EP3850293B1 - Heat exchanger having surface elements having convex recesses and integrated material thickenings - Google Patents

Heat exchanger having surface elements having convex recesses and integrated material thickenings Download PDF

Info

Publication number
EP3850293B1
EP3850293B1 EP19805232.6A EP19805232A EP3850293B1 EP 3850293 B1 EP3850293 B1 EP 3850293B1 EP 19805232 A EP19805232 A EP 19805232A EP 3850293 B1 EP3850293 B1 EP 3850293B1
Authority
EP
European Patent Office
Prior art keywords
tube
heat exchanger
surface elements
reinforcing beads
partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19805232.6A
Other languages
German (de)
French (fr)
Other versions
EP3850293A1 (en
Inventor
Sebastian Unger
Uwe Hampel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Helmholtz Zentrum Dresden Rossendorf eV
Original Assignee
Helmholtz Zentrum Dresden Rossendorf eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helmholtz Zentrum Dresden Rossendorf eV filed Critical Helmholtz Zentrum Dresden Rossendorf eV
Publication of EP3850293A1 publication Critical patent/EP3850293A1/en
Application granted granted Critical
Publication of EP3850293B1 publication Critical patent/EP3850293B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/26Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/30Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/10Secondary fins, e.g. projections or recesses on main fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2225/00Reinforcing means
    • F28F2225/06Reinforcing means for fins

Definitions

  • the invention relates to a heat exchanger with at least one partition, from which protruding surface elements are arranged on at least one side, around which a fluid can flow.
  • heat exchangers are used in various designs to transfer heat from one medium to another medium, with the two media remaining physically separate.
  • heat exchangers can be divided into liquid-gas heat exchangers, liquid-liquid heat exchangers and gas-gas heat exchangers, for example.
  • tube bundle heat exchangers with finned tubes are known, which are also referred to as finned tube heat exchangers.
  • the liquid flows inside the tube and the gas flows around the outside of the tube.
  • the heat transfer coefficients of liquids are one to two orders of magnitude higher than those of gases.
  • the surface of the tube is therefore increased on the outside by ribs, resulting in reduced heat transfer resistance on the gas side of this heat exchanger.
  • the heat transfer resistance for both media is low.
  • the ribs of finned tubes are often designed as voluminous attachments that are connected to the dividing wall of the heat exchanger. Large volumes of the ribs are coupled with high material costs in production and a high weight of the heat exchanger. High weights can be disadvantageous and undesirable, for example when used in vehicles. A high material consumption is disadvantageously associated with correspondingly high costs.
  • rib thickness A large wall thickness of the individual ribs, referred to below as rib thickness, leads to a lower number of ribs per finned tube than with thinner ribs, given the same distance between the ribs. Limited heat transfer surfaces and low overall thermal performance are associated with large fin thickness.
  • the GB 436 656 A discloses a heat exchanger with finned tubes in which three-dimensional fins are arranged on the fins, which extend essentially perpendicularly to the base area of the fins.
  • the fins have a peg-shaped cross-section and not all fins abut the wall of the tube separating the fluids.
  • the disadvantage of these finned tubes is the increase in mass, which is proportional to the volume of the three-dimensional fins, and a limited overall thermal performance of the heat exchanger.
  • Another disadvantage is that the slats are vertical to the flow direction of the Fins aligned fluid flowing around and hardly affect the heat conduction within the rib away from the tube or towards the tube.
  • the CH 435 436 A discloses a lamellar tube consisting of a core tube and a multiplicity of sheet metal laminations arranged on the core tube and having a rectangular outline as ribs.
  • the laminations each have beads - i.e. depressions - which extend from the core tube and increase rigidity.
  • the disadvantage of such ribs is that the heat-conducting cross-sectional area increases with distance from the core tube and thus leads to cooling of the rib, as a result of which the temperature difference between the rib and the medium flowing around decreases and the heat transfer performance decreases.
  • the DE 160 351 A describes a heat exchanger in which further tubes are arranged radially on the surface of a heating or cooling body tube.
  • ribs can be arranged perpendicularly to the heating or cooling element tube axis, with the ribs being arranged as a separate layer between two layers of radial tubes or within a layer of radial tubes connected to them for reasons of reinforcement.
  • the DE 42 07 597 A1 discloses a heat exchange element for fixing to a pipe through which medium flows, with a multiplicity of radially protruding heat exchanger ribs.
  • the heat exchanger fins extend along the longitudinal axis of the tube in the direction of flow of the fluid flowing through the tube and do not form a surface perpendicular to the direction of flow of the fluid in the tube.
  • a heat exchanger such as is designed, for example, as the rear wall of a refrigerator.
  • Such single-wall heat exchangers consist of a pipe coil to hold the heating or cooling medium and a metal wall with pressed rows of gills and grooves or beads to hold the pipe sections. Tabs punched out of the sheet metal wall overlap the pipe sections for attachment like a clamp. The tabs may have beads for greater stability. The metal sheet and the punched tabs are aligned along the flow direction of the heating or cooling medium through the tube.
  • the WO 02/048595 A1 describes a sewer pipe for transporting media made of plastic, which enables the transport of media in the pipe without loss of pressure, even when the sewer pipe is laid in a curved manner.
  • the sewer pipe has a wavy shape in the flow direction of the pipe wall up.
  • the U.S. 3,311,163 discloses a heat exchanger composed of a metal tube and a plurality of rectangular metal fins fixed to the outside of the metal tube.
  • the fins have parallel vertical embossments to compensate for lateral thermal expansion of the tube and fins. These embossings are aligned vertically to the flow direction of the fluid through the tube
  • the object of the invention is to provide a low-mass heat exchanger with high thermal output and a homogeneous temperature profile along the ribs.
  • the heat exchanger contains a partition and surface elements that protrude from at least one side of the partition and increase the surface of the partition, around which a fluid can flow.
  • the surface elements have reinforcing beads and surface areas located between the reinforcing beads, the reinforcing beads extending from the partition wall and having a circular or oval cross-sectional shape.
  • the reinforcing beads extend from the partition over at least part of the height of the surface element.
  • the surface elements have a plurality of convex recesses, each of the convex recesses being located in one of the areas between two reinforcing beads and extending from an outer edge of the surface element.
  • the apex of each recess is at a height greater than or equal to 30% and less than or equal to 70% of the height of the surfel. The height is measured from the partition wall.
  • Protruding from at least one side of the partition means that the surface elements extend at an angle greater than zero and less than or equal to 90° from the partition.
  • the thickness of the surfels also referred to as wall thickness, is small compared to the area of the surfels, the thickness being measured parallel to the partition wall and perpendicular to the face of the surfels.
  • the surface elements extend perpendicularly from the partition.
  • the surface elements are rigidly connected to the partition wall and are also rigid in themselves.
  • the surface elements serving as ribs of the heat exchanger are divided into thin-walled surface areas with a correspondingly small volume and low mass.
  • the thickness of the surface areas corresponds to the wall thickness of the surface elements.
  • the subdivision is made by reinforcement beads with larger cross-sections for increased heat conduction. This means that the reinforcing beads have a greater thickness than the wall thickness of the surface elements.
  • the reinforcement beads thus form material thickenings that are solid and therefore not hollow.
  • the surface element in the area of a reinforcing bead in cross section consists entirely of the material of the surface element, which completely fills the cross section.
  • the reinforcement beads are aligned in such a way that they conduct the heat towards or away from the partition between the two fluids, depending on the temperature gradient.
  • the height of the surfers is the extension of the surfers from the partition along the face of the surfers to the outer edge of the surfers in an area that is not a convex recess.
  • the height of the surfers is the radius of the surfers from the partition.
  • the outer edge of the surfel is the side of the surfel that is not adjacent to the partition.
  • Convex recess means that the recess has a convex shape that has its greatest width at the outer edge of the surface element and that decreases in width along the surface element towards the partition. The width is measured along the surface of the surfel.
  • a recess is the complete absence of the material of the surface element, ie the recess extends over the entire thickness of the surface element and does not only represent a thinning of the surface element in a certain area.
  • the convex recesses reduce the area of the surface element as the distance from the partition wall increases, so that the heat-conducting cross-sectional area of the surface element is reduced.
  • the reduced surface area of the surface elements advantageously offers a low frictional pressure loss of the fluid flowing around.
  • the mass of the surface element is further reduced due to the reduced material consumption or it is possible to carry out the surface element without increasing the mass of the surface element by means of the reinforcing beads or by increasing the thickness of the surface element.
  • the reinforcing beads Due to their increased material thickness, the reinforcing beads contribute locally to improving heat conduction. As a result, the combination of the plurality of convex recesses and intermediate reinforcing beads improves the temperature profile along the surface element and contributes to homogenizing the temperature of the surface element and increasing the heat transfer performance.
  • the heat exchanger can be a liquid-gas heat exchanger, for example a water-air heat exchanger.
  • the heat exchanger can be designed as a finned tube heat exchanger as described above, with the dividing wall between the first fluid (eg water) and the second fluid (eg air) being formed by the tube wall of the tube or tubes.
  • the fluids water and air are to be understood as pure examples that can also stand for other liquid and gaseous fluids.
  • the inner sides of the tube can be in contact with a liquid, first fluid. The heat transfer resistance is low at this interface due to the liquid state of aggregation of the first fluid. Accordingly, there is no need to increase the surface area on the inside of the pipes.
  • a gas flow is conducted in a cross-flow, the main flow direction of which runs perpendicularly to the pipe axis.
  • the interfaces on the outside of the tubes that are in contact with the gaseous second fluid have a higher heat transfer resistance per unit area of the partition surface.
  • the surface of the partition of the heat exchanger according to the invention is enlarged on at least this side by ribs in the form of the surface elements described.
  • Such surface-enlarging surface elements can be used in others according to the invention
  • Heat exchangers can also be arranged on both sides of the partition wall, for example in a gas-gas heat exchanger.
  • the surface elements can have any shape. For example, square, round or oval shapes of the surface elements are usual. Furthermore, the shape of the surface element can be adapted to the cross section of the pipe, so pipes with a circular cross section can have surface elements with a round circular shape.
  • the reinforcing beads extend over the entire height of the surface element, i.e. up to the outer edge of the surface element.
  • the reinforcing beads taper along the height of the surface elements from the partition. “Tapering” means that the cross-sectional area of the reinforcing beads decreases from the partition along the height of the surface element to the outer edge of the surface element. The cross-sectional shape of the reinforcing beads is retained.
  • the apex of the convex recesses is at 40% of the total height of the surface element.
  • the convex recesses are formed in the shape of a parabola.
  • the heat-conducting cross-section of the surface element increases quadratically with the radius of the surface element, so that the area of the surface elements is effectively reduced by parabolic recesses.
  • the heat exchanger is a finned tube heat exchanger with at least one tube for a first fluid to flow through inside the tube and with surface elements that increase the surface of the tube on the outside, around which a second fluid can flow in cross flow to the first fluid.
  • the tube forms the partition of the heat exchanger.
  • the UI elements are at Finned tube heat exchangers referred to as fins.
  • the surface elements or ribs are formed protruding from the tube and have reinforcing beads, the reinforcing beads extending away from the tube.
  • the thermal conductivity of the fins of finned tubes is a material property of the material used to manufacture the fins. For a large heat flow, a large cross-sectional area transverse to the direction of heat conduction is required.
  • the heat exchanger according to the invention uses surface elements as ribs, which have reinforcing ridges spaced apart from one another and surface areas of smaller thickness between the reinforcing ridges. Because of their small thickness, these surface areas have a high thermal resistance.
  • the reinforcement beads on the other hand, have a larger cross-section and a low thermal resistance, which is also sufficiently small for heat transport over greater lengths.
  • the reinforcing beads are in cross-section in contact with the tube or the tube wall or other partition and extend away from the tube. In other words, the reinforcing beads are orthogonal or at an angle to the tube wall, but not parallel or otherwise spaced from the tube wall.
  • the reinforcing beads extend orthogonally to the surface of the tube.
  • the reinforcing beads can extend radially and in the case of flat partitions orthogonally to the partition, so that the heat is conducted away from or towards the partition in a short distance.
  • the reinforcement beads can also run differently towards the tube for geometric or flow-related reasons.
  • the diameter of the circular cross-section of the reinforcing beads on the partition wall is at least twice the thickness of the surface element.
  • the reinforcing beads and the convex recesses of adjacent surface elements are offset from one another, forming an offset in a direction of flow of the second fluid between the surface elements.
  • the tube of the finned tube heat exchanger is designed as an oval tube, the cross section of which is formed from two semicircles and two straight lines connecting the semicircles.
  • the surface elements are oval in shape and are arranged in a plane orthogonal to a longitudinal axis of the tube. Adjacent surface elements are arranged parallel to one another along the longitudinal axis of the tube
  • the reinforcement beads can be positioned almost perpendicularly to the flow, parallel and at a constant distance from one another. In this way, a maximized convective heat transfer between adjacent surface elements can be achieved. Due to the offset reinforcement beads in surface elements that are opposite one another, i.e. adjacent to one another, a wavy flow can be formed, which further improves the heat transfer.
  • the length of the straight line of the cross section of the oval tube is at least once as large as the diameter of the semicircle of the cross section of the oval tube, in particular 2.5 times as large.
  • high heat transfer can be achieved at the large, straight areas of the oval tube and the areas of the surface element adjoining them.
  • the heat exchanger 1 shows an embodiment of the heat exchanger 1 according to the invention, specifically a finned tube heat exchanger, in a perspective view in part.
  • the oval tube 2 can be seen in the center of the object shown.
  • the walls of the tube 2 are partitions between a first fluid inside the tube 2 and a second fluid outside the tube 2. Heat is exchanged between the first and the second fluid through the partition or the tube wall without the first and the second Fluid come into physical contact with each other.
  • the tube On the outside, the tube has 2 surface-enlarging ribs, which give the finned-tube heat exchanger its name.
  • the ribs connected to the tube are designed as low-volume and essentially two-dimensional surface elements 3 .
  • the surface elements 3 have pin-shaped reinforcing beads 4 with a round cross section. These reinforcing beads 4 extend from the pipe 2 to the outer edge 31 of the surface elements 3. Between the reinforcing beads 4, the surface element 3 has surface areas 5 which are less thick than the reinforcing beads 4.
  • the reinforcement beads 4 are massive material thickenings of the material of the surface element 3, which in the illustrated embodiment extends over the entire height of the surface element 3 up to the outer edge 31 extend and taper outwards.
  • the reinforcement beads 4 thus have a large cross-sectional diameter directly at the interface with the pipe 2, while the diameter of the reinforcement beads 4 on the outer edge 31 of the surface element 3 is equal to or only slightly larger than the thickness of the surface areas 5.
  • the reinforcement beads 4 improve the heat transport within the surface element 3 from the pipe 2 to the outer edge 31 or vice versa, as is exemplified by the arrows in three reinforcing beads 4.
  • the direction of the heat transport depends in a known manner on which of the two fluids inside the tube 2 and outside the tube 2 is warmer.
  • the surface element 3 has convex recesses 6 in the area of some of the surface areas 5, which extend from the outer edge 31 of the surface element 3 in the direction of the tube 2 and thereby reduce in width.
  • the width of one of the recesses 6 is measured along the areal extent of the surface element 2 and thus perpendicular to the thickness of the surface element 3 .
  • the recesses 6 represent the complete absence of the material of the surface element 3 in the area of the recesses.
  • the recesses 6 do not extend to the tube 2, but only up to a defined height within the surface element 3, the height starting from the outer surface of the Tube 2 is measured.
  • the apex of the recess 6 is thus at this defined height, which is greater than or equal to 30% and less than or equal to 70% of the height of the surface element 3 .
  • the height of the surface element 3 is the maximum height of the outer edge 31 of the surface element 3.
  • the recesses 6 are parabolic and extend up to a height of about 40% of the height of the surface element 3.
  • the convex recesses 6 serve to reduce the heat-transferring surface of the surface element 3 with the height, starting from the tube 2. This avoids an increase in the heat-conducting cross-sectional area of the surface element with increasing height. Since such an increase in the thermally conductive cross-sectional area occurs primarily in areas of the surface element 3 which adjoin round areas of the tube 2, the recesses 6 are mainly formed in these areas in the exemplary embodiment shown. On the other hand, the increase in cross-sectional area does not occur or occurs only to a small extent in surface areas 5 adjoining the straight areas of the oval tube 2 used here, so that these surface areas 5 cannot have any recesses 6 . In the exemplary embodiment shown, this is the case at least for some of the surface areas 5 .
  • figure 2 shows a section of the heat exchanger from figure 1 schematically in a side view of the tube 2. To avoid repetition, reference is made to the description of FIG figure 1 referred.
  • FIG figure 1 shows two surface elements 3 arranged parallel to one another, with the reinforcing beads 4 and in the straight area 21 also the surface areas 5 being clearly visible, while the recesses are not visible.
  • the flow of the second fluid outside of the tube 2 is shown schematically using streamlines 7 .
  • the reinforcing beads 4 and the recesses disturb laminar flow between adjacent surface elements 3 by causing turbulence. The turbulence improves the heat transfer between the second fluid and the surface element 3.
  • FIG. 3 and 4 is a very concrete design example of the finned tube heat exchanger from the figures 1 and 2 shown in two different views along the tube 2 and transverse to it.
  • the tube 2 is designed here as an oval tube, which is the figure 2 shown flow with the streamlines 7 with the same cross-section opposes a lower resistance than a round tube of the same cross-sectional size.
  • the concrete oval tube has an outside diameter 9 of 16 mm of its semi-circular portions and a length 10 of the straight side portions 21 of 18 mm.
  • the ratio of the straight length 10 to the diameter 9 is greater than 1, in the present case 1.125.
  • the exact size of this ratio can be used as an optimization parameter when designing the heat exchanger based on given framework conditions.
  • the surface element 3 has a height 11 of 44.5 mm, which is measured from the outer surface of the tube 2 in the straight area 21 to the outer edge 31 of the surface element 3 .
  • the recesses 6 have a width 12 of 21 mm on the outer edge 31 of the surface element 3 and extend from the outer edge 31 over a length 13 of 26.5 mm in the direction of the tube 2. The apex of the recesses 6 is therefore at approx. 40% of height 11.
  • the reinforcing beads 4 have a diameter 14 of 4 mm at the boundary surface with the tube 2 , which diameter decreases continuously towards the outer edge 31 of the surface element 3 .
  • the surface areas 5 have a small thickness 15 of only 1 mm and the reinforcing beads 4 with a maximum diameter of 4 mm have an enlarged cross-section compared to the surface areas 5 or a thickness four times greater. That The ratio of the maximum diameter of a reinforcing bead to the thickness of a surface area can also be different, but it should be greater than or equal to 2.
  • Two adjacent surface elements 3 are arranged parallel to one another along the tube 2, ie along the direction of flow of the fluid inside the tube 2, at a distance 16 of 12 mm.
  • the left-hand surface element 3 has three reinforcing beads 4 in the flat surface area, the straight area 21, of the oval tube 2.
  • the right-hand surface element 3, has only two reinforcing beads 4 in the same detail, with the reinforcing beads 4 being offset from one another on the adjacent surface elements. This misalignment of the reinforcement beads 4 and also of the recesses in 4 are not recognizable, continues over the entire extent of the two surface elements 3.
  • figure 5 shows the heat flux density achieved using a finned tube with 18 surface elements for a given face velocity of the fluid flowing around the finned tube and surface elements.
  • the curve with the solid boxes shows the measured heat flux for a fabricated finned tube with conventional surface elements, ie with surface elements without reinforcing beads and without recesses, while the curve with the empty boxes shows the measured heat flux for a prototype finned tube with surface elements according to the present invention shows, the external dimensions of the tube and the surface elements and the material used were the same in each case.
  • the heat flow density is up to 90% higher than when using conventional surface elements.
  • the adjacent surface elements 3 are mounted on a tube 2 . In other examples, not shown, adjacent surface elements 3 are mounted on adjacent tubes 2 and the ribs of adjacent tubes engage in a comb-like manner. A person skilled in the art can derive further exemplary embodiments on the basis of the above examples in adaptation to a given task

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Die Erfindung betrifft einen Wärmeübertrager mit wenigstens einer Trennwand, von der auf wenigstens einer Seite abstehende Oberflächenelemente angeordnet sind, die von einem Fluid umströmbar sind.The invention relates to a heat exchanger with at least one partition, from which protruding surface elements are arranged on at least one side, around which a fluid can flow.

Wärmeübertrager werden im Stand der Technik in verschiedenen Ausführungen zur Übertragung von Wärme von einem Medium auf ein anderes Medium eingesetzt, wobei die beiden Medien körperlich getrennt bleiben. Nach der Art der Medien, die auch als Fluide bezeichnet werden, kann man Wärmeübertrager beispielsweise in Flüssigkeits-Gas-Wärmeübertrager, Flüssig-Flüssig-Wärmeübertrager und in Gas-Gas-Wärmeübertrager unterteilen. Im Bereich der Flüssigkeits-Gas-Wärmeübertrager sind Rohrbündelwärmeübertrager mit Rippenrohren bekannt, die auch als Rippenrohrwärmeübertrager bezeichnet werden. Dabei strömt die Flüssigkeit im Inneren des Rohres und das Gas umströmt das Rohr auf der Außenseite. Die Wärmeübergangskoeffizienten von Flüssigkeiten sind hierbei um ein bis zwei Größenordnungen größer als bei Gasen. Die Oberfläche des Rohres wird daher außen durch Rippen vergrößert, wodurch ein reduzierter Wärmeübergangswiderstand auf der Gasseite dieses Wärmeübertragers vorliegt. Dadurch sind die Wärmeübergangswiderstände für beide Medien klein. Die Rippen von Rippenrohren sind im Stand der Technik häufig als voluminöse Ansätze ausgeführt, die mit der Trennwand des Wärmeübertragers verbunden sind. Große Volumen der Rippen sind mit hohen Materialkosten bei der Herstellung und einem großen Gewicht der Wärmeübertrager gekoppelt. Hohe Gewichte können nachteilig und unerwünscht sein, beispielsweise beim Einsatz in Fahrzeugen. Ein hoher Materialverbrauch ist nachteilig mit entsprechend hohen Kosten verbunden. Eine große Wandstärke der einzelnen Rippen, im Folgenden Rippendicke genannt, führt bei gleichem Abstand der Rippen zueinander zu einer niedrigeren Anzahl von Rippen pro Rippenrohr als bei dünneren Rippen. Mit einer großen Rippendicke sind begrenzte Wärmeübertragungsoberflächen und niedrige thermische Gesamtleistungen verbunden.In the prior art, heat exchangers are used in various designs to transfer heat from one medium to another medium, with the two media remaining physically separate. Depending on the type of media, which are also referred to as fluids, heat exchangers can be divided into liquid-gas heat exchangers, liquid-liquid heat exchangers and gas-gas heat exchangers, for example. In the field of liquid-gas heat exchangers, tube bundle heat exchangers with finned tubes are known, which are also referred to as finned tube heat exchangers. The liquid flows inside the tube and the gas flows around the outside of the tube. The heat transfer coefficients of liquids are one to two orders of magnitude higher than those of gases. The surface of the tube is therefore increased on the outside by ribs, resulting in reduced heat transfer resistance on the gas side of this heat exchanger. As a result, the heat transfer resistance for both media is low. In the prior art, the ribs of finned tubes are often designed as voluminous attachments that are connected to the dividing wall of the heat exchanger. Large volumes of the ribs are coupled with high material costs in production and a high weight of the heat exchanger. High weights can be disadvantageous and undesirable, for example when used in vehicles. A high material consumption is disadvantageously associated with correspondingly high costs. A large wall thickness of the individual ribs, referred to below as rib thickness, leads to a lower number of ribs per finned tube than with thinner ribs, given the same distance between the ribs. Limited heat transfer surfaces and low overall thermal performance are associated with large fin thickness.

Die GB 436 656 A offenbart einen Wärmeübertrager mit Rippenrohren, bei denen auf den Rippen dreidimensional ausgestaltete Lamellen angeordnet sind, die sich im Wesentlichen senkrecht zur Grundfläche der Rippen erstrecken. Die Lamellen weisen einen zapfenförmigen Querschnitt auf und nicht alle Lamellen grenzen an die Wand des Rohres, welches die Fluide voneinander trennt. Nachteilig an diesen Rippenrohren ist die Massenvergrößerung, die proportional zum Volumen der dreidimensionalen Lamellen ist, sowie eine begrenzte thermische Gesamtleistung der Wärmeübertrager. Weiterhin nachteilig sind die Lamellen vertikal zur Strömungsrichtung des die Rippen umströmenden Fluids ausgerichtet und beeinflussen die Wärmeleitung innerhalb der Rippe vom Rohr weg oder zum Rohr hin kaum.the GB 436 656 A discloses a heat exchanger with finned tubes in which three-dimensional fins are arranged on the fins, which extend essentially perpendicularly to the base area of the fins. The fins have a peg-shaped cross-section and not all fins abut the wall of the tube separating the fluids. The disadvantage of these finned tubes is the increase in mass, which is proportional to the volume of the three-dimensional fins, and a limited overall thermal performance of the heat exchanger. Another disadvantage is that the slats are vertical to the flow direction of the Fins aligned fluid flowing around and hardly affect the heat conduction within the rib away from the tube or towards the tube.

Die CH 435 436 A offenbart ein Lamellenrohr, bestehend aus einem Kernrohr und einer Vielzahl auf dem Kernrohr angeordneten Blechlamellen mit rechteckigem Grundriss als Rippen. Die Blechlamellen weisen jeweils Sicken - also Vertiefungen - auf, die sich vom Kernrohr aus erstrecken und die Steifigkeit erhöhen. Nachteilig bei derartigen Rippen ist, dass die wärmeleitende Querschnittsfläche mit Entfernung vom Kernrohr zunimmt und damit zu einer Kühlung der Rippe führt, wodurch die Temperaturdifferenz zwischen Rippe und umströmendem Medium sinkt und die Wärmeübertragungsleistung abnimmt.the CH 435 436 A discloses a lamellar tube consisting of a core tube and a multiplicity of sheet metal laminations arranged on the core tube and having a rectangular outline as ribs. The laminations each have beads - i.e. depressions - which extend from the core tube and increase rigidity. The disadvantage of such ribs is that the heat-conducting cross-sectional area increases with distance from the core tube and thus leads to cooling of the rib, as a result of which the temperature difference between the rib and the medium flowing around decreases and the heat transfer performance decreases.

Die DE 160 351 A beschreibt einen Wärmeübertrager, bei dem auf der Oberfläche eines Heiz- oder Kühlkörperrohres radial weitere Rohre angeordnet sind. Zusätzlich zu den radial angeordneten Rohren können senkrecht zur Heiz- oder Kühlkörperrohrachse Rippen angeordnet werden, wobei die Rippen als separate Lage zwischen zwei Lagen radialer Rohre oder innerhalb einer Lage radialer Rohre aus Versteifungsgründen mit diesen verbunden angeordnet sein können.the DE 160 351 A describes a heat exchanger in which further tubes are arranged radially on the surface of a heating or cooling body tube. In addition to the radially arranged tubes, ribs can be arranged perpendicularly to the heating or cooling element tube axis, with the ribs being arranged as a separate layer between two layers of radial tubes or within a layer of radial tubes connected to them for reasons of reinforcement.

Die DE 42 07 597 A1 offenbart ein Wärmeaustauschelement zur Fixierung auf einem mediumdurchströmten Rohr mit einer Vielzahl radial abstehender Wärmetauscherrippen. Die Wärmetauscherrippen erstrecken sich dabei entlang der Längsachse des Rohres in Strömungsrichtung des das Rohr durchströmenden Fluids und bilden keine Fläche senkrecht zur Durchströmrichtung des Fluids im Rohr.the DE 42 07 597 A1 discloses a heat exchange element for fixing to a pipe through which medium flows, with a multiplicity of radially protruding heat exchanger ribs. The heat exchanger fins extend along the longitudinal axis of the tube in the direction of flow of the fluid flowing through the tube and do not form a surface perpendicular to the direction of flow of the fluid in the tube.

In der DE 70 20 851 U ist ein Wärmetauscher, wie er bspw. als Rückwand eines Kühlschrankes ausgebildet ist, offenbart. Derartige Einwandwärmetauscher bestehen aus einer Rohrschlange zur Aufnahme des Heiz- oder Kühlmediums und einer Blechwand mit ausgedrückten Kiemenreihen und Nuten oder Sicken zur Aufnahme der Rohrabschnitte. Aus der Blechwand ausgestanzte Lappen übergreifen schellenartig die Rohrabschnitte zur Befestigung. Die Lappen können für eine größere Stabilität Sicken aufweisen. Das Blech und die ausgestanzten Lappen sind dabei entlang der Durchströmrichtung des Heiz- oder Kühlmediums durch das Rohr ausgerichtet.In the DE 70 20 851 U discloses a heat exchanger such as is designed, for example, as the rear wall of a refrigerator. Such single-wall heat exchangers consist of a pipe coil to hold the heating or cooling medium and a metal wall with pressed rows of gills and grooves or beads to hold the pipe sections. Tabs punched out of the sheet metal wall overlap the pipe sections for attachment like a clamp. The tabs may have beads for greater stability. The metal sheet and the punched tabs are aligned along the flow direction of the heating or cooling medium through the tube.

Die WO 02 / 048 595 A1 beschreibt ein Kanalrohr für den Medientransport aus Kunststoff, welches den Medientransport im Rohr ohne Druckverlust ermöglicht auch bei kurviger Verlegung des Kanalrohrs. Das Kanalrohr weist in Durchflussrichtung des Rohres eine wellenförmige Wandung auf. Dabei gibt es hohe, nach außen weisende Wellen für die notwendige Flexibilität, sowie flache, "nach innen weisende" Wellen, die einen Zwischenbuckel mit vergrößerter Wandstärke bilden.the WO 02/048595 A1 describes a sewer pipe for transporting media made of plastic, which enables the transport of media in the pipe without loss of pressure, even when the sewer pipe is laid in a curved manner. The sewer pipe has a wavy shape in the flow direction of the pipe wall up. There are high, outward-pointing corrugations for the necessary flexibility, as well as flat, "inward-pointing" corrugations that form an intermediate hump with increased wall thickness.

Die US 3 311 163 offenbart einen Wärmetauscher, bestehend aus einem metallischen Rohr und einer Vielzahl rechteckiger metallischer Rippen, die an der Außenseite des metallischen Rohrs fixiert sind. Die Rippen weisen parallele vertikale Prägungen zur Kompensation der lateralen thermischen Ausdehnung des Rohres und der Rippen auf. Diese Prägungen sind vertikal zur Durchströmrichtung des Fluids durch das Rohr ausgerichtetthe U.S. 3,311,163 discloses a heat exchanger composed of a metal tube and a plurality of rectangular metal fins fixed to the outside of the metal tube. The fins have parallel vertical embossments to compensate for lateral thermal expansion of the tube and fins. These embossings are aligned vertically to the flow direction of the fluid through the tube

In der DE 10 2010 016 544 A1 ist ein Wärmetauscher beschrieben, der ein Rohr und davon abstehende Oberflächenelemente in Form von Rippen mit gezahnten Abschnitten aufweist. Die zwischen den einzelnen Zähnen der gezahnten Abschnitte vorhandenen Aussparungen erstrecken sich von der Außenkante der Rippe und enden mit einem nicht näher definierten Abstand von dem Rohr.In the DE 10 2010 016 544 A1 describes a heat exchanger having a tube and projecting surface elements in the form of fins with serrated portions. The recesses present between the individual teeth of the toothed sections extend from the outer edge of the rib and end at an unspecified distance from the tube.

Aufgabe der Erfindung ist es, einen massearmen Wärmeübertrager mit großer thermischer Leistung und einem homogenen Temperaturprofil entlang der Rippen bereitzustellen.The object of the invention is to provide a low-mass heat exchanger with high thermal output and a homogeneous temperature profile along the ribs.

Diese Aufgabe wird gelöst durch einen Wärmeübertrager gemäß Anspruch 1. Vorteilhafte Weiterbildungen und Ausführungsformen sind in den abhängigen Ansprüchen angegeben.This object is achieved by a heat exchanger according to claim 1. Advantageous developments and embodiments are specified in the dependent claims.

Der Wärmeübertrager enthält eine Trennwand und wenigstens von einer Seite der Trennwand abstehende und die Oberfläche der Trennwand vergrößernde Oberflächenelemente, die von einem Fluid umströmbar sind. Die Oberflächenelemente weisen Verstärkungswülste und zwischen den Verstärkungswülsten befindliche Flächenbereiche auf, wobei sich die Verstärkungswülste von der Trennwand ausgehend erstrecken und eine kreisrunde oder ovale Querschnittsform haben. Die Verstärkungswülste erstrecken sich ausgehend von der Trennwand über mindestens einen Teil der Höhe des Oberflächenelementes. Die Oberflächenelemente weisen eine Vielzahl konvexer Aussparungen auf, wobei jede der konvexen Aussparungen in einem der Flächenbereiche zwischen zwei Verstärkungswülsten angeordnet ist und sich von einer Außenkante des Oberflächenelementes erstreckt. Der Scheitelpunkt der jeweiligen Aussparung liegt bei einer Höhe größer als oder gleich 30% und kleiner als oder gleich 70% der Höhe des Oberflächenelementes. Die Höhe ist dabei ausgehend von der Trennwand gemessen.The heat exchanger contains a partition and surface elements that protrude from at least one side of the partition and increase the surface of the partition, around which a fluid can flow. The surface elements have reinforcing beads and surface areas located between the reinforcing beads, the reinforcing beads extending from the partition wall and having a circular or oval cross-sectional shape. The reinforcing beads extend from the partition over at least part of the height of the surface element. The surface elements have a plurality of convex recesses, each of the convex recesses being located in one of the areas between two reinforcing beads and extending from an outer edge of the surface element. The apex of each recess is at a height greater than or equal to 30% and less than or equal to 70% of the height of the surfel. The height is measured from the partition wall.

"Von wenigstens einer Seite der Trennwand abstehend" bedeutet, dass sich die Oberflächenelemente in einem Winkel größer Null und kleiner oder gleich 90° von der Trennwand aus erstrecken. Die Dicke der Oberflächenelemente, auch als Wandstärke bezeichnet, ist klein gegenüber der Fläche der Oberflächenelemente, wobei die Dicke parallel zur Trennwand und senkrecht zur Fläche der Oberflächenelemente gemessen wird. Vorzugsweise erstrecken sich die Oberflächenelemente senkrecht von der Trennwand aus. Die Oberflächenelemente sind starr mit der Trennwand verbunden und in sich selbst ebenfalls starr."Protruding from at least one side of the partition" means that the surface elements extend at an angle greater than zero and less than or equal to 90° from the partition. The thickness of the surfels, also referred to as wall thickness, is small compared to the area of the surfels, the thickness being measured parallel to the partition wall and perpendicular to the face of the surfels. Preferably, the surface elements extend perpendicularly from the partition. The surface elements are rigidly connected to the partition wall and are also rigid in themselves.

Die als Rippen des Wärmeübertragers dienenden Oberflächenelemente sind in dünnwandige Flächenbereiche mit entsprechend geringem Volumen und geringer Masse unterteilt. Die Dicke der Flächenbereiche entspricht dabei der Wandstärke der Oberflächenelemente. Die Unterteilung erfolgt durch Verstärkungswülste mit größeren Querschnitten zur erhöhten Wärmeleitung. Das heißt, dass die Verstärkungswülste eine größere Dicke aufweisen als die Wandstärke der Oberflächenelemente. Die Verstärkungswülste bilden damit Materialaufdickungen, die massiv ausgeführt und damit nicht hohl sind. Somit besteht das Oberflächenelement im Bereich einer Verstärkungswulst im Querschnitt vollständig aus dem Material des Oberflächenelements, welches den Querschnitt vollständig ausfüllt. Die Verstärkungswülste sind dabei so ausgerichtet, dass sie die Wärme zu der zwischen den beiden Fluiden befindlichen Trennwand hin- oder wegleiten, je nachdem wie der Temperaturgradient verläuft.The surface elements serving as ribs of the heat exchanger are divided into thin-walled surface areas with a correspondingly small volume and low mass. The thickness of the surface areas corresponds to the wall thickness of the surface elements. The subdivision is made by reinforcement beads with larger cross-sections for increased heat conduction. This means that the reinforcing beads have a greater thickness than the wall thickness of the surface elements. The reinforcement beads thus form material thickenings that are solid and therefore not hollow. Thus, the surface element in the area of a reinforcing bead in cross section consists entirely of the material of the surface element, which completely fills the cross section. The reinforcement beads are aligned in such a way that they conduct the heat towards or away from the partition between the two fluids, depending on the temperature gradient.

Die Höhe der Oberflächenelemente ist die Ausdehnung der Oberflächenelemente ausgehend von der Trennwand entlang der Fläche der Oberflächenelemente bis zur Außenkante der Oberflächenelemente in einem Bereich, der keine konvexe Aussparung ist Beispielsweise ist bei runden Oberflächenelementen die Höhe der Oberflächenelemente der Radius der Oberflächenelemente ausgehend von der Trennwand. Die Außenkante des Oberflächenelements ist die Seite des Oberflächenelements, die nicht an die Trennwand angrenzt.The height of the surfers is the extension of the surfers from the partition along the face of the surfers to the outer edge of the surfers in an area that is not a convex recess. For example, for round surfers, the height of the surfers is the radius of the surfers from the partition. The outer edge of the surfel is the side of the surfel that is not adjacent to the partition.

"Konvexe Aussparung" meint, dass die Aussparung eine konvexe Form aufweist, die ihre größte Breite an der Außenkante des Oberflächenelements hat und deren Breite entlang des Oberflächenelements in Richtung zur Trennwand hin abnimmt. Die Breite wird entlang der Oberfläche des Oberflächenelements gemessen. Dabei ist eine Aussparung das vollständige Fehlen des Materials des Oberflächenelements, d.h. die Aussparung erstreckt sich über die gesamte Dicke des Oberflächenelements und stellt nicht nur eine Abdünnung des Oberflächenelements in einem bestimmten Bereich dar."Convex recess" means that the recess has a convex shape that has its greatest width at the outer edge of the surface element and that decreases in width along the surface element towards the partition. The width is measured along the surface of the surfel. A recess is the complete absence of the material of the surface element, ie the recess extends over the entire thickness of the surface element and does not only represent a thinning of the surface element in a certain area.

Vorteilhaft reduzieren die konvexen Aussparungen die Fläche des Oberflächenelementes mit zunehmender Entfernung von der Trennwand, so dass sich die wärmeleitende Querschnittsfläche des Oberflächenelementes reduziert. Dadurch konzentriert sich der Wärmestrom auf eine kleinere Fläche des Oberflächenelements, wodurch eine Kühlung der Rippe wie aus dem Stand der Technik bekannt vermieden wird. Dadurch wird die Effektivität der Wärmeübertragung verbessert. Weiterhin vorteilhaft bietet die reduzierte Fläche der Oberflächenelemente einen geringen Reibungsdruckverlust des umströmenden Fluids. Darüber hinaus wird weiterhin die Masse des Oberflächenelements durch den geringeren Materialverbrauch verringert oderes wird eine Ausführung des Oberflächenelementes ohne Vergrößerung der Masse des Oberflächenelements durch die Verstärkungswülste oder durch eine größere Dicke des Oberflächenelements ermöglicht.Advantageously, the convex recesses reduce the area of the surface element as the distance from the partition wall increases, so that the heat-conducting cross-sectional area of the surface element is reduced. This concentrates the heat flow on a smaller area of the surface element, avoiding cooling of the fin as is known in the prior art. This improves the effectiveness of heat transfer. Furthermore, the reduced surface area of the surface elements advantageously offers a low frictional pressure loss of the fluid flowing around. In addition, the mass of the surface element is further reduced due to the reduced material consumption or it is possible to carry out the surface element without increasing the mass of the surface element by means of the reinforcing beads or by increasing the thickness of the surface element.

Die Verstärkungswülste tragen bedingt durch deren erhöhte Materialdicke lokal zur Verbesserung der Wärmeleitung bei. Im Ergebnis verbessert die Kombination aus der Vielzahl konvexer Aussparungen und dazwischenliegender Verstärkungswülste das Temperaturprofil entlang des Oberflächenelements und trägt zur Homogenisierung der Temperatur des Oberflächenelements und zur Erhöhung der Wärmeübertragungsleistung bei.Due to their increased material thickness, the reinforcing beads contribute locally to improving heat conduction. As a result, the combination of the plurality of convex recesses and intermediate reinforcing beads improves the temperature profile along the surface element and contributes to homogenizing the temperature of the surface element and increasing the heat transfer performance.

Bei dem Wärmeübertrager kann es sich um einen Flüssigkeits-Gas-Wärmeübertrager, beispielsweise einen Wasser-Luft-Wärmeübertrager handeln. DerWärmeübertrager, kann als ein Rippenrohrwärmeübertrager ausgebildet sein wie eingangs beschrieben, wobei die Trennwand zwischen dem ersten Fluid (z.B. Wasser) und dem zweiten Fluid (z.B. Luft) durch die Rohrwand des Rohres oder der Rohre ausgebildet ist. Die Fluide Wasser und Luft sind als reine Beispiele zu verstehen, die auch für andere flüssige und gasförmige Fluide stehen können. Die Rohrinnenseiten können in Kontakt mit einem flüssigen, ersten Fluid stehen. Der Wärmeübergangswiderstand ist an dieser Grenzfläche durch den flüssigen Aggregatzustand des ersten Fluids klein. Entsprechend bedarf es auf der Innenseite der Rohre keiner Oberflächenvergrößerung. Im Kreuzstrom wird dazu ein Gasstrom geführt, dessen Hauptströmungsrichtung senkrecht zur Rohrachse verläuft. Die Grenzflächen an den Außenseiten der Rohre, die im Kontakt mit dem gasförmigen, zweiten Fluid stehen, haben einen höheren Wärmeübergangswiderstand pro Flächeneinheit der Trennwandoberfläche. Um dennoch einen kleinen Wärmeübergangswiderstand zu erreichen, ist die Oberfläche der Trennwand des erfindungsgemäßen Wärmeübertragers auf wenigstens dieser Seite durch Rippen in Form der beschriebenen Oberflächenelemente vergrößert. Solche oberflächenvergrößernden Oberflächenelemente können in anderen erfindungsgemäßen Wärmeübertragern auch auf beiden Seiten der Trennwand angeordnet sein, beispielsweise in einem Gas-Gas-Wärmeübertrager.The heat exchanger can be a liquid-gas heat exchanger, for example a water-air heat exchanger. The heat exchanger can be designed as a finned tube heat exchanger as described above, with the dividing wall between the first fluid (eg water) and the second fluid (eg air) being formed by the tube wall of the tube or tubes. The fluids water and air are to be understood as pure examples that can also stand for other liquid and gaseous fluids. The inner sides of the tube can be in contact with a liquid, first fluid. The heat transfer resistance is low at this interface due to the liquid state of aggregation of the first fluid. Accordingly, there is no need to increase the surface area on the inside of the pipes. To this end, a gas flow is conducted in a cross-flow, the main flow direction of which runs perpendicularly to the pipe axis. The interfaces on the outside of the tubes that are in contact with the gaseous second fluid have a higher heat transfer resistance per unit area of the partition surface. In order to nevertheless achieve a low heat transfer resistance, the surface of the partition of the heat exchanger according to the invention is enlarged on at least this side by ribs in the form of the surface elements described. Such surface-enlarging surface elements can be used in others according to the invention Heat exchangers can also be arranged on both sides of the partition wall, for example in a gas-gas heat exchanger.

