EP3855179A1 - Analysis device having liquid chromatograph, and liquid chromatograph analysis method - Google Patents

Analysis device having liquid chromatograph, and liquid chromatograph analysis method Download PDF

Info

Publication number
EP3855179A1
EP3855179A1 EP19862833.1A EP19862833A EP3855179A1 EP 3855179 A1 EP3855179 A1 EP 3855179A1 EP 19862833 A EP19862833 A EP 19862833A EP 3855179 A1 EP3855179 A1 EP 3855179A1
Authority
EP
European Patent Office
Prior art keywords
stream
liquid chromatograph
liquid
sample
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19862833.1A
Other languages
German (de)
French (fr)
Other versions
EP3855179A4 (en
Inventor
Shinya Matsuoka
Takayuki SUGIME
Daisuke Ebihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Corp filed Critical Hitachi High Tech Corp
Publication of EP3855179A1 publication Critical patent/EP3855179A1/en
Publication of EP3855179A4 publication Critical patent/EP3855179A4/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/46Flow patterns using more than one column
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/889Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 monitoring the quality of the stationary phase; column performance

Definitions

  • the present invention relates to an analysis device having a liquid chromatograph and a liquid chromatograph analysis method.
  • a liquid chromatograph mass spectrometry device is a device obtained by combining a mass spectrometer as a detector for a liquid chromatograph.
  • each component can be qualitatively and quantitatively determined even in a case of similar substances .
  • a target substance can be qualitatively and quantitatively determined even in a system which is metabolized in a body and in which many similar substances are mixed, such as a pharmaceutical in a biological sample, and application to a clinical examination field is expected.
  • a biochemical automatic analysis device used in the clinical examination field is commercially available as a device capable of performing measurement of 1 sample at 3.6 seconds, that is, 1000 specimens per hour (Non-PTL 1).
  • the number of specimens that can be processed per hour is referred to as a throughput, and in the example of the biochemical automatic analysis device described above, the throughput is 1000 specimens/hour.
  • a separation time of the liquid chromatograph is 240 seconds, for example, in a commercially available testosterone (male hormone) measurement kit.
  • a throughput in a case of using this measurement kit is 15 specimens/hour. This is only 1.5% of the throughput of 1000 specimens/hour which is an example of the throughput of the biochemical automatic analysis device, which poses a technical problem in processing a specimen in a clinical laboratory.
  • the technical problem described above is that the number of specimens which can be measured in the clinical laboratory within a certain period of time and is measured by the liquid chromatograph mass spectrometry device is limited, it takes a long time to report a result, and it is necessary to introduce more devices to process more specimens, which leads to a financial burden and an increase in a device installation space.
  • One method for improving the throughput includes a method in which a plurality of liquid chromatographs are provided in a single test apparatus, and eluates eluted from the plurality of liquid chromatographs are sequentially switched and measured by the mass spectrometer.
  • a liquid chromatograph mass spectrometry device including such a configuration is called a multi-stream liquid chromatograph mass spectrometry device.
  • the mass spectrometry device may measure only at a time period when a measurement target substance is contained in the eluates eluted from the liquid chromatographs. Therefore, for one measurement, a time to use the mass spectrometer is about several tens of seconds. Assuming that a time required for the measurement by the mass spectrometer is 36 seconds per measurement and a time required for separation by the liquid chromatograph is 144 seconds (36 ⁇ 4), if there are four liquid chromatograph devices, the mass spectrometer can sequentially process the eluate from each liquid chromatograph without any spare time, and a throughput of 100 specimens/hour can be obtained.
  • each liquid chromatograph is called a stream.
  • the stream includes at least a liquid feeding pump and a separation column.
  • a flow path switching valve is required to select one of the eluates from the plurality of streams and introduce the eluate into the mass spectrometer.
  • a sample introducing device to the liquid chromatograph may be provided for each stream, or may be shared by the plurality of streams.
  • PTL 1 discloses a configuration in which a plurality of separation columns are arranged in parallel, a separation column to be used is selected by switching a flow path from a mobile phase liquid feeding unit by a switching valve, and the separation column is connected to a single detector by a switching valve provided at a rear stage of the separation column.
  • An object of PTL 1 is to enable highly efficient and accurate search for a separation column and a mobile phase suitable for separation of a target component with such a configuration.
  • PTL 2 discloses a method of continuously analyzing many samples by providing a plurality of separation columns via a switching valve, and when one separation column reaches an end of life, automatically switching to another separation column.
  • Non-PTL 1 published by Hitachi High-Technologies Corporation, attached documents of "LABOSPECT006, AUTOMATIC ANALYSIS DEVICE AND ATTACHMENT THEREOF", June, 2017 revised, Overall Mechanism of Independent Administration Medical Device (http://www.info.pmda.go.jp/downfiles/md/PDF/530555/530555 _08B2X10005000038_A_01_04.pdf )
  • the multi-stream liquid chromatograph mass spectrometry device when a separation column of any stream is required to be exchanged, the stream becomes unusable. However, the multi-stream liquid chromatograph mass spectrometry device can continue to analyze a specimen as long as another stream is usable.
  • the multi-stream liquid chromatograph mass spectrometry device is configured to allow the separation column exchange of a stream whose separation column is required to be exchanged while continuing the measurement in another stream, it is possible to restore a stream subjected to the separation column exchange as a stream to be used for analysis.
  • a technique described in PTL 2 is a technique for automatically switching to another usable separation column when one separation column reaches an end of life.
  • An object of the invention is to implement an analysis device having a liquid chromatograph and a liquid chromatograph analysis method, which are capable of avoiding a condition in which a plurality of separation columns reach the end of life and a plurality of streams become unusable at the same time, and preventing a significant decrease in throughput and the stoppage of the device.
  • the invention is configured as follows.
  • An analysis device having a liquid chromatograph includes a plurality of liquid chromatographs each having a separation column for separating a measurement target substance from a sample, a liquid chromatograph selection unit for selecting one of the plurality of liquid chromatographs, a detector for detecting and analyzing the measurement target substance from an eluate eluted from the liquid chromatograph selected by the liquid chromatograph selection unit, and a control unit for controlling the plurality of liquid chromatographs, the liquid chromatograph selection unit, and the detector.
  • the control unit compares numbers of remaining usable times of the separation columns to each other, which are included in each of the plurality of liquid chromatographs, and controls the liquid chromatograph selection unit to select the liquid chromatograph having the separation column with a small number of usable times.
  • a liquid chromatograph analysis method in which a plurality of liquid chromatographs having a separation column for separating a measurement target substance from a sample is included, one of the plurality of liquid chromatographs is selected, a measurement target substance from an eluate eluted from the selected liquid chromatograph is detected by the detector and analyzed, and numbers of remaining usable times of the separation columns are compared to each other, which are included in each of the plurality of liquid chromatographs, and the liquid chromatograph having the separation column with a small number of usable times is selected.
  • the analysis device having a liquid chromatograph and a liquid chromatograph analysis method are implemented, whereby it is possible to avoid a condition in which a plurality of separation columns reach the end of life and a plurality of streams become unusable at the same time, and to prevent a significant decrease in throughput and the stoppage of the device.
  • FIG. 1 An overall configuration of a multi-stream liquid chromatograph mass spectrometry device to which an embodiment of the invention is applied will be described with reference to FIG. 1 .
  • the embodiment is an example of a case where the mass spectrometry device is used as an analysis device.
  • FIG. 1 is a diagram illustrating a minimum configuration of the multi-stream liquid chromatograph mass spectrometry device to which the embodiment of the invention is applied.
  • the invention may include additional elements such as the number of streams, an additional pump, and an additional valve.
  • the multi-stream liquid chromatograph mass spectrometry device to which the embodiment of the invention is applied is an example including three streams of a stream 1, a stream 2, and a stream 3, as will be described later. Each stream constitutes a liquid chromatograph.
  • the stream 1 includes a mobile phase liquid feeding unit 101 for feeding a mobile phase liquid (100a and 100b).
