EP3850116A1 - Use of a copper alloy - Google Patents

Use of a copper alloy

Info

Publication number
EP3850116A1
EP3850116A1 EP19773350.4A EP19773350A EP3850116A1 EP 3850116 A1 EP3850116 A1 EP 3850116A1 EP 19773350 A EP19773350 A EP 19773350A EP 3850116 A1 EP3850116 A1 EP 3850116A1
Authority
EP
European Patent Office
Prior art keywords
casting
copper alloy
copper
mold
temperatures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19773350.4A
Other languages
German (de)
French (fr)
Other versions
EP3850116B1 (en
Inventor
Peter Böhlke
Hans-Günter Wobker
Hark Schulze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KME Special Products and Solutions GmbH
Original Assignee
KME Special Products GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KME Special Products GmbH and Co KG filed Critical KME Special Products GmbH and Co KG
Publication of EP3850116A1 publication Critical patent/EP3850116A1/en
Application granted granted Critical
Publication of EP3850116B1 publication Critical patent/EP3850116B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the invention relates to the use of a copper alloy with the features of claim 1.
  • Copper is a material with very high conductivity for heat and electricity, excellent corrosion resistance, medium strength and good formability. By adding alloying elements, the properties of copper alloys are adjusted to suit the application.
  • copper alloys made of high-strength copper-chromium-zircon or ductile copper-silver are generally used today to produce casting molds for continuous casting.
  • the requirements for the materials used are constantly increasing, as the performance of the casting machines is constantly increasing. This applies in particular to high-performance casting systems with very high casting speeds, such as. B. Thin slab caster.
  • Copper alloys and their use for casting molds are disclosed in WO 2004/074526 A2 or US 2015/0376755 A1.
  • the copper alloys disclosed therein have chromium contents of up to 0.40% by weight and 0.6% by weight.
  • the invention is based on the object of demonstrating a copper alloy which, when used for a casting mold or a casting mold component, achieves high performance and improved service life.
  • the copper alloy consists in percentages by weight (mass fraction of the melt analysis in%) of 0.020-0.50 silver (Ag), 0.050-0.50 zircon (Zr), maximum 0.060 phosphorus (P), maximum 0.005 chromium (Cr) with the rest copper (Cu) and other alloying elements including unavoidable impurities, whereby the proportion of other alloying elements is less than or equal to ( ⁇ ) 0.50.
  • the copper material proposed according to the invention is a copper alloy with high thermal conductivity, sufficiently high strength and delayed crack initiation and growth.
  • the electrical conductivity is between 50 and 54 MS / m.
  • a particularly advantageous embodiment of the copper alloy consists in percentages by weight (mass fraction of the melt analysis in%) of 0.080-0.120 silver (Ag), 0.070-0.200 zirconium (Zr), 0.0015-0.025 phosphorus (P), and a maximum of 0.005 chromium (Cr) the rest copper (Cu) and other alloying elements including unavoidable impurities, the proportion of other alloying elements being less than or equal to 0.10.
  • the chromium content is less than or equal to ( ⁇ ) 0.005% by weight.
  • the chromium content in the copper alloy according to the invention is kept less than 0.005% by weight, since chromium is excreted in the copper alloy system as secondary phases which are brittle and can have a negative effect on the change / strength of the copper alloy.
  • the low-alloy copper-zircon-silver (CuZrAg) material provided according to the invention shows very advantageous properties for casting molds or components of casting molds, in particular mold plates.
  • the silver content increases the creep rupture strength of the casting molds or casting mold components made of the copper alloy.
  • the zirconium content in the system combines high conductivity with strength values that are unusual for copper materials with a low alloy content.
  • the increase in strengthening is achieved by a combination of the mechanisms of solid solution strengthening (by Ag), cold working of 10 to 50% and in particular in a range from 10 to 40% and precipitation hardening (by Zr in the form of CuZr and / or ZrP precipitations) .
  • the zircon is particularly effective here.
  • the addition of zirconium to the extent according to the invention brings about a slight reduction in ductility and Thermal and also electrical conductivity, however, an appropriate increase in strength, thermal stability and tribological resistance is achieved.
  • the copper material according to the invention has a high softening temperature of 530 ° C., measured in accordance with DIN ISO 5182.
  • An advantageous copper alloy has a zirconium component (Zr) of 0.130% by weight, a silver component (Ag) of 0.1% by weight and a phosphorus component (P) of 0.0045% by weight.
  • Zr zirconium component
  • Ag silver component
  • P phosphorus component
  • the low-alloy copper material with silver and zirconium contents of up to 0.50% by weight shows properties that are suitable for use in casting molds or mold components. These include improved strength and high thermal softening resistance with almost the same thermal conductivity.
  • the copper material also shows improved fatigue resistance compared to copper-chrome-zirconium alloys (CuCrZr).
  • the material of a casting mold or a casting mold component is subjected to a very high thermal load on the casting side.
  • the resulting stresses often lead to a plastic flow of the material in this area (bulging).
  • This deformation does not take place or takes place to a much lesser extent than is the case with CuAg.
  • the improved thermal conductivity compared to a CuCrZr alloy also results in a reduced temperature level on the casting side, which in turn reduces the stresses present there. Crack initiation due to voltage peaks as with CuCrZr takes place only after a delay.
  • the strength and resistance to softening can be specifically adjusted using the alloy composition, cold working and corresponding hardening parameters.
  • This makes it possible to manufacture casting molds or casting mold components, for example mold plates, which are on the one hand Hot side, in which they come into contact with the molten metal, allow a certain degree of recrystallization in use and thereby achieve favorable fatigue properties, and secondly, on the cold side, where they come into contact with the cooling medium, do not show any plastic deformation due to the increased strength.
  • a copper alloy in the medium hardness range is considered advantageous because delayed crack initiation and crack growth can be expected here.
  • Hardness values in the range of 110 HBW are achieved. These values therefore lie between the typical values of copper alloys for casting molds and for casting mold components.
  • the conductivity of the copper alloy according to the invention is up to 95% IACS above CuCrZr and almost in the range of the CuAg materials. However, the resistance to softening, at> 500 ° C, is surprisingly in the range of CuCrZr materials.
  • Such a combination is very positive for the use of the copper alloy according to the invention as a material for casting molds or casting mold components, in particular for molds.
  • the copper alloy can be hot formed and / or cold formed after casting. Quenching from the heat of forming is recommended to set a small grain size. A separate solution annealing leads to a coarser structure, possibly to a secondary recrystallization. To set a medium strength, cold forming must be carried out before and, if necessary, after curing. Curing takes place at 350 to 500 ° C.
  • the conductivity of the copper material is set by heat treatment, with conductivities of up to 370 W / m-K or 50 to 54 MS / m being set here.
  • the copper alloy proposed in the context of the invention is particularly well suited as a material for the production of casting molds or casting mold components.
  • a mold component is, for example, a mold plate.
  • Casting molds according to the invention can be used for the continuous casting of blocks, billets, slabs, in particular thin slabs. Furthermore, from this Other molds or mold components such as casting wheels, rollers and rolls or melting crucibles can also be produced.
  • a use for welding technology components such as welding electrodes, caps, rollers or nozzles is also conceivable due to the advantageous properties of the material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Continuous Casting (AREA)
  • Conductive Materials (AREA)

Abstract

The invention relates to the use of a copper alloy which consists, in weight percent (mass proportions of the ladle analysis in %), of: silver (Ag) 0.020-0.50, zirconium (Zr) 0.050-0.50, phosphorus (P) at most 0.060, chromium (Cr) at most 0.005, the remainder copper (Cu) and other alloying elements including unavoidable impurities, the proportion of other alloying elements being less than or equal to (≤) 0.50, as a material for casting molds or casting mold components selected from the following group: mold plates, mold tubes, casting wheels, casting rolls, casting rollers, melting crucibles.

Description

Verwendung einer Kupferleqierunq  Use of a copper alloy
Die Erfindung betrifft eine Verwendung einer Kupferlegierung mit den Merkmalen des Patentanspruchs 1. The invention relates to the use of a copper alloy with the features of claim 1.
Kupfer ist ein Werkstoff mit sehr hoher Leitfähigkeit für Wärme und Elektrizität, ausgezeichneter Korrosionsbeständigkeit, mittlerer Festigkeit und guter Umformbarkeit. Durch den Zusatz von Legierungselementen werden die Eigenschaften von Kupferlegierungen anwendungsspezifisch eingestellt. Copper is a material with very high conductivity for heat and electricity, excellent corrosion resistance, medium strength and good formability. By adding alloying elements, the properties of copper alloys are adjusted to suit the application.
Zur Herstellung von Gießformen für den Strangguss werden heute in der Regel je nach spezifischem Einsatzfall Kupferlegierungen aus hochfestem Kupfer-Chrom- Zirkon oder duktilem Kupfer-Silber eingesetzt. Die Anforderungen an die verwendeten Werkstoffe werden stetig höher, da die Leistungen der Gießanlagen immer weiter erhöht werden. Dies gilt insbesondere für Hochleistungsgießanlagen mit sehr hohen Gießgeschwindigkeiten, wie z. B. Dünnbrammengießanlagen. Kupferlegierungen und deren Verwendung für Gießformen sind in der WO 2004/074526 A2 oder der US 2015/0376755 A1 offenbart. Die dort offenbarten Kupferlegierungen weisen Chromanteile bis zu 0,40 Gew.-% bzw. 0,6 Gew.-% auf. Depending on the specific application, copper alloys made of high-strength copper-chromium-zircon or ductile copper-silver are generally used today to produce casting molds for continuous casting. The requirements for the materials used are constantly increasing, as the performance of the casting machines is constantly increasing. This applies in particular to high-performance casting systems with very high casting speeds, such as. B. Thin slab caster. Copper alloys and their use for casting molds are disclosed in WO 2004/074526 A2 or US 2015/0376755 A1. The copper alloys disclosed therein have chromium contents of up to 0.40% by weight and 0.6% by weight.
Trotz ausgefeilter konstruktiver Auslegung der Gießformen erzeugen die im Einsatz herrschenden extrem hohen Wärmebelastungen und starken Temperaturwechsel eine sehr hohe Belastung der Kokillenwerkstoffe. Eine häufige Ausfallursache bei höherfesten Werkstoffen wie CuCrZr ist eine beginnende Rissbildung aufgrund der vorliegenden Kombination aus thermischen und mechanischen Ermüdungen. