EP3850707A1 - Spiral segment antenna - Google Patents

Spiral segment antenna

Info

Publication number
EP3850707A1
EP3850707A1 EP19765248.0A EP19765248A EP3850707A1 EP 3850707 A1 EP3850707 A1 EP 3850707A1 EP 19765248 A EP19765248 A EP 19765248A EP 3850707 A1 EP3850707 A1 EP 3850707A1
Authority
EP
European Patent Office
Prior art keywords
antenna
loop
spiral
spiral segment
segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19765248.0A
Other languages
German (de)
French (fr)
Other versions
EP3850707B1 (en
Inventor
Cédric MARTEL
Jérôme MASSIOT
Olivier Pascal
Nathalie RAVEU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Office National dEtudes et de Recherches Aerospatiales ONERA
Original Assignee
Office National dEtudes et de Recherches Aerospatiales ONERA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Office National dEtudes et de Recherches Aerospatiales ONERA filed Critical Office National dEtudes et de Recherches Aerospatiales ONERA
Publication of EP3850707A1 publication Critical patent/EP3850707A1/en
Application granted granted Critical
Publication of EP3850707B1 publication Critical patent/EP3850707B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/08Helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/362Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith for broadside radiating helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/25Ultra-wideband [UWB] systems, e.g. multiple resonance systems; Pulse systems

Definitions

  • the present invention relates to an antenna with one or more segment (s) of spiral (s) for emitting radiation, in particular radiofrequency radiation (RF), the frequency of which can be between 300 MHz (megahertz) and 30 GHz (gigahertz). It may relate in particular to an antenna of the “ultra-wide band” type, or UWB for “Ultra-Wide Band” in English.
  • RF radiofrequency radiation
  • UWB antenna of the “ultra-wide band” type, or UWB for “Ultra-Wide Band” in English.
  • a UWB antenna emits radiation of frequency determined mainly from a restricted area of this antenna, which is called a radiative area for the frequency considered. This radiative zone varies as a function of the frequency of the radiation emitted, and therefore as a function of the frequency of each spectral component of the antenna feed signal.
  • an antenna as considered in the present description comprises at least one path for guiding a progressive electromagnetic wave, from an electrical supply input to which the supply signal is applied.
  • the radiative zones which are associated with different values of the frequency of the emitted radiation are distributed along the guide path of the traveling wave, according to the shape of this path.
  • radiation will denote the electromagnetic radiation which is emitted by the antenna and which propagates freely in the space outside the antenna, for the purpose of long-range signal transmission.
  • the term “traveling wave” designates the electromagnetic wave which propagates along the guide path of the antenna, while being confined in this path.
  • This progressive wave will then be called the “effective wavelength” of its spatial period along the guide path, taking into account the constitution of the antenna, the electrical and dielectric parameters of the materials which constitute it, and the presence possible of a metallic reflection plate which is intended to limit the emission field of the antenna to a half-space, of solid angle 2p steradians.
  • the radiative zone which corresponds to the frequency value f is approximately superimposed on the circle which is concentric with the spiral and whose circumference length is multiple of the effective wavelength of the progressive wave.
  • an object of the present invention consists in improving a spiral antenna of the type which has just been described, in order to increase its transmission efficiency at the start of the transmission band.
  • the invention proposes a new antenna for emitting radiation from at least one progressive electromagnetic wave which propagates along a guide path which is determined by a structure of the antenna, this guide path forming a transmission line dedicated to the traveling wave and having at least part of the path in the form of a spiral segment up to a terminal end of this spiral segment.
  • the antenna of the invention can be of the ultra-broadband type.
  • the guide path further comprises a continuous loop which surrounds each spiral segment, and the terminal end of each spiral segment is connected to the loop at a connection point of this spiral segment.
  • an electrical signal which is transmitted to a feed input of the antenna produces a traveling wave which propagates along each segment of spiral, then which is transmitted to the loop at the level of the point of connection of this segment of spiral.
  • the part of the traveling wave that is transmitted to the loop at each connection point then participates in producing radiation.
  • the loop constitutes at least part of a radiative zone of the antenna.
  • this radiative zone corresponds to frequency values which are close to the lower limit of the antenna transmission band, expressed in terms of frequency. The performance of the antenna at the start of the transmission band is thus improved.
  • the antenna further comprises for each spiral segment, a bridging structure which is arranged to connect, vis-à-vis the transmission of the progressive wave and in addition to the connection point, this spiral segment to the loop upstream of the point of connection with respect to the direction of propagation of the progressive wave along the spiral segment; and
  • two lengths of the guide path between the bridging structure and the connection point, when they are measured along the spiral segment and along the loop, respectively, are each equal to a quarter, to within +/- 20%, of the same value of effective wavelength of the traveling wave, which corresponds to a frequency value in the transmission band of the 'antenna.
  • each spiral segment can be connected tangentially to the loop, or roughly tangential to it, at the connection point of this spiral segment.
  • the transmission of the progressive wave from the spiral segment to the loop can thus be improved;
  • the effective wavelength of the traveling wave which serves as a reference for the two lengths of the guide path between the bridging structure and the connection point can be between 0.75 / n times and 1.25 / n times the length of the loop, n being a positive integer;
  • the bridging structure may have an impedance value which is between 1 and 3 times, preferably between 1.75 times and 2.25 times, a common characteristic impedance value of the spiral segment and the loop outside respective intermediate portions of the spiral segment and of the loop, which are intermediate between the bridging structure and the connection point, these impedance values being effective for the traveling wave; and
  • the intermediate portions of the spiral segment and of the loop may have respective values of characteristic impedance which are between 0.5 x 2 1/2 times and 1.5 x 2 1/2 times, preferably between 0.75 x 2 1/2 times and 1.25 x 2 1/2 times the impedance value characteristic common to this spiral segment and to the loop outside the intermediate portions.
  • connection of the spiral segment to the loop forms a Wilkinson divider, which is arranged to be traversed in a direction of wave joining by the transmitted progressive wave by this spiral arm.
  • the connection of each spiral segment to the loop is dimensioned to increase the transmission efficiency of the antenna near the lower limit of its transmission band, expressed in terms of frequency.
  • the antenna can be structured to determine several parts of the guide path which are identical and each in the form of a spiral segment. Each spiral segment extends to a terminal end to which it is connected to the loop separately from the other spiral segments. Then the antenna can be configured so that all of the guide path portions in spiral segments simultaneously transmit respective progressive waves to the loop.
  • each segment of spiral can be connected to the loop tangentially to the corresponding connection point.
  • it can also be connected to the loop by a respective bridging structure, separately from each other spiral segment, and each spiral segment with the corresponding bridging structure can advantageously reproduce the characteristics which have been indicated above, independently of each other spiral segment.
  • the loop can be circular;
  • Each part of the path can connect the feed input of the antenna to the loop, in the form of a spiral segment from the feed input of the antenna to the loop;
  • each part of the path can be in the form of an Archimedean spiral segment, including continuously from the feed input of the antenna to the loop;
  • the antenna can have a strand antenna configuration, but preferably it has a slot antenna configuration which is formed in a first metal surface.
  • it may further comprise a second metallic surface which is parallel to the first metallic surface, electrically insulated from the latter, and disposed near it so that the radiation is emitted by the antenna limitatively with a direction of emission which is oriented from the second metallic surface towards the first metallic surface.
  • FIG. 1 is a perspective view of an antenna according to the invention.
  • FIG. 1 is an equivalent electrical diagram of a connection which is used in the antenna of Figure 1.
  • an antenna 100 which is in accordance with the invention is formed in a first metal surface, for example in a metal plate 10. It is constituted by segments of slots which are arranged relative to one another for constitute an antenna of ultra-wideband type.
  • the antenna 100 may comprise several identical segments of spirals which each extend from an input E for supplying the antenna with an electrical signal.
  • the antenna 100 comprises two segments of spirals 1 1 and 12, which are intended to be supplied by electric currents opposite or identical to the input E, according to the mode of radiation which is desired.
  • the feed inlet E is therefore located at the starting point of each spiral segment 1 1, 12, and the two spiral segments 1 1 and 12 alternately intersect centrifugal radial directions which originate from the location of the power input E.
  • the antenna 100 comprises an additional slot segment 13, in the form of a loop which surrounds the spiral segments.
