EP3851646A1 - Gas/gas-mischer zum einleiten von gas in den abgasstrom einer brennkraftmaschine - Google Patents

Gas/gas-mischer zum einleiten von gas in den abgasstrom einer brennkraftmaschine Download PDF

Info

Publication number
EP3851646A1
EP3851646A1 EP21150148.1A EP21150148A EP3851646A1 EP 3851646 A1 EP3851646 A1 EP 3851646A1 EP 21150148 A EP21150148 A EP 21150148A EP 3851646 A1 EP3851646 A1 EP 3851646A1
Authority
EP
European Patent Office
Prior art keywords
gas
exhaust gas
mixer body
body part
mixer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP21150148.1A
Other languages
English (en)
French (fr)
Other versions
EP3851646B1 (de
Inventor
Enver Kurpejovic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eberspaecher Exhaust Technology GmbH and Co KG
Original Assignee
Eberspaecher Exhaust Technology GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eberspaecher Exhaust Technology GmbH and Co KG filed Critical Eberspaecher Exhaust Technology GmbH and Co KG
Publication of EP3851646A1 publication Critical patent/EP3851646A1/de
Application granted granted Critical
Publication of EP3851646B1 publication Critical patent/EP3851646B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus

Definitions

  • the present invention relates to a gas / gas mixer with which gas can be introduced into the exhaust gas flow of an internal combustion engine.
  • a gas / gas mixer in which a mixer body with a drop-like cross section protrudes into an exhaust gas flow channel formed in a tubular exhaust gas guide element.
  • the mixer body can be flowed around in the manner of a support surface by exhaust gas flowing in the exhaust duct and has a plurality of gas discharge openings via which a gas supply volume inside the mixer body is discharged into the exhaust gas stream flowing around the mixer body.
  • the object of the present invention is to provide a gas / gas mixer for introducing gas into the exhaust gas flow of an internal combustion engine, with which an improved mixing of exhaust gas with gas to be introduced into the exhaust gas flow can be achieved.
  • a gas / gas mixer for introducing gas, for example air or burner exhaust gas, into the exhaust gas flow of an internal combustion engine, comprising an exhaust gas flow channel in an exhaust gas routing element through which exhaust gas can flow, a mixer body arranged in the exhaust gas routing element and having a plurality of in the exhaust gas flow channel Exhaust gas throughflow openings through which flowing exhaust gas can flow, wherein a gas supply volume through which gas to be introduced into the exhaust gas flow can flow is formed in the mixer body, and wherein the gas supply volume is open to the exhaust gas flow channel via a plurality of gas discharge openings.
  • gas for example air or burner exhaust gas
  • the gas / gas mixer not only has the gas discharge openings through which the exhaust gas to be introduced into the exhaust gas flow is discharged, but also has exhaust gas through-flow openings through which the or at least a substantial part of the exhaust gas flowing in the exhaust gas flow channel flows.
  • the mixer body be plate-like and arranged in the exhaust gas guide element transversely to a main exhaust gas flow direction of the exhaust gas flowing through the exhaust gas flow channel.
  • the gas supply volume can be provided in the mixer body, for example, in that the mixer body comprises a first mixer body part arranged in the exhaust gas guide element oriented in the upstream direction and a second mixer body part arranged in the exhaust gas guide element oriented in the downstream direction, the gas feed volume essentially between the first mixer body part and the second Mixer body part is formed.
  • the first mixer body part can be designed essentially like a plate and the second mixer body part can be designed essentially like a plate.
  • plate-like refers to a structure of the mixer body or the mixer body parts in which they have a significantly smaller thickness than their extent transversely to the direction of thickness.
  • a fastening area fixed to the exhaust gas routing element be provided on one of the mixer body parts, preferably the second mixer body part, and that on the other Mixer body part, preferably the first mixer body part, a second fastening area, which is fixed on one mixer body part, is provided.
  • the first fastening area can comprise a preferably essentially cylindrical fastening edge fixed on an inner circumferential surface of the exhaust gas routing element in an outer circumferential area of one mixer body part, and / or the second fastening area can have a preferably essentially cylindrical fastening edge fixed on one mixer body part in an outer circumferential area of the other mixer body part.
  • a plurality of through-flow holes can be provided in the second mixer body part, and in the first mixer body part, in association with each through-flow hole of the second mixer body part, one that extends onto the second mixer body part and conducts exhaust gas in the direction of the associated through-flow hole , preferably tubular or funnel-like, throughflow formation providing a throughflow channel of the first mixer body part can be provided.
  • An efficient mixing of exhaust gas and the gas to be introduced into it can be further supported by the fact that in at least one, preferably each exhaust gas flow opening, a gas discharge opening is formed between a flow hole edge area of the second mixer body part surrounding the flow hole in the second mixer body part and the flow formation of the first mixer body part .
  • the gas discharge openings thus have a ring-like structure and, with this ring-like structure, each circumvent an area in which a respective exhaust gas flow opening is guided.
  • At least one gas discharge opening can be provided in the second mixer body part between the flow-through holes provided in the second mixer body part. At least one can go further Gas discharge opening can be provided in the first mixer body part, preferably in the area of at least one throughflow formation.
  • the through-flow formation can rest against a through-hole edge area of the second mixer body part surrounding the through-flow hole in the second mixer body part, preferably in such a way that the gas supply volume in the Area of this exhaust gas through-flow opening is essentially closed against the escape of gas.
  • the first mixer body part is a formed sheet metal part and / or that the second mixer body part is a formed sheet metal part.
  • a gas supply channel to the gas supply volume which is passed through a wall of the exhaust gas guiding element, can be open on an outer circumferential area of the mixer body.
  • An efficient intermixing of gas and exhaust gas can further be ensured that the mixer body is arranged in the exhaust gas routing element in such a way that exhaust gas in the exhaust gas flow channel in the area of the mixer body essentially only flows through the exhaust gas flow openings. This ensures that essentially all of the exhaust gas flowing in the exhaust gas flow channel flows through the exhaust gas throughflow openings provided in the mixer body and is thus directed into an area in which the gas to be introduced into the exhaust gas exits the mixer body.
  • the Fig. 1 shows a gas / gas mixer 12 arranged in an exhaust system 10 of an internal combustion engine.
  • the gas / gas mixer 12 comprises a tubular, for example essentially cylindrical, exhaust gas guiding element 14 which, with a tubular wall 16, delimits an exhaust gas flow channel 18.
  • exhaust gas A flows essentially in a main exhaust gas flow direction H along the exhaust gas guiding element 14.
  • the main exhaust gas flow direction H can essentially also correspond to the direction of longitudinal extent or a longitudinal center axis L of the tubular exhaust gas routing element 14.
  • the gas / gas mixer 12 comprises a mixer body 20 in the exhaust gas routing element 14.
  • the mixer body 20 is basically essentially plate-like, which means that its extension, for example transverse to the main exhaust gas flow direction H or to the longitudinal center axis L, is significantly greater than its size Expansion in the main exhaust gas flow direction H.
  • the mixer body 20 is arranged in the exhaust gas guide element 14 or in the exhaust gas flow channel 18 essentially transversely or orthogonally to the main exhaust gas flow direction H, which means that the mixer body 20 with its thickness direction or thickness expansion is oriented essentially in the main exhaust gas flow direction H or in the direction of the longitudinal center axis L.
  • the mixer body 20 comprises two mixer body parts 22, 24.
  • the first mixer body part 22 is arranged in the exhaust gas flow channel 18 in such a way that it is oriented in the upstream direction, so that the exhaust gas A that is to flow in the main exhaust gas flow direction H onto the mixer body 20 is initially directed to the first mixer body part 22 impinges.
  • the second mixer body part 24 is oriented in the downstream direction in the exhaust gas flow channel 18 and is thus positioned essentially on the downstream side of the first mixer body part 22.
  • the two mixer body parts 22, 24 are also designed in the manner of plates and are provided, for example, as formed sheet metal parts.
  • the outer circumferential contour of the second mixer body part 24 is adapted to the inner circumferential contour of the wall 16 of the tubular exhaust gas guiding element 14. If the exhaust gas routing element 14 has, for example, a circular inner circumferential contour in the area in which the mixer body 20 is positioned, the outer circumferential contour of the second mixer body part is then advantageously equally circular.
  • the second mixer body part 20 has, in an outer circumferential region 26 thereof, a fastening edge 28 that is bent in the main exhaust gas flow direction H and preferably completely encircling in the circumferential direction.
  • the fastening edge 18 is fixed by welding 30 on the inner surface of the wall 16 of the exhaust gas routing element 14, so that when the fastening edge 28 is configured completely in the circumferential direction, exhaust gas cannot pass between the wall 16 of the exhaust gas routing element 14 and the second mixer body part 24 is.
  • the fastening edge 28 is also provided with several bent in the main exhaust gas flow direction H and provided at a distance from one another and, for example, in each case by welding on the Exhaust gas guide element 14 could be formed fixed fastening edge tabs.
  • the first mixer body part 22 is fixed on the side of the plate-like second mixer body part 24 which is oriented in the upstream direction.
  • the first mixer body part 22 has an outer circumferential contour which approximately corresponds to the outer circumferential contour of the second mixer body part 24 or the inner circumferential contour of the exhaust gas routing element, but is dimensioned smaller than the second mixer body part 24.
  • Main flow direction H bent, preferably completely circumferential fastening edge 34 in the circumferential direction. This is fixed by welding 36 on the side of the second mixer body part 24 oriented in the upstream direction.
  • the two mixer body parts 22, 24 could also be designed in such a way that the first mixer body part 22 is dimensioned somewhat larger than the second mixer body part 24 and has a fastening edge 34 extending to a greater extent in the main exhaust gas flow direction H. This can then encompass the fastening edge 28 of the second mixer body part 24 on its outside, so that the second mixer body part 24 can be inserted into the first mixer body part 22.
  • the fastening edge 34 of the first mixer body part 22 is fixed by welding to the wall 16 of the exhaust gas routing element 14, and the fastening edge 28 of the second mixer body part 24 is fixed by welding to the fastening edge 34 of the first mixer body part 22 and / or to the wall 16 of the exhaust gas routing element 14.
  • the two fastening edge regions 34, 28 can be dimensioned such that they end approximately in the same region in the main exhaust gas flow direction H and are connected to the wall 16 of the exhaust gas routing element 14 by a common weld.
  • a gas supply volume 38 is formed between the two mixer body parts 22, 24.
  • a gas supply line 40 is through the wall in a circumferential area 16 of the exhaust gas routing element 14 and the fastening edge 34 of the first mixer body part 22 and thus connected in a fixed and gas-tight manner, for example, by welding.
  • a gas supply channel 42 which opens into the gas supply volume 38 and through which gas G to be introduced into the exhaust gas A is passed into the gas supply volume 38.
  • the mixer body 20 has a plurality of exhaust gas throughflow openings 44 through which the exhaust gas A to be flowed in the main exhaust gas flow direction H to the mixer body 20 or the first mixer body part 22 can flow through the mixer body 20.
  • the second mixer body part 24 has a plurality of throughflow holes 48 surrounded by a throughflow hole edge region 46.
  • the through-flow holes 48 can have a circular contour.
  • a through-flow formation 50 is provided on the first mixer body part 22.
  • This can be provided, for example, as a passage and, with its tubular or funnel-like structure, provides a throughflow channel 52 for the exhaust gas A. Due to the constriction of the flow cross-section occurring in the area of the exhaust gas flow openings 44, the exhaust gas A flowing through the exhaust gas flow openings 44 is accelerated when passing through the exhaust gas flow openings A, so that the flow speed increases.
  • the first mixer body part 22 is dimensioned or shaped in the area of its throughflow formations 50 such that an annular gap providing a gas discharge opening 56 is formed between the downstream end areas 54 of the throughflow formations 50 and the associated throughflow hole edge areas 46.
  • the gas G introduced into the gas supply volume 38 exits the gas supply volume via these ring-like gas discharge openings 56 38 and thus enters the flow of the exhaust gas A flowing through the throughflow formations 50 or in the throughflow channels 52. Due to the fact that the exhaust gas A is accelerated in the area of the exhaust gas throughflow openings 44 and when passing through the throughflow holes 48 or downstream This creates a turbulence, the gas G introduced into the exhaust gas flow in these areas is efficiently mixed with the exhaust gas A.
  • the throughflow formations 50 are dimensioned or matched to the throughflow holes 48 in such a way that they have a smaller dimension than the throughflow holes 48, especially in the area of their downstream ends 54, it is ensured that the exhaust gas A flowing through the throughflow channels 52 through the throughflow holes 48 is passed through that no exhaust gas A can pass through the gas discharge openings 56 into the gas supply volume 38, even if, as in FIG Fig. 1 shown, the throughflow cutouts 50 in the main exhaust gas flow direction H in front of the second mixer body part 24 and thus already end in front of the throughflow holes 48.
  • the Fig. 2 shows a modified embodiment of the exhaust gas mixer 12.
  • the structure corresponds to the structure described above.
  • the two mixer body parts 22, 24 are designed, for example, as shaped sheet metal parts, in the form of plates.
  • the second mixer body part 24 is fixed with its fastening edge 28 by welding 30 on the wall 16 of the exhaust gas routing element 14, and the first mixer body part 22 is fixed with its fastening edge 34 by welding 36 on the second mixer body part 24, so that between the two mixer body parts 22, 24 the Gas supply volume 38 is formed.
  • the throughflow formations 50 are shaped or matched to the throughflow holes 48 assigned to them in such a way that the downstream end regions 54 of the throughflow formations 50 abut the throughflow hole edge areas 46 of the respectively associated throughflow holes 48. There is thus essentially no gap formed in the area in which the throughflow formations 50 adjoin the associated throughflow hole edge areas 46, so that an exit of gas G from the gas supply volume 38 directly in the area of the exhaust gas throughflow openings 44 is essentially not provided is.
  • the throughflow formations 50 can be pressed with their downstream end regions 54 against the associated throughflow hole edge regions 46, so that an essentially gas-tight seal is created.
  • gas leaks in these areas caused by manufacturing tolerances are basically harmless, since on the one hand the gas / gas mixer 12 is intended to introduce the gas G into the exhaust gas A, and on the other hand, significant gas leakage will not occur in these areas.
  • a material connection of the two mixer body parts 22, 24 in the area of the downstream end regions 54 of the throughflow formations 50 with the throughflow hole edge regions 46 of the second mixer body part 24 can in principle be provided, but is not necessary.
  • the gas discharge openings 56 which are here equally hole-like, are provided in areas between the through-flow holes 48. Like the through-flow holes 48, these can be provided in a regular pattern in order to achieve an approximately uniform introduction of the gas G into the exhaust gas A over the entire cross section. Taking into account the fact that the flow velocity and thus the throughput near the wall 16 will be lower than in the central area of the exhaust gas flow channel 18, it can be provided in all the embodiments according to the invention that the density of the exhaust gas throughflow openings 44 or that through the exhaust gas -Cross-flow openings 44 provided total passage cross-sectional area in the central area of the Exhaust gas flow channel 18 is larger than increases in an area close to the wall 16 or from the wall 16 to the central area. This can also be provided for the gas discharge openings 56, so that where a particularly large proportion of the exhaust gas A flows, a large proportion of the gas G is also introduced into the exhaust gas A.
  • the shape of the two mixer body parts 22, 24 can also have a significant influence on the dimensions of the mixer body 20.
  • the size of the gas supply volume 38 can be influenced by the length of the flow-through formations 50 or the fastening edge 34 of the first mixer body part 22. While the in Fig. 1 illustrated embodiment, the gas supply volume 38 has a greater extent in the main exhaust gas flow direction H, the mixer body 22 is in the embodiment of FIG Fig. 2 designed flatter by a corresponding shaping of the first mixer body part 22.
  • gas discharge openings 56 can both with the in Fig. 1
  • the hole-like structure shown may be provided in the area between the exhaust gas through-flow openings 44.
  • some of the exhaust gas throughflow openings 44 can be designed as in FIG Fig. 1 shown, that is to say with a gas discharge opening 56 provided in association therewith, while other exhaust gas flow-through openings 44 can be designed as in FIG Fig. 2 shown, that is, without an associated gas discharge opening.
  • FIG Fig. 3 A modification of the gas / gas mixer, in particular with regard to the configuration in the area of the exhaust gas through-flow openings 44, is shown in FIG Fig. 3 shown.
  • the second mixer body part 24 is shaped in such a way that the through-hole edge region 46 surrounding the through-flow hole 48 is opposite to the main exhaust gas flow direction H is bent, for example, is provided as a passage.
  • the through-hole edge area 46 is shaped or dimensioned in such a way that it provides a larger opening cross-section than the through-flow formation 50 on the first mixer body part 22.
  • the dimensions are such that the through-flow formation 50 extends in the area of the through-flow hole 48 into the edge area of the through-flow hole 46 surrounding volume extends into it and overlaps with the through-hole edge area 46 in the main exhaust gas flow direction A.
  • the ring-like intermediate space formed between the through-hole edge region 46, which is bent opposite to the main exhaust gas flow direction H, and the through-flow formation 50 provides a gas discharge opening 56 which, as in the exemplary embodiment of FIG Fig. 1 , basically has a ring-like shape and via which the gas G supplied via the gas supply volume 38 is introduced into the exhaust gas A flowing through the exhaust gas flow channel 52 in the first mixer body part 22.
  • exhaust gas A can enter the gas supply volume 38 excluded.
  • the gas / gas mixer 12 shown in the figures can be modified in various aspects without departing from the principles of the present invention.
  • the throughflow formations 50 can also be dimensioned such that they extend into the throughflow holes 48 or through them.
  • one or more gas discharge openings 56 can alternatively or additionally also be provided in the area of the throughflow formations 50, as shown in FIG Fig. 2 is indicated.
  • the exhaust gas through-flow openings 44 can, for example, have a circular opening cross-section, but can also be provided elliptical, oval or with a different cross-sectional geometry. The same applies to the Gas discharge openings 56.
  • the two mixer body parts 22, 24 can act as integral components of a component provided by forming a sheet metal blank, which can be folded over and then fixed to one another in some areas, for example by welding.
  • the mixer according to the invention it becomes possible to introduce gas G into the exhaust gas flow over the entire cross section of the exhaust gas flow channel 18 and to mix it efficiently with the exhaust gas flowing in the exhaust gas flow channel 18.
  • the gas G to be added to the exhaust gas A can, for example, be the exhaust gas provided by a burner, which can ensure faster heating in a start phase of the combustion operation of an internal combustion engine with a still cold catalyst arrangement positioned downstream of the gas / gas mixer.
  • any other type of gas for example air, could also be added to the exhaust gas flow in order to obtain improved operating characteristics in the system areas following downstream of the gas / gas mixer 12.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Ein Gas/Gas-Mischer zum Einleiten von Gas in den Abgasstrom einer Brennkraftmaschine umfasst einen Abgasströmungskanal (18) in einem von Abgas (A) durchströmbaren Abgasführungselement (14), einen in dem Abgasführungselement (14) angeordneten Mischerkörper (20) mit einer Mehrzahl von im Abgasströmungskanal (18) strömendem Abgas (A) durchströmbaren Abgas-Durchströmöffnungen (44), wobei in dem Mischerkörper (20) ein von in den Abgasstrom (A) einzuleitendem Gas (G) durchströmbares Gaszuführvolumen (38) gebildet ist, und wobei das Gaszuführvolumen (38) über eine Mehrzahl von Gasabgabeöffnungen (56) zu dem Abgasströmungskanal (18) offen ist.

Description

  • Die vorliegende Erfindung betrifft einen Gas/Gas-Mischer, mit welchem Gas in den Abgasstrom einer Brennkraftmaschine eingeleitet werden kann.
  • Aus der DE 10 2018 108 592 A1 ist ein Gas/Gas-Mischer bekannt, bei welchem ein im Querschnitt tropfenartiger Mischerkörper in einen in einem rohrartigen Abgasführungselement gebildeten Abgasströmungskanal hineinragt. Der Mischerkörper ist nach Art einer Tragfläche von im Abgaskanal strömendem Abgas umströmbar und weist eine Mehrzahl von Gasabgabeöffnungen auf, über welche ein Gaszuführvolumen im Inneren des Mischerkörpers durchströmendes Gas in den den Mischerkörper umströmenden Abgasstrom abgegeben wird.
  • Es ist die Aufgabe der vorliegenden Erfindung, einen Gas/Gas-Mischer zum Einleiten von Gas in den Abgasstrom einer Brennkraftmaschine vorzusehen, mit welchem eine verbesserte Durchmischung von Abgas mit in den Abgasstrom einzuleitendem Gas erreicht werden kann.
  • Erfindungsgemäß wird diese Aufgabe gelöst durch einen Gas/Gas-Mischer zum Einleiten von Gas, beispielsweise Luft oder Brennerabgas, in den Abgasstrom einer Brennkraftmaschine, umfassend einen Abgasströmungskanal in einem von Abgas durchströmbaren Abgasführungselement, einen in dem Abgasführungselement angeordneten Mischerkörper mit einer Mehrzahl von im Abgasströmungskanal strömendem Abgas durchströmbaren Abgas-Durchströmöffnungen, wobei in dem Mischerkörper ein von in den Abgasstrom einzuleitendem Gas durchströmbares Gaszuführvolumen gebildet ist, und wobei das Gaszuführvolumen über eine Mehrzahl von Gasabgabeöffnungen zu dem Abgasströmungskanal offen ist.
  • Bei dem erfindungsgemäßen Aufbau weist der Gas/Gas-Mischer nicht nur die Gasabgabeöffnungen auf, durch welche hindurch das in den Abgasstrom einzuleitende Abgas abgegeben wird, sondern weist auch Abgas-Durchströmöffnungen auf, durch welche das oder zumindest ein wesentlicher Teil des im Abgasströmungskanal strömenden Abgases hindurchströmt. Dadurch wird beim Hindurchströmen des Abgases durch die Abgas-Durchströmöffnungen an der stromabwärtigen Seite des Mischerkörpers eine Verwirbelung erzeugt, welche eine effiziente Durchmischung des aus den Gasabgabeöffnungen des Mischerkörpers abgegebenen und von dem Abgasstrom mitgetragenen Gases bewirkt.
  • Für einen einfach zu realisierenden und eine effiziente Durchströmung des Mischerkörpers mit Abgas herbeiführenden Aufbau wird vorgeschlagen, dass der Mischerkörper plattenartig ausgebildet ist und im Abgasführungselement quer zu einer Abgashauptströmungsrichtung des den Abgasströmungskanal durchströmenden Abgases angeordnet ist.
  • Das Gaszuführvolumen kann im Mischerkörper beispielsweise dadurch bereitgestellt werden, dass der Mischerkörper ein in dem Abgasführungselement in Richtung stromaufwärts orientiert angeordnetes erstes Mischerkörperteil und ein in dem Abgasführungselement in Richtung stromabwärts orientiert angeordnetes zweites Mischerkörperteil umfasst, wobei das Gaszuführvolumen im Wesentlichen zwischen dem ersten Mischerkörperteil und dem zweiten Mischerkörperteil gebildet ist.
  • Dabei können zum Erhalt der plattenartigen Gestalt des Mischerkörpers das erste Mischerkörperteil im Wesentlichen plattenartig ausgebildet sein und das zweite Mischerkörperteil im Wesentlichen plattenartig ausgebildet sein.
  • Es ist in diesem Zusammenhang darauf hinzuweisen, dass im Sinne der vorliegenden Erfindung mit dem Ausdruck "plattenartig" eine Struktur des Mischerkörpers bzw. der Mischerkörperteile angesprochen ist, bei welcher diese eine deutlich geringere Dicke aufweisen, als ihre Ausdehnung quer zur Dickenrichtung.
  • Zur einfach zu realisierenden Festlegung des Mischerkörpers am Abgasführungselement wird vorgeschlagen, dass an einem der Mischerkörperteile, vorzugsweise dem zweiten Mischerkörperteil, ein an dem Abgasführungselement festgelegter Befestigungsbereich vorgesehen ist, und dass an dem anderen Mischerkörperteil, vorzugsweise dem ersten Mischerkörperteil, ein an dem einen Mischerkörperteil festgelegter zweiter Befestigungsbereich vorgesehen ist.
  • Dabei kann beispielsweise der erste Befestigungsbereich einen, vorzugsweise im Wesentlichen zylindrischen, an einer Innenumfangsfläche des Abgasführungselements festgelegten Befestigungsrand in einem Außenumfangsbereich des einen Mischerkörperteils umfassen, oder/und der zweite Befestigungsbereich kann einen, vorzugsweise im Wesentlichen zylindrischen, am einen Mischerkörperteil festgelegten Befestigungsrand in einem Außenumfangsbereich des anderen Mischerkörperteils umfassen.
  • Zum Bereitstellen der Abgas-Durchströmöffnungen kann in dem zweiten Mischerkörperteil eine Mehrzahl von Durchströmlöchern vorgesehen sein, und in dem ersten Mischerkörperteil kann dann in Zuordnung zu jedem Durchströmloch des zweiten Mischerkörperteils eine auf das zweite Mischerkörperteil sich zu erstreckende und Abgas in Richtung zu dem zugeordneten Durchströmloch leitende, einen Durchströmkanal des ersten Mischerkörperteils bereitstellende, vorzugsweise rohrartige oder trichterartige, Durchströmausformung vorgesehen sein.
  • Eine effiziente Durchmischung von Abgas und in dieses einzuleitenden Gas kann weiter dadurch unterstützt werden, dass bei wenigstens einer, vorzugsweise jeder Abgas-Durchströmöffnung eine Gasabgabeöffnung zwischen einem das Durchströmloch im zweiten Mischerkörperteil umgebenden Durchströmloch-Randbereich des zweiten Mischerkörperteils und der Durchströmausformung des ersten Mischerkörperteils gebildet ist. Die Gasabgabeöffnungen weisen damit eine ringartige Struktur auf und umgehen mit dieser ringartigen Struktur jeweils einen Bereich, in welchem eine jeweilige Abgas-Durchströmöffnung durchströmendes Abgas geführt ist.
  • Alternativ oder zusätzlich kann wenigstens eine Gasabgabeöffnung in dem zweiten Mischerkörperteil zwischen den im zweiten Mischerkörperteil vorgesehenen Durchströmlöchern vorgesehen sein. Weiter kann wenigstens eine Gasabgabeöffnung in dem ersten Mischerkörperteil, vorzugsweise im Bereich wenigstens einer Durchströmausformung, vorgesehen sein.
  • Dabei kann für eine definierte Einleitung des Gases in den Abgasstrom zwischen den Abgas-Durchströmöffnungen bei wenigstens einer, vorzugsweise jeder Abgas-Durchströmöffnung die Durchströmausformung an einem das Durchströmloch im zweiten Mischerkörperteil umgebenden Durchströmloch-Randbereich des zweiten Mischerkörperteils anliegen, vorzugsweise derart, dass das Gaszuführvolumen im Bereich dieser Abgas-Durchströmöffnung gegen den Austritt von Gas im Wesentlichen abgeschlossen ist.
