereich auf.The turbine housing according to the invention for an exhaust gas turbocharger has a bearing housing connection flange, an exhaust gas inlet channel, a spiral channel, an exhaust gas inlet gap, a sealing contour region and an exhaust gas outlet nozzle. It also has a plurality of interconnected housing parts to which a central, one-piece, executed as a cast component or as a forged component contour component is associated with its adjacent housing parts, which are at least partially formed as sheet metal parts, wherein the Lagergehäuseanschlussflansch a metal sheet Molded part is. A Lagergehäuseanschlussflansch facing part of the spiral channel forming spiral housing forms a half-shell of the spiral housing and is formed as a sheet metal molding. The central, one-piece contour component is provided on the side facing away from the Lagergehäuseanschlussflansch side of the spiral channel in the turbine housing and forms a further half-shell of the spiral housing. The central, one-piece contour component has a wall region of the spiral channel lying on the side facing away from the bearing housing connection flange, a boundary wall of the exhaust gas inlet gap adjoining this wall region and the sealing contour region adjoining this wall region.

Die Vorteile der Erfindung bestehen insbesondere darin, dass durch eine vom Anwendungsfall abhängige Wahl der Geometrie, des Werkstoffes, der Materialdicke und/oder der Materialverteilung des Konturbauteils die Formbeständigkeit und Genauigkeit der Gehäusekontur gezielt beeinflusst und somit der thermodynamische Wirkungsgrad der Turbine gezielt verbessert werden kann. Gleichwohl werden die Materialkosten und damit die Herstellungskosten des Turbinengehäuses niedrig gehalten, da die weiteren Gehäuseteile je nach Beanspruchung und Erfordernis schwächer, zum Teil als Blechteile ausgelegt werden können. So wird ein Mix an nach Bedarf stärker und schwächer dimensionierten Gehäusebauteilen ermöglicht, ohne den Wirkungsgrad der Abgasturbine negativ zu beeinflussen.
Weitere Vorteile der Erfindung bestehen darin, dass durch eine Nachbearbeitung des den Konturbereich bildenden Bauteils und des Lagergehäusesitzes des Turbinengehäuses, nach dem Zusammenbau der einzelnen Gehäuseteile, in einer Aufspannung der Konturbereich relativ zum Turbinenrad präzise vorgefertigt werden kann. Dies trägt zur weiteren Verbesserung des thermodynamischen Wirkungsgrades bei.
Des Weiteren können mit demselben Bauteil verschiedene Gehäusekonturen, die Funktionsflächen bilden, wie zum Beispiel den Dichtkonturbereich, einen Ventilsitz oder eine Lageraufname für ein Antriebsgestänge einer Wategateklappe durch eine mechanische Nachbearbeitung des Bauteils mit hoher Genauigkeit dargestellt werden. Dies hat den Vorteil einer deutlichen Reduzierung der Teilekosten und der benötigten Teilevielfalt. Ferner können Gewichts- und Materialeinsparungen erreicht werden.
The advantages of the invention are, in particular, that the dimensional stability and accuracy of the housing contour are specifically influenced by a dependent on the application case, the dimensional stability and accuracy of the housing contour and thus the thermodynamic efficiency of the turbine can be specifically improved. Nevertheless, the material costs and thus the manufacturing cost of the turbine housing are kept low, since the other housing parts depending on the load and requirement weaker, can be designed in part as sheet metal parts. Thus, a mix of as needed stronger and weaker dimensioned housing components allows without affecting the efficiency of the exhaust gas turbine negative.
Further advantages of the invention are that by a post-processing of the contour region forming member and the bearing housing seat of the turbine housing, after assembly the individual housing parts, can be precisely prefabricated in a clamping of the contour region relative to the turbine wheel. This contributes to the further improvement of the thermodynamic efficiency.
Furthermore, with the same component, different housing contours, which form functional surfaces, such as the sealing contour area, a valve seat or a Lageraufname for a drive linkage of a Wategateklappe be represented by a mechanical post-processing of the component with high accuracy. This has the advantage of a significant reduction in parts costs and the required variety of parts. Furthermore, weight and material savings can be achieved.

In einer Weiterbildung des erfindungsgemäßen Turbinengehäuses weist dass das Konturbauteil auch einen Abgasaustrittsstutzen auf, der sich stromabwärts, in Bezug auf den Abgas-Massenstrom, unmittelbar an den Dichtkonturbereich anschließt und einen Austrittsquerschnitt der Turbine definiert. Der Austrittsquerschnitt ist neben dem Abgaseintrittsspalt und dem Konturspalt ein weiterer Parameter, der den thermodynamischen Wirkungsgrad der Turbine beeinflusst. Durch die Integration des Abgasaustrittsstutzens in das formstabile Konturbauteil kann ein genau definierter Austrittsquerschnitt auf einfache Weise gewährleistet werden, der zum Beispiel im Zuge einer Nachbearbeitung der weiteren Kontur- und Funktionsflächen des Konturbauteils hergestellt werden kann. Dies trägt ebenfalls zur weiteren Verbesserung des thermodynamischen Wirkungsgrades beiIn a further development of the turbine housing according to the invention, the contour component also has an exhaust gas outlet connection which, downstream with respect to the exhaust gas mass flow, directly adjoins the sealing contour region and defines an outlet cross section of the turbine. The outlet cross-section is next to the exhaust gas inlet gap and the contour gap another parameter that influences the thermodynamic efficiency of the turbine. By integrating the exhaust outlet nozzle in the dimensionally stable contour component, a precisely defined outlet cross-section can be ensured in a simple manner, which can be prepared, for example, in the course of post-processing the other contour and functional surfaces of the contour component. This also contributes to the further improvement of the thermodynamic efficiency

Eine weitere Ausführung des erfindungsgemäßen Turbinengehäuses ist dadurch gekennzeichnet, dass das Konturbauteil auch zumindest einen Teil einer Wandung des in den Spiralkanal einmündenden Abgaseintrittskanals aufweist. Mit anderen Worten ist am Konturbauteil zumindest ein Teil des Abgaseintrittsrohrs integriert ausgebildet. Das Abgaseintrittsrohr steht mittels des Abgaseintrittsflansches in Verbindung mit dem Abgaskrümmer eines Verbrennungsmotors und stellt so die Positionierung des Abgasturboladers relativ zum Verbrennungsmotor sicher. In dieser Funktion wird zumindest ein Teil der auf den Abgasturbolader wirkenden Massenkräfte über das Abgaseintrittsrohr auf den Verbrennungsmotor übertragen. Mit anderen Worten stellt diese Verbindung zumindest einen Teil der Befestigung des Abgasturboladers am Verbrennungsmotor dar, die Aufgrund des Gewichts des Abgasturboladers und der im Betrieb auftretenden Vibrationen hohen mechanischen Belastungen ausgesetzt ist. Die zumindest teilweise Ausführung des Abgaseintrittsrohres als integrierter Teil des formstabilen, als Gussbauteil oder als Schmiedebauteil ausgelegten Konturbauteils erhöht die Stabilität und Belastbarkeit der Verbindung zwischen Abgaskrümmer des Verbrennungsmotors und dem Abgasturbolader. Eine weitere Ausführung des erfindungsgemäßen Turbinengehäuses ist dadurch gekennzeichnet, dass das Konturbauteil auch einen im Wandbereich des Spiralkanals (5) angeordneten Wastegatekanal einer Wastegateeinrichtung mit einem Ventilklappensitz aufweist. Die Genauigkeit und Formhaltigkeit des Wastegatekanals und insbesondere des Ventilklappensitzes, auf dem im Betrieb einen geschlossene Wastegate-Ventilklappe dichtend aufsitzt, beeinflusst den Wirkungsgrad der Turbine. Die Integration des Wastegatekanals und des Ventilklappensitzes in das Konturbauteil trägt dazu bei, einen sich negativ auf den Wirkungsgrad auswirkenden Leckage-Abgasstrom bei geschlossener Wastegate-Ventilklappe gering zu halten und so einen hohen Wirkungsgrad zu gewährleisten.A further embodiment of the turbine housing according to the invention is characterized in that the contour component also has at least a part of a wall of the exhaust gas inlet channel opening into the spiral channel. In other words, at least part of the exhaust gas inlet pipe is formed integrally on the contour component. By means of the exhaust gas inlet flange, the exhaust gas inlet pipe is in connection with the exhaust manifold of an internal combustion engine and thus ensures the positioning of the exhaust gas turbocharger relative to the internal combustion engine. In this Function, at least part of the mass forces acting on the exhaust gas turbocharger is transmitted via the exhaust gas inlet pipe to the internal combustion engine. In other words, this connection represents at least a part of the attachment of the exhaust gas turbocharger to the internal combustion engine, which is exposed to high mechanical loads due to the weight of the exhaust gas turbocharger and the vibrations occurring during operation. The at least partial embodiment of the exhaust gas inlet pipe as an integrated part of the dimensionally stable, designed as a cast component or as a forged component contour component increases the stability and load capacity of the connection between the exhaust manifold of the engine and the exhaust gas turbocharger. A further embodiment of the turbine housing according to the invention is characterized in that the contour component also has a wastegate channel, arranged in the wall region of the spiral channel (5), of a wastegate device with a valve flap seat. The accuracy and dimensional stability of the wastegate channel and in particular of the valve flap seat, on which a closed wastegate valve flap is sealingly seated during operation, influences the efficiency of the turbine. The integration of the wastegate channel and the valve seat in the contour component helps to keep a negative effect on the efficiency impact leakage exhaust flow with closed wastegate valve flap low and thus to ensure high efficiency.

In Weiterbildung der vorgenannten Ausführung des Turbinengehäuses weist das Konturbauteil auch eine Lageraufnahme für ein Antriebsgestänge einer Wastegate-Ventileinrichtung auf. Mit Hilfe des genannten Antriebsgestänges wird im Betrieb die im Turbinengehäuse angeordnete Wastegate-Ventilklappe von einem außerhalb des Turbinengehäuses angeordneten Aktuator betätigt. Dies macht eine Durchführung des Antriebsgestänges durch die Gehäusewand und eine Lagerung des Antriebsgestänges in der Gehäusewand des Turbinengehäuses erforderlich. Die Integration einer Lageraufnahme für das genannte Antriebsgestänge im Konturbauteil ermöglicht eine genau definierte Positionierung der Lagerung und somit des Antriebsgestänges und der daran befestigten Wastegate-Ventilklappe und trägt so ebenfalls dazu bei, einen sich negativ auf den Wirkungsgrad auswirkenden Leckage-Abgasstrom bei geschlossener Wastegate-Ventilklappe gering zu halten und so einen hohen Wirkungsgrad zu gewährleisten. Darüber hinaus können auf diese Weise die Herstellungskosten eines Turbinengehäuses niedrig gehalten werden und gleichwohl die Maßhaltigkeit des Turbinengehäuses weiter verbessert werden.In a further development of the aforementioned embodiment of the turbine housing, the contour component also has a bearing receptacle for a drive linkage of a wastegate valve device. With the aid of said drive linkage, the wastegate valve flap arranged in the turbine housing is actuated by an actuator arranged outside the turbine housing during operation. This makes it necessary to carry out the drive linkage through the housing wall and to mount the drive linkage in the housing wall of the turbine housing. The integration of a bearing support for said drive linkage in the contour component allows a well-defined positioning of the bearing and thus the drive linkage and the thereto attached wastegate valve flap and thus also helps to keep a negative effect on the efficiency leakage leakage flow with closed wastegate valve flap low and thus to ensure high efficiency. In addition, in this way, the manufacturing cost of a turbine housing can be kept low and nevertheless the dimensional stability of the turbine housing can be further improved.

Bei der erfindungsgemäßen Ausführung des Turbinengehäuses hat es sich als vorteilhaft erwiesen, wenn die Wandstärke des Konturbauteils größer ist als die Wandstärke der als Blech-Formteil ausgeführten benachbarten Gehäuseteile, insbesondere zumindest die doppelte Wandstärke der benachbarten Blech-Formteil-Gehäuseteile aufweist. Dies gewährleistet eine ausreichend stabile, den bevorzugten Herstellverfahren angemessene Ausführung des Konturbauteils.In the embodiment of the turbine housing according to the invention, it has proved to be advantageous if the wall thickness of the contour component is greater than the wall thickness of the formed as a sheet metal molding adjacent housing parts, in particular at least twice the wall thickness of the adjacent sheet-shaped part housing parts. This ensures a sufficiently stable, the preferred manufacturing process adequate execution of the contour component.

Weiterhin ermöglicht die vorgenannte Ausführung des Konturbauteils eine Nachbearbeitung der wichtigen Kontur- und Funktionsflächen, wie zum Beispiel die Dichtkontur, den Austrittsquerschnitt der Turbine, den Ventilklappensitz des Wastegatekanals oder eine Lageraufnahme für ein Antriebsgestänge der Wastegateklappe.Furthermore, the aforementioned embodiment of the contour component allows post-processing of the important contour and functional surfaces, such as the sealing contour, the outlet cross-section of the turbine, the valve seat of the wastegate port or a bearing receptacle for a drive linkage of the wastegate flap.