  • the additional slit segment 13 is directly called a loop in the remainder of this description, and each spiral-shaped slit segment is called a spiral segment.
  • the loop 13 is circular.
  • the spiral segment 1 1 is connected to the loop 13 at the connection point PR1, and the spiral segment 12 is connected to the loop 13 at the connection point PR2.
  • the antenna 100 has only two segments of spirals, but it is understood that it can include any number: one, three, four, etc.
  • these segments of spirals must be supplied with respective electrical currents at the power input E, which are out of phase with each other in a manner which is consistent with the distribution of the connection points on the loop 13.
  • the configuration of the power input E ensures that the two spiral segments 1 1 and 12 are supplied with respective electric currents which are opposite, and the two connection points PR1 and PR2 are diametrically opposite on loop 13.
  • each slot segment 1 1 -13 constitutes a part of the path of guidance for a progressive electromagnetic wave, this comprising variable electric currents which appear on the edges of the slot.
  • Such an antenna 100 produces a coupling between the progressive electromagnetic waves which are guided in the slot segments 1 1 -13 and electromagnetic radiation external to the antenna 100. This coupling is maximum in areas of the antenna 100 which depend on the frequency value common to the traveling waves which are guided in the slit segments, and equal to the frequency value of the radiation emitted. These zones are called radiative zones. That which corresponds to the frequency value f is superimposed on the circle which has for center the midpoint of the supply input E, and which has a length of circumference substantially equal to a multiple of the effective wavelength of each traveling wave having the frequency value f.
  • the reference ZR designates such a radiative zone, which is marked in broken lines in FIG. 1.
  • each slit segment can have an Archimedean spiral shape, for which the radial distance increases linearly with the polar coordinate angle.
  • the loop 13 is supplied with a traveling wave by the two segments of spirals 1 1 and 12 at the connection points PR1 and PR2, so that a resulting traveling wave propagates along the loop 13 when an electrical signal is injected into the two spiral segments 1 1 and 12 at the feed input E.
  • the loop 13 then constitutes a radiative zone for a frequency value of the radiation emitted which is close to the lower limit of the antenna transmission band 100, since it surrounds the segments of spirals 1 1 and 12.
  • each spiral segment 1 1, 12 is connected to the loop 13 tangentially, or substantially tangentially, relative to the latter.
  • this spiral segment 1 1, 12 is also advantageous for this spiral segment 1 1, 12 to be connected to the loop 13 by a Wilkinson divider structure, or by a connection structure whose structural and electrical characteristics are close to those of a Wilkinson divider.
  • a Wilkinson divider is well known to those skilled in the art, so that its effectiveness in suppressing reflection does not need to be demonstrated here.
  • Each Wilkinson divider structure is implemented as shown in Figure 2, to join the traveling wave which is guided by the spiral segment 1 1 or 12 with that which is guided by the loop 13.
  • Such a connection structure is now described for the spiral segment 1 1, it being understood that another connection structure, separate but identical, is used for each other spiral segment of the antenna 100.
  • a bridging structure SP1 is added to connect the spiral segment 1 1 to the loop 13, upstream of the connection point PR1 relative to the direction of propagation of the traveling wave which is guided by the spiral segment 1 1 coming from of the power input E.
  • the connection that constitutes the bridging structure SP1 between the spiral segment 11 and the loop 13 is effective for transmitting between them a part of the traveling wave which is guided by the spiral segment 11 or the loop 13.
  • the bridging structure SP1 can be constituted by an additional slot segment which connects the last turn of the spiral segment 11 to the loop 13. This segment the additional slit can be oriented radially, and can be short compared to the effective wavelength of the progressive wave part which it transmits.
  • the bridging structure SP1 and the connection point PR1 thus limit two intermediate parts of the guide path: the intermediate part 1 1 i along the spiral segment 1 1, and the intermediate part 13i along the loop 13.
  • the parts intermediaries 11 i and 13i each preferably have a length which is substantially equal to a quarter of a determined value of effective wavelength, relative to the traveling wave which is guided in the antenna 100.
  • This value of length d effective wave can correspond to radiation which is mainly emitted by loop 13 as a radiative zone.
  • the common value of the length of the two intermediate zones 11 i and 13i can be substantially equal to a quarter of the length of the circumference of the loop 13. More generally, it can be equal to Li 3 / (4-n), where is the length of the circumference of loop 13, and n is a positive integer.
  • the bridging structure SP1 can be designed to produce a determined impedance value for the traveling wave part which it transmits.
  • the spiral segment 1 1 and the loop 13 each have the same characteristic impedance value Z 0 outside the intermediate parts 11 i and 13i.
  • the respective slot segments which constitute the spiral segment 11 and the loop 13 have geometric, electrical and dielectric parameters which are identical. From these parameters, a person skilled in the art knows how to determine the impedance value characteristic of a slit segment, for the progressive wave which it transmits.
  • the impedance value which is thus desired for the bridging structure SP1 can be produced by arranging an appropriate electrical resistance R1 between the opposite edges of the additional slot segment of this bridging structure SP1.
  • the electrical resistance R1 can be equal to or substantially equal to 2 x Z 0 . It can be constituted by a discrete component which is attached to the antenna 100, for example by soldering its two terminals each to one of the two edges of the additional slot segment of the bridging structure SP1.
  • the FM electrical resistance can also consist of a segment of resistive film of an available model commercially, which is reported locally between the two edges of the slot.
  • the characteristic impedance values of the intermediate parts 1 1 i and 13i, which are effective for the traveling wave guided by each of them can be adjusted.
  • the spiral segment 1 1 and the loop 13 each still have the common characteristic impedance value Z 0 apart from the intermediate parts 1 1 i and 13i, the latter may preferably each have a characteristic impedance value which is substantially equal to 2 1/2 x Z 0 .
  • Such a characteristic impedance value adjustment can in particular be carried out by increasing the slit width in the intermediate parts 1 1 i and 13i, relative to a slit width value which is common to the spiral segment 1 1 and to the loop 13 outside the intermediate parts 1 1 i and 13i.
  • the antenna 100 has a Wilkinson divider structure between the spiral segment 11 and the loop 13. This structure makes it possible to inject the progressive wave 2 (see FIGS. 1 and 2) which is guided by the spiral segment 11, in the loop 13, to join it with the progressive wave 3 which is guided by the loop 13 upstream of the bridging structure SP1. This results in the progressive wave 1 which is guided by the loop 13 downstream of the connection point PR1.
  • the progressive wave 2 is then weakly reflected, or is not reflected, in the spiral segment 1 1, by a destructive interference effect which occurs between parts of the progressive wave which are reflected separately at the level of the bridging structure SP1 and at the connection point PR1.
  • This reduction or suppression of reflection is most effective for the traveling wave whose effective wavelength value has been used to adjust the values of length and characteristic impedances of the intermediate parts 1 1 i and 13i, and to adjust the impedance value of the bridging structure SP1.
  • the references PR2, SP2, 12i and R2 correspond respectively to the references PR1, SP1, 11 i and R1, for the spiral segment 12 instead of the spiral segment 1 1.
  • a second metal surface for example another metal plate 20 as shown in Figure 1, is optional. It is arranged parallel to the plate 10, and located a short distance from the latter while being electrically isolated.
  • the function of the plate 20 is to limit the emission of radiation from the antenna 100 to the side of the plate 10 which is opposite to that of the plate 20.
  • the distance between the plates 10 and 20 can be equal to approximately one twentieth of the wavelength of the radiation which corresponds to the lowest limit of the antenna transmission band, expressed in terms of frequency, and the intermediate space between the two plates can be filled with an electrically insulating material and transparent to radiation.
  • plate 20 is taken into account to determine the effective wavelength values of the traveling waves which are guided in the antenna 100, and to determine the characteristic impedance values of the guide path portions of progressive waves.
  • the inventors obtained a gain of at least 7 dB (decibel), or even more than 12 dB, on the electrical reflection coefficient of the antenna 100, as commonly designated by Su and measured at the power input E. This gain is effective near the lower frequency limit of the transmission band of the antenna 100.
  • the number of spiral segments which are connected to the loop can be any
  • the antenna can be designed for any transmission band, whether or not of the UWB type;
  • the spiral segments and the loop can have any shape, with continuous curvatures or based on rectilinear segments, for example to form octagonal spirals and a loop;
  • the antenna can be optimized for a transmission frequency such that the length of the loop is equal to an integer greater than one, times the effective wavelength of the traveling wave which corresponds to this frequency;
  • the antenna can be of the strand type (s).