  • the mobile phase liquid feeding unit 101 includes two pumps (102a and 102b), feeds two different types of liquids at a specified ratio, and mixes them with a mixer part 103 for feeding. This function is called a gradient and is generally used in the liquid chromatograph.
  • the mobile phase liquid feeding unit is connected to one port (a circle mark 1) of a sample introduction switching valve 105 by a flow path A104.
  • a pressure gauge 123 is disposed in the flow path A104.
  • a sample suction nozzle 107 is connected to another port (a circle mark 5) of the sample introduction switching valve 105 via a flow path B106.
  • the sample suction nozzle 107 is inserted into a sample container 108 by a driving mechanism (not shown) to suction a sample 109 in the sample container.
  • the sample 109 is suctioned by a sample suction unit 110 such as a syringe pump.
  • the sample suction unit 110 is connected to a port (a circle mark 4) of the sample introduction switching valve 105 via a flow path C111.
  • a sample loop 112 is connected between a port (circle mark 3) and a port (circle mark 6) of the sample introduction switching valve 105.
  • the sample loop 112 is used to keep an amount of a sample introduced into the liquid chromatograph constant.
  • the sample suction nozzle 107, the sample introduction switching valve 105, and the sample suction unit 110 constitute a sample introducing unit.
  • a separation column 114 for separating a measurement target substance from the sample is connected to a port (circle mark 2) of the sample introduction switching valve 105 via a flow path D113.
  • the flow path D113 is connected to an upstream side of the separation column 114, a flow path E115 is connected to a downstream side, and the separation column 114 is connected to a port (circle mark 1) of a detector introduction stream switching valve A116 which is another switching valve via the flow path E115.
  • Components in a dotted line shown in FIG. 1 are defined as a single stream, which is referred to as the stream 1 (first stream).
  • the sample introduction switching valve 105 includes six ports, and adjacent ports are connected to each other inside the sample introduction switching valve 105.
  • the port of the circle mark 1 and the port of the circle mark 2 the port of the circle mark 3 and the port of the circle mark 4, as well as the port of the circle mark 5 and the port of the circle mark 6 are connected to each other, respectively.
  • the sample introduction switching valve 105 performs switching, the connected ports are switched from the state shown in FIG. 1 to a state in which the port of the circle mark 2 and the port of the circle mark 3, the port of the circle mark 4 and the port of the circle mark 5, as well as the port of the circle mark 6 and the port of the circle mark 1 are connected with each other, respectively.
  • the sample introduction switching valve 105 when the sample suction nozzle 107 is introduced into the sample 109 of the sample container 108 and the sample suction unit 110 performs a suction operation, the sample 109 is introduced into the sample loop 112 through the flow path B106.
  • the port of the circle mark 1, the port of the circle mark 6, the sample loop 112, the port of the circle mark 3, and the port of the circle mark 2 are connected.
  • the mobile phase is fed from the mobile phase liquid feeding unit 101 toward the port of the circle mark 1 side.
  • the sample 109 cut (introduced) into the sample loop 112 is introduced into the separation column 114.
  • the sample container 108 can be moved to a predetermined sample nozzle suction position by a sample introduction mechanism to be described later.
  • the multi-stream liquid chromatograph mass spectrometry device includes the plurality of streams.
  • three streams including the stream 2 defined as a configuration indicated by a one-dot chain line and the stream 3 defined as a configuration indicated by a two-dot chain line in FIG. 1 are provided. Therefore, the three stream configurations will be described as an example.
  • a separation column 117 of the stream 2 is connected to a port of a circle mark 3 of the detector introduction stream switching valve A116 via a flow path F118 at a downstream side (detector introduction stream switching valve 116 side).
  • a port of a circle mark 2 of the detector introduction stream switching valve A116 is connected to a port of a circle mark 1 of another detector introduction stream switching valve B122 .
  • a separation column 119 of the stream 3 is connected to a port of circle mark 3 of the detector introduction stream switching valve B122 via a flow path G120.
  • Each of the detector introduction stream switching valves A116 and B122 includes four ports, and the adjacent ports are connected with each other.
  • the detector introduction stream switching valves A116 and B122 constitute a liquid chromatograph selection unit.
  • the detector introduction stream switching valve A116 switches between the stream 1 and the stream 2 to a side on which the eluate is fed to the detector introduction stream switching valve B122 on the detector 121 (mass spectrometry device) side and a side on which the eluate is fed to a drain.
  • the detector 121 detects and analyzes the measurement target substance from the eluate eluted from the liquid chromatograph.
  • the detector introduction stream switching valve B122 on the detector 121 side switches between an eluate from the detector introduction stream switching valve A116 (an eluate from the stream 1 or the stream 2) and an eluate from the stream 3, and selects the eluate to be fed to the detector 121.
  • the stream measured by the detector 121 can be switched, and the single detector 121 can be shared among the plurality of streams 1, 2, and 3.
  • a port of a circle mark 1 and the port of the circle mark 2 of the detector introduction stream switching valve A116 are connected to each other, and the port of the circle mark 3 and a port of a circle mark 4 are connected to each other.
  • the port of the circle mark 1 and a port of a circle mark 2 of the detector introduction stream switching valve B122 are connected to each other, and the port of the circle mark 3 and a port of a circle mark 4 are connected to each other.
  • the port of the circle mark 1 and the port of the circle mark 4 of the detector introduction stream switching valve A116 are connected to each other, and the port of the circle mark 3 and the port of the circle mark 2 are connected to each other.
  • the port of the circle mark 1 and the port of the circle mark 2 of the detector introduction stream switching valve B122 are connected to each other, and the port of the circle mark 3 and the port of the circle mark 4 are connected to each other.
  • the port of the circle mark 1 and the port of the circle mark 4 of the detector introduction stream switching valve A116 are connected to each other, and the port of the circle mark 3 and the port of the circle mark 2 are connected to each other.
  • the port of the circle mark 1 and the port of the circle mark 4 of the detector introduction stream switching valve B122 are connected to each other, and the port of the circle mark 3 and the port of the circle mark 2 are connected to each other.
  • a display unit 124 is connected to the detector 121.
  • the display unit 124 displays a necessity of exchange of the separation column that reaches an end of life.
  • FIG. 2 is a diagram explaining the sample introduction mechanism.
  • the stream 1, 2, or 3 into which the sample is introduced to perform the measurement is selected by the sample introduction mechanism 200 according to a measurement item and a use situation.
  • the sample introduction mechanism 200 includes a sample disk 202 containing a plurality of sample container holders 201 each holding the sample container 108.
  • a sample nozzle 107 for stream 1 that introduces the sample into the stream 1, a sample nozzle 204 for stream 2 that introduces the sample into the stream 2, and a sample nozzle 205 for stream 3 that introduces the sample into the stream 3 are disposed in the vicinity of the sample disk 202.
  • the sample nozzle 106 for stream 1, the second sample nozzle 204 for stream 2, and the sample nozzle 205 for stream 3 can be moved up and down and rotated by the driving mechanism (not shown).
  • Each of the sample nozzles 107, 204, and 205 is provided at a position on circumference of the sample disk 202 on which the sample container holders 201 are provided so as to be accessible by the vertical and rotational operations described above.
  • the sample introduction mechanism 200 is controlled by a control unit 206 such that the sample container 108 is moved to the predetermined sample nozzle suction position.
  • the control unit 206 controls the liquid chromatographs (the stream 1, the stream 2, and the stream 3), the liquid chromatograph selection unit (116 and 122), the detector 121, and the display unit 124.
  • the control unit 206 determines one of the streams 1, 2, and 3 to which the sample 109 is to be fed, using measurement request information which is a measurement item measurement order of the plurality of samples 109 to be continuously measured, information on the stream 1, 2, or 3 to be used determined by the measurement item, and information on the stream 1, 2, or 3 which is usable at a current time point as a determination reference.
  • FIG. 3 is a flow chart for determining the stream to be used.
  • FIGS. 4A to 4D are diagrams showing the method for determining a stream to be used based on a use state and the remaining number of use of the stream.
  • the control unit 206 determines a stream to be used based on the flow shown in FIG. 3 , and controls operations of the sample introduction mechanism 200, the streams 1 to 3, the detector introduction stream switching valve A116, the detector introduction stream switching valve B122, the detector 121, and the display unit 124.
  • the control unit 206 stores the remaining number of use of each stream.