Gemäß einer weiteren Ausführungsform des erfindungsgemäßen Turbinengehäuses ist das Konturbauteil mit seinen benachbarten Gehäuseteilen verschweißt. Dies Art der Verbindung ermöglicht eine hoch belastbare und sichere Verbindung zwischen den einzelnen Gehäuseteilen unterschiedlicher Materialstärke und ist geeignet eine gasdichte Gehäuseschale zu erzeugen durch eine Materialschlüssige Verbindung entlang der entstehenden Nahtlinien zwischen den einzelnen Gehäuseteilen.According to a further embodiment of the turbine housing according to the invention, the contour component is welded to its adjacent housing parts. This type of connection allows a highly resilient and secure connection between the individual housing parts of different material thickness and is suitable to produce a gas-tight housing shell by a material-locking connection along the resulting seam lines between the individual housing parts.

In einer weiteren Ausführung ist das Turbinengehäuse dadurch gekennzeichnet, dass das Konturbauteil mit seinen benachbarten Gehäuseteilen ein einschaliges Turbinengehäuse bildet. Das Konturbauteil verleiht dem einschaligen Aufbau die erforderliche Stabilität und ermöglicht so einen besonders leichten Aufbau des Turbinengehäuses durch die Verwendung verhältnismäßig dünnwandiger Gehäusebauteile neben dem Konturbauteil.In a further embodiment, the turbine housing is characterized in that the contour component with its adjacent housing parts forms a single-shell turbine housing. The contour component gives the single-shell construction the required Stability and thus allows a particularly lightweight construction of the turbine housing by the use of relatively thin-walled housing components in addition to the contour component.

In einer weiteren Ausführung ist das Turbinengehäuse dadurch gekennzeichnet, dass am Konturbauteil ein Wastegatekanal mittels benachbarter Blech-Formteile ausgebildet oder zumindest erweitert ist. Hier ist also alternativ zu der vorgenannten Ausführung, bei der der komplette Wastegatekanal einschließlich Ventilklappensitz mit dem Konturbauteil einstückig integriert ausgebildet ist, nicht der komplette Wastegatekanal durch das Konturbauteil ausgebildet. So kann beispielsweise nur eine entsprechende Öffnung im Konturbauteil vorgesehen sein, an die sich dann ein aus einem Blech-Formteil oder mehreren Blech-Formteilen, die am Konturbauteil befestigt sind, gestalteter Wastegatekanal anschließt. Dieser Aufbau ermöglicht eine weitere Gewichtsreduzierung eines erfindungsgemäßen Turbinengehäuses mit Wastegatevorrichtung.In a further embodiment, the turbine housing is characterized in that on the contour component, a wastegate channel is formed by means of adjacent sheet metal molded parts or at least extended. Here, then, as an alternative to the aforementioned embodiment, in which the complete wastegate channel including valve flap seat with the contour component is formed integrally integrated, not the complete wastegate channel formed by the contour component. Thus, for example, only a corresponding opening in the contour component can be provided, to which then a made of a sheet metal molding or a plurality of sheet-metal shaped parts, which are fastened to the contour component, designed Wastegatekanal connects. This structure allows a further weight reduction of a turbine housing according to the invention with wastegate device.

Bei der Ausgestaltung eines erfindungsgemäßen Turbinengehäuses ist zumindest einer der folgenden Gehäuseteile des Turbinengehäuses zumindest zum Teil aus Blech-Formteilen aufgebaut:

  • ein Abgaseintrittsrohr, das den Abgaseintrittskanal bildet,
  • ein Abgaseintrittsflansch, der am Abgaseintrittsrohr anschließt und mit dem das Turbinengehäuse mit einem Abgasrohr eines Verbrennungsmotors verbunden ist,
  • ein Abgasaustrittsrohr, das den Abgasaustrittsstutzen umfasst und das den Abgasaustrittskanal ausbildet, durch den das Abgas stromabwärts der Abgasturbine in Richtung eines Abgassystems einer Verbrennungsmaschine geleitet wird,
  • ein Abgasaustrittsflansch, der am Abgasaustrittsrohr anschließt und mit dem die Verbindung zwischen Abgasaustrittsrohr des Turbinengehäuses und einem Abgassystem einer Verbrennungsmaschine hergestellt werden kann,
  • ein dem Lagergehäuseanschlussflansch zugewandter Teil des den Spiralkanal ausbildenden Spiralgehäuses, der beispielsweise als Halb-Schalenelement ausgebildet ist und zusammen mit dem Konturbauteil das Spiralgehäuse ergibt und
  • der Lagergehäuseanschlussflansch über den das Turbinengehäuse mit einem Lagergehäuse des Abgasturboladers verbunden ist. Dabei können die genannten Gehäuseteile selbst wiederum aus mehreren Einzelteilen aufgebaut sein, die alle oder nur zum Teil als Blech-Formteile ausgebildet sind. Je mehr dieser einzelnen Gehäuseteile als dünnwandige Blech-Formteile ausgebildet sind, desto größer ist die Gewichtsreduzierung gegenüber herkömmlichen Turbinengehäuse-Konzepten.
In the embodiment of a turbine housing according to the invention, at least one of the following housing parts of the turbine housing is constructed at least in part from sheet-metal shaped parts:
  • an exhaust gas inlet pipe, which forms the exhaust gas inlet channel,
  • an exhaust gas inlet flange, which adjoins the exhaust gas inlet pipe and with which the turbine housing is connected to an exhaust pipe of an internal combustion engine,
  • an exhaust gas outlet tube, which comprises the exhaust gas outlet nozzle and which forms the exhaust gas outlet channel, through which the exhaust gas is conducted downstream of the exhaust gas turbine in the direction of an exhaust system of an internal combustion engine,
  • an exhaust gas outlet flange, which adjoins the exhaust gas outlet pipe and with which the connection between the exhaust gas outlet pipe of the turbine housing and an exhaust system of an internal combustion engine can be produced,
  • a Lagergehäuseanschlussflansch facing part of the spiral channel forming spiral housing, which is formed for example as a half-shell element and together with the Contour component results in the spiral housing and
  • the Lagergehäuseanschlussflansch over which the turbine housing is connected to a bearing housing of the exhaust gas turbocharger. The said housing parts themselves may in turn be constructed of several individual parts which are all or only partially formed as sheet-metal parts. The more of these individual housing parts are designed as thin-walled sheet-metal parts, the greater the weight reduction compared to conventional turbine housing concepts.

Die Merkmale der vorgenannten Ausführungen des erfindungsgemäßen Gegenstandes sind, soweit diese nicht alternativ anwendbar sind oder sich gar gegenseitig ausschließen, zum Teil oder insgesamt auch in Kombination oder gegenseitiger Ergänzung anzuwenden.The features of the aforementioned embodiments of the article according to the invention, insofar as they are not alternatively applicable or even mutually exclusive, to be applied in part or in total also in combination or mutual supplementation.

Anhand der Figuren werden im Folgenden besonders vorteilhafte Ausführungsbeispiele der Erfindung näher erläutert, obgleich der Gegenstand der Erfindung nicht auf diese Beispiele begrenzt ist. Es zeigt:

Figur 1
eine vereinfachte Schnittdarstellung eines Abgasturboladers nach dem Stand der Technik
Figur 2
eine perspektivische Schnittdarstellung eines Turbinengehäuses gemäß einem Ausführungsbeispiel der Erfindung und
Figur 3
eine perspektivische Schnittdarstellung eines Turbinengehäuses gemäß einem weiteren Ausführungsbeispiel der Erfindung.
With reference to the figures, particularly advantageous embodiments of the invention will be explained in more detail below, although the subject matter of the invention is not limited to these examples. It shows:
FIG. 1
a simplified sectional view of an exhaust gas turbocharger according to the prior art
FIG. 2
a perspective sectional view of a turbine housing according to an embodiment of the invention and
FIG. 3
a perspective sectional view of a turbine housing according to another embodiment of the invention.

Funktions- und Benennungsgleiche Komponenten sind in den Figuren durchgehend mit den gleichen Bezugszeichen gekennzeichnet.Function and designation components are denoted by the same reference numerals throughout the figures.

Der in Figur 1 dargestellte Abgasturbolader gemäß Stand der Technik wurde bereits einleitend beschrieben und zeigt den prinzipiellen Aufbau und die Anordnung der einzelnen Komponenten Abgasturbine 101, Frischluftverdichter 102 und Lagergehäuse 100. Insbesondere wurde dabei auf die für die Erfindung wesentlichen Bauteile des Abgasturboladers, nämlich die Abgasturbine 101 mit Turbinengehäuse 1 und Turbinenlaufrad 11, das eine Beschaufelung 10 aufweist.
Das dargestellte, konventionell als Gussteil ausgelegte Turbinengehäuse 1 für einen Abgasturbolader weist, unter Anderem, einen Abgaseintrittskanal 2, einen Spiralkanal 5, einen Abgaseintrittsspalt 5a, einen Dichtkonturbereich 9 und einen Abgasaustrittsstutzen 7 auf. Auch die Anordnung des Wastegatekanals 8 und der Wastegate-Ventilklappe 14 mit Antriebsgestänge 14a ist in Figur 1 dargestellt.
The in FIG. 1 illustrated exhaust gas turbocharger according to the prior art has already been described in the introduction and shows the basic structure and arrangement of the individual components exhaust gas turbine 101, fresh air compressor 102 and bearing housing 100th Particular attention was paid to the components of the exhaust-gas turbocharger which are essential to the invention, namely the exhaust-gas turbine 101 with turbine housing 1 and turbine runner 11, which has a blading 10.
The illustrated, conventionally designed as a cast turbine housing 1 for an exhaust gas turbocharger has, inter alia, an exhaust gas inlet channel 2, a spiral channel 5, an exhaust gas inlet gap 5a, a sealing contour region 9 and an exhaust gas outlet 7. The arrangement of the wastegate channel 8 and the wastegate valve flap 14 with drive rod 14a is in FIG. 1 shown.

Figur 2 zeigt ein erfindungsgemäßes Turbinengehäuse, zur besseren Übersicht, isoliert von den übrigen Komponenten des Abgasturboladers und in geschnittener, perspektivischer Ansicht. Das Turbinengehäuse weist mehrere miteinander verbundene Gehäuseteile auf, wobei das Konturbauteil 6 des Turbinengehäuses 1, welches einen Dichtkonturbereich 9 aufweist, als Gussbauteil oder als Schmiedebauteil ausgeführt ist, welches mit seinen benachbarten Gehäuseteilen, die als Blech-Formteile ausgeführt sind, verbunden, insbesondere verschweißt ist. Die Gehäuseteile bilden zusammen mit dem Konturbauteil 6 ein einschaliges Gehäuse. FIG. 2 shows a turbine housing according to the invention, for clarity, isolated from the other components of the exhaust gas turbocharger and in a sectional, perspective view. The turbine housing has a plurality of interconnected housing parts, wherein the contour component 6 of the turbine housing 1, which has a sealing contour region 9, is designed as a cast component or as a forging component, which is connected to its adjacent housing parts, which are designed as sheet-metal parts, in particular welded , The housing parts together with the contour component 6 form a single-shell housing.

Vorzugsweise ist die Wandstärke des Konturbauteils 6 größer als die Wandstärke seiner benachbarten Gehäuseteile. Diese Maßnahmen tragen dazu bei, die Formstabilität des Turbinengehäuses 1 eines Abgasturboladers zu erhöhen und damit im Betrieb des Abgasturboladers die thermodynamischen Eigenschaften der Turbine zu verbessern. Die im Betrieb des Abgasturboladers auftretenden Verformungen des Turbinengehäuses 1, insbesondere im Bereich der Dichtkontur 9 , sind im Vergleich zum Stand der Technik reduziert, wobei gleichzeitig die Herstellkosten des Turbinengehäuses 1 und dessen Gewicht niedrig gehalten werden. Desweiteren ist eine gute Maßgenauigkeit gewährleistet durch Nachbearbeitung der wichtigen Kontur- und Funktionsflächen der Dichtkontur, des Austrittsquerschnits der Turbine und des Ventilklappensitzes des Wastegatekanals.Preferably, the wall thickness of the contour component 6 is greater than the wall thickness of its adjacent housing parts. These measures contribute to increasing the dimensional stability of the turbine housing 1 of an exhaust gas turbocharger and thus to improve the thermodynamic properties of the turbine during operation of the exhaust gas turbocharger. The deformations occurring during operation of the exhaust gas turbocharger of the turbine housing 1, in particular in the region of the sealing contour 9, are reduced in comparison to the prior art, at the same time the manufacturing costs of the turbine housing 1 and its weight are kept low. Furthermore, a good dimensional accuracy is ensured by post-processing of the important contour and functional surfaces of the sealing contour, the outlet cross section of the turbine and the valve flap seat of the wastegate channel.