Die folgenden Ausführungen beziehen sich hauptsächlich auf einen Flüssigkeit-Gas-Wärmeübertrager mit nur einseitig auf der Gasseite vergrößerter Oberfläche. Die Ausführungen gelten mit entsprechenden Abwandlungen jedoch auch für andere Wärmeübertrager mit beidseitig vergrößerten Oberflächen der Trennwand, für die kein Ausführungsbeispiel explizit benannt ist.The following explanations relate mainly to a liquid-gas heat exchanger with an enlarged surface area on the gas side only. However, the statements also apply, with corresponding modifications, to other heat exchangers with enlarged surfaces of the partition wall on both sides, for which no exemplary embodiment is explicitly named.

Die Oberflächenelemente können dabei beliebige Formen aufweisen. Üblich sind beispielsweise viereckige, runde oder ovale Formen der Oberflächenelemente. Weiterhin kann die Form des Oberflächenelements an den Querschnitt des Rohrs angepasst sein, so können Rohre mit einem kreisförmigen Querschnitt Oberflächenelemente mit einer runden Kreisform aufweisen.The surface elements can have any shape. For example, square, round or oval shapes of the surface elements are usual. Furthermore, the shape of the surface element can be adapted to the cross section of the pipe, so pipes with a circular cross section can have surface elements with a round circular shape.

In besonderen Ausführungsformen erstrecken sich die Verstärkungswülste über die gesamte Höhe des Oberflächenelementes, d.h. bis zur Außenkante des Oberflächenelements.In particular embodiments, the reinforcing beads extend over the entire height of the surface element, i.e. up to the outer edge of the surface element.

In weiteren Ausführungsformen verjüngen sich die Verstärkungswülste entlang der Höhe der Oberflächenelemente von der Trennwand aus. "Verjüngen" meint, dass die Querschnittsfläche der Verstärkungswülste ausgehend von der Trennwand entlang der Höhe des Oberflächenelements bis zur Außenkante des Oberflächenelementes abnimmt. Die Querschnittsform der Verstärkungswülste bleibt dabei erhalten.In further embodiments, the reinforcing beads taper along the height of the surface elements from the partition. "Tapering" means that the cross-sectional area of the reinforcing beads decreases from the partition along the height of the surface element to the outer edge of the surface element. The cross-sectional shape of the reinforcing beads is retained.

In weiteren Ausführungsformen liegt der Scheitelpunkt der konvexen Aussparungen bei 40% der gesamten Höhe des Oberflächenelementes.In further embodiments, the apex of the convex recesses is at 40% of the total height of the surface element.

In besonderen Ausführungsformen sind die konvexen Aussparungen parabelförmig ausgebildet. Bei ovalen oder runden Oberflächenelementen nimmt der wärmeleitende Querschnitt des Oberflächenelementes quadratisch mit dem Radius des Oberflächenelements zu, so dass durch parabelförmige Aussparungen die Fläche der Oberflächenelemente effektiv reduziert wird.In particular embodiments, the convex recesses are formed in the shape of a parabola. In the case of oval or round surface elements, the heat-conducting cross-section of the surface element increases quadratically with the radius of the surface element, so that the area of the surface elements is effectively reduced by parabolic recesses.

In einer bevorzugten Ausführungsform ist der Wärmeübertrager ein Rippenrohrwärmeübertrager mit wenigstens einem Rohr zur Durchströmung eines ersten Fluids im Inneren des Rohres und mit die Oberfläche des Rohres außen vergrößernden Oberflächenelementen, die von einem zweiten Fluid im Kreuzstrom zum ersten Fluid umströmbar sind. Das Rohr bildet dabei die Trennwand des Wärmeübertragers. Die Oberflächenelemente werden bei Rippenrohrwärmeübertragern als Rippen bezeichnet. Die Oberflächenelemente bzw. Rippen sind von dem Rohr abstehend ausgebildet und weisen Verstärkungswülste auf, wobei sich die Verstärkungswülste von dem Rohr wegführend erstrecken.In a preferred embodiment, the heat exchanger is a finned tube heat exchanger with at least one tube for a first fluid to flow through inside the tube and with surface elements that increase the surface of the tube on the outside, around which a second fluid can flow in cross flow to the first fluid. The tube forms the partition of the heat exchanger. The UI elements are at Finned tube heat exchangers referred to as fins. The surface elements or ribs are formed protruding from the tube and have reinforcing beads, the reinforcing beads extending away from the tube.

Die Wärmeleitfähigkeit der Rippen von Rippenrohren ist eine Materialeigenschaft des für die Herstellung der Rippen verwendeten Materials. Für einen großen Wärmefluss wird eine große Querschnittsfläche quer zu der Wärmeleitungsrichtung benötigt.The thermal conductivity of the fins of finned tubes is a material property of the material used to manufacture the fins. For a large heat flow, a large cross-sectional area transverse to the direction of heat conduction is required.

Der erfindungsgemäße Wärmeübertrager verwendet als Rippen Oberflächenelemente, die voneinander beabstandete Verstärkungswülste und zwischen den Verstärkungswülsten Flächenbereiche geringerer Dicke aufweisen. Diese Flächenbereiche haben wegen ihrer geringen Dicke einen hohen Wärmeleitwiderstand. Die Verstärkungswülste haben hingegen einen größeren Querschnitt und einen geringen Wärmeleitwiderstand, der auch für den Wärmetransport über größere Längen ausreichend klein ist. Die Verstärkungswülste stehen mit ihrem Querschnitt in Kontakt mit dem Rohr bzw. der Rohrwand oder sonstigen Trennwand und erstrecken sich von dem Rohr weg. Das heißt mit anderen Worten, die Verstärkungswülste sind orthogonal oder in einem Winkel zu der Rohrwand angeordnet, aber nicht parallel oder anderweitig beabstandet zu der Rohrwand.The heat exchanger according to the invention uses surface elements as ribs, which have reinforcing ridges spaced apart from one another and surface areas of smaller thickness between the reinforcing ridges. Because of their small thickness, these surface areas have a high thermal resistance. The reinforcement beads, on the other hand, have a larger cross-section and a low thermal resistance, which is also sufficiently small for heat transport over greater lengths. The reinforcing beads are in cross-section in contact with the tube or the tube wall or other partition and extend away from the tube. In other words, the reinforcing beads are orthogonal or at an angle to the tube wall, but not parallel or otherwise spaced from the tube wall.

In einer bevorzugten Ausführungsform erstrecken sich die Verstärkungswülste orthogonal zur Oberfläche des Rohres.In a preferred embodiment, the reinforcing beads extend orthogonally to the surface of the tube.

Bei einem runden Rohr können sich die Verstärkungswülste radial und bei flachen Trennwänden orthogonal zur Trennwand erstrecken, sodass die Wärme auf einem kurzen Weg von der Trennwand weg oder zu der Trennwand hingeleitet wird. Beispielsweise können die Verstärkungswülste aus geometrischen oder strömungstechnischen Gründen auch anders zum Rohr hin verlaufen.In the case of a round tube, the reinforcing beads can extend radially and in the case of flat partitions orthogonally to the partition, so that the heat is conducted away from or towards the partition in a short distance. For example, the reinforcement beads can also run differently towards the tube for geometric or flow-related reasons.

In einer bevorzugten Ausführungsform ist der Durchmesser des kreisrunden Querschnitts der Verstärkungswülste an der Trennwand mindestens doppelt so groß wie die Dicke des Oberflächenelementes.In a preferred embodiment, the diameter of the circular cross-section of the reinforcing beads on the partition wall is at least twice the thickness of the surface element.

In einer bevorzugten Ausführungsform sind die Verstärkungswülste und die konvexen Aussparungen benachbarter Oberflächenelemente versetzt zueinander angeordnet unter Ausbildung eines Versatzes in einer Strömungsrichtung des zweiten Fluids zwischen den Oberflächenelementen.In a preferred embodiment, the reinforcing beads and the convex recesses of adjacent surface elements are offset from one another, forming an offset in a direction of flow of the second fluid between the surface elements.

Dadurch wird vorteilhaft die Ablenkung des quer zu den Verstärkungswülsten strömenden Fluids erreicht, was eine wellenförmige Fluid-Strömung erzeugt. Die wellenförmige Fluid-Strömung kann auch als eine strömungsgünstige Turbulenz betrachtet werden, wodurch eine erhöhte konvektive Wärmeübertragung von den Oberflächenelementen und Trennwänden an das umströmende Fluid oder umgekehrt erreicht wird. Die gute Wärmeleitung infolge des Vorhandenseins der Verstärkungswülste und der konvexen Aussparungen führt zu einer relativ großen Temperaturdifferenz zwischen dem Oberflächenelement und dem das Oberflächenelement umgebenden Medium. In Folge der großen Temperaturdifferenz wird auch ein großer Wärmefluss zwischen dem Oberflächenelement und dem umgebenden Medium und in der Folge eine große thermische Leistung des erfindungsgemäßen Wärmeübertragers erreicht. Benachbarte Oberflächenelemente können an einer Trennwand befestigt sein, beispielsweise auf einem Rohr. Es können aber auch von benachbarten Trennwänden ausgehende Oberflächenelemente einander kammartig umgreifen.This advantageously achieves the deflection of the fluid flowing transversely to the reinforcing beads, which produces a wave-like fluid flow. The wavy fluid flow can also be viewed as a flow-favorable turbulence, whereby an increased convective heat transfer from the surface elements and partition walls to the surrounding fluid or vice versa is achieved. The good heat conduction due to the presence of the reinforcing beads and the convex recesses leads to a relatively large temperature difference between the surface element and the medium surrounding the surface element. As a result of the large temperature difference, there is also a large heat flow between the surface element and the surrounding medium and, as a result, a large thermal output of the heat exchanger according to the invention. Adjacent surface elements may be attached to a partition, for example on a pipe. However, it is also possible for surface elements originating from adjacent partitions to encompass one another in a comb-like manner.

In einer bevorzugten Ausführungsform ist das Rohr des Rippenrohrwärmeübertragers als ein Ovalrohr ausgebildet, dessen Querschnitt aus zwei Halbkreisen und zwei die Halbkreise verbindenden Geraden gebildet ist. Die Oberflächenelemente besitzen eine ovale Form und sind in einer zu einer Längsachse des Rohres orthogonalen Ebene angeordnet Benachbarte Oberflächenelemente sind parallel zueinander entlang der Längsachse des Rohres angeordnetIn a preferred embodiment, the tube of the finned tube heat exchanger is designed as an oval tube, the cross section of which is formed from two semicircles and two straight lines connecting the semicircles. The surface elements are oval in shape and are arranged in a plane orthogonal to a longitudinal axis of the tube. Adjacent surface elements are arranged parallel to one another along the longitudinal axis of the tube

An den Oberflächenbereichen der geraden Bereiche des Ovalrohres können die Verstärkungswülste nahezu senkrecht zur Strömung, parallel und in konstantem Abstand zueinander positioniert werden. Dabei ist eine maximierte konvektive Wärmeübertragung zwischen benachbarten Oberflächenelementen erreichbar. Durch die versetzten Verstärkungswülste in einander gegenüberstehenden, d.h. zu einander benachbarten, Oberflächenelementen ist eine wellenförmige Strömung ausbildbar, die die Wärmeübertragung weiter verbessert.On the surface areas of the straight areas of the oval tube, the reinforcement beads can be positioned almost perpendicularly to the flow, parallel and at a constant distance from one another. In this way, a maximized convective heat transfer between adjacent surface elements can be achieved. Due to the offset reinforcement beads in surface elements that are opposite one another, i.e. adjacent to one another, a wavy flow can be formed, which further improves the heat transfer.