  • the invention is applicable to a multi-stream liquid chromatograph mass spectrometry device having two or more streams.
  • FIG. 3 is the flow chart of the method for determining the stream to be used.
  • a specific time for example, 60 seconds
  • the multi-stream liquid chromatograph mass spectrometry device has one sample introduction timing within one cycle.
  • the number of cycles to be used varies depending on the measurement items in measurement using the cycle as a unit. This is because a time required for separation in the liquid chromatograph varies depending on the substance.
  • the control unit 206 determines whether there are one or more usable streams in the cycle (step S1). When there is no usable stream, the sample introduction in the cycle is skipped (step S3).
  • FIG. 4A An example of this case is shown in FIG. 4A .
  • a circle mark indicates that a stream is being used and in a state in which next measurement cannot be started.
  • a timing at which the next measurement is desired to be started is defined as a 0th cycle, and cycles before and after the 0th cycle are defined as a -1th cycle and a +lth cycle.
  • the next measurement cannot be started. Therefore, the measurement cannot be started at the 0th cycle, and the next measurement start timing is shifted to the next cycle afterwards.
  • step S1 when it is determined that there are one or more usable streams in the cycle at a time point thereof, it is determined in step S2 whether there is only one usable stream in the cycle. When there is only one usable stream in the cycle, the usable stream is used (step S5). An example of this case is shown in FIG. 4B .
  • the usable stream for the next measurement is only the stream 1 in the 0th cycle (only the stream 1 is the triangular mark, and the streams 2 and 3 are both circle marks) . Therefore, in the 0th cycle, the next measurement is started using the stream 1.
  • step S2 when there is more than one usable stream in the cycle, the determination is performed by the method specific to the embodiment of the invention. That is, in step S2, when there is more than one usable stream in the cycle, a process proceeds to step S4, and it is determined whether there is more than one stream having a minimum remaining number of use of the separation column.
  • step S4 When it is determined in step S4 that there are a plurality of streams each having the minimum remaining number of use of the separation column, the process proceeds to step S7, and a stream having a smaller stream number among the plurality of streams is used. An example of this case is shown in FIG. 4C .
  • FIG. 4C in the 0th cycle, there are two usable streams of the stream 1 and the stream 2.
  • FIG. 4C shows a case where the stream 1 is usable and the next measurement is started (triangular mark).
  • FIG. 4C shows a case where the stream 2 is usable but the next measurement is not started (black triangular mark).
  • the remaining numbers of use of the separation columns of the stream 1 and the stream 2 in a stage before the next measurement is started (-1th cycle) are compared, the remaining numbers of use are 50 which is the same for both of the stream 1 and the stream 2.
  • the next measurement is started using the stream 1 having a smaller stream number (step S7).
  • step S4 When it is determined in step S4 that there is not more than one, but only one stream having the minimum remaining number of use of the separation column, the process proceeds to step S6, and the stream to which a separation column having the minimum remaining number of use is connected is used. An example of this case is shown in FIG. 4D .
  • FIG. 4D in the 0th cycle, there are two usable streams of the stream 1 and the stream 2.
  • FIG. 4D shows a case where the stream 1 is usable but the next measurement is not started (black triangular mark) .
  • FIG. 4D shows a case where the stream 2 is usable and the next measurement is started (triangular mark).
  • the stream 2 is selected based on the determination reference according to the embodiment of the invention, and the next measurement is started using the stream 2 (step S6).
  • the remaining number of use of the stream 2 is further reduced. Accordingly, a life of the stream 2 reaches earlier than a life of the stream 1, and it is possible to prevent the stream 1 and the stream 2 from reaching an end of the life at the same period.
  • a stream having a smaller stream number is used based on the determination reference, and thus a stream having a smaller stream number reaches the end of life earlier, and it is possible to prevent the plurality of streams from reaching the end of life at the same period.
  • the number of times the separation column can be used is defined as the remaining number of use.
  • the remaining number of use of the separation column can be defined by the number of times the separation column can be used, an upper limit of pressure in the flow path, a limit of a fluctuation in a holding time of the liquid chromatograph, and the like.
  • the method for defining the remaining number of use by the number of times the separation column can be used is described.
  • a method of setting an upper limit of the increased pressure of the flow path and enabling the separation column to be used until the upper limit of the pressure of the flow path is reached is a method of defining the remaining number of use of the separation column by the upper limit of the pressure of the flow path.
  • the remaining number of use is calculated based on a difference between the pressure at that time point and a predetermined allowable pressure upper limit value (reference pressure), and a stream having a minimum difference with the allowable pressure upper limit (having the minimum remaining number of use) is preferentially used.
  • a reference value of a holding time of the specific component of the measurement target substance is set in advance, a limit value is set for a difference (deviation time) between an actually detected holding time of the specific component of the measurement target substance and a time reference value of the holding time, and when the limit value is exceeded, it is determined that the separation column reaches the end of life.
  • a stream having a larger deviation time from the reference value of the holding time is preferentially used.
  • This method can be performed by calculating the remaining number of use based on a difference value between the holding time of the specific component of the measurement target substance and the time reference value of the holding time, and selecting a stream having a smaller remaining number of use for use.
  • the holding time of the liquid chromatograph can be determined based on data output by the detector 121, the output of the detector 121 is supplied to the control unit 206, and the control unit 206 determines the holding time of the liquid chromatograph in each of the streams 1, 2, and 3, and determines a stream to be used.
  • a stream including a separation column having a smaller remaining number of use and a shorter time period until the end of life can be preferentially used.
  • the stream including the separation column having a smaller remaining number of use at a certain time point is more likely to be used even after the time point based on the determination reference according to the embodiment of the invention, and thus has a high possibility of reaching the end of life earlier than other streams.
  • the multi-stream liquid chromatograph it is possible to reduce a risk of the plurality of streams reaching the end of life at the same time or close period which causes a decrease in the throughput and a decrease in the device.
  • the analysis device having the liquid chromatograph and the liquid chromatograph analysis method are implemented, whereby it is possible to avoid a condition in which a plurality of separation columns reach the end of life and a plurality of streams become unusable at the same time, and to prevent a significant decrease in throughput and the stoppage of the device.
  • the example described above is an example in which the detector 121 is used as the mass spectrometry device, but the invention is not limited to the example in which the mass spectrometry device is used as the detector, and an ultraviolet visible light absorption photometer, an electrochemical measurement detector, and the like can also be used as the detector.
  • the detector refers to a device including an element which converts a concentration of the measurement target substance into an electric amount such as a voltage or a current, and examples thereof include the mass spectrometer (mass spectrometry device), the ultraviolet visible light absorption photometer, and the electrochemical measurement detector.
  • the plurality of streams can be grouped (for example, divided into a group of the streams 1 and 2, and the stream 3), and life management can be performed for each group.
  • life management can be performed for each group.
  • the remaining number of use can be averaged, the number of use of the stream can be controlled such that the stream 3 is preferentially used and reaches the end of life earlier than the stream 1 and the stream 2. With this control, it is possible to avoid a situation in which all streams reach the end of life at almost the same time while using the selected plurality of streams in average.
  • the display unit 124 displays necessity of exchange of the separation column which reaches the end of life, and may display the tables shown in FIGS. 4A to 4D .
  • the streams are numbered such as the stream 1 and the stream 2, and operation control is performed such that the stream 1 is preferentially used first, the stream 1 reaches the end of life earlier than the stream 2, so that it is possible to avoid a situation in which the stream 1 and the stream 2 reach the end of life almost at the same time.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

An analysis device having a liquid chromatograph and a method for analyzing a liquid chromatograph is realized, which is capable of preventing a plurality of separation columns from reaching the end of life and preventing a plurality of streams from being unusable at the same time so as to suppress a significant decrease in throughput and the stoppage of the device.
A control unit determines whether a usable stream is 0 or not among streams 1, 2, and 3, and in a case where none of the streams are usable, the control unit skips a sample introduction in the cycle. In a case where there is one usable stream in the cycle, the stream is used. In a case where there are multiple streams that are usable in the cycle, and there are multiple streams of which the remaining number of use of a separation column is the minimum, the stream having the smallest stream number is used. In a case where there is one stream of which the remaining number of use of a separation column is the minimum, the stream to which the separation column having the minimum remaining number of use is connected is used.

Description

    Technical Field
  • The present invention relates to an analysis device having a liquid chromatograph and a liquid chromatograph analysis method.
  • Background Art
  • A liquid chromatograph mass spectrometry device is a device obtained by combining a mass spectrometer as a detector for a liquid chromatograph. By combining separation for a chemical structure of a substance by the liquid chromatograph and separation for a mass of the substance by the mass spectrometer, each component can be qualitatively and quantitatively determined even in a case of similar substances . With this feature, for example, a target substance can be qualitatively and quantitatively determined even in a system which is metabolized in a body and in which many similar substances are mixed, such as a pharmaceutical in a biological sample, and application to a clinical examination field is expected.
  • When the liquid chromatograph mass spectrometry device is applied to the clinical examination field, there is a problem that the separation by the liquid chromatograph takes a relatively long time. For example, a biochemical automatic analysis device used in the clinical examination field is commercially available as a device capable of performing measurement of 1 sample at 3.6 seconds, that is, 1000 specimens per hour (Non-PTL 1).
  • The number of specimens that can be processed per hour is referred to as a throughput, and in the example of the biochemical automatic analysis device described above, the throughput is 1000 specimens/hour. On the other hand, a separation time of the liquid chromatograph is 240 seconds, for example, in a commercially available testosterone (male hormone) measurement kit. A throughput in a case of using this measurement kit is 15 specimens/hour. This is only 1.5% of the throughput of 1000 specimens/hour which is an example of the throughput of the biochemical automatic analysis device, which poses a technical problem in processing a specimen in a clinical laboratory.
  • Specifically, the technical problem described above is that the number of specimens which can be measured in the clinical laboratory within a certain period of time and is measured by the liquid chromatograph mass spectrometry device is limited, it takes a long time to report a result, and it is necessary to introduce more devices to process more specimens, which leads to a financial burden and an increase in a device installation space.
  • Therefore, in order to apply the liquid chromatograph mass spectrometry device to the clinical examination field, it is necessary to improve the throughput.
  • One method for improving the throughput includes a method in which a plurality of liquid chromatographs are provided in a single test apparatus, and eluates eluted from the plurality of liquid chromatographs are sequentially switched and measured by the mass spectrometer. A liquid chromatograph mass spectrometry device including such a configuration is called a multi-stream liquid chromatograph mass spectrometry device.
  • The mass spectrometry device (mass spectrometer) may measure only at a time period when a measurement target substance is contained in the eluates eluted from the liquid chromatographs. Therefore, for one measurement, a time to use the mass spectrometer is about several tens of seconds. Assuming that a time required for the measurement by the mass spectrometer is 36 seconds per measurement and a time required for separation by the liquid chromatograph is 144 seconds (36 × 4), if there are four liquid chromatograph devices, the mass spectrometer can sequentially process the eluate from each liquid chromatograph without any spare time, and a throughput of 100 specimens/hour can be obtained.
  • In the multi-stream liquid chromatograph mass spectrometry device, each liquid chromatograph is called a stream. The stream includes at least a liquid feeding pump and a separation column. A flow path switching valve is required to select one of the eluates from the plurality of streams and introduce the eluate into the mass spectrometer. A sample introducing device to the liquid chromatograph may be provided for each stream, or may be shared by the plurality of streams.
  • As a multi-stream liquid chromatograph mass spectrometry device, for example, PTL 1 discloses a configuration in which a plurality of separation columns are arranged in parallel, a separation column to be used is selected by switching a flow path from a mobile phase liquid feeding unit by a switching valve, and the separation column is connected to a single detector by a switching valve provided at a rear stage of the separation column.
  • An object of PTL 1 is to enable highly efficient and accurate search for a separation column and a mobile phase suitable for separation of a target component with such a configuration.
  • Further, PTL 2 discloses a method of continuously analyzing many samples by providing a plurality of separation columns via a switching valve, and when one separation column reaches an end of life, automatically switching to another separation column.
  • Citation list Patent Literature
    • PTL 1: JP-A-2017-161335
    • PTL 2: JP-A-6-324027
    Non-Patent Literature
  • Non-PTL 1: published by Hitachi High-Technologies Corporation, attached documents of "LABOSPECT006, AUTOMATIC ANALYSIS DEVICE AND ATTACHMENT THEREOF", June, 2017 revised, Overall Mechanism of Independent Administration Medical Device (http://www.info.pmda.go.jp/downfiles/md/PDF/530555/530555 _08B2X10005000038_A_01_04.pdf)
  • Summary of Invention Technical Problem
  • Since a performance of the separation column used in the liquid chromatograph is deteriorated due to the measurement, periodic exchange is required.
  • In the multi-stream liquid chromatograph mass spectrometry device, when a separation column of any stream is required to be exchanged, the stream becomes unusable. However, the multi-stream liquid chromatograph mass spectrometry device can continue to analyze a specimen as long as another stream is usable.
  • Further, when the multi-stream liquid chromatograph mass spectrometry device is configured to allow the separation column exchange of a stream whose separation column is required to be exchanged while continuing the measurement in another stream, it is possible to restore a stream subjected to the separation column exchange as a stream to be used for analysis.
  • In the clinical examination field, it is important to maintain a posture in which the measurement can be performed when a measurement request arrives, and it is an extremely important advantage of the multi-stream liquid chromatograph mass spectrometry device that even when a certain stream becomes unusable, an operation of the device can be continued by using another stream.
  • However, even when the multi-stream liquid chromatograph mass spectrometry device is used, if the separation columns of the plurality of streams are required to be exchanged at the same or close timing, the analysis of the specimen cannot be continued, resulting in a significant decrease in the throughput and a stop of the device.
  • Therefore, it is necessary to temporally disperse the separation column exchange timings between the streams in the multi-stream liquid chromatograph mass spectrometry device.
  • A technique described in PTL 2 is a technique for automatically switching to another usable separation column when one separation column reaches an end of life.
  • However, in the technique described in PTL 2, in a case of a multi-stream configuration using a plurality of streams, when separation columns of the plurality of streams reach ends of life at the same or close timing, a switchable and usable separation column does not exist, and thus analysis of a specimen cannot be continued.
  • Further, in the technique described in PTL 2, in the case of the multi-stream configuration, a timing at which the plurality of separation columns reach the ends of life cannot be controlled.
  • An object of the invention is to implement an analysis device having a liquid chromatograph and a liquid chromatograph analysis method, which are capable of avoiding a condition in which a plurality of separation columns reach the end of life and a plurality of streams become unusable at the same time, and preventing a significant decrease in throughput and the stoppage of the device.
  • Solution to Problem
  • In order to achieve the object described above, the invention is configured as follows.
  • An analysis device having a liquid chromatograph includes a plurality of liquid chromatographs each having a separation column for separating a measurement target substance from a sample, a liquid chromatograph selection unit for selecting one of the plurality of liquid chromatographs, a detector for detecting and analyzing the measurement target substance from an eluate eluted from the liquid chromatograph selected by the liquid chromatograph selection unit, and a control unit for controlling the plurality of liquid chromatographs, the liquid chromatograph selection unit, and the detector. The control unit compares numbers of remaining usable times of the separation columns to each other, which are included in each of the plurality of liquid chromatographs, and controls the liquid chromatograph selection unit to select the liquid chromatograph having the separation column with a small number of usable times.
  • Further, there is provided a liquid chromatograph analysis method, in which a plurality of liquid chromatographs having a separation column for separating a measurement target substance from a sample is included, one of the plurality of liquid chromatographs is selected, a measurement target substance from an eluate eluted from the selected liquid chromatograph is detected by the detector and analyzed, and numbers of remaining usable times of the separation columns are compared to each other, which are included in each of the plurality of liquid chromatographs, and the liquid chromatograph having the separation column with a small number of usable times is selected.
  • Advantageous Effect
  • According to the invention, the analysis device having a liquid chromatograph and a liquid chromatograph analysis method are implemented, whereby it is possible to avoid a condition in which a plurality of separation columns reach the end of life and a plurality of streams become unusable at the same time, and to prevent a significant decrease in throughput and the stoppage of the device.
  • Brief Description of Drawings
    • [FIG. 1] FIG. 1 is a diagram illustrating a minimum configuration of a multi-stream liquid chromatograph mass spectrometry device to which an example of the present invention is applied.
    • [FIG. 2] FIG. 2 is a diagram explaining a sample introduction mechanism.
    • [FIG. 3] FIG. 3 is a flow chart for determining a stream to be used.
    • [FIG. 4A] FIG. 4A is a diagram showing a table that explains a method for determining a stream to be used from the use state and the remaining number of use of the stream.
    • [FIG. 4B] FIG. 4B is a diagram showing a table that explains a method for determining a stream to be used from the use state and the remaining number of use of the stream.
    • [FIG. 4C] FIG. 4C is a diagram showing a table that explains a method for determining a stream to be used from the use state and the remaining number of use of the stream.
    • [FIG. 4D] FIG. 4D is a diagram showing a table that explains a method for determining a stream to be used from the use state and the remaining number of use of the stream.
    Description of Embodiments
  • Hereinafter, an embodiment of the invention will be described in detail with reference to the accompanying drawings. In the drawings, common parts are denoted by the same reference numerals, and repetitive description thereof will be omitted.
  • Embodiment
  • An overall configuration of a multi-stream liquid chromatograph mass spectrometry device to which an embodiment of the invention is applied will be described with reference to FIG. 1. The embodiment is an example of a case where the mass spectrometry device is used as an analysis device.
  • FIG. 1 is a diagram illustrating a minimum configuration of the multi-stream liquid chromatograph mass spectrometry device to which the embodiment of the invention is applied. The invention may include additional elements such as the number of streams, an additional pump, and an additional valve.
  • In FIG. 1, the multi-stream liquid chromatograph mass spectrometry device to which the embodiment of the invention is applied is an example including three streams of a stream 1, a stream 2, and a stream 3, as will be described later. Each stream constitutes a liquid chromatograph.
  • In the multi-stream liquid chromatograph mass spectrometry device, the stream 1 includes a mobile phase liquid feeding unit 101 for feeding a mobile phase liquid (100a and 100b). The mobile phase liquid feeding unit 101 includes two pumps (102a and 102b), feeds two different types of liquids at a specified ratio, and mixes them with a mixer part 103 for feeding. This function is called a gradient and is generally used in the liquid chromatograph. The mobile phase liquid feeding unit is connected to one port (a circle mark 1) of a sample introduction switching valve 105 by a flow path A104. A pressure gauge 123 is disposed in the flow path A104.
  • A sample suction nozzle 107 is connected to another port (a circle mark 5) of the sample introduction switching valve 105 via a flow path B106. The sample suction nozzle 107 is inserted into a sample container 108 by a driving mechanism (not shown) to suction a sample 109 in the sample container. The sample 109 is suctioned by a sample suction unit 110 such as a syringe pump. The sample suction unit 110 is connected to a port (a circle mark 4) of the sample introduction switching valve 105 via a flow path C111.
  • A sample loop 112 is connected between a port (circle mark 3) and a port (circle mark 6) of the sample introduction switching valve 105. The sample loop 112 is used to keep an amount of a sample introduced into the liquid chromatograph constant.
  • The sample suction nozzle 107, the sample introduction switching valve 105, and the sample suction unit 110 constitute a sample introducing unit.
  • A separation column 114 for separating a measurement target substance from the sample is connected to a port (circle mark 2) of the sample introduction switching valve 105 via a flow path D113. The flow path D113 is connected to an upstream side of the separation column 114, a flow path E115 is connected to a downstream side, and the separation column 114 is connected to a port (circle mark 1) of a detector introduction stream switching valve A116 which is another switching valve via the flow path E115.
  • Components in a dotted line shown in FIG. 1 are defined as a single stream, which is referred to as the stream 1 (first stream).
  • The sample introduction switching valve 105 includes six ports, and adjacent ports are connected to each other inside the sample introduction switching valve 105. In a state shown in FIG. 1, the port of the circle mark 1 and the port of the circle mark 2, the port of the circle mark 3 and the port of the circle mark 4, as well as the port of the circle mark 5 and the port of the circle mark 6 are connected to each other, respectively. When the sample introduction switching valve 105 performs switching, the connected ports are switched from the state shown in FIG. 1 to a state in which the port of the circle mark 2 and the port of the circle mark 3, the port of the circle mark 4 and the port of the circle mark 5, as well as the port of the circle mark 6 and the port of the circle mark 1 are connected with each other, respectively.
  • First, in the state of the sample introduction switching valve 105 shown in FIG. 1, when the sample suction nozzle 107 is introduced into the sample 109 of the sample container 108 and the sample suction unit 110 performs a suction operation, the sample 109 is introduced into the sample loop 112 through the flow path B106. When the sample introduction switching valve 105 is switched from this state, the port of the circle mark 1, the port of the circle mark 6, the sample loop 112, the port of the circle mark 3, and the port of the circle mark 2 are connected. The mobile phase is fed from the mobile phase liquid feeding unit 101 toward the port of the circle mark 1 side.
  • Therefore, the sample 109 cut (introduced) into the sample loop 112 is introduced into the separation column 114.
  • The sample container 108 can be moved to a predetermined sample nozzle suction position by a sample introduction mechanism to be described later.
  • As described above, the multi-stream liquid chromatograph mass spectrometry device includes the plurality of streams. Here, three streams including the stream 2 defined as a configuration indicated by a one-dot chain line and the stream 3 defined as a configuration indicated by a two-dot chain line in FIG. 1 are provided. Therefore, the three stream configurations will be described as an example.
  • Since the configurations of the stream 2 and the stream 3 are the same as the configuration of the stream 1 described above, the description of each component will be omitted.
  • A separation column 117 of the stream 2 is connected to a port of a circle mark 3 of the detector introduction stream switching valve A116 via a flow path F118 at a downstream side (detector introduction stream switching valve 116 side). A port of a circle mark 2 of the detector introduction stream switching valve A116 is connected to a port of a circle mark 1 of another detector introduction stream switching valve B122 .
  • A separation column 119 of the stream 3 is connected to a port of circle mark 3 of the detector introduction stream switching valve B122 via a flow path G120. Each of the detector introduction stream switching valves A116 and B122 includes four ports, and the adjacent ports are connected with each other. The detector introduction stream switching valves A116 and B122 constitute a liquid chromatograph selection unit.
  • The detector introduction stream switching valve A116 switches between the stream 1 and the stream 2 to a side on which the eluate is fed to the detector introduction stream switching valve B122 on the detector 121 (mass spectrometry device) side and a side on which the eluate is fed to a drain. The detector 121 detects and analyzes the measurement target substance from the eluate eluted from the liquid chromatograph.
  • The detector introduction stream switching valve B122 on the detector 121 side switches between an eluate from the detector introduction stream switching valve A116 (an eluate from the stream 1 or the stream 2) and an eluate from the stream 3, and selects the eluate to be fed to the detector 121.
  • By switching the detector introduction stream switching valves A116 and B122, the stream measured by the detector 121 can be switched, and the single detector 121 can be shared among the plurality of streams 1, 2, and 3.
  • When the eluate from the stream 1 is fed to the detector 121, a port of a circle mark 1 and the port of the circle mark 2 of the detector introduction stream switching valve A116 are connected to each other, and the port of the circle mark 3 and a port of a circle mark 4 are connected to each other. Further, when the eluate from the stream 1 is fed to the detector 121, the port of the circle mark 1 and a port of a circle mark 2 of the detector introduction stream switching valve B122 are connected to each other, and the port of the circle mark 3 and a port of a circle mark 4 are connected to each other.
  • When the eluate from the stream 2 is fed to the detector 121, the port of the circle mark 1 and the port of the circle mark 4 of the detector introduction stream switching valve A116 are connected to each other, and the port of the circle mark 3 and the port of the circle mark 2 are connected to each other. Further, when the eluate from the stream 2 is fed to the detector 121, the port of the circle mark 1 and the port of the circle mark 2 of the detector introduction stream switching valve B122 are connected to each other, and the port of the circle mark 3 and the port of the circle mark 4 are connected to each other.
  • When the eluate from the stream 3 is fed to the detector 121, the port of the circle mark 1 and the port of the circle mark 4 of the detector introduction stream switching valve A116 are connected to each other, and the port of the circle mark 3 and the port of the circle mark 2 are connected to each other. Further, when the eluate from the stream 3 is fed to the detector 121, the port of the circle mark 1 and the port of the circle mark 4 of the detector introduction stream switching valve B122 are connected to each other, and the port of the circle mark 3 and the port of the circle mark 2 are connected to each other.
  • A display unit 124 is connected to the detector 121. The display unit 124 displays a necessity of exchange of the separation column that reaches an end of life.
  • Next, a sample introduction mechanism 200 in which the sample container 108 is moved to a predetermined sample nozzle suction position at which the sample suction nozzle suctions the sample 109 will be described with reference to FIG. 2. FIG. 2 is a diagram explaining the sample introduction mechanism.
  • In FIG. 2, the stream 1, 2, or 3 into which the sample is introduced to perform the measurement is selected by the sample introduction mechanism 200 according to a measurement item and a use situation. The sample introduction mechanism 200 includes a sample disk 202 containing a plurality of sample container holders 201 each holding the sample container 108.
  • A sample nozzle 107 for stream 1 that introduces the sample into the stream 1, a sample nozzle 204 for stream 2 that introduces the sample into the stream 2, and a sample nozzle 205 for stream 3 that introduces the sample into the stream 3 are disposed in the vicinity of the sample disk 202.
  • The sample nozzle 106 for stream 1, the second sample nozzle 204 for stream 2, and the sample nozzle 205 for stream 3 can be moved up and down and rotated by the driving mechanism (not shown).
  • Each of the sample nozzles 107, 204, and 205 is provided at a position on circumference of the sample disk 202 on which the sample container holders 201 are provided so as to be accessible by the vertical and rotational operations described above. The sample introduction mechanism 200 is controlled by a control unit 206 such that the sample container 108 is moved to the predetermined sample nozzle suction position. The control unit 206 controls the liquid chromatographs (the stream 1, the stream 2, and the stream 3), the liquid chromatograph selection unit (116 and 122), the detector 121, and the display unit 124.
  • The control unit 206 determines one of the streams 1, 2, and 3 to which the sample 109 is to be fed, using measurement request information which is a measurement item measurement order of the plurality of samples 109 to be continuously measured, information on the stream 1, 2, or 3 to be used determined by the measurement item, and information on the stream 1, 2, or 3 which is usable at a current time point as a determination reference.
  • Next, a method for determining a stream to be used as a main part of the embodiment of the invention will be described with reference to FIGS. 3, 4A, 4B, 4C, and 4D. FIG. 3 is a flow chart for determining the stream to be used. Further, FIGS. 4A to 4D are diagrams showing the method for determining a stream to be used based on a use state and the remaining number of use of the stream. The control unit 206 determines a stream to be used based on the flow shown in FIG. 3, and controls operations of the sample introduction mechanism 200, the streams 1 to 3, the detector introduction stream switching valve A116, the detector introduction stream switching valve B122, the detector 121, and the display unit 124. The control unit 206 stores the remaining number of use of each stream.
  • Here, the case of a configuration having the three stream exemplified in FIG. 1 will be described. The invention is applicable to a multi-stream liquid chromatograph mass spectrometry device having two or more streams.
  • First, the method for determining the stream to be used will be described with reference to FIG. 3. FIG. 3 is the flow chart of the method for determining the stream to be used.
  • As a premise, a specific time (for example, 60 seconds) is taken as a cycle, and the multi-stream liquid chromatograph mass spectrometry device has one sample introduction timing within one cycle. The number of cycles to be used varies depending on the measurement items in measurement using the cycle as a unit. This is because a time required for separation in the liquid chromatograph varies depending on the substance.
  • The control unit 206 determines whether there are one or more usable streams in the cycle (step S1). When there is no usable stream, the sample introduction in the cycle is skipped (step S3).
  • An example of this case is shown in FIG. 4A. In FIG. 4A, a circle mark indicates that a stream is being used and in a state in which next measurement cannot be started. A timing at which the next measurement is desired to be started is defined as a 0th cycle, and cycles before and after the 0th cycle are defined as a -1th cycle and a +lth cycle. At a time point of the 0th cycle, all of the stream 1, the stream 2, and the stream 3 are being used in previous measurement, and the next measurement cannot be started. Therefore, the measurement cannot be started at the 0th cycle, and the next measurement start timing is shifted to the next cycle afterwards.
  • In the +lth cycle which is the next cycle, since the stream 1 is usable (triangular mark), the next measurement is started using the stream 1.
  • In step S1, when it is determined that there are one or more usable streams in the cycle at a time point thereof, it is determined in step S2 whether there is only one usable stream in the cycle. When there is only one usable stream in the cycle, the usable stream is used (step S5). An example of this case is shown in FIG. 4B.
  • In FIG. 4B, the usable stream for the next measurement is only the stream 1 in the 0th cycle (only the stream 1 is the triangular mark, and the streams 2 and 3 are both circle marks) . Therefore, in the 0th cycle, the next measurement is started using the stream 1.
  • In step S2, when there is more than one usable stream in the cycle, the determination is performed by the method specific to the embodiment of the invention. That is, in step S2, when there is more than one usable stream in the cycle, a process proceeds to step S4, and it is determined whether there is more than one stream having a minimum remaining number of use of the separation column.
  • When it is determined in step S4 that there are a plurality of streams each having the minimum remaining number of use of the separation column, the process proceeds to step S7, and a stream having a smaller stream number among the plurality of streams is used. An example of this case is shown in FIG. 4C.
  • In FIG. 4C, in the 0th cycle, there are two usable streams of the stream 1 and the stream 2. FIG. 4C shows a case where the stream 1 is usable and the next measurement is started (triangular mark). FIG. 4C shows a case where the stream 2 is usable but the next measurement is not started (black triangular mark). In this state, when the remaining numbers of use of the separation columns of the stream 1 and the stream 2 in a stage before the next measurement is started (-1th cycle) are compared, the remaining numbers of use are 50 which is the same for both of the stream 1 and the stream 2. In this case, the next measurement is started using the stream 1 having a smaller stream number (step S7).
  • When it is determined in step S4 that there is not more than one, but only one stream having the minimum remaining number of use of the separation column, the process proceeds to step S6, and the stream to which a separation column having the minimum remaining number of use is connected is used. An example of this case is shown in FIG. 4D.
  • In FIG. 4D, in the 0th cycle, there are two usable streams of the stream 1 and the stream 2. FIG. 4D shows a case where the stream 1 is usable but the next measurement is not started (black triangular mark) . FIG. 4D shows a case where the stream 2 is usable and the next measurement is started (triangular mark). In this state, when the remaining numbers of use of the separation columns in the stage before the next measurement is started (-1th cycle) are compared, the remaining number of use for the stream 1 is 50 times and the remaining number of use for the stream 2 is 40 times. In this case, the stream 2 is selected based on the determination reference according to the embodiment of the invention, and the next measurement is started using the stream 2 (step S6). By using the stream 2 having the remaining number of use smaller than that of the stream 1, the remaining number of use of the stream 2 is further reduced. Accordingly, a life of the stream 2 reaches earlier than a life of the stream 1, and it is possible to prevent the stream 1 and the stream 2 from reaching an end of the life at the same period.
  • When the remaining numbers of use are the same, a stream having a smaller stream number is used based on the determination reference, and thus a stream having a smaller stream number reaches the end of life earlier, and it is possible to prevent the plurality of streams from reaching the end of life at the same period.
  • Since a performance of the separation column deteriorates as being used for the measurement, it is necessary to set a certain standard and exchange the separation column when the standard is reached. In the invention, the number of times the separation column can be used is defined as the remaining number of use. The remaining number of use of the separation column can be defined by the number of times the separation column can be used, an upper limit of pressure in the flow path, a limit of a fluctuation in a holding time of the liquid chromatograph, and the like. In the embodiment described above, the method for defining the remaining number of use by the number of times the separation column can be used is described.
  • As the separation column is used, a pressure loss increases due to contamination and the like. Therefore, for example, pressure in the flow path of the liquid feeding pumps (102a and 102b) measured by the pressure gauge 123 increases as the number of times the separation column is used increases. A method of setting an upper limit of the increased pressure of the flow path and enabling the separation column to be used until the upper limit of the pressure of the flow path is reached is a method of defining the remaining number of use of the separation column by the upper limit of the pressure of the flow path.
  • In this case, in the determination of the stream to be used, the remaining number of use is calculated based on a difference between the pressure at that time point and a predetermined allowable pressure upper limit value (reference pressure), and a stream having a minimum difference with the allowable pressure upper limit (having the minimum remaining number of use) is preferentially used.
  • In the method of using the holding time of the liquid chromatograph as a reference of the remaining number of use of the separation column, a reference value of a holding time of the specific component of the measurement target substance is set in advance, a limit value is set for a difference (deviation time) between an actually detected holding time of the specific component of the measurement target substance and a time reference value of the holding time, and when the limit value is exceeded, it is determined that the separation column reaches the end of life. In this case, a stream having a larger deviation time from the reference value of the holding time is preferentially used. This method can be performed by calculating the remaining number of use based on a difference value between the holding time of the specific component of the measurement target substance and the time reference value of the holding time, and selecting a stream having a smaller remaining number of use for use.
  • The holding time of the liquid chromatograph can be determined based on data output by the detector 121, the output of the detector 121 is supplied to the control unit 206, and the control unit 206 determines the holding time of the liquid chromatograph in each of the streams 1, 2, and 3, and determines a stream to be used.
  • As described above, according to the embodiment of the invention, when there is more than one usable stream, a stream including a separation column having a smaller remaining number of use and a shorter time period until the end of life can be preferentially used. The stream including the separation column having a smaller remaining number of use at a certain time point is more likely to be used even after the time point based on the determination reference according to the embodiment of the invention, and thus has a high possibility of reaching the end of life earlier than other streams.
  • On the other hand, other streams are used less frequently, so that the remaining number of use thereof is more likely to remain at the time point when the one stream reaches the end of life.
  • Accordingly, in the multi-stream liquid chromatograph, it is possible to reduce a risk of the plurality of streams reaching the end of life at the same time or close period which causes a decrease in the throughput and a decrease in the device.
  • Therefore, according to the embodiment of the invention, the analysis device having the liquid chromatograph and the liquid chromatograph analysis method are implemented, whereby it is possible to avoid a condition in which a plurality of separation columns reach the end of life and a plurality of streams become unusable at the same time, and to prevent a significant decrease in throughput and the stoppage of the device.
  • The example described above is an example in which the detector 121 is used as the mass spectrometry device, but the invention is not limited to the example in which the mass spectrometry device is used as the detector, and an ultraviolet visible light absorption photometer, an electrochemical measurement detector, and the like can also be used as the detector.
  • In the invention, the detector refers to a device including an element which converts a concentration of the measurement target substance into an electric amount such as a voltage or a current, and examples thereof include the mass spectrometer (mass spectrometry device), the ultraviolet visible light absorption photometer, and the electrochemical measurement detector.
  • Further, the plurality of streams can be grouped (for example, divided into a group of the streams 1 and 2, and the stream 3), and life management can be performed for each group. For example, in the group of the streams 1 and 2, the remaining number of use can be averaged, the number of use of the stream can be controlled such that the stream 3 is preferentially used and reaches the end of life earlier than the stream 1 and the stream 2. With this control, it is possible to avoid a situation in which all streams reach the end of life at almost the same time while using the selected plurality of streams in average.
  • Further, as described above, it is also possible to group the plurality of streams, average the number of use of the stream in the group, and perform control such that the end of life of the stream of the selected group reaches earlier between the groups.
  • The display unit 124 displays necessity of exchange of the separation column which reaches the end of life, and may display the tables shown in FIGS. 4A to 4D.
  • Further, when the invention is applied to a multi-stream liquid chromatograph device including two streams, the streams are numbered such as the stream 1 and the stream 2, and operation control is performed such that the stream 1 is preferentially used first, the stream 1 reaches the end of life earlier than the stream 2, so that it is possible to avoid a situation in which the stream 1 and the stream 2 reach the end of life almost at the same time.
  • Reference Sign List
  • 100a and 100b:
    Mobile phase liquid
    101:
    Mobile phase liquid feeding unit
    102a and 102b:
    Pump
    103:
    Mixer part
    104:
    Flow path A
    105:
    Sample introduction switching valve
    106:
    Flow path B
    107:
    Sample suction nozzle
    108:
    Sample container
    109:
    Sample
    110:
    Sample suction unit
    111:
    Flow path C
    112:
    Sample loop
    113:
    Flow path D
    114:
    Separation column
    115:
    Flow path E
    116:
    Detector introduction stream switching valve A
    117:
    Separation column
    118:
    Flow path F
    119:
    Separation column
    120:
    Flow path G
    121:
    Detector
    122:
    Detector introduction stream switching valve B
    123:
    Pressure gauge
    124:
    Display unit
    200:
    Sample introduction mechanism
    201:
    Sample container holder
    202:
    Sample disk
    204:
    Sample nozzle for stream 2
    205:
    Sample nozzle for stream 3
    206:
    Control unit