  • Für einen thermisch stabilen, einfach und kostengünstig zu realisierenden Aufbau wird vorgeschlagen, dass das erste Mischerkörperteil ein Blechumformteil ist, oder/und dass das zweite Mischerkörperteil ein Blechumformteil ist.
  • Zum Zuführen des in den Abgasstrom einzuleitenden Gases kann an einem Außenumfangsbereich des Mischerkörpers ein durch eine Wandung des Abgasführungselements hindurchgeführter Gaszuführkanal zu dem Gaszuführvolumen offen sein.
  • Eine effiziente Durchmischung von Gas und Abgas kann weiter dadurch gewährleistet werden, dass der Mischerkörper im Abgasführungselement derart angeordnet ist, dass Abgas im Abgasströmungskanal im Bereich des Mischerkörpers im Wesentlichen nur durch die Abgas-Durchströmöffnungen hindurchdurchströmt. Somit wird gewährleistet, dass im Wesentlichen das gesamte im Abgasströmungskanal strömende Abgas die im Mischerkörper vorgesehenen Abgas-Durchströmöffnungen durchströmt und somit in einen Bereich geleitet wird, in welchem das in das Abgas einzuleitende Gas aus dem Mischerkörper austritt.
  • Die Erfindung betrifft ferner eine Abgasanlage für eine Brennkraftmaschine eines Fahrzeugs, umfassend einen Gas/Gas-Mischer mit erfindungsgemäßem Aufbau. Die vorliegende Erfindung wird nachfolgend mit Bezug auf die beiliegenden Figuren detailliert beschrieben. Es zeigt:
  • Fig. 1
    eine Teil-Längsschnittansicht eines Gas/Gas-Mischers in einer Abgasanlage einer Brennkraftmaschine;
    Fig. 2
    eine der Fig. 1 entsprechende Darstellung einer alternativen Ausgestaltungsart des Gas/Gas-Mischers;
    Fig. 3
    eine Darstellung einer alternativen Ausgestaltungsart eines Gas/Gas-Mischers im Bereich einer Abgas-Durchströmöffnung.
  • Die Fig. 1 zeigt einen in einer Abgasanlage 10 einer Brennkraftmaschine angeordneten Gas/Gas-Mischer 12. Der Gas/Gas-Mischer 12 umfasst ein rohrartiges, beispielsweise im Wesentlichen zylindrisches Abgasführungselement 14, das mit einer rohrartigen Wandung 16 einen Abgasströmungskanal 18 umgrenzt. Im Abgasströmungskanal 18 strömt Abgas A im Wesentlichen in einer Abgas-Hauptströmungsrichtung H entlang des Abgasführungselements 14. Es ist darauf hinzuweisen, dass lokal von der Abgas-Hauptströmungsrichtung H abweichende Strömungsrichtungen vorhanden sein können. Grundsätzlich kann die Abgas-Hauptströmungsrichtung H im Wesentlichen auch der Längserstreckungsrichtung bzw. einer Längsmittenachse L des rohrartigen Abgasführungselements 14 entsprechen.
  • Der Gas/Gas-Mischer 12 umfasst in dem Abgasführungselement 14 einen Mischerkörper 20. Der Mischerkörper 20 ist grundsätzlich im Wesentlichen plattenartig ausgebildet, was bedeutet, dass seine Ausdehnung beispielsweise quer zur Abgas-Hauptströmungsrichtung H bzw. zur Längsmittenachse L deutlich größer ist, als seine Ausdehnung in der Abgas-Hauptströmungsrichtung H. Der Mischerkörper 20 ist im Abgasführungselement 14 bzw. im Abgasströmungskanal 18 im Wesentlichen quer bzw. orthogonal zur Abgas-Hauptströmungsrichtung H angeordnet, was bedeutet, dass der Mischerkörper 20 mit seiner Dickenrichtung bzw. Dickenausdehnung im Wesentlichen in der Abgas-Hauptströmungsrichtung H bzw. in Richtung der Längsmittenachse L orientiert ist.
  • Der Mischerkörper 20 umfasst zwei Mischerkörperteile 22, 24. Das erste Mischerkörperteil 22 ist im Abgasströmungskanal 18 grundsätzlich so angeordnet, dass es in Richtung stromaufwärts orientiert ist, so dass das in der Abgas-Hauptströmungsrichtung H auf den Mischerkörper 20 zu strömende Abgas A zunächst auf das erste Mischerkörperteil 22 auftrifft. Das zweite Mischerkörperteil 24 ist im Abgasströmungskanal 18 in Richtung stromabwärts orientiert und ist somit im Wesentlichen an der stromabwärtigen Seite des ersten Mischerkörperteils 22 positioniert. Auch die beiden Mischerkörperteile 22, 24 sind plattenartig ausgebildet und sind beispielsweise als Blechumformteile bereitgestellt.
  • Das zweite Mischerkörperteil 24 ist in seiner Außenumfangskontur an die Innenumfangskontur der Wandung 16 des rohrartigen Abgasführungselements 14 angepasst. Weist das Abgasführungselement 14 in dem Bereich, in welchem der Mischerkörper 20 positioniert ist, beispielsweise eine kreisrunde Innenumfangskontur auf, ist dann vorteilhafterweise die Außenumfangskontur des zweiten Mischerkörperteils gleichermaßen kreisförmig.
  • Zur Festlegung an der Wandung 16 des Abgasführungselements 14 weist das zweite Mischerkörperteil 20 in einem Außenumfangsbereich 26 desselben einen in der Abgas-Hauptströmungsrichtung H abgebogenen, in Umfangsrichtung vorzugsweise vollständig umlaufenden Befestigungsrand 28 auf. In einem Endbereich ist der Befestigungsrand 18 durch Verschweißung 30 an der Innenoberfläche der Wandung 16 des Abgasführungselements 14 festgelegt, so dass bei in Umfangsrichtung vollständig umlaufender Ausgestaltung des Befestigungsrands 28 ein Durchtritt von Abgas zwischen der Wandung 16 des Abgasführungselements 14 und dem zweiten Mischerkörperteil 24 nicht möglich ist.
  • Es ist darauf hinzuweisen, dass grundsätzlich der Befestigungsrand 28 auch mit mehreren in der Abgas-Hauptströmungsrichtung H abgebogenen und mit Abstand zueinander vorgesehenen und beispielsweise jeweils durch Verschweißung am Abgasführungselement 14 festgelegten Befestigungsrandlaschen ausgebildet sein könnte.
  • Das erste Mischerkörperteil 22 ist an der in Richtung stromaufwärts orientierten Seite des plattenartigen zweiten Mischerkörperteils 24 festgelegt. Das erste Mischerkörperteil 22 weist eine Außenumfangskontur auf, welche näherungsweise der Außenumfangskontur des zweiten Mischerkörperteils 24 bzw. der Innenumfangskontur des Abgasführungselements entspricht, ist jedoch kleiner dimensioniert, als das zweite Mischerkörperteil 24. In seinem Außenumfangsbereich 32 weist das erste Mischerkörperteil 24 einen in der Abgas-Hauptströmungsrichtung H abgebogenen, im Umfangsrichtung vorzugsweise vollständig umlaufenden Befestigungsrand 34 auf. Dieser ist durch Verschweißung 36 an der in Richtung stromaufwärts orientierten Seite des zweiten Mischerkörperteils 24 festgelegt.
  • Es ist darauf hinzuweisen, dass die beiden Mischerkörperteile 22, 24 auch so gestaltet sein könnten, dass das erste Mischerkörperteil 22 etwas größer dimensioniert ist, als das zweite Mischerkörperteil 24 und einen in der Abgas-Hauptströmungsrichtung H in größerem Ausmaß sich erstreckenden Befestigungsrand 34 aufweist. Dieser kann dann den Befestigungsrand 28 des zweiten Mischerkörperteils 24 an seiner Außenseite umgreifen, so dass das zweite Mischerkörperteil 24 in das erste Mischerkörperteil 22 eingesetzt werden kann. Der Befestigungsrand 34 des ersten Mischerkörperteils 22 wird durch Verschweißung an der Wandung 16 des Abgasführungselements 14 festgelegt, und der Befestigungsrand 28 des zweiten Mischerkörperteils 24 wird durch Verschweißung an dem Befestigungsrand 34 des ersten Mischerkörperteils 22 oder/und an der Wandung 16 des Abgasführungselements 14 festgelegt. Beispielsweise können die beiden Befestigungsrandbereiche 34, 28 so dimensioniert sein, dass sie in der Abgas-Hauptströmungsrichtung H näherungsweise im gleichen Bereich enden und durch eine gemeinsame Verschweißung an die Wandung 16 des Abgasführungselements 14 angebunden sind.
  • Zwischen den beiden Mischerkörperteilen 22, 24 ist ein Gaszuführvolumen 38 gebildet. In einem Umfangsbereich ist eine Gaszuführleitung 40 durch die Wandung 16 des Abgasführungselements 14 und den Befestigungsrand 34 des ersten Mischerkörperteils 22 hindurchgeführt und damit beispielsweise jeweils durch Verschweißung fest und gasdicht verbunden. In der Abgaszuführleitung 40 ist ein in das Gaszuführvolumen 38 einmündender Gaszuführkanal 42 bereitgestellt, durch welchen hindurch in das Abgas A einzuleitendes Gas G in das Gaszuführvolumen 38 geleitet wird.
  • Der Mischerkörper 20 weist eine Mehrzahl von Abgas-Durchströmöffnungen 44 auf, durch welche hindurch das in der Abgas-Hauptströmungsrichtung H auf den Mischerkörper 20 bzw. das erste Mischerkörperteil 22 zu strömende Abgas A durch den Mischerkörper 20 hindurchströmen kann. Zum Bereitstellen der Abgas-Durchströmöffnungen 44, die am Mischerkörper 20 beispielsweise in einem regelmäßigen Muster verteilt angeordnet sein können, weist das zweite Mischerkörperteil 24 eine Mehrzahl von von einem Durchströmloch-Randbereich 46 umgebenen Durchströmlöchern 48 auf. Beispielsweise können die Durchströmlöcher 48 eine kreisartige Kontur aufweisen.
  • In Zuordnung zu jedem Durchströmloch 48 im zweiten Mischerkörperteil 24 ist am ersten Mischerkörperteil 22 eine Durchströmausformung 50 vorgesehen. Diese kann beispielsweise als Durchzug bereitgestellt werden und stellt mit ihrer rohrartigen bzw. trichterartigen Struktur einen Durchströmkanal 52 für das Abgas A bereit. Aufgrund der im Bereich der Abgas-Durchströmungsöffnungen 44 auftretenden Einschnürung des Strömungsquerschnitts wird das durch die Abgas-Durchströmöffnungen 44 hindurch strömende Abgas A beim Hindurchtritt durch die Abgas-Durchströmöffnungen A beschleunigt, so dass die Strömungsgeschwindigkeit zunimmt.
  • Das erste Mischerkörperteil 22 ist im Bereich seiner Durchströmausformungen 50 so dimensioniert bzw. geformt, dass zwischen den stromabwärtigen Endbereichen 54 der Durchströmausformungen 50 und den zugehörigen Durchströmloch-Randbereichen 46 jeweils ein eine Gasabgabeöffnung 56 bereitstellender ringartiger Zwischenraum gebildet ist. Über diese ringartig gestalteten Gasabgabeöffnungen 56 tritt das in das Gaszuführvolumen 38 eingeleitete Gas G aus dem Gaszuführvolumen 38 aus und gelangt somit in den Strom des durch die Durchströmausformungen 50 bzw. in den Durchströmkanälen 52 strömenden Abgases A. Aufgrund des Umstandes, dass das Abgas A im Bereich der Abgas-Durchströmöffnungen 44 beschleunigt wird und beim Hindurchtritt durch die Durchströmlöcher 48 bzw. stromabwärts davon eine Verwirbelung entsteht, wird das in diesen Bereichen in den Abgasstrom eingeleitete Gas G effizient mit dem Abgas A durchmischt. Da die Durchströmausformungen 50 so dimensioniert bzw. auf die Durchströmlöcher 48 abgestimmt sind, dass diese insbesondere im Bereich ihrer stromabwärtigen Enden 54 eine kleinere Abmessung aufweisen, als die Durchströmlöcher 48, ist gewährleistet, dass das durch die Durchströmkanäle 52 hindurchströmende Abgas A so durch die Durchströmlöcher 48 hindurchgeleitet wird, dass kein Abgas A über die Gasabgabeöffnungen 56 in das Gaszuführvolumen 38 gelangen kann, auch wenn, wie in Fig. 1 dargestellt, die Durchströmaussparungen 50 in der Abgas-Hauptströmungsrichtung H vor dem zweiten Mischerkörperteil 24 und somit bereits vor den Durchströmlöchern 48 enden. Vielmehr wird aufgrund der vergleichsweise hohen Strömungsgeschwindigkeit des Abgases A im Bereich der Durchströmkanäle 52 ein Saugpumpeneffekt generiert, welcher das in dem Abgaszuführvolumen 38 vorhandene Gas G unabhängig von einem möglicherweise vorhandenen Gasüberdruck in den Strom des die Durchströmkanäle 52 durchströmenden Abgases A saugt.
  • Die Fig. 2 zeigt eine abgewandelte Ausgestaltungsart des Abgasmischers 12. Hinsichtlich des grundsätzlichen Aufbaus des Mischerkörpers 20 mit seinen beiden Mischerkörperteilen 22, 24 entspricht der Aufbau dem vorangehend beschriebenen Aufbau. Auch bei dieser Ausgestaltung sind die beiden Mischerkörperteile 22, 24 beispielsweise als Blechumformteile plattenartig ausgebildet. Das zweite Mischerkörperteil 24 ist mit seinem Befestigungsrand 28 durch Verschweißung 30 an der Wandung 16 des Abgasführungselements 14 festgelegt, und das erste Mischerkörperteil 22 ist mit seinem Befestigungsrand 34 durch Verschweißung 36 am zweiten Mischerkörperteil 24 festgelegt, so dass zwischen den beiden Mischerkörperteilen 22, 24 das Gaszuführvolumen 38 gebildet ist.
  • Bei der in Fig. 2 dargestellten Ausgestaltungsform sind die Durchströmausformungen 50 so geformt bzw. auf die diesen jeweils zugeordneten Durchströmlöcher 48 abgestimmt, dass die stromabwärtigen Endbereiche 54 der Durchströmausformungen 50 an den Durchströmloch-Randbereichen 46 der jeweils zugeordneten Durchströmlöcher 48 anliegen. Es ist somit in dem Bereich, in welchem die Durchströmausformungen 50 an die zugeordneten Durchströmloch-Randbereiche 46 angrenzen, im Wesentlichen kein Zwischenraum gebildet, so dass ein Austritt von Gas G aus dem Gaszuführvolumen 38 unmittelbar im Bereich der Abgas-Durchströmöffnungen 44 im Wesentlichen nicht vorgesehen ist. Beispielsweise können die Durchströmausformungen 50 beim Verbinden des ersten Mischerkörperteils 22 mit dem zweiten Mischerkörperteil 24 mit ihren stromabwärtigen Endbereichen 54 gegen die zugeordneten Durchströmloch-Randbereiche 46 gepresst werden, so dass ein im Wesentlichen gasdichter Abschluss entsteht. Durch Fertigungstoleranzen bedingte Gasleckagen in diesen Bereichen sind jedoch grundsätzlich unschädlich, da einerseits der Gas/Gas-Mischer 12 ohnehin dafür vorgesehen ist, das Gas G in das Abgas A einzuleiten, und da andererseits eine wesentliche Gasleckage in diesen Bereichen nicht auftreten wird. Eine materialschlüssige Verbindung der beiden Mischerkörperteile 22, 24 im Bereich der stromabwärtigen Endbereiche 54 der Durchströmausformungen 50 mit den Durchströmloch-Randbereichen 46 des zweiten Mischerkörperteils 24 kann grundsätzlich zwar vorgesehen sein, ist jedoch nicht erforderlich.