In einer Ausführungsform ist die Länge der Geraden des Querschnitts des Ovalrohrs mindestens einmal so groß wie der Durchmesser des Halbkreises des Querschnitts des Ovalrohrs, insbesondere 2,5-mal so groß.In one embodiment, the length of the straight line of the cross section of the oval tube is at least once as large as the diameter of the semicircle of the cross section of the oval tube, in particular 2.5 times as large.

An den großen geraden Bereichen des Ovalrohres und den daran angrenzenden Bereichen des Oberflächenelements kann vorteilhaft große Wärmeübertragung erreicht werden.Advantageously, high heat transfer can be achieved at the large, straight areas of the oval tube and the areas of the surface element adjoining them.

Die einzelnen vorgestellten Aspekte von Ausgestaltungen des erfindungsgemäßen Wärmeübertragers können auch anderweitig im Ermessen eines Fachmanns kombiniert werden, ohne den Rahmen der hier vorgestellten und beanspruchten Erfindung zu verlassen. Nacheinander beschriebene Merkmale dürfen nicht als untrennbare Merkmalskombination missverstanden werden, sondern sind als Aufzählung einzelner Merkmale zu verstehen.The individual presented aspects of configurations of the heat exchanger according to the invention can also be combined in other ways at the discretion of a person skilled in the art without departing from the scope of the invention presented and claimed here. Features described one after the other must not be misunderstood as an inseparable combination of features, but should be understood as a list of individual features.

Die vorliegende Erfindung soll im Folgenden anhand von Figuren näher erläutert werden, wobei gleiche Bezugszeichen in den Figuren gleiche oder ähnliche Elemente bezeichnen. Dabei zeigt:

Fig. 1
einen erfindungsgemäßen Wärmeübertrager in einer perspektivischen Ansicht,
Fig. 2
eine Fluidströmung an dem erfindungsgemäßen Wärmeübertrager,
Fig. 3
eine Ansicht des erfindungsgemäßen Rippenrohrwärmeübertragers in Blickrichtung entlang des Rohres,
Fig. 4
eine Ansicht des erfindungsgemäßen Rippenrohrwärmeübertragers in Blickrichtung quer zum Rohr und
Fig. 5
eine schematische Darstellung experimentell ermittelter Wärmestromdichten.
The present invention is to be explained in more detail below with reference to figures, with the same reference numbers in the figures denoting the same or similar elements. It shows:
1
a heat exchanger according to the invention in a perspective view,
2
a fluid flow at the heat exchanger according to the invention,
3
a view of the finned tube heat exchanger according to the invention in the direction of view along the tube,
4
a view of the finned tube heat exchanger according to the invention in the viewing direction transverse to the tube and
figure 5
a schematic representation of experimentally determined heat flux densities.

Fig. 1 zeigt eine Ausführungsform des erfindungsgemäßen Wärmeübertrager 1, konkret einen Rippenrohrwärmeübertrager, ausschnittsweise in einer perspektivischen Ansicht. Im Zentrum des dargestellten Gegenstandes ist das ovale Rohr 2 zu erkennen. Die Wände des Rohres 2 sind Trennwände zwischen einem ersten Fluid im Inneren des Rohres 2 und einem zweiten Fluid außerhalb des Rohres 2. Durch die Trennwand bzw. die Rohrwand wird Wärme zwischen dem ersten und dem zweiten Fluid ausgetauscht, ohne dass das erste und das zweite Fluid miteinander stofflich in Kontakt kommen. Außen weist das Rohr 2 oberflächenvergrößernde Rippen auf, die dem Rippenrohrwärmeübertrager seinen Namen geben. Bei dem hier dargestellten erfindungsgemäßen Wärmeübertrager 1 sind die mit dem Rohr verbundenen Rippen als volumenarme und im Wesentlichen zweidimensionale Oberflächenelemente 3 ausgebildet. 1 shows an embodiment of the heat exchanger 1 according to the invention, specifically a finned tube heat exchanger, in a perspective view in part. The oval tube 2 can be seen in the center of the object shown. The walls of the tube 2 are partitions between a first fluid inside the tube 2 and a second fluid outside the tube 2. Heat is exchanged between the first and the second fluid through the partition or the tube wall without the first and the second Fluid come into physical contact with each other. On the outside, the tube has 2 surface-enlarging ribs, which give the finned-tube heat exchanger its name. In the heat exchanger 1 according to the invention shown here, the ribs connected to the tube are designed as low-volume and essentially two-dimensional surface elements 3 .

Die Oberflächenelemente 3 weisen in dem dargestellten Ausführungsbeispiel stiftförmige Verstärkungswülste 4 mit rundem Querschnitt auf. Diese Verstärkungswülste 4 erstrecken sich von dem Rohr 2 bis zur Außenkante 31 der Oberflächenelemente 3. Zwischen den Verstärkungswülsten 4 weist das Oberflächenelement 3 Flächenbereiche 5 auf, die eine geringere Dicke als die Verstärkungswülste 4 haben. Die Verstärkungswülste 4 sind massive Materialverdickungen des Materials des Oberflächenelements 3, die sich im dargestellten Ausführungsbeispiel über die gesamte Höhe des Oberflächenelements 3 bis zur Außenkante 31 erstrecken und sich nach außen verjüngen. Damit haben die Verstärkungswülste 4 einen großen Querschnittsdurchmesser direkt an der Grenzfläche zum Rohr 2, während der Durchmesser der Verstärkungswülste 4 an der Außenkante 31 des Oberflächenelements 3 gleich oder nur wenig größer als die Dicke der Flächenbereiche 5 ist Die Verstärkungswülste 4 verbessern den Wärmetransport innerhalb des Oberflächenelements 3 vom Rohr 2 zur Außenkante 31 oder umgekehrt, wie dies durch die Pfeile in drei Verstärkungswülsten 4 beispielhaft dargestellt ist. Die Richtung des Wärmetransports hängt in bekannter Weise davon ab, welches der beiden Fluide im Inneren des Rohres 2 und außerhalb des Rohres 2 wärmer ist.In the exemplary embodiment shown, the surface elements 3 have pin-shaped reinforcing beads 4 with a round cross section. These reinforcing beads 4 extend from the pipe 2 to the outer edge 31 of the surface elements 3. Between the reinforcing beads 4, the surface element 3 has surface areas 5 which are less thick than the reinforcing beads 4. The reinforcement beads 4 are massive material thickenings of the material of the surface element 3, which in the illustrated embodiment extends over the entire height of the surface element 3 up to the outer edge 31 extend and taper outwards. The reinforcement beads 4 thus have a large cross-sectional diameter directly at the interface with the pipe 2, while the diameter of the reinforcement beads 4 on the outer edge 31 of the surface element 3 is equal to or only slightly larger than the thickness of the surface areas 5. The reinforcement beads 4 improve the heat transport within the surface element 3 from the pipe 2 to the outer edge 31 or vice versa, as is exemplified by the arrows in three reinforcing beads 4. The direction of the heat transport depends in a known manner on which of the two fluids inside the tube 2 and outside the tube 2 is warmer.

Neben den Verstärkungswülsten 4 weist das Oberflächenelement 3 im Bereich einiger der Flächenbereiche 5 konvexe Aussparungen 6 auf, die sich von der Außenkante 31 des Oberflächenelementes 3 in Richtung auf das Rohr 2 erstrecken und dabei in ihrer Breite verringern. Die Breite einer der Aussparungen 6 wird entlang der flächigen Ausdehnung des Oberflächenelements 2 und damit senkrecht zur Dicke des Oberflächenelements 3 gemessen. Die Aussparungen 6 stellen das völlige Fehlen des Materials des Oberflächenelements 3 im Bereich der Aussparungen dar. Die Aussparungen 6 erstrecken sich nicht bis zum Rohr 2, sondern nur bis zu einer definierten Höhe innerhalb des Oberflächenelements 3, wobei die Höhe ausgehend von der äußeren Oberfläche des Rohres 2 gemessen wird. Damit liegt der Scheitelpunkt der Aussparung 6 auf dieser definierten Höhe, die größer als oder gleich 30% und kleiner als oder gleich 70% der Höhe des Oberflächenelements 3 ist. Die Höhe des Oberflächenelements 3 ist die maximale Höhe der Außenkante 31 des Oberflächenelements 3. Im dargestellten Ausführungsbeispiel sind die Aussparungen 6 parabelförmig ausgebildet und erstrecken sich bis zu einer Höhe von ca. 40% der Höhe des Oberflächenelements 3.In addition to the reinforcing beads 4, the surface element 3 has convex recesses 6 in the area of some of the surface areas 5, which extend from the outer edge 31 of the surface element 3 in the direction of the tube 2 and thereby reduce in width. The width of one of the recesses 6 is measured along the areal extent of the surface element 2 and thus perpendicular to the thickness of the surface element 3 . The recesses 6 represent the complete absence of the material of the surface element 3 in the area of the recesses. The recesses 6 do not extend to the tube 2, but only up to a defined height within the surface element 3, the height starting from the outer surface of the Tube 2 is measured. The apex of the recess 6 is thus at this defined height, which is greater than or equal to 30% and less than or equal to 70% of the height of the surface element 3 . The height of the surface element 3 is the maximum height of the outer edge 31 of the surface element 3. In the illustrated embodiment, the recesses 6 are parabolic and extend up to a height of about 40% of the height of the surface element 3.