Claims (10)

  1. An analysis device having a liquid chromatograph comprising:
    a plurality of liquid chromatographs each having a separation column for separating a measurement target substance from a sample;
    a liquid chromatograph selection unit for selecting one of the plurality of liquid chromatographs;
    a detector for detecting and analyzing the measurement target substance from an eluate eluted from the liquid chromatograph selected by the liquid chromatograph selection unit; and
    a control unit for controlling the plurality of liquid chromatographs, the liquid chromatograph selection unit, and the detector,
    wherein the control unit compares numbers of remaining usable times of the separation columns to each other, which are included in each of the plurality of liquid chromatographs, and controls the liquid chromatograph selection unit to select the liquid chromatograph having the separation column with a small number of usable times.
  2. The analysis device having a liquid chromatograph according to claim 1,
    wherein the liquid chromatograph includes a mobile phase liquid feeding unit for feeding a mobile phase liquid, a sample introducing unit for introducing the sample and feeding the introduced sample as a solution using the mobile phase liquid fed from the mobile phase feeding unit to the separation column, and a pressure gauge for measuring a liquid feeding pressure from the mobile phase liquid feeding unit,
    wherein the control unit calculates a difference between a pressure measured by the pressure gauge and a predetermined reference pressure, and calculates the remaining number of use from the calculated difference value.
  3. The analysis device having a liquid chromatograph according to claim 1,
    wherein the control unit calculates a difference between a retention time reference value of a specific component of the measurement target substance detected by the detector and a predetermined retention time of the specific component, and calculates the remaining number of use from the calculated difference value.
  4. The analysis device having a liquid chromatograph according to any one of claims 1, 2, and 3,
    wherein the plurality of liquid chromatographs are numbered, and the control unit controls the liquid chromatograph selection unit to select the liquid chromatograph having a small numbered liquid chromatograph, in a case where there exist the separation columns of which the number of remaining usable times are the same as each other, among the separation columns included in the plurality of liquid chromatographs.
  5. The analysis device having a liquid chromatograph according to any one of claims 1, 2, 3, and 4,
    wherein the detector is a mass spectrometer.
  6. A liquid chromatograph analysis method, in which a plurality of liquid chromatographs having a separation column for separating a measurement target substance from a sample is included, one of the plurality of liquid chromatographs is selected, a measurement target substance from an eluate eluted from the selected liquid chromatograph is detected by the detector and analyzed, and numbers of remaining usable times of the separation columns are compared to each other, which are included in each of the plurality of liquid chromatographs, and the liquid chromatograph having the separation column with a small number of usable times is selected.
  7. The liquid chromatograph analysis method according to claim 6,
    wherein the liquid chromatograph includes a mobile phase liquid feeding unit for feeding a mobile phase liquid, a sample introducing unit for introducing the sample and feeding the introduced sample as a solution using the mobile phase liquid fed from the mobile phase feeding unit to the separation column, and a pressure gauge for measuring a liquid feeding pressure from the mobile phase liquid feeding unit,
    wherein a difference between a pressure measured by the pressure gauge and a predetermined reference pressure is calculated, and the remaining number of use is calculated from the calculated difference value.
  8. The liquid chromatograph analysis method according to claim 6,
    wherein a difference between a retention time of a specific component of the measurement target substance detected by the detector and a predetermined retention time of the specific component is calculated, and the remaining number of use is calculated from the calculated difference value.
  9. The liquid chromatograph analysis method according to any one of claims 6, 7, and 8,
    wherein the plurality of liquid chromatographs are numbered, and among the separation columns of the plurality of liquid chromatographs, in a case where there exist the separation columns of which the number of remaining usable times are the same as each other, the liquid chromatograph selection unit is controlled to select the liquid chromatograph having a small numbered liquid chromatograph.
  10. The liquid chromatograph analysis method according to any one of claims 6, 7, 8, and 9,
    wherein the detector is a mass spectrometer.
EP19862833.1A 2018-09-21 2019-07-24 Analysis device having liquid chromatograph, and liquid chromatograph analysis method Pending EP3855179A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018178002 2018-09-21
PCT/JP2019/029082 WO2020059290A1 (en) 2018-09-21 2019-07-24 Analysis device having liquid chromatograph, and liquid chromatograph analysis method

Publications (2)

Publication Number Publication Date
EP3855179A1 true EP3855179A1 (en) 2021-07-28
EP3855179A4 EP3855179A4 (en) 2022-06-15

Family

ID=69888699

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19862833.1A Pending EP3855179A4 (en) 2018-09-21 2019-07-24 Analysis device having liquid chromatograph, and liquid chromatograph analysis method

Country Status (5)

Country Link
US (1) US11567044B2 (en)
EP (1) EP3855179A4 (en)
JP (1) JP7262472B2 (en)
CN (1) CN112740030B (en)
WO (1) WO2020059290A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117571897B (en) * 2023-11-15 2024-04-30 青岛惠安康生物工程有限公司 Liquid chromatograph-mass spectrometer and switching device

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454350A (en) * 1987-08-26 1989-03-01 Japan Spectroscopic Co Separation column for chromatograph and administration device thereof
JP2800509B2 (en) * 1990-11-30 1998-09-21 株式会社日立製作所 Liquid chromatograph
JP3053131B2 (en) * 1991-09-17 2000-06-19 株式会社日立製作所 High-performance liquid chromatograph with guard column
JPH06324027A (en) * 1993-05-12 1994-11-25 Hitachi Ltd Automatic liquid chromatography
JP3346965B2 (en) * 1995-09-14 2002-11-18 株式会社日立製作所 Amino acid analyzer
DE19540527A1 (en) * 1995-10-31 1997-05-07 Hewlett Packard Gmbh Identification modules for exchangeable components in analytical instruments
JP2004085357A (en) * 2002-08-27 2004-03-18 Shimadzu Corp Data management device for chromatograph device
JP2004163339A (en) * 2002-11-15 2004-06-10 Shimadzu Corp Data managing device for chromatograph
AU2005208148A1 (en) * 2004-01-28 2005-08-11 Council Of Scientific And Industrial Research A method for standardization of chemical and therapeutic values of foods & medicines using animated chromatographic fingerprinting
US20080244437A1 (en) * 2007-03-29 2008-10-02 Fischer Gregory T Quick Glance Maintenance Interface for an Analytical Device
CN102008837B (en) * 2010-09-30 2012-09-05 中国科学院昆明植物研究所 Separating preparative chromatography apparatus comprising serial preparative chromatography column
WO2013134483A1 (en) * 2012-03-07 2013-09-12 Waters Technologies Corporation Device capable of pressurization and associated systems and methods
JP6203557B2 (en) 2013-07-05 2017-09-27 株式会社日立製作所 Separation apparatus and separation method
US10890566B2 (en) * 2013-08-28 2021-01-12 Shimadzu Corporation Automatic analysis control device and program
JP2015052533A (en) 2013-09-06 2015-03-19 株式会社日立製作所 Chromatography device and chromatography method
JP6331484B2 (en) * 2014-03-04 2018-05-30 株式会社島津製作所 Liquid chromatograph control device and liquid chromatograph control method
WO2016105514A1 (en) * 2014-12-23 2016-06-30 Biotech Institute, Llc A reliable and robust method for the analysis of cannabinoids and terpenes in cannabis
US11835501B2 (en) * 2015-07-13 2023-12-05 Sartorius Stedim Chromatography Systems Ltd. Optimizing operating binding capacity for a multiple column chromatography process
JP6682923B2 (en) 2016-03-09 2020-04-15 株式会社島津製作所 Fluid chromatograph
EP3535578A4 (en) 2016-11-04 2020-06-17 Rosemount Inc. A method of monitoring the components of gas analyser
DE102016121516B4 (en) * 2016-11-10 2019-03-28 Dionex Softron Gmbh Method and apparatus for sample loading
CN106680353B (en) * 2017-03-21 2019-04-16 上海通微分析技术有限公司 A kind of electric chromatogram apparatus
JP6790963B2 (en) * 2017-03-30 2020-11-25 株式会社島津製作所 Liquid chromatograph
CN108037233B (en) * 2017-12-28 2024-05-03 大连博迈科技发展有限公司 Multi-dimensional liquid chromatographic separation system based on full online detection of same detector
CN108310902A (en) * 2018-04-02 2018-07-24 苏州阿洛斯环境发生器有限公司 VOCs processing equipments
CN112041673A (en) * 2018-04-20 2020-12-04 詹森生物科技公司 Transition analysis method for chromatographic column identification

Also Published As

Publication number Publication date
CN112740030A (en) 2021-04-30
WO2020059290A1 (en) 2020-03-26
EP3855179A4 (en) 2022-06-15
US11567044B2 (en) 2023-01-31
JPWO2020059290A1 (en) 2021-11-18
JP7262472B2 (en) 2023-04-21
US20210356443A1 (en) 2021-11-18
CN112740030B (en) 2024-02-13

Similar Documents

Publication Publication Date Title
EP2633327B1 (en) System layout for an automated system for sample preparation and analysis
JP6843932B2 (en) Sample injector
US20050277199A1 (en) Single-pass compound purification and analysis
US20070134808A1 (en) Simultaneous multi-column liquid chromatograph for direct sampling of an array of liquid samples
WO2014068786A1 (en) Chromatographic analyzing device
JP2020038205A5 (en)
EP3786634A1 (en) Techniques for checking state of analyzers
EP3855179A1 (en) Analysis device having liquid chromatograph, and liquid chromatograph analysis method
CN112912736B (en) Automatic analysis device
JP5707264B2 (en) Sample introduction device
US20200158698A1 (en) Controlling apparatus for liquid chromatograph, method for controlling liquid chromatograph, and liquid-chromatographic analyzing system
JP7046070B2 (en) Methods for Identifying Reagents During Processes in Analytical Systems
JP5195686B2 (en) Liquid chromatograph
CN116670514A (en) Control method for specimen pretreatment device
US20190293611A1 (en) Method for identifying a reagent during a process in an analysis system
EP4261536A1 (en) Method for controlling automated analysis device
US11940427B2 (en) Liquid chromatography—stream equivalence by single stream calibration
US11898997B2 (en) Sample injector
US20240319222A1 (en) Automatic Analysis Device
WO2022185682A1 (en) Method for controlling liquid chromatograph mass spectrometry device, and liquid chromatograph mass spectrometry device
US20240102974A1 (en) Gas chromatograph and carrier gas usage amount display method
JP2023117671A (en) Method for measuring calibrator and liquid chromatograph apparatus
JPS63151860A (en) Automatic analyzer

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210421

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20220517

RIC1 Information provided on ipc code assigned before grant

Ipc: G01N 30/72 20060101ALI20220511BHEP

Ipc: G01N 30/46 20060101ALI20220511BHEP

Ipc: G01N 30/32 20060101ALI20220511BHEP

Ipc: G01N 27/62 20210101ALI20220511BHEP

Ipc: G01N 30/86 20060101AFI20220511BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240619