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

An antenna (100) for emitting radiation from at least one travelling electromagnetic wave that propagates along a guide path, is designed to reduce a reflection likely to be produced for the travelling wave at the end of the guide path. For this purpose, the guide path comprises at least one part in the form of a spiral segment (11, 12), which is connected to another part of the guide path in the form of a loop (13). A gain in the reflection coefficient of the antenna can be obtained in this way, which is effective particularly near a lower frequency limit of a transmission band of the antenna.

Description

ANTENNE EN SEGMENT DE SPIRALE  SPIRAL SEGMENT ANTENNA
La présente invention concerne une antenne à un ou plusieurs segment(s) de spirale(s) pour émettre un rayonnement, notamment un rayonnement radiofréquence (RF) dont la fréquence peut être comprise entre 300 MHz (mégahertz) et 30 GHz (gigahertz). Elle peut concerner en particulier une antenne de type «ultra-large bande», ou UWB pour «Ultra-Wide Band» en anglais. De façon connue, une antenne UWB émet un rayonnement de fréquence déterminée principalement à partir d’une zone restreinte de cette antenne, qui est appelée zone radiative pour la fréquence considérée. Cette zone radiative varie en fonction de la fréquence du rayonnement émis, et donc en fonction de la fréquence de chaque composante spectrale du signal d’alimentation de l’antenne. The present invention relates to an antenna with one or more segment (s) of spiral (s) for emitting radiation, in particular radiofrequency radiation (RF), the frequency of which can be between 300 MHz (megahertz) and 30 GHz (gigahertz). It may relate in particular to an antenna of the “ultra-wide band” type, or UWB for “Ultra-Wide Band” in English. In known manner, a UWB antenna emits radiation of frequency determined mainly from a restricted area of this antenna, which is called a radiative area for the frequency considered. This radiative zone varies as a function of the frequency of the radiation emitted, and therefore as a function of the frequency of each spectral component of the antenna feed signal.
Plus précisément, une antenne telle que considérée dans la présente description comprend au moins un trajet de guidage d’une onde électromagnétique progressive, à partir d’une entrée d’alimentation électrique à laquelle est appliqué le signal d’alimentation. Les zones radiatives qui sont associées à des valeurs différentes de la fréquence du rayonnement émis sont réparties le long du trajet de guidage de l’onde progressive, en fonction de la forme de ce trajet. Dans toute la suite, on désignera par «rayonnement» la radiation électromagnétique qui est émise par l’antenne et qui se propage librement dans l’espace à l’extérieur de l’antenne, dans un but de transmission de signal à grande distance. Par opposition, on désignera par «onde progressive» l’onde électromagnétique qui se propage le long du trajet de guidage de l’antenne, en étant confinée dans ce trajet. On appellera alors «longueur d’onde effective» de cette onde progressive, sa période spatiale le long du trajet de guidage, compte tenu de la constitution de l’antenne, des paramètres électriques et diélectriques des matériaux qui la constituent, et de la présence éventuelle d’une plaque métallique de réflexion qui est destinée à limiter le champ d’émission de l’antenne à un demi-espace, d’angle solide 2p stéradians. De façon connue, pour une antenne dont le trajet de guidage est en forme de spirale à partir d’une entrée du signal d’alimentation située au centre de cette spirale, la zone radiative qui correspond à la valeur de fréquence f est approximativement superposée au cercle qui est concentrique avec la spirale et dont la longueur de circonférence est multiple de la longueur d’onde effective de l’onde progressive. More specifically, an antenna as considered in the present description comprises at least one path for guiding a progressive electromagnetic wave, from an electrical supply input to which the supply signal is applied. The radiative zones which are associated with different values of the frequency of the emitted radiation are distributed along the guide path of the traveling wave, according to the shape of this path. In the following, “radiation” will denote the electromagnetic radiation which is emitted by the antenna and which propagates freely in the space outside the antenna, for the purpose of long-range signal transmission. In contrast, the term “traveling wave” designates the electromagnetic wave which propagates along the guide path of the antenna, while being confined in this path. This progressive wave will then be called the “effective wavelength” of its spatial period along the guide path, taking into account the constitution of the antenna, the electrical and dielectric parameters of the materials which constitute it, and the presence possible of a metallic reflection plate which is intended to limit the emission field of the antenna to a half-space, of solid angle 2p steradians. In known manner, for an antenna whose guide path is in the form of a spiral from an input of the supply signal located in the center of this spiral, the radiative zone which corresponds to the frequency value f is approximately superimposed on the circle which is concentric with the spiral and whose circumference length is multiple of the effective wavelength of the progressive wave.
Toutefois, lorsque l’onde progressive atteint l’extrémité externe du trajet de guidage en spirale, elle est au moins partiellement réfléchie et l’onde progressive de retour produit de nouveau une émission de rayonnement. Cette émission supplémentaire retardée brouille alors en partie le rayonnement principal qui est émis simultanément à partir de l’onde progressive qui se propage de l’entrée d’alimentation vers l’extrémité du trajet de guidage. Pour éviter ce brouillage, il a été proposé de disposer un matériau absorbant à l’extrémité externe du trajet de guidage en spirale, pour absorber l’onde progressive et réduire ainsi l’amplitude de sa réflexion. Mais il en résulte une réduction de l’efficacité d’émission de l’antenne, qui affecte notamment les valeurs de fréquence dont les zones radiatives sont situées en périphérie de la spirale. Ces valeurs de fréquence sont situées au début de la bande de transmission de l’antenne, du côté de sa limite inférieure en termes de fréquence.  However, when the traveling wave reaches the outer end of the spiral guide path, it is at least partially reflected and the returning traveling wave again produces radiation. This delayed additional emission then partially scrambles the main radiation which is emitted simultaneously from the traveling wave which propagates from the supply inlet towards the end of the guide path. To avoid this interference, it has been proposed to have an absorbent material at the outer end of the spiral guide path, to absorb the progressive wave and thus reduce the amplitude of its reflection. However, this results in a reduction in the emission efficiency of the antenna, which in particular affects the frequency values whose radiative zones are situated at the periphery of the spiral. These frequency values are located at the beginning of the antenna transmission band, on the side of its lower limit in terms of frequency.
Par ailleurs, l’article intitulé «Self Matched Spiral Printed Antenna with Unidirectional Pattern», de J. Massiot et al., 7th European Conférence on Antennas and Propagation (EuCAP), 2013, IEEE, pp. 1237-1240, propose de réduire la réflexion de l’onde progressive sur l’extrémité externe de chaque partie du trajet de guidage en forme de spirale en disposant une résistance électrique qui relie entre elles les deux dernières spires de cette partie de trajet en spirale. Cette résistance électrique est placée à une distance de l’extrémité externe de la partie de trajet en spirale qui est égale à un quart d’une valeur de longueur d’onde effective de l’onde progressive, pour une valeur de fréquence dans la bande de transmission de l’antenne. Cette solution n’est toutefois pas optimale, et n’est pas satisfaisante pour certaines applications qui requièrent une bonne efficacité d’émission de l’antenne jusqu’au début de sa bande de transmission, c’est-à-dire pour des valeurs de fréquence qui sont proches de la limite inférieure de la bande de transmission de l’antenne, exprimée en termes de fréquence. A partir de cette situation, un but de la présente invention consiste à améliorer une antenne spirale du type qui vient d’être décrit, pour augmenter son efficacité d’émission en début de bande de transmission. In addition, the article entitled “Self Matched Spiral Printed Antenna with Unidirectional Pattern”, by J. Massiot et al., 7th European Conference on Antennas and Propagation (EuCAP), 2013, IEEE, pp. 1237-1240, proposes to reduce the reflection of the progressive wave on the external end of each part of the guide path in the form of a spiral by providing an electrical resistance which connects together the last two turns of this part of the spiral path . This electrical resistance is placed at a distance from the external end of the spiral path portion which is equal to a quarter of an effective wavelength value of the traveling wave, for a frequency value in the band. antenna transmission. This solution is however not optimal, and is not satisfactory for certain applications which require good transmission efficiency from the antenna up to the start of its transmission band, that is to say for values which are close to the lower limit of the antenna transmission band, expressed in terms of frequency. From this situation, an object of the present invention consists in improving a spiral antenna of the type which has just been described, in order to increase its transmission efficiency at the start of the transmission band.
Pour atteindre ce but ou d’autres, l’invention propose une nouvelle antenne pour émettre un rayonnement à partir d’au moins une onde électromagnétique progressive qui se propage le long d’un trajet de guidage qui est déterminé par une structure de l’antenne, ce trajet de guidage formant une ligne de transmission dédiée à l’onde progressive et ayant au moins une partie de trajet en forme de segment de spirale jusqu’à une extrémité terminale de ce segment de spirale. Autrement dit, l’antenne de l’invention peut être du type ultra-large bande.  To achieve this goal or others, the invention proposes a new antenna for emitting radiation from at least one progressive electromagnetic wave which propagates along a guide path which is determined by a structure of the antenna, this guide path forming a transmission line dedicated to the traveling wave and having at least part of the path in the form of a spiral segment up to a terminal end of this spiral segment. In other words, the antenna of the invention can be of the ultra-broadband type.
Selon l’invention, le trajet de guidage comprend en outre une boucle continue qui entoure chaque segment de spirale, et l’extrémité terminale de chaque segment de spirale est raccordée à la boucle en un point de raccordement de ce segment de spirale. Ainsi, un signal électrique qui est transmis à une entrée d’alimentation de l’antenne produit une onde progressive qui se propage le long de chaque segment de spirale, puis qui est transmise à la boucle au niveau du point de raccordement de ce segment de spirale. La partie de l’onde progressive qui est transmise à la boucle à chaque point de raccordement participe alors à produire du rayonnement. Autrement dit, la boucle constitue au moins une partie d’une zone radiative de l’antenne. En outre, cette zone radiative correspond à des valeurs de fréquence qui sont proches de la limite inférieure de la bande de transmission de l’antenne, exprimée en termes de fréquence. Les performances de l’antenne en début de bande de transmission sont ainsi améliorées.  According to the invention, the guide path further comprises a continuous loop which surrounds each spiral segment, and the terminal end of each spiral segment is connected to the loop at a connection point of this spiral segment. Thus, an electrical signal which is transmitted to a feed input of the antenna produces a traveling wave which propagates along each segment of spiral, then which is transmitted to the loop at the level of the point of connection of this segment of spiral. The part of the traveling wave that is transmitted to the loop at each connection point then participates in producing radiation. In other words, the loop constitutes at least part of a radiative zone of the antenna. In addition, this radiative zone corresponds to frequency values which are close to the lower limit of the antenna transmission band, expressed in terms of frequency. The performance of the antenna at the start of the transmission band is thus improved.
Selon des caractéristiques supplémentaires de l’invention, destinées à réduire encore plus la partie de l’onde progressive qui est réfléchie à chaque point de raccordement :  According to additional characteristics of the invention, intended to further reduce the part of the traveling wave which is reflected at each connection point:
- l’antenne comprend en outre pour chaque segment de spirale, une structure de pontage qui est agencée pour connecter, vis-à-vis de la transmission de l’onde progressive et en plus du point de raccordement, ce segment de spirale à la boucle en amont du point de raccordement par rapport au sens de propagation de l’onde progressive le long du segment en spirale ; et - The antenna further comprises for each spiral segment, a bridging structure which is arranged to connect, vis-à-vis the transmission of the progressive wave and in addition to the connection point, this spiral segment to the loop upstream of the point of connection with respect to the direction of propagation of the progressive wave along the spiral segment; and
- pour chaque segment de spirale qui est ainsi pourvu d’une structure de pontage, deux longueurs du trajet de guidage entre la structure de pontage et le point de raccordement, lorsqu’elles sont mesurées le long du segment de spirale et le long de la boucle, respectivement, sont égales chacune à un quart, à +/- 20% près, d’une même valeur de longueur d’onde effective de l’onde progressive, qui correspond à une valeur de fréquence dans la bande de transmission de l’antenne.  - for each spiral segment which is thus provided with a bridging structure, two lengths of the guide path between the bridging structure and the connection point, when they are measured along the spiral segment and along the loop, respectively, are each equal to a quarter, to within +/- 20%, of the same value of effective wavelength of the traveling wave, which corresponds to a frequency value in the transmission band of the 'antenna.
De façon préférée, les caractéristiques additionnelles suivantes peuvent être mises en oeuvre :  Preferably, the following additional characteristics can be implemented:
IM chaque segment de spirale peut être raccordé tangentiellement à la boucle, ou à peu près tangentiellement à celle-ci, au niveau du point de raccordement de ce segment de spirale. La transmission de l’onde progressive du segment de spirale à la boucle peut ainsi être améliorée ;  IM each spiral segment can be connected tangentially to the loop, or roughly tangential to it, at the connection point of this spiral segment. The transmission of the progressive wave from the spiral segment to the loop can thus be improved;
121 la longueur d’onde effective de l’onde progressive qui sert de référence pour les deux longueurs du trajet de guidage entre la structure de pontage et le point de raccordement, peut être comprise entre 0,75/n fois et 1 ,25/n fois la longueur de la boucle, n étant un nombre entier positif ;  121 the effective wavelength of the traveling wave which serves as a reference for the two lengths of the guide path between the bridging structure and the connection point, can be between 0.75 / n times and 1.25 / n times the length of the loop, n being a positive integer;
13/ la structure de pontage peut posséder une valeur d’impédance qui est comprise entre 1 fois et 3 fois, de préférence entre 1 ,75 fois et 2,25 fois, une valeur d’impédance caractéristique commune du segment de spirale et de la boucle en dehors de portions intermédiaires respectives du segment de spirale et de la boucle, qui sont intermédiaires entre la structure de pontage et le point de raccordement, ces valeurs d’impédances étant effectives pour l’onde progressive ; et  13 / the bridging structure may have an impedance value which is between 1 and 3 times, preferably between 1.75 times and 2.25 times, a common characteristic impedance value of the spiral segment and the loop outside respective intermediate portions of the spiral segment and of the loop, which are intermediate between the bridging structure and the connection point, these impedance values being effective for the traveling wave; and
/4/ les portions intermédiaires du segment de spirale et de la boucle peuvent avoir des valeurs respectives d’impédance caractéristique qui sont comprises entre 0,5 x 21/2 fois et 1 ,5 x 21/2 fois, de préférence entre 0,75 x 21/2 fois et 1 ,25 x 21/2 fois, la valeur d’impédance caractéristique commune à ce segment de spirale et à la boucle en dehors des portions intermédiaires. / 4 / the intermediate portions of the spiral segment and of the loop may have respective values of characteristic impedance which are between 0.5 x 2 1/2 times and 1.5 x 2 1/2 times, preferably between 0.75 x 2 1/2 times and 1.25 x 2 1/2 times the impedance value characteristic common to this spiral segment and to the loop outside the intermediate portions.
Lorsque ces caractéristiques additionnelles 121 à /4/ sont toutes mises en oeuvre, le raccordement du segment de spirale à la boucle forme un diviseur de Wilkinson, qui est agencé pour être parcouru dans un sens de réunion d’ondes par l’onde progressive transmise par ce bras de spirale. When these additional characteristics 121 to / 4 / are all implemented, the connection of the spiral segment to the loop forms a Wilkinson divider, which is arranged to be traversed in a direction of wave joining by the transmitted progressive wave by this spiral arm.
Lorsque la longueur d’onde effective de l’onde progressive qui sert de référence pour les deux longueurs des portions intermédiaires, est comprise entre 0,75 et 1 ,25 fois la longueur de la boucle, le raccordement de chaque segment de spirale à la boucle est dimensionné pour augmenter l’efficacité d’émission de l’antenne à proximité de la limite inférieure de sa bande de transmission, exprimée en termes de fréquence. When the effective wavelength of the traveling wave, which serves as a reference for the two lengths of the intermediate portions, is between 0.75 and 1.25 times the length of the loop, the connection of each spiral segment to the loop is dimensioned to increase the transmission efficiency of the antenna near the lower limit of its transmission band, expressed in terms of frequency.
Possiblement, l’antenne peut être structurée pour déterminer plusieurs parties de trajet de guidage qui sont identiques et chacune en forme d’un segment de spirale. Chaque segment de spirale s’étend jusqu’à une extrémité terminale à laquelle il est raccordé à la boucle séparément des autres segments de spirales. Alors l’antenne peut être configurée pour que toutes les parties de trajet de guidage en segments de spirales transmettent simultanément des ondes progressives respectives à la boucle. Possibly, the antenna can be structured to determine several parts of the guide path which are identical and each in the form of a spiral segment. Each spiral segment extends to a terminal end to which it is connected to the loop separately from the other spiral segments. Then the antenna can be configured so that all of the guide path portions in spiral segments simultaneously transmit respective progressive waves to the loop.
De plus, pour une telle configuration à plusieurs segments de spirales qui alimentent la boucle simultanément en onde progressive, chaque segment de spirale peut être raccordé à la boucle tangentiellement au point de raccordement correspondant. Par ailleurs, il peut aussi être raccordé à la boucle par une structure de pontage respective, séparément de chaque autre segment de spirale, et chaque segment de spirale avec la structure de pontage correspondante peut avantageusement reproduire les caractéristiques qui ont été indiquées plus haut, indépendamment de chaque autre segment de spirale. In addition, for such a configuration with several segments of spirals which feed the loop simultaneously in traveling wave, each segment of spiral can be connected to the loop tangentially to the corresponding connection point. Furthermore, it can also be connected to the loop by a respective bridging structure, separately from each other spiral segment, and each spiral segment with the corresponding bridging structure can advantageously reproduce the characteristics which have been indicated above, independently of each other spiral segment.
Dans divers modes de réalisation de l’invention, les autres caractéristiques additionnelles suivantes peuvent aussi être mises en oeuvre, séparément ou en combinaison de plusieurs d’entre elles : In various embodiments of the invention, the following other additional characteristics can also be implemented, separately or in combination of several of them:
- la boucle peut être circulaire ; - chaque partie de trajet peut relier l’entrée d’alimentation de l’antenne à la boucle, en ayant la forme de segment de spirale à partir de l’entrée d’alimentation de l’antenne jusqu’à la boucle ; - the loop can be circular; - Each part of the path can connect the feed input of the antenna to the loop, in the form of a spiral segment from the feed input of the antenna to the loop;
- chaque partie de trajet peut avoir la forme d’un segment de spirale d’Archimède, y compris d’une façon continue à partir de l’entrée d’alimentation de l’antenne jusqu’à la boucle ; et  - each part of the path can be in the form of an Archimedean spiral segment, including continuously from the feed input of the antenna to the loop; and
- l’antenne peut avoir une configuration d’antenne à brin(s), mais de façon préférentielle elle possède une configuration d’antenne-fente qui est formée dans une première surface métallique. Dans ce dernier cas, elle peut comprendre en outre une seconde surface métallique qui est parallèle à la première surface métallique, isolée électriquement de cette dernière, et disposée à proximité d’elle de sorte que le rayonnement soit émis par l’antenne limitativement avec un sens d’émission qui est orienté de la seconde surface métallique vers la première surface métallique.  - The antenna can have a strand antenna configuration, but preferably it has a slot antenna configuration which is formed in a first metal surface. In the latter case, it may further comprise a second metallic surface which is parallel to the first metallic surface, electrically insulated from the latter, and disposed near it so that the radiation is emitted by the antenna limitatively with a direction of emission which is oriented from the second metallic surface towards the first metallic surface.
D'autres particularités et avantages de la présente invention apparaîtront dans la description ci-après d'exemples de réalisation non limitatifs, en référence aux dessins annexés, dans lesquels :  Other features and advantages of the present invention will appear in the following description of nonlimiting exemplary embodiments, with reference to the appended drawings, in which:
- la figure 1 est une vue en perspective d’une antenne conforme à l’invention ; et  - Figure 1 is a perspective view of an antenna according to the invention; and
- la figure 2 est un schéma électrique équivalent d’une connexion qui est utilisée dans l’antenne de la figure 1.  - Figure 2 is an equivalent electrical diagram of a connection which is used in the antenna of Figure 1.
Pour raison de clarté, les dimensions des éléments qui sont représentés dans la figure 1 ne correspondent ni à des dimensions réelles ni à des rapports de dimensions réels. En outre, des références identiques qui sont indiquées dans les deux figures désignent des éléments identiques ou qui ont des fonctions identiques.  For clarity, the dimensions of the elements which are represented in FIG. 1 do not correspond either to actual dimensions or to ratios of actual dimensions. In addition, identical references which are indicated in the two figures designate identical elements or which have identical functions.
Conformément à la figure 1 , une antenne 100 qui est conforme à l’invention est formée dans une première surface métallique, par exemple dans une plaque métallique 10. Elle est constituée par des segments de fentes qui sont disposés les uns par rapport aux autres pour constituer une antenne du type ultra-large bande. L’antenne 100 peut comprendre plusieurs segments de spirales identiques qui s’étendent chacun à partir d’une entrée E d’alimentation de l’antenne en signal électrique. Par exemple, l’antenne 100 comprend deux segments de spirales 1 1 et 12, qui sont destinés à être alimentés par des courants électriques opposés ou identiques à l’entrée E, selon le mode de rayonnement qui est désiré. L’entrée d’alimentation E est donc située au point de départ de chaque segment de spirale 1 1 , 12, et les deux segments de spirales 1 1 et 12 coupent en alternance des directions radiales centrifuges qui sont issues de l’emplacement de l’entrée d’alimentation E. In accordance with FIG. 1, an antenna 100 which is in accordance with the invention is formed in a first metal surface, for example in a metal plate 10. It is constituted by segments of slots which are arranged relative to one another for constitute an antenna of ultra-wideband type. The antenna 100 may comprise several identical segments of spirals which each extend from an input E for supplying the antenna with an electrical signal. For example, the antenna 100 comprises two segments of spirals 1 1 and 12, which are intended to be supplied by electric currents opposite or identical to the input E, according to the mode of radiation which is desired. The feed inlet E is therefore located at the starting point of each spiral segment 1 1, 12, and the two spiral segments 1 1 and 12 alternately intersect centrifugal radial directions which originate from the location of the power input E.
Selon l’invention, l’antenne 100 comprend un segment de fente supplémentaire 13, en forme de boucle qui entoure les segments en spirales. Pour raison de clarté, le segment de fente supplémentaire 13 est directement appelé boucle dans le reste de la présente description, et chaque segment de fente en forme de spirale est appelé segment de spirale. De préférence, la boucle 13 est circulaire. Le segment de spirale 1 1 est connecté à la boucle 13 au point de raccordement PR1 , et le segment de spirale 12 est connecté à la boucle 13 au point de raccordement PR2.  According to the invention, the antenna 100 comprises an additional slot segment 13, in the form of a loop which surrounds the spiral segments. For clarity, the additional slit segment 13 is directly called a loop in the remainder of this description, and each spiral-shaped slit segment is called a spiral segment. Preferably, the loop 13 is circular. The spiral segment 1 1 is connected to the loop 13 at the connection point PR1, and the spiral segment 12 is connected to the loop 13 at the connection point PR2.
Dans la suite de la présente description, on supposera que l’antenne 100 ne comporte que deux segments de spirales, mais il est entendu qu’elle peut en comporter un nombre quelconque : un seul, trois, quatre, etc. A la lumière de la description qui suit, l’Homme du métier comprendra que lorsque plusieurs segments de spirales sont connectés à la boucle 13 en des points de raccordement qui sont répartis le long de cette boucle 13, ces segments de spirales doivent être alimentés avec des courants électriques respectifs au niveau de l’entrée d’alimentation E, qui sont déphasés les uns par rapport aux autres d’une façon qui est cohérente avec la répartition des points de raccordement sur la boucle 13. Dans le cas de l’antenne représentée sur la figure 1 , la configuration de l’entrée d’alimentation E assure que les deux segments de spirales 1 1 et 12 sont alimentés avec des courants électriques respectifs qui sont opposés, et les deux points de raccordement PR1 et PR2 sont diamétralement opposés sur la boucle 13.  In the remainder of this description, it will be assumed that the antenna 100 has only two segments of spirals, but it is understood that it can include any number: one, three, four, etc. In the light of the description which follows, a person skilled in the art will understand that when several segments of spirals are connected to the loop 13 at connection points which are distributed along this loop 13, these segments of spirals must be supplied with respective electrical currents at the power input E, which are out of phase with each other in a manner which is consistent with the distribution of the connection points on the loop 13. In the case of the antenna shown in Figure 1, the configuration of the power input E ensures that the two spiral segments 1 1 and 12 are supplied with respective electric currents which are opposite, and the two connection points PR1 and PR2 are diametrically opposite on loop 13.
Alors, chaque segment de fente 1 1 -13 constitue une partie de trajet de guidage pour une onde électromagnétique progressive, celle-ci comprenant des courants électriques variables qui apparaissent sur les bords de la fente. Une telle antenne 100 produit un couplage entre les ondes électromagnétiques progressives qui sont guidées dans les segments de fentes 1 1 -13 et un rayonnement électromagnétique externe à l’antenne 100. Ce couplage est maximal dans des zones de l’antenne 100 qui dépendent de la valeur de fréquence commune aux ondes progressives qui sont guidées dans les segments de fentes, et égale à la valeur de fréquence du rayonnement émis. Ces zones sont appelées zones radiatives. Celle qui correspond à la valeur de fréquence f est superposée au cercle qui a pour centre le point de milieu de l’entrée d’alimentation E, et qui possède une longueur de circonférence sensiblement égale à un multiple de la longueur d’onde effective de chaque onde progressive ayant la valeur de fréquence f. La référence ZR désigne une telle zone radiative, qui est marquée en traits interrompus dans la figure 1. Then, each slot segment 1 1 -13 constitutes a part of the path of guidance for a progressive electromagnetic wave, this comprising variable electric currents which appear on the edges of the slot. Such an antenna 100 produces a coupling between the progressive electromagnetic waves which are guided in the slot segments 1 1 -13 and electromagnetic radiation external to the antenna 100. This coupling is maximum in areas of the antenna 100 which depend on the frequency value common to the traveling waves which are guided in the slit segments, and equal to the frequency value of the radiation emitted. These zones are called radiative zones. That which corresponds to the frequency value f is superimposed on the circle which has for center the midpoint of the supply input E, and which has a length of circumference substantially equal to a multiple of the effective wavelength of each traveling wave having the frequency value f. The reference ZR designates such a radiative zone, which is marked in broken lines in FIG. 1.
La forme des segments de spirales peut être sélectionnée en fonction du profil d’efficacité qui est désiré pour l’antenne 100 dans sa bande spectrale de transmission. Par exemple, chaque segment de fente peut avoir une forme de spirale d’Archimède, pour laquelle la distance radiale augmente linéairement avec l’angle de coordonnée polaire.  The shape of the spiral segments can be selected according to the efficiency profile which is desired for the antenna 100 in its transmission spectral band. For example, each slit segment can have an Archimedean spiral shape, for which the radial distance increases linearly with the polar coordinate angle.
La boucle 13 est alimentée en onde progressive par les deux segments de spirales 1 1 et 12 aux points de raccordement PR1 et PR2, de sorte qu’une onde progressive résultante se propage le long de la boucle 13 lorsqu’un signal électrique est injecté dans les deux segments de spirales 1 1 et 12 à l’entrée d’alimentation E. La boucle 13 constitue alors une zone radiative pour une valeur de fréquence du rayonnement émis qui est proche de la limite inférieure de la bande de transmission de l’antenne 100, puisqu’elle entoure les segments de spirales 1 1 et 12.  The loop 13 is supplied with a traveling wave by the two segments of spirals 1 1 and 12 at the connection points PR1 and PR2, so that a resulting traveling wave propagates along the loop 13 when an electrical signal is injected into the two spiral segments 1 1 and 12 at the feed input E. The loop 13 then constitutes a radiative zone for a frequency value of the radiation emitted which is close to the lower limit of the antenna transmission band 100, since it surrounds the segments of spirals 1 1 and 12.
Pour réduire une réflexion qui pourrait affecter l’onde progressive qui est guidée par chaque segment de spirale 1 1 , 12 au niveau du point de raccordement correspondant PR1 ou PR2, il est avantageux que chaque segment de spirale 1 1 , 12 soit connecté à la boucle 13 tangentiellement, ou sensiblement tangentiellement, par rapport à celle-ci. Pour réduire encore plus la réflexion qui pourrait affecter l’onde progressive qui est guidée par chaque segment de spirale 1 1 , 12 au niveau du point de raccordement correspondant PR1 ou PR2, il est aussi avantageux que ce segment de spirale 1 1 , 12 soit connecté à la boucle 13 par une structure de diviseur de Wilkinson, ou par une structure de connexion dont les caractéristiques structurelles et électriques sont proches de celles d’un diviseur de Wilkinson. Un tel diviseur de Wilkinson est bien connu de l’Homme du métier, si bien que son efficacité à supprimer la réflexion n’a pas besoin d’être redémontrée ici. Chaque structure de diviseur de Wilkinson est mise en oeuvre comme indiqué par la figure 2, pour réunir l’onde progressive qui est guidée par le segment de spirale 1 1 ou 12 avec celle qui est guidée par la boucle 13. Une telle structure de connexion est décrite maintenant pour le segment de spirale 1 1 , étant entendu qu’une autre structure de connexion, séparée mais identique, est utilisée pour chaque autre segment de spirale de l’antenne 100. To reduce a reflection which could affect the traveling wave which is guided by each spiral segment 1 1, 12 at the corresponding connection point PR1 or PR2, it is advantageous that each spiral segment 1 1, 12 is connected to the loop 13 tangentially, or substantially tangentially, relative to the latter. To further reduce the reflection which could affect the traveling wave which is guided by each spiral segment 1 1, 12 at the corresponding connection point PR1 or PR2, it is also advantageous for this spiral segment 1 1, 12 to be connected to the loop 13 by a Wilkinson divider structure, or by a connection structure whose structural and electrical characteristics are close to those of a Wilkinson divider. Such a Wilkinson divider is well known to those skilled in the art, so that its effectiveness in suppressing reflection does not need to be demonstrated here. Each Wilkinson divider structure is implemented as shown in Figure 2, to join the traveling wave which is guided by the spiral segment 1 1 or 12 with that which is guided by the loop 13. Such a connection structure is now described for the spiral segment 1 1, it being understood that another connection structure, separate but identical, is used for each other spiral segment of the antenna 100.
Une structure de pontage SP1 est rajoutée pour relier le segment de spirale 1 1 à la boucle 13, en amont du point de raccordement PR1 par rapport au sens de propagation de l’onde progressive qui est guidée par le segment de spirale 1 1 en provenance de l’entrée d’alimentation E. La liaison que constitue la structure de pontage SP1 entre le segment de spirale 11 et la boucle 13 est effective pour transmettre entre eux une partie de l’onde progressive qui est guidée par le segment de spirale 11 ou la boucle 13. Dans ce but, et comme cela est visible sur la figure 1 , la structure de pontage SP1 peut être constituée par un segment de fente supplémentaire qui relie la dernière spire du segment de spirale 11 à la boucle 13. Ce segment de fente supplémentaire peut être orienté radialement, et peut être court par rapport à la longueur d’onde effective de la partie d’onde progressive qu’il transmet.  A bridging structure SP1 is added to connect the spiral segment 1 1 to the loop 13, upstream of the connection point PR1 relative to the direction of propagation of the traveling wave which is guided by the spiral segment 1 1 coming from of the power input E. The connection that constitutes the bridging structure SP1 between the spiral segment 11 and the loop 13 is effective for transmitting between them a part of the traveling wave which is guided by the spiral segment 11 or the loop 13. For this purpose, and as can be seen in FIG. 1, the bridging structure SP1 can be constituted by an additional slot segment which connects the last turn of the spiral segment 11 to the loop 13. This segment the additional slit can be oriented radially, and can be short compared to the effective wavelength of the progressive wave part which it transmits.
La structure de pontage SP1 et le point de raccordement PR1 limitent ainsi deux parties intermédiaires de trajet de guidage : la partie intermédiaire 1 1 i le long du segment de spirale 1 1 , et la partie intermédiaire 13i le long de la boucle 13. Les parties intermédiaires 11 i et 13i ont de préférence chacune une longueur qui est sensiblement égale à un quart d’une valeur déterminée de longueur d’onde effective, relative à l’onde progressive qui est guidée dans l’antenne 100. Cette valeur de longueur d’onde effective peut correspondre au rayonnement qui est principalement émis par la boucle 13 en tant que zone radiative. Ainsi, la valeur commune de longueur des deux zones intermédiaires 11 i et 13i peut être sensiblement égale à un quart de la longueur de circonférence de la boucle 13. Plus généralement, elle peut être égale à Li3/(4-n), où est la longueur de circonférence de la boucle 13, et n est un nombre entier positif. The bridging structure SP1 and the connection point PR1 thus limit two intermediate parts of the guide path: the intermediate part 1 1 i along the spiral segment 1 1, and the intermediate part 13i along the loop 13. The parts intermediaries 11 i and 13i each preferably have a length which is substantially equal to a quarter of a determined value of effective wavelength, relative to the traveling wave which is guided in the antenna 100. This value of length d effective wave can correspond to radiation which is mainly emitted by loop 13 as a radiative zone. Thus, the common value of the length of the two intermediate zones 11 i and 13i can be substantially equal to a quarter of the length of the circumference of the loop 13. More generally, it can be equal to Li 3 / (4-n), where is the length of the circumference of loop 13, and n is a positive integer.
En outre, pour réduire encore plus la réflexion de l’onde progressive sur l’extrémité du segment de spirale 11 , la structure de pontage SP1 peut être conçue pour produire une valeur d’impédance déterminée pour la partie d’onde progressive qu’elle transmet. Pour cela, le segment de spirale 1 1 et la boucle 13 ont chacun une même valeur d’impédance caractéristique Z0 en dehors des parties intermédiaires 11 i et 13i. Par exemple, les segments de fentes respectifs qui constituent le segment de spirale 1 1 et la boucle 13 ont des paramètres géométriques, électriques et diélectriques qui sont identiques. A partir de ces paramètres, l’Homme du métier sait déterminer la valeur d’impédance caractéristique d’un segment de fente, pour l’onde progressive qu’il transmet. A ce sujet, on pourra se référer en particulier à la thèse intitulée «Comparison of slotline characteristics» de Yong Seok Seo, Institutional Archive of the Naval Postgraduate School : Cahloun, Monterey, California, June 1990, accessible à l’adresse internet http://hdl.handle.net/10945/34829. Lorsque le seul paramètre d’antenne-fente qui est varié est la largeur de la fente, l’impédance caractéristique d’un segment de fente est une fonction croissante de cette largeur de fente. Alors, la valeur d’impédance de la structure de pontage SP1 peut être avantageusement choisie égale à environ 2 x Z0. La valeur d’impédance qui est ainsi désirée pour la structure de pontage SP1 peut être produite en disposant une résistance électrique appropriée R1 entre les bords opposés du segment de fente supplémentaire de cette structure de pontage SP1. La résistance électrique R1 peut être égale ou sensiblement égale à 2 x Z0. Elle peut être constituée par un composant discret qui est rapporté sur l’antenne 100, par exemple en soudant ses deux bornes chacune à un des deux bords du segment de fente supplémentaire de la structure de pontage SP1. Alternativement, la résistance électrique FM peut aussi être constituée par un segment de film résistif d’un modèle disponible commercialement, qui est rapporté localement entre les deux bords de la fente.Furthermore, to further reduce the reflection of the traveling wave on the end of the spiral segment 11, the bridging structure SP1 can be designed to produce a determined impedance value for the traveling wave part which it transmits. For this, the spiral segment 1 1 and the loop 13 each have the same characteristic impedance value Z 0 outside the intermediate parts 11 i and 13i. For example, the respective slot segments which constitute the spiral segment 11 and the loop 13 have geometric, electrical and dielectric parameters which are identical. From these parameters, a person skilled in the art knows how to determine the impedance value characteristic of a slit segment, for the progressive wave which it transmits. In this regard, we can refer in particular to the thesis entitled "Comparison of slotline characteristics" by Yong Seok Seo, Institutional Archive of the Naval Postgraduate School: Cahloun, Monterey, California, June 1990, available at the internet address http: //hdl.handle.net/10945/34829. When the only slot antenna parameter that is varied is the width of the slot, the characteristic impedance of a slot segment is an increasing function of this slot width. Then, the impedance value of the bridging structure SP1 can be advantageously chosen to be equal to approximately 2 × Z 0 . The impedance value which is thus desired for the bridging structure SP1 can be produced by arranging an appropriate electrical resistance R1 between the opposite edges of the additional slot segment of this bridging structure SP1. The electrical resistance R1 can be equal to or substantially equal to 2 x Z 0 . It can be constituted by a discrete component which is attached to the antenna 100, for example by soldering its two terminals each to one of the two edges of the additional slot segment of the bridging structure SP1. Alternatively, the FM electrical resistance can also consist of a segment of resistive film of an available model commercially, which is reported locally between the two edges of the slot.
Encore pour réduire dans une mesure supplémentaire la réflexion de l’onde progressive sur l’extrémité du segment de spirale 1 1 , les valeurs d’impédance caractéristique des parties intermédiaires 1 1 i et 13i, qui sont effectives pour l’onde progressive guidée par chacune d’elles, peuvent être ajustées. Ainsi, lorsque le segment de spirale 1 1 et la boucle 13 ont chacun encore la valeur d’impédance caractéristique commune Z0 en dehors des parties intermédiaires 1 1 i et 13i, ces dernières peuvent avoir de préférence chacune une valeur d’impédance caractéristique qui est sensiblement égale à 21/2 x Z0. Un tel ajustement de valeur d’impédance caractéristique peut notamment être effectué en augmentant la largeur de fente dans les parties intermédiaires 1 1 i et 13i, par rapport à une valeur de largeur de fente qui est commune au segment de spirale 1 1 et à la boucle 13 en dehors des parties intermédiaires 1 1 i et 13i. Again to further reduce the reflection of the traveling wave on the end of the spiral segment 1 1, the characteristic impedance values of the intermediate parts 1 1 i and 13i, which are effective for the traveling wave guided by each of them can be adjusted. Thus, when the spiral segment 1 1 and the loop 13 each still have the common characteristic impedance value Z 0 apart from the intermediate parts 1 1 i and 13i, the latter may preferably each have a characteristic impedance value which is substantially equal to 2 1/2 x Z 0 . Such a characteristic impedance value adjustment can in particular be carried out by increasing the slit width in the intermediate parts 1 1 i and 13i, relative to a slit width value which is common to the spiral segment 1 1 and to the loop 13 outside the intermediate parts 1 1 i and 13i.
Les ajustements qui viennent d’être décrits, pour l’impédance de la structure de pontage SP1 et pour les impédances caractéristiques des parties intermédiaires 1 1 i et 13i, sont effectués pour la même valeur de longueur d’onde effective que celle utilisée pour ajuster la longueur des deux parties intermédiaires 1 1 i et 13i. Dans ces conditions, l’antenne 100 présente une structure de diviseur de Wilkinson entre le segment de spirale 1 1 et la boucle 13. Cette structure permet d’injecter l’onde progressive 2 (voir les figures 1 et 2) qui est guidée par le segment de spirale 11 , dans la boucle 13, pour la réunir avec l’onde progressive 3 qui est guidée par la boucle 13 en amont de la structure de pontage SP1. Il en résulte l’onde progressive 1 qui est guidée par la boucle 13 en aval du point de raccordement PR1. L’onde progressive 2 est alors faiblement réfléchie, ou n’est pas réfléchie, dans le segment de spirale 1 1 , par un effet d’interférence destructive qui se produit entre des parties d’onde progressive qui sont réfléchies séparément au niveau de la structure de pontage SP1 et au niveau du point de raccordement PR1. Cette réduction ou suppression de réflexion est la plus efficace pour l’onde progressive dont la valeur de longueur d’onde effective a été utilisée pour ajuster les valeurs de longueur et d’impédances caractéristiques des parties intermédiaires 1 1 i et 13i, et pour ajuster la valeur d’impédance de la structure de pontage SP1. Les références PR2, SP2, 12i et R2 correspondent respectivement aux références PR1 , SP1 , 11 i et R1 , pour le segment de spirale 12 au lieu du segment de spirale 1 1. The adjustments which have just been described, for the impedance of the bridging structure SP1 and for the characteristic impedances of the intermediate parts 1 1 i and 13i, are made for the same value of effective wavelength as that used to adjust the length of the two intermediate parts 1 1 i and 13i. Under these conditions, the antenna 100 has a Wilkinson divider structure between the spiral segment 11 and the loop 13. This structure makes it possible to inject the progressive wave 2 (see FIGS. 1 and 2) which is guided by the spiral segment 11, in the loop 13, to join it with the progressive wave 3 which is guided by the loop 13 upstream of the bridging structure SP1. This results in the progressive wave 1 which is guided by the loop 13 downstream of the connection point PR1. The progressive wave 2 is then weakly reflected, or is not reflected, in the spiral segment 1 1, by a destructive interference effect which occurs between parts of the progressive wave which are reflected separately at the level of the bridging structure SP1 and at the connection point PR1. This reduction or suppression of reflection is most effective for the traveling wave whose effective wavelength value has been used to adjust the values of length and characteristic impedances of the intermediate parts 1 1 i and 13i, and to adjust the impedance value of the bridging structure SP1. The references PR2, SP2, 12i and R2 correspond respectively to the references PR1, SP1, 11 i and R1, for the spiral segment 12 instead of the spiral segment 1 1.
Une seconde surface métallique, par exemple une autre plaque métallique 20 telle que représentée sur la figure 1 , est optionnelle. Elle est disposée parallèlement à la plaque 10, et située à faible distance de celle-ci en étant isolée électriquement. La plaque 20 a pour fonction de limiter l’émission du rayonnement par l’antenne 100 au côté de la plaque 10 qui est opposé à celui de la plaque 20. Typiquement, la distance entre les plaques 10 et 20 peut être égale à environ un vingtième de la longueur d’onde du rayonnement qui correspond à la limite la plus basse de la bande de transmission de l’antenne, exprimée en termes de fréquence, et l’espace intermédiaire entre les deux plaques peut être rempli par un matériau isolant électriquement et transparent au rayonnement. Lorsqu’elle est utilisée, la plaque 20 est prise en compte pour déterminer les valeurs de longueur d’onde effective des ondes progressives qui sont guidées dans l’antenne 100, et pour déterminer les valeurs d’impédance caractéristique des parties de trajet de guidage d’ondes progressives.  A second metal surface, for example another metal plate 20 as shown in Figure 1, is optional. It is arranged parallel to the plate 10, and located a short distance from the latter while being electrically isolated. The function of the plate 20 is to limit the emission of radiation from the antenna 100 to the side of the plate 10 which is opposite to that of the plate 20. Typically, the distance between the plates 10 and 20 can be equal to approximately one twentieth of the wavelength of the radiation which corresponds to the lowest limit of the antenna transmission band, expressed in terms of frequency, and the intermediate space between the two plates can be filled with an electrically insulating material and transparent to radiation. When used, plate 20 is taken into account to determine the effective wavelength values of the traveling waves which are guided in the antenna 100, and to determine the characteristic impedance values of the guide path portions of progressive waves.
En utilisant l’invention, les inventeurs ont obtenu un gain d’au moins 7 dB (décibel), voire de plus de 12 dB, sur le coefficient de réflexion électrique de l’antenne 100, tel que couramment désigné par Su et mesuré à l’entrée d’alimentation E. Ce gain est effectif à proximité de la limite fréquentielle inférieure de la bande de transmission de l’antenne 100.  By using the invention, the inventors obtained a gain of at least 7 dB (decibel), or even more than 12 dB, on the electrical reflection coefficient of the antenna 100, as commonly designated by Su and measured at the power input E. This gain is effective near the lower frequency limit of the transmission band of the antenna 100.
Il est entendu que l’invention peut être reproduite tout en modifiant des aspects secondaires de celle-ci par rapport aux modes de mise en oeuvre qui ont été décrits en détail ci-dessus. En particulier, les caractéristiques suivantes de l’antenne peuvent être modifiées :  It is understood that the invention can be reproduced while modifying secondary aspects thereof compared with the modes of implementation which have been described in detail above. In particular, the following characteristics of the antenna can be modified:
- le nombre de segments de spirales qui sont connectés à la boucle peut être quelconque ;  - the number of spiral segments which are connected to the loop can be any;
- le nombre de spires dans chaque segment de spirale peut être quelconque ;  - the number of turns in each spiral segment can be arbitrary;
- l’antenne peut être conçue pour une bande de transmission quelconque, en étant de type UWB ou non ; - les segments de spirales et la boucle peuvent avoir des formes quelconques, à courbures continues ou à base de segments rectilignes, par exemple pour former des spirales et une boucle octogonales ; - the antenna can be designed for any transmission band, whether or not of the UWB type; - The spiral segments and the loop can have any shape, with continuous curvatures or based on rectilinear segments, for example to form octagonal spirals and a loop;
- l’antenne peut être optimisée pour une fréquence d’émission telle que la longueur de la boucle soit égale à un nombre entier supérieur à un, de fois la longueur d’onde effective de l’onde progressive qui correspond à cette fréquence ; et - The antenna can be optimized for a transmission frequency such that the length of the loop is equal to an integer greater than one, times the effective wavelength of the traveling wave which corresponds to this frequency; and
- l’antenne peut être du type à brin(s).  - the antenna can be of the strand type (s).