Die konvexen Aussparungen 6 dienen der Reduzierung der wärmeübertragenden Fläche des Oberflächenelements 3 mit der Höhe ausgehend vom Rohr 2. Damit wird eine Vergrößerung der wärmeleitenden Querschnittsfläche des Oberflächenelementes mit zunehmender Höhe vermieden. Da eine solche Vergrößerung der wärmeleitenden Querschnittsfläche vor allem in Bereichen des Oberflächenelements 3, die an runde Bereiche des Rohres 2 angrenzen, auftritt, sind im dargestellten Ausführungsbeispiel die Aussparungen 6 hauptsächlich in diesen Bereichen ausgebildet. Andererseits tritt die Querschnittsflächenvergrößerung in Flächenbereichen 5, die an die geraden Bereiche des hier verwendeten Ovalrohres 2 angrenzen, nicht oder nur in geringem Maße auf, so dass diese Flächenbereiche 5 keine Aussparungen 6 aufweisen können. Dies ist im dargestellten Ausführungsbeispiel zumindest für einige der Flächenbereiche 5 der Fall. Figur 2 zeigt ausschnittsweise den Wärmeübertrager von Figur 1 schematisch in einer seitlichen Ansicht auf das Rohr 2. Zur Vermeidung von Wiederholungen wird auf die Beschreibung von Figur 1 verwiesen. In der dargestellten Seitenansicht sind zwei, parallel zueinander angeordnete Oberflächenelemente 3 zu sehen, wobei die Verstärkungswülste 4 und im Geradbereich 21 auch die Flächenbereiche 5 gut zu erkennen sind, während die Aussparungen nicht sichtbar sind. In Figur 2 ist schematisch anhand von Stromlinien 7 die Strömung des zweiten Fluids außerhalb des Rohres 2 dargestellt. Die Verstärkungswülste 4 und die Aussparungen stören eine laminare Strömung zwischen benachbarten Oberflächenelementen 3, indem sie Turbulenzen verursachen. Die Turbulenzen verbessern den Wärmeübergang zwischen dem zweiten Fluid und dem Oberflächenelement 3. Auf der ebenen Seite des ovalen Rohres 2, d.h. im Geradbereich 21, sind die Verstärkungswülste 4 benachbarter Oberflächenelemente 3 in der Strömungsrichtung, die in der Darstellung von unten nach oben verläuft, jeweils mit einem Versatz 8 zueinander angeordnet. Durch den Versatz 8 überlagern sich die Turbulenzen an den einzelnen Verstärkungswülsten 4 und den Aussparungen zu dem mit den Stromlinien 7 skizzierten strömungsgünstigen Wellenverlauf.The convex recesses 6 serve to reduce the heat-transferring surface of the surface element 3 with the height, starting from the tube 2. This avoids an increase in the heat-conducting cross-sectional area of the surface element with increasing height. Since such an increase in the thermally conductive cross-sectional area occurs primarily in areas of the surface element 3 which adjoin round areas of the tube 2, the recesses 6 are mainly formed in these areas in the exemplary embodiment shown. On the other hand, the increase in cross-sectional area does not occur or occurs only to a small extent in surface areas 5 adjoining the straight areas of the oval tube 2 used here, so that these surface areas 5 cannot have any recesses 6 . In the exemplary embodiment shown, this is the case at least for some of the surface areas 5 . figure 2 shows a section of the heat exchanger from figure 1 schematically in a side view of the tube 2. To avoid repetition, reference is made to the description of FIG figure 1 referred. In the side view shown, two surface elements 3 arranged parallel to one another can be seen, with the reinforcing beads 4 and in the straight area 21 also the surface areas 5 being clearly visible, while the recesses are not visible. In figure 2 the flow of the second fluid outside of the tube 2 is shown schematically using streamlines 7 . The reinforcing beads 4 and the recesses disturb laminar flow between adjacent surface elements 3 by causing turbulence. The turbulence improves the heat transfer between the second fluid and the surface element 3. On the flat side of the oval tube 2, ie in the straight area 21, are the reinforcing beads 4 of adjacent surface elements 3 in the direction of flow, which runs from bottom to top in the illustration, respectively arranged with an offset 8 to each other. Due to the offset 8, the turbulences at the individual reinforcement beads 4 and the recesses are superimposed to form the streamlined wave profile outlined with the flow lines 7.

In den Figuren 3 und 4 ist ein ganz konkretes Bemessungsbeispiel des Rippenrohrwärmeübertragers von den Figuren 1 und 2 in zwei verschiedene Ansichten längs des Rohres 2 und quer dazu dargestellt. Das Rohr 2 ist hier als ein Ovalrohr ausgebildet, das der in Figur 2 dargestellten Strömung mit den Stromlinien 7 bei gleichem Querschnitt einen geringeren Widerstand entgegensetzt als ein rundes Rohr gleicher Querschnittsgröße. Das konkrete Ovalrohr hat einen Außendurchmesser 9 von 16 mm seiner halbkreisförmigen Bereiche und eine Länge 10 der geraden Seitenbereiche 21 von 18 mm. Für eine Skalierung des Rohres kann verallgemeinert werden, dass das Verhältnis von der geraden Länge 10 zu dem Durchmesser 9 größer als 1, im vorliegenden Fall 1,125 beträgt. Die genaue Größe dieses Verhältnisses kann als ein Optimierungsparameter bei der Auslegung des Wärmeübertragers anhand vorgegebener Rahmenbedingungen genutzt werden. Das Oberflächenelement 3 weist eine Höhe 11 von 44,5 mm auf, die von der äußeren Oberfläche des Rohres 2 im Geradbereich 21 bis zur Außenkante 31 des Oberflächenelements 3 gemessen wird. Die Aussparungen 6 weisen an der Außenkante 31 des Oberflächenelements 3 eine Breite 12 von 21 mm auf und erstrecken sich von der Außenkante 31 über eine Länge 13 von 26,5 mm in Richtung des Rohres 2. Damit liegt der Scheitelpunkt der Aussparungen 6 bei ca. 40% der Höhe 11.In the Figures 3 and 4 is a very concrete design example of the finned tube heat exchanger from the figures 1 and 2 shown in two different views along the tube 2 and transverse to it. The tube 2 is designed here as an oval tube, which is the figure 2 shown flow with the streamlines 7 with the same cross-section opposes a lower resistance than a round tube of the same cross-sectional size. The concrete oval tube has an outside diameter 9 of 16 mm of its semi-circular portions and a length 10 of the straight side portions 21 of 18 mm. For a scaling of the tube it can be generalized that the ratio of the straight length 10 to the diameter 9 is greater than 1, in the present case 1.125. The exact size of this ratio can be used as an optimization parameter when designing the heat exchanger based on given framework conditions. The surface element 3 has a height 11 of 44.5 mm, which is measured from the outer surface of the tube 2 in the straight area 21 to the outer edge 31 of the surface element 3 . The recesses 6 have a width 12 of 21 mm on the outer edge 31 of the surface element 3 and extend from the outer edge 31 over a length 13 of 26.5 mm in the direction of the tube 2. The apex of the recesses 6 is therefore at approx. 40% of height 11.

Die Verstärkungswülste 4 haben an der Grenzfläche zum Rohr 2 einen Durchmesser 14 von 4 mm, der sich kontinuierlich zur Außenkante 31 des Oberflächenelements 3 verringert. In Figur 4 ist zu sehen, dass die Flächenbereiche 5 eine geringe Dicke 15 von nur 1 mm haben und die Verstärkungswülste 4 mit einem maximalen Durchmesser von 4 mm einen im Vergleich mit den Flächenbereichen 5 vergrößerten Querschnitt bzw. eine viermal so große Dicke besitzen. Das Verhältnis des maximalen Durchmessers einer Verstärkungswulst zur Dicke eines Flächenbereiches kann auch ein anderes sein, wobei es jedoch größer als oder gleich 2 sein sollte.The reinforcing beads 4 have a diameter 14 of 4 mm at the boundary surface with the tube 2 , which diameter decreases continuously towards the outer edge 31 of the surface element 3 . In figure 4 it can be seen that the surface areas 5 have a small thickness 15 of only 1 mm and the reinforcing beads 4 with a maximum diameter of 4 mm have an enlarged cross-section compared to the surface areas 5 or a thickness four times greater. That The ratio of the maximum diameter of a reinforcing bead to the thickness of a surface area can also be different, but it should be greater than or equal to 2.

Zwei benachbarte Oberflächenelemente 3 sind entlang des Rohres 2, d.h. entlang der Strömungsrichtung des Fluides im Inneren des Rohres 2, in einem Abstand 16 von 12 mm parallel zueinander angeordnet. In dem Ausschnitt von Figur 4 ist zu erkennen, dass das linke Oberflächenelement 3 drei Verstärkungswülste 4 in dem ebenen Oberflächenbereich, dem Geradbereich 21, des ovalen Rohres 2 aufweist. Das rechte Oberflächenelement 3 weist hingegen in dem gleichen Ausschnitt nur zwei Verstärkungswülste 4 auf, wobei die Verstärkungswülste 4 auf den benachbarten Oberflächenelementen zueinander versetzt angeordnet sind. Dieser Versatz der Verstärkungswülste 4 und auch der Aussparungen, die in Fig. 4 nicht erkennbar sind, setzt sich über die gesamte Ausdehnung der beiden Oberflächenelemente 3 fort. So sind in Fig. 3 auch die Verstärkungswülste, Flächenbereiche und Aussparungen des Oberflächenelements, welches in Blickrichtung hinter dem vorderen Oberflächenelement angeordnet ist, zumindest teilweise in den Aussparungen 6 des vorderen Oberflächenelements 3 sichtbar. Durch den Versatz wird der in Figur 2 skizzierte Strömungsverlauf mit den Stromlinien 7 realisiert. Weiterhin führt der Versatz 8 der Aussparungen 6 und der Verstärkungswülste 4 zu großen Temperaturdifferenzen zwischen dem Fluid 2 und dem Oberflächenelement 3, welches an einem jeweiligen Ort keine Aussparung aufweist. Im Ergebnis sind große Wärmestromdichten möglich.Two adjacent surface elements 3 are arranged parallel to one another along the tube 2, ie along the direction of flow of the fluid inside the tube 2, at a distance 16 of 12 mm. In the excerpt from figure 4 It can be seen that the left-hand surface element 3 has three reinforcing beads 4 in the flat surface area, the straight area 21, of the oval tube 2. The right-hand surface element 3, on the other hand, has only two reinforcing beads 4 in the same detail, with the reinforcing beads 4 being offset from one another on the adjacent surface elements. This misalignment of the reinforcement beads 4 and also of the recesses in 4 are not recognizable, continues over the entire extent of the two surface elements 3. So are in 3 also the reinforcing beads, surface areas and recesses of the surface element, which is arranged behind the front surface element in the viewing direction, are at least partially visible in the recesses 6 of the front surface element 3. Due to the offset, the in figure 2 Sketched flow path realized with the streamlines 7. Furthermore, the offset 8 of the recesses 6 and the reinforcing beads 4 leads to large temperature differences between the fluid 2 and the surface element 3, which has no recess at a particular location. As a result, large heat flux densities are possible.

Alle angegebenen Maße sind beispielhaft und können je nach Anwendungsfall modifiziert und optimiert werden.All dimensions given are examples and can be modified and optimized depending on the application.

Zur Veranschaulichung des Potentials des erfindungsgemäßen Wärmeübertragers 1 gegenüber einem konventionellen Wärmeübertrager ist in Fig. 5 die Wärmestromdichte, die mit Hilfe eines Rippenrohres mit 18 Oberflächenelementen für eine gegebene Anströmgeschwindigkeit des Fluides, welches das Rippenrohr und die Oberflächenelemente umströmt, erreicht wurde, dargestellt. Dabei zeigt die Kurve mit den vollen Kästchen die gemessene Wärmestromdichte für ein gefertigtes Rippenrohr mit konventionellen Oberflächenelementen, d.h. mit Oberflächenelementen ohne Verstärkungswülste und ohne Aussparungen, während die Kurve mit den leeren Kästchen die gemessene Wärmestromdichte für ein als Prototypen gefertigtes Rippenrohr mit Oberflächenelementen gemäß der vorliegenden Erfindung zeigt, wobei die äußeren Abmessungen des Rohres sowie der Oberflächenelemente und das verwendete Material jeweils gleich waren. Wie zu sehen ist, ist eine deutliche Erhöhung der Wärmestromdichte für alle Anströmgeschwindigkeiten durch die Verwendung der erfindungsgemäßen Oberflächenelemente möglich. So liegt die Wärmestromdichte um bis zu 90% höher als bei Nutzung konventioneller Oberflächenelemente.To illustrate the potential of the heat exchanger 1 according to the invention compared to a conventional heat exchanger, figure 5 shows the heat flux density achieved using a finned tube with 18 surface elements for a given face velocity of the fluid flowing around the finned tube and surface elements. The curve with the solid boxes shows the measured heat flux for a fabricated finned tube with conventional surface elements, ie with surface elements without reinforcing beads and without recesses, while the curve with the empty boxes shows the measured heat flux for a prototype finned tube with surface elements according to the present invention shows, the external dimensions of the tube and the surface elements and the material used were the same in each case. As can be seen, a significant increase in the Heat flow density for all inflow speeds possible through the use of the surface elements according to the invention. The heat flow density is up to 90% higher than when using conventional surface elements.

In den dargestellten Ausführungsbeispielen sind die benachbarten Oberflächenelemente 3 auf einem Rohr 2 montiert. In anderen, nicht dargestellten Beispielen sind benachbarte Oberflächenelemente 3 auf benachbarten Rohren 2 montiert und die Rippen benachbarter Rohre greifen kammartig ineinander ein. Weitere Ausführungsbeispiele kann ein Fachmann anhand der obigen Beispiele in Anpassung an eine gegebene Aufgabenstellung herleitenIn the exemplary embodiments shown, the adjacent surface elements 3 are mounted on a tube 2 . In other examples, not shown, adjacent surface elements 3 are mounted on adjacent tubes 2 and the ribs of adjacent tubes engage in a comb-like manner. A person skilled in the art can derive further exemplary embodiments on the basis of the above examples in adaptation to a given task

BezugszeichenReference sign

11
Wärmeübertragerheat exchanger
22
RohrPipe
2121
Geradbereich des Rohresstraight section of the pipe
33
Oberflächenelementsurface element
3131
Außenkante des OberflächenelementsOuter edge of surfel
44
Verstärkungswulst des OberflächenelementsReinforcement bead of the surface element
55
Flächenbereich des OberflächenelementsSurface area of the UI element
66
Konvexe Aussparung des OberflächenelementsConvex recess of surfel
77
Stromlinien eines Fluids zwischen benachbarten OberflächenelementenStreamlines of a fluid between adjacent surface elements
88th
Versatz von VerstärkungswülstenOffset of reinforcement beads
99
Durchmesser des Halbkreises im OvalrohrquerschnittDiameter of the semicircle in the oval tube cross section
1010
Länge des Geradbereiches im OvalrohrquerschnittLength of the straight area in the oval tube cross-section
1111
Höhe des OberflächenelementsHeight of the UI element
1212
Breite der Aussparung an der Außenkante des OberflächenelementsWidth of the recess at the outer edge of the surfel
1313
Tiefe der Aussparungdepth of recess
1414
Maximaler Durchmesser der VerstärkungswulstMaximum reinforcement bead diameter
1515
Dicke des FlächenbereichsThickness of the surface area
1616
Abstand zwischen benachbarten OberflächenelementenDistance between adjacent surfels

Claims (11)

  1. Heat exchanger (1) with at least one partition and surface elements which project from at least one side of the partition wall and enlarge the surface of the partition (3) around which fluid can flow,
    wherein
    - the surface elements (3) have reinforcing beads (4) and located between the reinforcing beads (4) are planar regions (5), where the reinforcing beads (4) extend from the partition and have a circular or oval cross-sectional shape,
    - the reinforcing beads (4) extend from the partition over at least part of the height of the surface element (3), and
    - the surface elements (3) comprise of a plurality of convex recesses (6), wherein each of the convex recesses (6) is located in one of the planar regions (5) between two reinforcing beads (4) and extends itself from an outer edge (31) of the surface element (3), wherein the vertex of the convex recess lies at a height greater than or equal to 30% and less than or equal to 70% of the total height of the surface element (3), wherein the height is measured from the partition.
  2. Heat exchanger (1) according to claim 1, characterized in that the reinforcing beads (4) extend over the entire height of the surface element (3).
  3. Heat exchanger (1) according to claim 1 or 2, characterized in that the reinforcing beads (4) are tapered along the height of the surface elements (3) from the partition.
  4. Heat exchanger (1) according to one of the preceding claims, characterized in that the apex of the convex recesses (6) is located at 40% of the total height of the surface element (3).
  5. Heat exchanger (1) according to one of the preceding claims, characterized in that the convex recesses (6) are parabolic shaped.
  6. Heat exchanger (1) according to one of the preceding claims, characterized in that the heat exchanger (1) is a finned tube heat exchanger, having at least one tube (2) for the flow of an initial fluid into the interior of the tube (2) and with the outer area of the tube (2) externally enlarging surface elements (3) on the outside and around which a second fluid can flow in a crossflow to the first fluid, wherein the tube (2) forms the partition wall of the heat exchanger (1).
  7. Heat exchanger (1) according to Claim 6, characterized in that the reinforcing beads (4) extend orthogonally to the surface of the tube (2).
  8. Heat exchanger (1) according to one of the preceding claims, characterized in that the diameter (14) of the circular cross-section of the reinforcing beads (4) on the partition wall have at least twice the thickness (15) of the surface elements (3).
  9. Heat exchanger (1) according to one of the preceding claims, characterized in that the reinforcing beads (4) and the convex recesses (6) of adjacent surface elements (3) are arranged offset from each other, forming an offset (8) in the flow direction of the second fluid between the surface elements (3).
  10. Heat exchanger (1) according to Claim 6 and 9, characterized in that the tube (2) of the finned tube heat exchanger is designed as an oval tube, the cross-section of which is formed by two semicircles and two straight lines connecting the semicircles, the surface elements (3) each have an oval shape and are arranged in a plane orthogonal to the longitudinal axis of the tube, and adjacent surface elements (3) are arranged parallel to one another.
  11. Heat exchanger (1) according to Claim 10, characterized in that the length (10) of the straight line of the cross-section of the oval tube is at least one-time larger than the diameter (9) of the semicircle of the cross-section of the oval tube.
EP19805232.6A 2018-11-26 2019-11-14 Heat exchanger having surface elements having convex recesses and integrated material thickenings Active EP3850293B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018129788.2A DE102018129788B3 (en) 2018-11-26 2018-11-26 Heat exchanger with convex recesses of the ribbed surfaces and integrated material thickening
PCT/EP2019/081270 WO2020109013A1 (en) 2018-11-26 2019-11-14 Heat exchanger having surface elements having convex recesses and integrated material thickenings

Publications (2)

Publication Number Publication Date
EP3850293A1 EP3850293A1 (en) 2021-07-21
EP3850293B1 true EP3850293B1 (en) 2022-05-25

Family

ID=68105511

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19805232.6A Active EP3850293B1 (en) 2018-11-26 2019-11-14 Heat exchanger having surface elements having convex recesses and integrated material thickenings

Country Status (3)

Country Link
EP (1) EP3850293B1 (en)
DE (1) DE102018129788B3 (en)
WO (1) WO2020109013A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112312752B (en) * 2020-11-27 2024-04-16 浙江工业大学 Optimized structure of segment radiator for high-power locomotive

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE160351C (en) 1904-04-07 1905-05-10 HEATING OR COOLING ELEMENTS
GB436656A (en) 1934-04-16 1935-10-16 Francis William Green Improvements in heat-exchange tubes
US2402262A (en) * 1943-08-30 1946-06-18 American Coils Co Heat exchange fin
DE1910549U (en) * 1964-12-11 1965-02-25 Chester H Kirk LAMELLA TUBE FOR HEATING AND COOLING PURPOSES.
CH435346A (en) 1964-12-11 1967-05-15 Howard Kirk Chester Lamellar tube for heating or cooling purposes
US3311163A (en) 1965-06-25 1967-03-28 Twin Temp Inc Heat exchanger
CH435436A (en) 1966-04-22 1967-05-15 Thomson Italiana Societa Per A Electronic device for mixed braking of three-phase electric motors by means of capacitors and direct current
DE7020851U (en) 1970-06-04 1970-09-03 Benteler Werke Ag HEAT EXCHANGER FOR HEATING AND COOLING DEVICES.
DD283299A7 (en) * 1988-07-25 1990-10-10 Veb Schwermaschinenbau "Karl Liebknecht" Magdeburg,Dd RIBBED TUBE WITH PROFILE
DE4207597A1 (en) 1992-03-10 1993-09-23 Zl Cryo Technik Gmbh Industrie HEAT EXCHANGE ELEMENT AND HEAT EXCHANGE UNIT
JPH0979357A (en) * 1995-09-19 1997-03-25 Daihatsu Motor Co Ltd Cooling pipe structure with fin of vehicle
DE20021348U1 (en) * 2000-12-16 2001-05-10 Pluggit Int Nv Sewer pipe
US20100282456A1 (en) * 2009-05-06 2010-11-11 General Electric Company Finned tube heat exchanger

Also Published As

Publication number Publication date
EP3850293A1 (en) 2021-07-21
DE102018129788B3 (en) 2019-10-24
WO2020109013A1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
DE60219538T2 (en) heat exchangers
EP1654508B2 (en) Heat exchanger and method for the production thereof
DE60319986T2 (en) Plate heat exchanger
DE102012000549A1 (en) Heat exchanger tube and method of using the same
EP1739378A1 (en) Heat exchange element and associated heat exchanger
DE2330076A1 (en) FIBER TUBE HEAT EXCHANGER
DE112014003247B4 (en) Fin for heat exchanger
DE1776042A1 (en) Heat exchanger
DE112007000019B4 (en) heat exchangers
DE112014001374T5 (en) Heat transfer surface with protruding tongues
DE102010027704A1 (en) heat exchangers
EP0201665B1 (en) Heat transfer element comprising parallel tubes with fins
EP1357345B1 (en) Corrugated heat exchange element
EP3850293B1 (en) Heat exchanger having surface elements having convex recesses and integrated material thickenings
DE202017102436U1 (en) Heat exchanger with microchannel structure or wing tube structure
DE2318132A1 (en) CROSS-FLOW HEAT EXCHANGER
DE10342241A1 (en) heat exchangers
EP3669133B1 (en) Heat exchanger
EP3491323B1 (en) Heat exchanger having a micro-channel structure or wing tube structure
EP1662223A1 (en) Heat exchanger and method of fabrication
EP1248063B1 (en) Heat exchanger
EP1398592B1 (en) Flat tubes heat exchanger
WO2004079748A2 (en) Spacer
DE202008016603U1 (en) Corrugated rib for heat exchanger
EP1888992B1 (en) Heating body

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210331

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20210929

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211215

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1494416

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220615

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019004470

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220926

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220825

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220826

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221118

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019004470

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231130

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20191114