  • In dem zweiten Mischerkörperteil 24 sind in Bereichen zwischen den Durchströmlöchern 48 die hier gleichermaßen lochartig ausgebildeten Gasbabgabeöffnungen 56 vorgesehen. Diese können, ebenso wie die Durchströmlöcher 48, in einem regelmäßigen Muster vorgesehen sein, um eine über den gesamten Querschnitt näherungsweise gleichmäßige Einleitung des Gases G in das Abgas A zu erreichen. Unter Berücksichtigung des Umstandes, dass die Strömungsgeschwindigkeit und damit der Durchsatz nahe der Wandung 16 kleiner sein wird, als im zentralen Bereich des Abgasströmungskanals 18, kann bei allen erfindungsgemäßen Ausgestaltungen vorgesehen sein, dass die Dichte der Abgas-Durchströmöffnungen 44 bzw. die durch die Abgas-Durchströmöffnungen 44 bereitgestellte Gesamt-Durchtrittsquerschnittsfläche im zentralen Bereich des Abgasströmungskanals 18 größer ist, als in einem der Wandung 16 nahen Bereich bzw. von der Wandung 16 zum zentralen Bereich hin zunimmt. Dies kann auch bei den Gasabgabeöffnungen 56 vorgesehen sein, so dass dort, wo ein besonders großer Anteil des Abgases A strömt, auch ein großer Anteil des Gases G in das Abgas A eingeleitet wird.
  • Es ist darauf hinzuweisen, dass, was ein Vergleich der Fig. 1 und 2 deutlich zeigt, durch die Formgebung der beiden Mischerkörperteile 22, 24 auch ein wesentlicher Einfluss auf die Dimensionierung des Mischerkörpers 20 genommen werden kann. So kann die Größe des Gaszuführvolumens 38 beispielsweise durch die Länge der Durchströmausformungen 50 bzw. des Befestigungsrands 34 des ersten Mischerkörperteils 22 beeinflusst werden. Während bei dem in Fig. 1 dargestellten Ausgestaltungsbeispiel das Gaszuführvolumen 38 in der Abgas-Hauptströmungsrichtung H eine größere Ausdehnung aufweist, ist der Mischerkörper 22 in der Ausgestaltungsform der Fig. 2 durch eine entsprechende Formgebung des ersten Mischerkörperteils 22 flacher gestaltet.
  • Weiter ist darauf hinzuweisen, dass selbstverständlich die in den Fig. 1 und 2 dargestellten Ausgestaltungsformen miteinander kombiniert sein können. So können Gasabgabeöffnungen 56 sowohl mit der in Fig. 1 dargestellten ringartigen Struktur im Bereich der Abgas-Durchströmöffnungen 44, als auch mit der in Fig. 2 dargestellten lochartigen Struktur im Bereich zwischen den Abgas-Durchströmöffnungen 44 vorgesehen sein. Bei dieser Ausgestaltung können beispielsweise einige der Abgas-Durchströmöffnungen 44 so ausgebildet sein, wie in Fig. 1 dargestellt, also mit in Zuordnung dazu vorgesehener Gasabgabeöffnung 56, während andere Abgas-Durchströmöffnungen 44 so ausgebildet sein können, wie in Fig. 2 dargestellt, also ohne zugeordneter Gasabgabeöffnung.
  • Eine Abwandlung des Gas/Gas-Mischers insbesondere hinsichtlich der Ausgestaltung im Bereich der Abgas-Durchströmöffnungen 44 ist in Fig. 3 dargestellt. Im Bereich der in Fig. 3 zu erkennenden Abgas-Durchströmöffnung 44 ist das zweite Mischerkörperteil 24 so geformt, dass der das Durchströmloch 48 umgebende Durchströmloch-Randbereich 46 entgegen der Abgas-Hauptströmungsrichtung H abgebogen ist, beispielsweise als Durchzug bereitgestellt ist. Der Durchströmloch-Randbereich 46 ist so geformt bzw. dimensioniert, dass er einen größeren Öffnungsquerschnitt bereitstellt, als die Durchströmausformung 50 am ersten Mischerkörperteil 22. Insbesondere ist die Dimensionierung derart, dass die Durchströmausformung 50 sich im Bereich des Durchströmlochs 48 in das vom Durchströmloch-Randbereich 46 umgebene Volumen hineinerstreckt und sich mit dem Durchströmloch-Randbereich 46 in der Abgas-Hauptströmungsrichtung A überlappt.
  • Der zwischen dem entgegen zur Abgas-Hauptströmungsrichtung H abgebogenen Durchströmloch-Randbereich 46 und der Durchströmausformung 50 gebildete ringartige Zwischenraum stellt eine Gasabgabeöffnung 56 bereit, welche, so wie im Ausgestaltungsbeispiel der Fig. 1, grundsätzlich eine ringartige Gestalt aufweist und über welche das über das Gaszuführvolumen 38 zugeführte Gas G in das den Abgasströmungskanal 52 im ersten Mischerkörperteil 22 durchströmende Abgas A eingeleitet wird. Auch bei dieser Ausgestaltung ist aufgrund des Umstandes, dass die in der Abgas-Hauptströmungsrichtung H sich erstreckende Durchströmausformung 50 in den entgegengesetzt zur Abgas-Hauptströmungsrichtung H sich erstreckenden Durchströmloch-Randbereich 46 bzw. das von diesem umgebene Volumen eingreift, ein Eintritt von Abgas A in das Gaszuführvolumen 38 ausgeschlossen.
  • Es ist darauf hinzuweisen, dass der in den Figuren dargestellte Gas/Gas-Mischer 12 in verschiedensten Aspekten abgewandelt werden kann, ohne von den Prinzipien der vorliegenden Erfindung abzuweichen. So können beispielsweise bei der in Fig. 1 dargestellten Ausgestaltung die Durchströmausformungen 50 auch so dimensioniert sein, dass sie sich in die Durchströmlöcher 48 hinein bzw. durch diese hindurch erstrecken. Bei allen Ausgestaltungsformen können alternativ oder zusätzlich auch im Bereich der Durchströmausformungen 50 jeweils eine oder mehrere Gasabgabeöffnungen 56 vorgesehen sein, so wie dies in Fig. 2 angedeutet ist.
  • Die Abgas-Durchströmöffnungen 44 können beispielsweise einen kreisrunden Öffnungsquerschnitt aufweisen, können aber auch elliptisch, oval oder mit anderer Querschnittsgeometrie bereitgestellt sein. Entsprechendes gilt auch für die Gasabgabeöffnungen 56. Weiter können die beiden Mischerkörperteile 22, 24 als integrale Bestandteile eines durch Umformen eines Blechrohlings bereitgestellten Bauteils vorgehen sein, die über sich gefaltet und dann bereichsweise z.B. durch Verschweißung aneinander festgelegt sein können.
  • Mit dem erfindungsgemäßen Mischer wird es möglich, über den gesamten Querschnitt des Abgasströmungskanals 18 Gas G in den Abgasstrom einzuleiten und effizient mit dem im Abgasströmungskanal 18 strömenden Abgas zu vermischen. Dabei kann das dem Abgas A beizumengende Gas G beispielsweise das von einem Brenner bereitgestellte Abgas sein, welches in einer Startphase des Verbrennungsbetriebs einer Brennkraftmaschine bei einer stromabwärts des Gas/Gas-Mischers positionierten noch kalten Katalysatoranordnung für eine schnellere Erwärmung sorgen kann. Grundsätzlich könnte auch jede andere Art von Gas, beispielsweise Luft, dem Abgasstrom beigemengt werden, um in stromabwärts des Gas/Gas-Mischers 12 folgenden Systembereichen eine verbesserte Betriebscharakteristik zu erhalten.

Claims (14)

  1. Gas/Gas-Mischer zum Einleiten von Gas in den Abgasstrom einer Brennkraftmaschine, umfassend einen Abgasströmungskanal (18) in einem von Abgas (A) durchströmbaren Abgasführungselement (14), einen in dem Abgasführungselement (14) angeordneten Mischerkörper (20) mit einer Mehrzahl von im Abgasströmungskanal (18) strömendem Abgas (A) durchströmbaren Abgas-Durchströmöffnungen (44), wobei in dem Mischerkörper (20) ein von in den Abgasstrom (A) einzuleitendem Gas (G) durchströmbares Gaszuführvolumen (38) gebildet ist, und wobei das Gaszuführvolumen (38) über eine Mehrzahl von Gasabgabeöffnungen (56) zu dem Abgasströmungskanal (18) offen ist.
  2. Gas/Gas-Mischer nach Anspruch 1, dadurch gekennzeichnet, dass der Mischerkörper (20) plattenartig ausgebildet ist und im Abgasführungselement (14) quer zu einer Abgashauptströmungsrichtung (H) des den Abgasströmungskanal (18) durchströmenden Abgases (A) angeordnet ist.
  3. Gas/Gas-Mischer nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Mischerkörper (20) ein in dem Abgasführungselement (14) in Richtung stromaufwärts orientiert angeordnetes erstes Mischerkörperteil (22) und ein in dem Abgasführungselement (14) in Richtung stromabwärts orientiert angeordnetes zweites Mischerkörperteil (24) umfasst, wobei das Gaszuführvolumen (38) im Wesentlichen zwischen dem ersten Mischerkörperteil (22) und dem zweiten Mischerkörperteil (24) gebildet ist.
  4. Gas/Gas-Mischer nach Anspruch 2 und Anspruch 3, dadurch gekennzeichnet, dass das erste Mischerkörperteil (22) im Wesentlichen plattenartig ausgebildet ist, und dass das zweite Mischerkörperteil (24) im Wesentlichen plattenartig ausgebildet ist.
  5. Gas/Gas-Mischer nach Anspruch 3 oder Anspruch 4, dadurch gekennzeichnet, dass an einem der Mischerkörperteile, vorzugsweise dem zweiten Mischerkörperteil (24), ein an dem Abgasführungselement (14) festgelegter Befestigungsbereich vorgesehen ist, und dass an dem anderen Mischerkörperteil, vorzugsweise dem ersten Mischerkörperteil (22), ein an dem einen Mischerkörperteil festgelegter zweiter Befestigungsbereich vorgesehen ist.
  6. Gas/Gas-Mischer nach Anspruch 5, dadurch gekennzeichnet, dass der erste Befestigungsbereich einen, vorzugsweise im Wesentlichen zylindrischen, an einer Innenumfangsfläche des Abgasführungselements (14) festgelegten Befestigungsrand (28) in einem Außenumfangsbereich (26) des einen Mischerkörperteils umfasst, oder/und dass der zweite Befestigungsbereich einen, vorzugsweise im Wesentlichen zylindrischen, am einen Mischerkörperteil festgelegten Befestigungsrand (34) in einem Außenumfangsbereich (32) des anderen Mischerkörperteils umfasst.
  7. Gas/Gas-Mischer nach einem der Ansprüche 3-6, dadurch gekennzeichnet, dass zum Bereitstellen der Abgas-Durchströmöffnungen (44) in dem zweiten Mischerkörperteil (24) eine Mehrzahl von Durchströmlöchern (48) vorgesehen ist, und dass in dem ersten Mischerkörperteil (22) in Zuordnung zu jedem Durchströmloch (48) des zweiten Mischerkörperteils (24) eine auf das zweite Mischerkörperteil (24) sich zu erstreckende und Abgas (A) in Richtung zu dem zugeordneten Durchströmloch (48) leitende, einen Durchströmkanal (52) des ersten Mischerkörperteils (22) bereitstellende, vorzugsweise rohrartige oder trichterartige, Durchströmausformung (50) vorgesehen ist.
  8. Gas/Gas-Mischer nach Anspruch 7, dadurch gekennzeichnet, dass bei wenigstens einer, vorzugsweise jeder Abgas-Durchströmöffnung (44) eine Gasabgabeöffnung (56) zwischen einem das Durchströmloch (48) im zweiten Mischerkörperteil (24) umgebenden Durchströmloch-Randbereich (46) des zweiten Mischerkörperteils (24) und der Durchströmausformung (50) des ersten Mischerkörperteils (22) gebildet ist.
  9. Gas/Gas-Mischer nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass wenigstens eine Gasabgabeöffnung (56) in dem zweiten Mischerkörperteil (24) zwischen den im zweiten Mischerkörperteil (24) vorgesehenen Durchströmlöchern (48) vorgesehen ist, oder/und dass wenigstens eine Gasabgabeöffnung (56) in dem ersten Mischerkörperteil (22), vorzugsweise im Bereich wenigstens einer Durchströmausformung (50), vorgesehen ist.
  10. Gas/Gas-Mischer nach Anspruch 9, dadurch gekennzeichnet, dass bei wenigstens einer, vorzugsweise jeder Abgas-Durchströmöffnung (44) die Durchströmausformung (50) an einem das Durchströmloch (48) im zweiten Mischerkörperteil (22) umgebenden Durchströmloch-Randbereich (46) des zweiten Mischerkörperteils (24) anliegt, vorzugsweise derart, dass das Gaszuführvolumen (38) im Bereich dieser Abgas-Durchströmöffnung (44) gegen den Austritt von Gas (G) im Wesentlichen abgeschlossen ist.
  11. Gas/Gas-Mischer nach einem der Ansprüche 3-10, dadurch gekennzeichnet, dass das erste Mischerkörperteil (22) ein Blechumformteil ist, oder/und dass das zweite Mischerkörperteil (24) ein Blechumformteil ist.
  12. Gas/Gas-Mischer nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass an einem Außenumfangsbereich des Mischerkörpers (20) ein durch eine Wandung (16) des Abgasführungselements (14) hindurchgeführter Gaszuführkanal (42) zu dem Gaszuführvolumen (38) offen ist.
  13. Gas/Gas-Mischer nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Mischerkörper (20) im Abgasführungselement (12) derart angeordnet ist, dass Abgas (A) im Abgasströmungskanal (18) im Bereich des Mischerkörpers (20) im Wesentlichen nur durch die Abgas-Durchströmöffnungen (44) hindurchdurchströmt.
  14. Abgasanlage für eine Brennkraftmaschine eines Fahrzeugs, umfassend einen Gas/Gas-Mischer (12) nach einem der vorangehenden Ansprüche.
EP21150148.1A 2020-01-20 2021-01-05 Gas/gas-mischer zum einleiten von gas in den abgasstrom einer brennkraftmaschine Active EP3851646B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102020101134.2A DE102020101134A1 (de) 2020-01-20 2020-01-20 Gas/Gas-Mischer zum Einleiten von Gas in den Abgasstrom einer Brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP3851646A1 true EP3851646A1 (de) 2021-07-21
EP3851646B1 EP3851646B1 (de) 2023-02-22