Das dargestellte Turbinengehäuse 1 weist einen Abgaseintrittsflansch 2a zum Beispiel zum Anschluss an einen Abgaskrümmer einer Verbrennungskraftmaschine, einen Abgasaustrittsflansch 3a zum Anschluss an ein Abgassystem einer Verbrennungskraftmaschine und einen Lagergehäuseanschlussflansch 4a zum Anschluss des Turbinengehäuses 1 an das Lagergehäuse 100 eines Abgasturboladers auf. Der Lagergehäuseanschlussflansch 4a und der Abgasaustrittsflansch 3a sind als Blech-Formteile ausgelegt, im Gegensatz zum Abgaseintrittsflansch 2a, der als massives Guss-, Schmiede- oder spanend hergestelltes Formteil ausgelegt ist. Weiterhin zeigt Figur 2 einen als Blech-Formteil ausgebildeten Spiralgehäuseteil 4, auf der dem Lagergehäuseanschlussflansch 4a zugewandten Seite des Spiralgehäuses und ein erfindungsgemäß als massives Guss- oder Schmiedeteil ausgelegt Konturbauteil 6 auf der vom Lagergehäuseanschlussflansch 4a abgewandten Seite des Spiralgehäuses, wobei das Spiralgehäuse jeweils zur Hälfte durch das Spiralgehäuseteil 4 und das, als massives Guss- oder Schmiedeteil ausgelegte, Konturbauteil 6 gebildet ist. Die beiden, jeweils eine Halbschale des Spiralgehäuses bildenden Gehäuseteile des Spiralgehäuses sind beispielsweise entlang ihrer Berührungslinie mit einer durchgehenden Schweißnaht gasdicht miteinander verschweißt. Darüber hinaus weist das in Figur 2 gezeigte Turbinengehäuse 1 einen Wastegatekanal 8 auf der durch am Konturbauteil 6 befestigte, vorzugsweise angeschweißte und miteinander verschweißte, als Blech-Formteile ausgebildete Wastegatgehäuseteile 8b gestaltet ist. Zwischen dem Konturbauteil 6 und dem Abgasaustrittsflansch 3a ist das Abgasaustrittsrohr 3b angeordnet, das in diesem Beispiel aus zumindest zwei Blech-Formteilen zusammengesetzt ist. Das Abgasaustrittsrohr 3b sitzt auf einem Absatz im Außenbereich des Konturbauteils 6 auf und ist mit dem Konturbauteil 6 auf dem gesamten Umfang entlang der Berührungslinie durchgehend gasdicht verbunden, beispielsweise verschweißt. Am gegenüberliegenden Ende des Abgasaustrittsrohrs 3b ist der Abgasaustrittsflasch 3a ebenfalls auf dem gesamten Umfang entlang der Berührungslinie durchgehend gasdicht mit dem Abgasaustrittsrohr 3b verbunden, beispielsweise verschweißt.
Zwischen dem Abgaseintrittsflansch 2a und dem Konturbauteil 6 ist das Abgaseintrittsrohr 2b angeordnet. Das Abgaseintrittsrohr 2b ist ebenfalls aus zumindest zwei schalenförmigen Blech-Formteilen zusammengesetzt und einerseits mit dem Abgasaustrittsflansch 2a und andererseits mit dem Konturbauteil 6 gasdicht, beispielsweise durch Schweißnähte, verbunden. Darüber hinaus weist das in Figur 2 gezeigte Turbinengehäuse 1 einen Wastegatekanal 8 auf, der durch am Konturbauteil 6 befestigte, vorzugsweise angeschweißte und miteinander verschweißte, als Blech-Formteile ausgebildete Wastegategehäuseteile 8b gestaltet ist.
The illustrated turbine housing 1 has an exhaust gas inlet flange 2a, for example for connection to an exhaust manifold of an internal combustion engine, an exhaust gas outlet flange 3a for connection to an exhaust system of an internal combustion engine and a bearing housing connection flange 4a for connecting the turbine housing 1 to the bearing housing 100 of an exhaust gas turbocharger. The Lagergehäuseanschlussflansch 4a and the exhaust gas outlet flange 3a are designed as sheet-metal parts, in contrast to the exhaust gas inlet flange 2a, which is designed as a solid cast, forged or machined molded part. Further shows FIG. 2 a formed as a sheet-shaped part spiral housing part 4, on the Lagergehäuseanschlussflansch 4a facing side of the spiral housing and an inventively designed as a solid cast or forged contour component 6 on the side facing away from the Lagergehäuseanschlussflansch 4a side of the spiral housing, wherein the spiral housing in each case half through the spiral housing part 4th and, designed as a solid cast or forged part, contour component 6 is formed. The two, each one half shell of the spiral housing forming housing parts of the spiral housing are, for example, gas-tight welded together along their line of contact with a continuous weld. In addition, the in FIG. 2 Turbine housing 1 shown a Wastegatekanal 8 on the attached by the contour component 6, preferably welded and welded together, designed as a sheet-metal parts Wastegatgehäuseteile 8b is designed. Between the contour component 6 and the exhaust gas outlet flange 3a, the exhaust gas outlet pipe 3b is arranged, which is composed in this example of at least two sheet metal moldings. The exhaust outlet pipe 3b is seated on a shoulder in the outer region of the contour component 6 and connected to the contour component 6 on the entire circumference along the contact line continuously gastight manner, for example, welded. At the opposite end of the exhaust outlet pipe 3b, the Abgasaustrittsflasch 3a is also on the entire circumference along the line of contact continuously connected gas-tight with the exhaust outlet pipe 3b, for example, welded.
Between the exhaust gas inlet flange 2a and the contour component 6, the exhaust gas inlet pipe 2b is arranged. The exhaust gas inlet pipe 2b is also composed of at least two shell-shaped sheet-metal parts and on the one hand with the exhaust gas outlet flange 2a and on the other hand with the contour component 6 gas-tight, for example by welds connected. In addition, the in FIG. 2 Turbine housing 1 shown on a wastegate channel 8, which is fixed by the contour component 6, preferably welded and welded together, designed as a sheet-metal molded parts Wastegategehäuseteile 8b.

Das Konturbauteil 6, das den stabilisierenden Kern des Turbinengehäuses 1 bildet, weist neben der Kontur für den Spiralkanal 5 eine sich daran anschließende Wand des Abgaseintrittsspalts 5a und sich wiederum daran anschließend einen Dichtkonturbereich 9 auf, der in den Abgasaustrittsstutzen 7 übergeht. Sowohl der Abgaseintrittsspalt 5a als auch der Dichtkonturbereich 9, der den Konturspalt 12 (siehe Figur 1) definiert, als auch der Durchmesser des Abgasaustrittsstutzens 7 prägen die strömungstechnischen Eigenschaften bzw. den thermodynamischen Wirkungsgrad des Turbinengehäuses maßgeblich. Der Konturspalt 12 entspricht dem Abstand der Dichtkontur von der Außenkontur der Beschaufelung 10 des sich im Betrieb des Abgasturboladers drehenden Turbinenrads 11. Dieser Abstand muss im Betrieb des Abgasturboladers in allen Betriebspunkten möglichst genau eingehalten werden, um einerseits zu verhindern, dass das Turbinenrad am Turbinengehäuse anstreift und um andererseits zu verhindern, dass durch eine Verformung des Turbinengehäuses der Abstand der Dichtkontur 9 vom Turbinenrad und damit der Konturspalt zu groß wird, was einer unerwünschten Verschlechterung der thermodynamischen Eigenschaften der Turbine gleichkäme.The contour component 6, which forms the stabilizing core of the turbine housing 1, has, in addition to the contour for the spiral channel 5, a adjoining wall of the exhaust gas inlet gap 5a and, in turn, subsequently a sealing contour region 9, which merges into the exhaust gas outlet connection 7. Both the exhaust gas inlet gap 5a and the sealing contour region 9, the contour gap 12 (see FIG. 1 ), as well as the diameter of the exhaust outlet nozzle 7 significantly characterize the fluidic properties and the thermodynamic efficiency of the turbine housing. The contour gap 12 corresponds to the distance of the sealing contour from the outer contour of the blading 10 of the turbine wheel 11 rotating during operation of the exhaust gas turbocharger. This distance must be maintained as accurately as possible during operation of the exhaust gas turbocharger in order to prevent the turbine wheel from rubbing against the turbine housing and on the other hand to prevent that by a deformation of the turbine housing, the distance of the sealing contour 9 from the turbine wheel and thus the contour gap is too large, which would be an undesirable deterioration of the thermodynamic properties of the turbine.

Um derartige unerwünschte Verformungen des Turbinengehäuses 1 im Betrieb des Abgasturboladers zu vermeiden, ist bei einem Turbinengehäuse gemäß der Erfindung das den Dichtkonturbereich 9 des Turbinengehäuses 1 bildende Konturbauteil 6 als Gussbauteil oder als Schmiedebauteil ausgeführt, welches mit seinen benachbarten Gehäusebauteilen beispielsweise verschweißt ist und zusammen mit diesen ein einschaliges Turbinengehäuse bildet. Um das Gewicht des Turbinengehäuses und damit des gesamten Abgasturboladers möglichst gering zu halten, sind die dem Konturbauteil 6 benachbarten Gehäuseteile in Form von Blechteilen realisiert. Vorzugsweise sind bei diesem Ausführungsbeispiel alle Bauteile des Turbinengehäuses mit Ausnahme des Konturbauteils 6 und des Abgaseintrittsflansches 2a in Form von Blech-Formteilen ausgeführt, während das Konturbauteil 6 - wie bereits oben dargestellt - als Gussbauteil oder als Schmiedebauteil ausgeführt ist. Alle bereits oben genannten, für die Funktion und den Wirkungsgrad maßgeblichen Kontur- und Maßbereiche werden so durch das Konturbauteil definiert, und können durch hochgenaue Bearbeitung nur dieses einen Bauteils kostengünstig hergestellt und über den gesamten Betriebsbereich des Abgasturboladers stabil gewährleistet werden.In order to avoid such undesirable deformations of the turbine housing 1 during operation of the exhaust gas turbocharger is at a Turbine housing according to the invention, the contour part 9 of the turbine housing 1 forming contour component 6 designed as a cast component or as a forging, which is welded to its adjacent housing components, for example, and forms a single-shell turbine housing together with these. In order to keep the weight of the turbine housing and thus of the entire exhaust gas turbocharger as low as possible, the housing parts adjacent to the contour component 6 are realized in the form of sheet metal parts. Preferably, in this embodiment, all the components of the turbine housing with the exception of the contour component 6 and the Abgaseintrittsflansches 2a in the form of sheet-formed parts, while the contour component 6 - as already shown above - is designed as a cast component or as a forging. All previously mentioned, relevant for the function and efficiency contour and scale ranges are defined by the contour component, and can be produced by high-precision machining only this one component cost and stable over the entire operating range of the exhaust gas turbocharger.

Als Werkstoff für das Konturbauteil 6 wird vorzugsweise ein hochwarmfester Werkstoff, beispielsweise ein GGV-Werkstoff, ein E5S-Werkstoff, ein Stahlguss oder ein Stahlschmiedeteil verwendet.
Vorzugsweise ist die Wandstärke des Konturbauteils 6 größer als die Wandstärke seiner benachbarten, als Blech-Formteile ausgeführten Gehäuseteile, insbesondere weist das Konturbauteil zumindest die doppelte Wandstärke auf. Diese Maßnahmen tragen dazu bei, die Formstabilität des Turbinengehäuses 1 eines Abgasturboladers zu gewährleisten und damit im Betrieb des Abgasturboladers den thermodynamischen Wirkungsgrad der Turbine zu verbessern. Die im Betrieb des Abgasturboladers auftretenden Verformungen des Turbinengehäuses, insbesondere im Bereich der Dichtkontur des Konturbauteils, sind im Vergleich zum Stand der Technik reduziert, wobei gleichzeitig die Herstellkosten des Turbinengehäuses 1 und dessen Gewicht niedrig gehalten werden.
The material used for the contour component 6 is preferably a highly heat-resistant material, for example a GGV material, an E5S material, a cast steel or a steel forging.
Preferably, the wall thickness of the contour component 6 is greater than the wall thickness of its adjacent, designed as a sheet metal moldings housing parts, in particular, the contour component has at least twice the wall thickness. These measures help to ensure the dimensional stability of the turbine housing 1 of an exhaust gas turbocharger and thus to improve the thermodynamic efficiency of the turbine during operation of the exhaust gas turbocharger. The deformations of the turbine housing occurring during operation of the exhaust-gas turbocharger, in particular in the region of the sealing contour of the contour component, are reduced in comparison to the prior art, at the same time keeping the manufacturing costs of the turbine housing 1 and its weight low.

Bei dem in der Figur 2 gezeigten ersten Ausführungsbeispiel handelt es sich also um ein einschaliges Turbinengehäuse 1, bei welchem das Abgaseintrittsrohr 2b, der Abgasaustrittsflansch 3a und das Abgasaustrittsrohr 3b, der Lagergehäuseanschlussflansch 4a und der Spiralgehäuseteil 4, sowie das Wastegategehäuseteil 8b als Blech-Formteile ausgeführt sind, während der Abgaseintrittsflansch 2a und vor allem das Konturbauteil 6 als massives Gussbauteil oder als Schmiedebauteil ausgeführt ist.In the in the FIG. 2 Thus, the first embodiment shown is a single-shell turbine housing 1, in which the exhaust gas inlet pipe 2b, the Abgasaustrittsflansch 3a and the exhaust outlet 3b, the Lagergehäuseanschlussflansch 4a and the spiral housing part 4, and the Wastegategehäuseteil 8b are designed as sheet metal moldings, while the Abgaseintrittsflansch 2a and especially the contour component 6 is designed as a solid cast component or as a forging component.

Die Figur 3 zeigt eine perspektivische Skizze einer Schnittdarstellung eines erfindungsgemäßen Turbinengehäuses gemäß einem weiteren Ausführungsbeispiel. Das in der Figur 3 dargestellte Turbinengehäuse 1 stimmt mit dem Ausführungsbeispiel aus Figur 2 in wesentlichen Teilen überein, die hier nicht wiederholt beschrieben werden sollen.The FIG. 3 shows a perspective sketch of a sectional view of a turbine housing according to the invention according to a further embodiment. That in the FIG. 3 illustrated turbine housing 1 agrees with the embodiment FIG. 2 in essential parts, which will not be described repeatedly here.