Claims

R E V E N D I C A T I O N S
1. Antenne (100) pour émettre un rayonnement à partir d’au moins une onde électromagnétique progressive qui se propage le long d’un trajet de guidage déterminé par une structure de l’antenne, ledit trajet de guidage formant une ligne de transmission dédiée à l’onde progressive et ayant au moins une partie de trajet en forme de segment de spirale (1 1 , 12) jusqu’à une extrémité terminale dudit segment de spirale, 1. Antenna (100) for emitting radiation from at least one progressive electromagnetic wave which propagates along a guide path determined by an antenna structure, said guide path forming a dedicated transmission line to the traveling wave and having at least part of the path in the form of a spiral segment (1 1, 12) to a terminal end of said spiral segment,
le trajet de guidage comprenant en outre une boucle continue (13) qui entoure chaque segment de spirale (1 1 , 12), et l’extrémité terminale de chaque segment de spirale est raccordée à la boucle en un point de raccordement (PR1 , PR2) dudit segment de spirale, de sorte qu’un signal électrique qui est transmis à une entrée d’alimentation (E) de l’antenne (100) produise une onde progressive qui se propage le long de chaque segment de spirale, puis qui est transmise à la boucle au niveau du point de raccordement dudit segment de spirale, the guide path further comprising a continuous loop (13) which surrounds each spiral segment (1 1, 12), and the terminal end of each spiral segment is connected to the loop at a connection point (PR1, PR2 ) of said spiral segment, so that an electrical signal which is transmitted to a power input (E) of the antenna (100) produces a traveling wave which propagates along each segment of spiral, then which is transmitted to the loop at the connection point of said spiral segment,
caractérisée en ce que l’antenne (100) comprend en outre pour chaque segment de spirale (1 1 , 12), une structure de pontage (SP1 , SP2) qui est agencée pour connecter, vis-à-vis de la transmission de l’onde progressive et en plus du point de raccordement (PR1 , PR2), ledit segment de spirale à la boucle (13) en amont dudit point de raccordement par rapport à un sens de propagation de l’onde progressive le long du segment en spirale, characterized in that the antenna (100) further comprises for each spiral segment (1 1, 12), a bridging structure (SP1, SP2) which is arranged to connect, vis-à-vis the transmission of the progressive wave and in addition to the connection point (PR1, PR2), said spiral segment to the loop (13) upstream of said connection point with respect to a direction of propagation of the progressive wave along the spiral segment ,
et en ce que, pour ledit segment de spirale (1 1 , 12), deux longueurs du trajet de guidage entre la structure de pontage (SP1 , SP2) et le point de raccordement (PR1 , PR2), mesurées le long du segment de spirale et le long de la boucle (13), respectivement, sont égales chacune à un quart, à +/- 20% près, d’une même valeur de longueur d’onde effective de l’onde progressive, qui correspond à une valeur de fréquence appartenant à une bande de transmission de l’antenne (100). and in that, for said spiral segment (1 1, 12), two lengths of the guide path between the bridging structure (SP1, SP2) and the connection point (PR1, PR2), measured along the segment of spiral and along the loop (13), respectively, are each equal to a quarter, to within +/- 20%, of the same value of effective wavelength of the progressive wave, which corresponds to a value of frequency belonging to an antenna transmission band (100).
2. Antenne (100) selon la revendication 1 , dans laquelle chaque segment de spirale (11 , 12) est raccordé tangentiellement à la boucle (13), au niveau du point de raccordement (PR1 , PR2) dudit segment de spirale. 2. Antenna (100) according to claim 1, in which each spiral segment (11, 12) is tangentially connected to the loop (13), at the connection point (PR1, PR2) of said spiral segment.
3. Antenne (100) selon la revendication 1 ou 2, dans laquelle la longueur d’onde effective de l’onde progressive qui sert de référence pour les longueurs du trajet de guidage entre la structure de pontage (SP1 , SP2) et le point de raccordement (PR1 , PR2), mesurées le long du segment de spirale et le long de la boucle (13), respectivement, est comprise entre 0,75/n fois et 1 ,25/n fois la longueur de la boucle, n étant un nombre entier positif. 3. Antenna (100) according to claim 1 or 2, in which the effective wavelength of the traveling wave which serves as a reference for the lengths of the guide path between the bridging structure (SP1, SP2) and the point connection (PR1, PR2), measured along the spiral segment and along the loop (13), respectively, is between 0.75 / n times and 1.25 / n times the length of the loop, n being a positive whole number.
4. Antenne (100) selon l’une quelconque des revendications précédentes, dans laquelle la structure de pontage (SP1 , SP2) possède une valeur d’impédance qui est comprise entre 1 fois et 3 fois une valeur d’impédance caractéristique commune du segment de spirale (1 1 , 12) et de la boucle (13) en dehors de portions intermédiaires (11 i, 12i, 13i) respectives dudit segment de spirale et de ladite boucle, qui sont intermédiaires entre la structure de pontage (SP1 , SP2) et le point de raccordement (PR1 , PR2), ladite valeur d’impédance de la structure de pontage et ladite valeur d’impédance caractéristique étant effectives pour l’onde progressive. 4. Antenna (100) according to any one of the preceding claims, in which the bridging structure (SP1, SP2) has an impedance value which is between 1 and 3 times a common characteristic impedance value of the segment of spiral (11, 12) and of the loop (13) apart from respective intermediate portions (11 i, 12i, 13i) of said spiral segment and of said loop, which are intermediate between the bridging structure (SP1, SP2 ) and the connection point (PR1, PR2), said bridging structure impedance value and said characteristic impedance value being effective for the traveling wave.
5. Antenne (100) selon la revendication 4, dans laquelle les portions intermédiaires (1 1 i, 12i, 13i) du segment de spirale (1 1 , 12) et de la boucle (13) ont des valeurs respectives d’impédance caractéristique qui sont comprises chacune entre 0,5 x 21/2 fois et 1 ,5 x 21/2 fois la valeur d’impédance caractéristique commune audit segment de spirale et à la boucle en dehors desdites portions intermédiaires. 5. Antenna (100) according to claim 4, in which the intermediate portions (1 1 i, 12i, 13i) of the spiral segment (1 1, 12) and of the loop (13) have respective values of characteristic impedance which are each between 0.5 x 2 1/2 times and 1.5 x 2 1/2 times the characteristic impedance value common to said spiral segment and to the loop outside said intermediate portions.
6. Antenne (100) selon l’une quelconque des revendications précédentes, structurée pour déterminer plusieurs parties identiques de trajet de guidage ayant chacun une forme en segment de spirale (1 1 , 12), et s’étendant jusqu’à une extrémité terminale à laquelle ledit segment de spirale est raccordé à la boucle (13) séparément des autres segments de spirales, et l’antenne (100) est configurée pour que toutes les parties de trajet de guidage en segments de spirales (1 1 , 12) transmettent simultanément des ondes progressives respectives à la boucle (13). 6. Antenna (100) according to any one of the preceding claims, structured to determine several identical parts of the guide path each having a spiral segment shape (1 1, 12), and extending to a terminal end to which said spiral segment is connected to the loop (13) separately from the other spiral segments, and the antenna (100) is configured so that all of the guide path portions in spiral segments (1 1, 12) simultaneously transmit respective traveling waves to the loop (13).
7. Antenne (100) selon la revendication 6, dans laquelle chaque segment de spirale (1 1 , 12) est raccordé à la boucle (13) par une structure de pontage (SP1 , SP2) respective, séparément de chaque autre segment de spirale, et chaque segment de spirale avec la structure de pontage correspondante reproduit les caractéristiques de l’une quelconque des revendications 1 à 5, indépendamment de chaque autre segment de spirale. 7. Antenna (100) according to claim 6, in which each spiral segment (1 1, 12) is connected to the loop (13) by a bridging structure (SP1, SP2) respectively, separately from each other spiral segment , and each spiral segment with the corresponding bridging structure reproduces the characteristics of any one of claims 1 to 5, independently of each other spiral segment.
8. Antenne (100) selon l’une quelconque des revendications précédentes, ayant une configuration d’antenne-fente qui est formée dans une première surface métallique (10). 8. An antenna (100) according to any one of the preceding claims, having a slot antenna configuration which is formed in a first metal surface (10).
9. Antenne (100) selon la revendication 8, comprenant en outre une seconde surface métallique (20) qui est parallèle à la première surface métallique (10), isolée électriquement de ladite première surface métallique, et disposée à proximité de ladite première surface métallique de sorte que le rayonnement soit émis par ladite antenne limitativement avec un sens d’émission qui est orienté de la seconde surface métallique vers la première surface métallique. 9. An antenna (100) according to claim 8, further comprising a second metallic surface (20) which is parallel to the first metallic surface (10), electrically insulated from said first metallic surface, and disposed near said first metallic surface so that the radiation is emitted by said antenna limitatively with a direction of emission which is oriented from the second metallic surface to the first metallic surface.
EP19765248.0A 2018-09-13 2019-09-06 Spiral segment antenna Active EP3850707B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1800953A FR3086107B1 (en) 2018-09-13 2018-09-13 SPIRAL SEGMENT ANTENNA
PCT/EP2019/073830 WO2020053090A1 (en) 2018-09-13 2019-09-06 Spiral segment antenna

Publications (2)

Publication Number Publication Date
EP3850707A1 true EP3850707A1 (en) 2021-07-21
EP3850707B1 EP3850707B1 (en) 2022-10-26

Family

ID=65494148

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19765248.0A Active EP3850707B1 (en) 2018-09-13 2019-09-06 Spiral segment antenna

Country Status (6)

Country Link
US (1) US11616304B2 (en)
EP (1) EP3850707B1 (en)
CN (1) CN112771723B (en)
FR (1) FR3086107B1 (en)
IL (1) IL281268B2 (en)
WO (1) WO2020053090A1 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442369A (en) * 1992-12-15 1995-08-15 West Virginia University Toroidal antenna
US6184844B1 (en) * 1997-03-27 2001-02-06 Qualcomm Incorporated Dual-band helical antenna
US5936594A (en) * 1997-05-17 1999-08-10 Raytheon Company Highly isolated multiple frequency band antenna
US5923305A (en) * 1997-09-15 1999-07-13 Ericsson Inc. Dual-band helix antenna with parasitic element and associated methods of operation
US6653987B1 (en) * 2002-06-18 2003-11-25 The Mitre Corporation Dual-band quadrifilar helix antenna
US7245268B2 (en) * 2004-07-28 2007-07-17 Skycross, Inc. Quadrifilar helical antenna
JP2014027392A (en) * 2012-07-25 2014-02-06 Toshiba Corp Spiral antenna
US9917356B2 (en) * 2013-09-13 2018-03-13 Lawrence Livermore National Security, Llc Band-notched spiral antenna
EP3091610B1 (en) * 2015-05-08 2021-06-23 TE Connectivity Germany GmbH Antenna system and antenna module with reduced interference between radiating patterns
CN108232447B (en) * 2018-02-28 2023-09-15 中国人民解放军国防科技大学 Impedance converter for self-compensating structure antenna

Also Published As

Publication number Publication date
FR3086107A1 (en) 2020-03-20
EP3850707B1 (en) 2022-10-26
IL281268B2 (en) 2023-10-01
IL281268B1 (en) 2023-06-01
US20220045430A1 (en) 2022-02-10
IL281268A (en) 2021-04-29
US11616304B2 (en) 2023-03-28
CN112771723A (en) 2021-05-07
FR3086107B1 (en) 2021-12-24
CN112771723B (en) 2023-05-05
WO2020053090A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
EP0649181B1 (en) Antenna for portable radio apparatus, method for manufacturing the same and portable radio apparatus comprising the same
EP1407512B1 (en) Antenna
EP0575211B1 (en) Radiating element of an antenna with wide bandwidth and antenna array comprising such elements
FR2826185A1 (en) Antenna for operation with mobile phone includes parallel conductive surface, one cut into inner and outer zones linked to two generator terminals
EP1489688B1 (en) Feeding for reflector antenna
EP2422403A1 (en) Low-profile broadband multiple antenna
FR2742003A1 (en) ANTENNA AND ANTENNA ASSEMBLY FOR MEASURING MICROWAVE ELECTROMAGNETIC FIELD DISTRIBUTION
EP0110479B1 (en) Directive thin double antenna for microwaves
EP1540768B1 (en) Broadband helical antenna
EP0012645A1 (en) Sheet antenna composed of two circular rings
EP3850707B1 (en) Spiral segment antenna
EP0015610B1 (en) Microwave image-frequency reflecting filter and microwave receiver comprising such a filter
EP1949496B1 (en) Flat antenna system with a direct waveguide access
EP3692598B1 (en) Antenna with partially saturated dispersive ferromagnetic substrate
FR3003699A1 (en) COMPACT CIRCULAR POLARIZING PROPELLER ANTENNA
CA2800949C (en) Linear dual-polarised wide band compact antenna
CA3130188A1 (en) Wideband antenna, in particular for a microwave imaging system
FR2967536A1 (en) COMPACT ANTENNA ADAPTABLE TO IMPEDANCE
FR2801730A1 (en) Broad band aerial for radar use includes scissors configuration limbs with resistive elements at remote ends
EP2888784A1 (en) Inductive surface element
FR2769135A1 (en) RADIANT COAXIAL CABLE

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210310

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220401

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1527738

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019021158

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221026

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1527738

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230227

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230126

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230226

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230127

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019021158

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230727

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230822

Year of fee payment: 5

Ref country code: GB

Payment date: 20230823

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230822

Year of fee payment: 5

Ref country code: FR

Payment date: 20230822

Year of fee payment: 5

Ref country code: DE

Payment date: 20230822

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230906