Family

ID=74103926

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21150148.1A Active EP3851646B1 (de) 2020-01-20 2021-01-05 Gas/gas-mischer zum einleiten von gas in den abgasstrom einer brennkraftmaschine

Country Status (4)

Country Link
US (1) US11384671B2 (de)
EP (1) EP3851646B1 (de)
CN (1) CN113137299B (de)
DE (1) DE102020101134A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013221428A1 (de) * 2013-10-22 2015-04-23 Eberspächer Exhaust Technology GmbH & Co. KG Katalysatoranordnung mit Injektionsabschnitt
CN107869376A (zh) * 2016-09-26 2018-04-03 天纳克(苏州)排放系统有限公司 混合组件
DE102018108592A1 (de) 2018-04-11 2019-10-17 Eberspächer Exhaust Technology GmbH & Co. KG Gas/Gas-Mischer zum Einleiten von Gas in den Abgasstrom einer Brennkraftmaschine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103573348A (zh) 2012-08-08 2014-02-12 通用汽车环球科技运作有限责任公司 用于内燃发动机的排气处理系统
EP2865861B2 (de) * 2013-10-22 2019-05-15 Eberspächer Exhaust Technology GmbH & Co. KG Kataylsatoranordnung mit Injektionsabschnitt
DE102014222698B4 (de) * 2014-11-06 2017-12-14 Eberspächer Exhaust Technology GmbH & Co. KG Abgasnachbehandlungseinrichtung mit Injektionsabschnitt
EP3307999B1 (de) * 2015-06-12 2021-03-03 Donaldson Company, Inc. Abgasbehandlungsvorrichtung
US10035102B2 (en) 2015-11-18 2018-07-31 Ford Global Technologies, Llc System for a urea mixer
DE102016104361A1 (de) * 2016-03-10 2017-09-14 Eberspächer Exhaust Technology GmbH & Co. KG Mischer
DE102016119306A1 (de) 2016-10-11 2018-04-12 Witzenmann Gmbh Vorrichtung zum Vermischen von Fluidströmen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013221428A1 (de) * 2013-10-22 2015-04-23 Eberspächer Exhaust Technology GmbH & Co. KG Katalysatoranordnung mit Injektionsabschnitt
CN107869376A (zh) * 2016-09-26 2018-04-03 天纳克(苏州)排放系统有限公司 混合组件
DE102018108592A1 (de) 2018-04-11 2019-10-17 Eberspächer Exhaust Technology GmbH & Co. KG Gas/Gas-Mischer zum Einleiten von Gas in den Abgasstrom einer Brennkraftmaschine

Also Published As

Publication number Publication date
CN113137299B (zh) 2023-02-17
US11384671B2 (en) 2022-07-12
DE102020101134A1 (de) 2021-07-22
US20210222605A1 (en) 2021-07-22
CN113137299A (zh) 2021-07-20
EP3851646B1 (de) 2023-02-22

Similar Documents

Publication Publication Date Title
DE102015115220B4 (de) Mischerbaugruppe zur Bereitstellung eines kompakten Mischers
EP3216992B1 (de) Mischer
DE102006045435B4 (de) Abgasanlage für Dieselfahrzeuge mit einem SCR-Katalysator
DE102009036511B4 (de) Abgasanlage
EP3268120B1 (de) Mischvorrichtung
DE112010002589B4 (de) Abgasstrang mit Einspritzsystem
DE102008031136B4 (de) Abgasbehandlungseinrichtung
EP3158175B1 (de) Mischvorrichtung eines abgasreinigungssystems einer kraftfahrzeug-brennkraftmaschine
DE112013000012T5 (de) Mischvorrichtung für eine wässrige Reduktionsmittellösung und Abgasnachbehandlungsvorrichtung, die mit derselben versehen ist
DE112017003665T5 (de) Strömungsumlenker zur minderung von ablagerungen in einem dosiererkegel
EP2610457B1 (de) Abgasbehandlungsvorrichtung
EP3553290A1 (de) Gas/gas-mischer zum einleiten von gas in den abgasstrom einer brennkraftmaschine
DE102015108655B4 (de) Mischer
DE102014015868A1 (de) Abgasnachbehandlungseinrichtung für eine Verbrennungskraftmaschine, insbesondere eines Kraftwagens
EP3851646B1 (de) Gas/gas-mischer zum einleiten von gas in den abgasstrom einer brennkraftmaschine
EP3033502A1 (de) Abgasbehandlungseinheit mit strömungsteilenden und -mischenden leitelementen
DE102015121708B3 (de) Statischer Mischer
EP1437489B2 (de) Abgasanlage
AT518758B1 (de) Abgasnachbehandlungs-vorrichtung für eine brennkraftmaschine
DE102010048626A1 (de) Mischeinrichtung
EP3808949B1 (de) Mischeranordnung
EP3680462B1 (de) Abgasanlage
EP3514342B1 (de) Schalldämpfer
DE102007050925A1 (de) Verdampfer für eine Abgasanlage
EP3520888B1 (de) Mischer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PUREM GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220118

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221012

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1549653

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230315

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021000441

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230622

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230522

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230622

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230523

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502021000441

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20231123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 4