Auch bei diesem weiteren Ausführungsbeispiel ist das Konturbauteil 6, das den stabilen Kern des Turbinengehäuses 1 bildet und vor allem den Abgaseintrittsspalt 5a sowie die Dichtkontur 9 definiert, als Gussbauteil oder als Schmiedebauteil ausgeführt, welches mit seinen benachbarten, als Blech-Formteile ausgeführten weiteren Gehäuseteilen verbunden, vorzugsweise verschweißt ist.Also in this further embodiment, the contour component 6, which forms the stable core of the turbine housing 1 and above all defines the exhaust gas inlet gap 5a and the sealing contour 9, designed as a cast component or as a forging component, which is connected to its adjacent, designed as sheet metal moldings other housing parts , preferably welded.

Dieses weitere Ausführungsbeispiel unterscheidet sich von dem in der Figur 2 gezeigten ersten Ausführungsbeispiel im Wesentlichen dadurch, dass ein Wastegatekanal 8 inklusive eines Ventilklappensitzes 8a und auch eine Lageraufnahme 8c für ein Antriebsgestänge 14a einer Wastegate-Ventilklappe 14 einstückig in das als Guss- oder Schmiedebauteil ausgeführte Konturbauteil 6 integriert ist. Als weiterer Unterschied ist in Figur 3 auch das Abgaseintrittsrohr zumindest zum Teil einstückig in das Konturbauteil 6 integriert. Beispielsweise ist der in der Figur 3 dargestellte obere Teil 2b' als integraler Bestandteil des Konturbauteils 6 ausgeführt wogegen der in der Figur 3 untere Teil des Abgaseintrittsrohrs 2b als Blech-Formteil mit einer geringeren Wandstärke ausgeführt und mit dem oberen Teil 2b' verbunden, beispielsweise verschweißt ist. Auch der Abgasaustrittsflansch 3a ist in dieser Ausführung des Turbinengehäuses als massives Guss- oder Schmiede- oder spanend hergestelltes Formteil ausgeführt.This further embodiment differs from that in the FIG. 2 shown first embodiment essentially in that a wastegate channel 8 including a valve flap seat 8a and also a bearing receptacle 8c for a drive linkage 14a of a wastegate valve flap 14 is integrally integrated into the run as a cast or forged component contour component 6. Another difference is in FIG. 3 Also, the exhaust gas inlet pipe at least partially integrated integrally into the contour component 6. For example, the one in the FIG. 3 illustrated upper part 2b 'as an integral part of the contour component 6 executed while the in the FIG. 3 Lower part of the exhaust gas inlet pipe 2b designed as a sheet metal molding with a smaller wall thickness and connected to the upper part 2b ', for example, is welded. Also the Exhaust outlet flange 3a is designed in this embodiment of the turbine housing as a solid cast or forged or machined molded part.

Bei einem Turbinengehäuse gemäß dem weiteren Ausführungsbeispiel ist der Grad der Integration von funktionswichtigen Konturen, Flächen, Maßen und Komponenten gegenüber dem ersten Ausführungsbeispiel weiter erhöht. Dadurch können die Herstellungskosten weiter reduziert und die Maßhaltigkeit des Turbinengehäuses weiter verbessert und dadurch der Wirkungsgrad und die Funktionssicherheit weiter verbessert werden.In a turbine housing according to the further embodiment, the degree of integration of functionally important contours, areas, dimensions and components is further increased compared to the first embodiment. As a result, the manufacturing costs can be further reduced and the dimensional accuracy of the turbine housing further improved and thereby the efficiency and reliability can be further improved.

Claims (11)

  1. Turbine housing (1) for an exhaust-gas turbocharger, having a bearing housing attachment flange (4a), having an exhaust-gas inlet duct (2), having a spiral duct (5), having an exhaust-gas inlet gap (5a), having a sealing contour region (9), and having an exhaust-gas outlet connector (7), said turbine housing having multiple interconnected housing parts, which include a central, unipartite contoured component (6) formed as a cast component or as a forged component which is connected to the housing parts adjacent thereto, which are formed at least partially as sheet-metal molded parts, characterized in that the bearing housing attachment flange (4a) is a sheet-metal molded part,
    - a part (4), which faces towards the bearing housing attachment flange (4a), of the spiral housing forming the spiral duct (5) forms a half-shell of the spiral housing and is formed as a sheet-metal molded part,
    - the central, unipartite contoured component (6) is provided in the turbine housing (1) on that side of the spiral duct (5) which faces away from the bearing housing attachment flange (4a), and forms a further half-shell of the spiral housing, and
    - the central, unipartite contoured component (6) has a wall region, situated on the side facing away from the bearing housing attachment flange (4a), of the spiral duct (5), a boundary wall, adjoining said wall region, of the exhaust-gas inlet gap (5a), and the sealing contour region (9) adjoining said wall region.
  2. Turbine housing according to Claim 1, characterized in that the contoured component (6) also has an exhaust-gas outlet connector (7) directly adjoining the sealing contour region.
  3. Turbine housing according to Claim 1 to 2, characterized in that the contoured component (6) also has at least a part of a wall of the exhaust-gas inlet duct (2b') which issues into the spiral duct (5).
  4. Turbine housing according in one of the preceding claims, characterized in that the contoured component (6) also has a wastegate duct (8) which is arranged in the wall region of the spiral duct (5) and which has a valve flap seat (8a).
  5. Turbine housing according to Claim 4, characterized in that the contoured component (6) also has a bearing receptacle (8c) for a drive linkage (14a) of a wastegate valve device (14).
  6. Turbine housing according to one of the preceding claims, characterized in that the wall thickness of the contoured component (6) is greater than the wall thickness of the adjacent housing parts formed as sheet-metal molded parts, in particular has at least twice the wall thickness of the adjacent housing parts formed as sheet-metal molded parts.
  7. Turbine housing according to one of the preceding claims, characterized in that the contoured component (6) has reworked contour and functional surfaces.
  8. Turbine housing according to one of the preceding claims, characterized in that the contoured component (6) is welded to the housing parts adjacent thereto.
  9. Turbine housing according to one of the preceding claims, characterized in that the contoured component (6) forms, with the housing parts adjacent thereto, a single-shell turbine housing.
  10. Turbine housing according to one of Claims 1 to 3, characterized in that, on the contoured component (6), a wastegate duct (8) is formed or at least extended by means of adjacent sheet-metal molded parts (8b).
  11. Turbine housing according to one of the preceding claims, characterized in that at least one of the following further housing parts of the turbine housing is at least partially constructed from sheet-metal molded parts: an exhaust-gas inlet pipe (2b), an exhaust-gas inlet flange (2a), an exhaust-gas outlet pipe (3b) and an exhaust-gas outlet flange (3a).
EP13726582.3A 2012-06-06 2013-06-05 Turbine housing for a turbocharger Active EP2859190B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012209562.4A DE102012209562B4 (en) 2012-06-06 2012-06-06 Turbine housing for an exhaust gas turbocharger
PCT/EP2013/061626 WO2013182619A1 (en) 2012-06-06 2013-06-05 Turbine housing for a turbocharger

Publications (2)

Publication Number Publication Date
EP2859190A1 EP2859190A1 (en) 2015-04-15
EP2859190B1 true EP2859190B1 (en) 2017-05-10

Family

ID=48570185

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13726582.3A Active EP2859190B1 (en) 2012-06-06 2013-06-05 Turbine housing for a turbocharger

Country Status (5)

Country Link
US (1) US9752457B2 (en)
EP (1) EP2859190B1 (en)
CN (1) CN104350236B (en)
DE (1) DE102012209562B4 (en)
WO (1) WO2013182619A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015054180A1 (en) * 2013-10-09 2015-04-16 Borgwarner Inc. Method of controlling wastegate flow using port side wall contour
DE102013226665A1 (en) * 2013-12-19 2015-06-25 Bosch Mahle Turbo Systems Gmbh & Co. Kg Turbine housing for an exhaust gas turbocharger
DE102014209666A1 (en) * 2013-12-19 2015-06-25 Bosch Mahle Turbo Systems Gmbh & Co. Kg Turbine housing for an exhaust gas turbocharger
DE102015006188A1 (en) * 2014-11-14 2016-05-19 Audi Ag Charger device for an internal combustion engine, corresponding internal combustion engine and method for operating an internal combustion engine
DE102017103980A1 (en) * 2017-02-27 2018-08-30 Man Diesel & Turbo Se turbocharger
WO2020065600A1 (en) * 2018-09-28 2020-04-02 Fb Design S.R.L. Improved turbocharger assembly

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29909018U1 (en) * 1999-05-26 2000-09-28 Heinrich Gillet GmbH & Co. KG, 67480 Edenkoben Turbine housing for exhaust gas turbochargers
DE10061846B4 (en) * 2000-12-12 2004-09-09 Daimlerchrysler Ag Exhaust gas turbocharger for an internal combustion engine
CN201246213Y (en) 2008-06-24 2009-05-27 吴疆富 Coaxial type mechanical supercharger
CN102203390A (en) * 2008-09-22 2011-09-28 柔性金属有限公司 Fabricated turbine housing
DE102009042260B4 (en) * 2009-09-22 2015-12-10 Benteler Automobiltechnik Gmbh turbocharger
FR2951497B1 (en) * 2009-10-15 2013-08-02 Faurecia Sys Echappement EFFORT RETRIEVAL ELEMENT FOR A TURBOCHARGER OF AN EXHAUST LINE.
JP5357738B2 (en) 2009-12-21 2013-12-04 三菱重工業株式会社 Turbine housing
DE102010005761A1 (en) * 2010-01-25 2011-07-28 Benteler Automobiltechnik GmbH, 33102 exhaust assembly
JP2011179370A (en) * 2010-02-26 2011-09-15 Toyota Motor Corp Turbocharger and wheel housing thereof
DE102011017419B4 (en) 2010-04-19 2021-11-18 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Deflection unit for a gas flow in a compressor and a compressor that contains it
US9021802B2 (en) 2010-08-26 2015-05-05 Honeywell International Inc. Turbine housing assembly with wastegate
DE102011009634B4 (en) * 2011-01-27 2017-03-09 Tenneco Gmbh turbocharger
WO2012105004A1 (en) * 2011-02-02 2012-08-09 三菱重工業株式会社 Sheet metal turbine housing

Also Published As

Publication number Publication date
DE102012209562A1 (en) 2013-12-12
US9752457B2 (en) 2017-09-05
EP2859190A1 (en) 2015-04-15
US20150184542A1 (en) 2015-07-02
DE102012209562B4 (en) 2017-08-31
CN104350236B (en) 2016-08-24
WO2013182619A1 (en) 2013-12-12
CN104350236A (en) 2015-02-11

Similar Documents

Publication Publication Date Title
EP2859190B1 (en) Turbine housing for a turbocharger
EP2388455B1 (en) Exhaust gas turbocharger
DE29909018U1 (en) Turbine housing for exhaust gas turbochargers
WO2010003537A2 (en) Turbine housing for an exhaust gas turbocharger of an internal combustion engine
EP3440319B1 (en) Turbocharger for an internal combustion engine
DE102017216329A1 (en) Radial compressor with an iris diaphragm mechanism for a charging device of an internal combustion engine, charging device and blade for the iris diaphragm mechanism
WO2019072486A1 (en) Valve flap device for a bypass valve of a turbocharger, and turbocharger
EP3452702B1 (en) Turbine housing for a turbocharger of an internal combustion engine, and turbocharger
DE102022210936A1 (en) HEAT SHIELD FOR A CHARGER
DE102014214226A1 (en) Composite compressor housing
EP2553275B1 (en) Turbocharger casing including valve housing and manufacturing process of such a casing
WO2012062407A1 (en) Insert element for a turbine of an exhaust gas turbocharger, exhaust gas turbocharger, and turbine for an exhaust gas turbocharger
EP2112332B1 (en) Supporting ring for a guide vane assembly with an air-sealed channel
EP3339601B1 (en) Turbocharger assembly
WO2010102696A2 (en) Exhaust gas turbocharger
DE102012001236A1 (en) Guide for a turbine of an exhaust gas turbocharger
DE102012205198A1 (en) Turbocharger for internal combustion engine, particularly gasoline engine or diesel engine of vehicle, comprises turbine housing, which has multiple outlet worms, where each outlet worm is adapted to generate turbulent flow of exhaust gas
DE102020202967A1 (en) Exhaust gas turbocharger with integral housing
DE102012022647A1 (en) Exhaust gas turbocharger for lifting cylinder internal combustion engine of motor vehicle, has portion limited by spine in axial direction, where spine comprises blade elements partially arranged in portion for compressing blade
WO2017001140A1 (en) Turbine-wheel housing for a turbocharger having a bypass valve which has a valve seat ring, and turbocharger, and method for producing a valve seat ring
DE10028161A1 (en) Exhaust turbocharger turbine casing cast by thin walled precision casting
DE102006028553B4 (en) Exhaust gas turbocharger and internal combustion engine with such an exhaust gas turbocharger
EP3601739A1 (en) Turbocharger for an internal combustion engine, and turbine housing
DE102022213729A1 (en) ADJUSTMENT RING FOR VARIABLE TURBINE GEOMETRY
WO2022228803A1 (en) Turbocharger comprising an integral housing and variable turbine geometry, and integral housing for a turbocharger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170116

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 892557

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013007233

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170510

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170810

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170910

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170810

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013007233

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20180213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170605

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130605

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 892557

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013007233

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013007233

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502013007233

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20230427 AND 20230503

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240630

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240628

Year of fee payment: 12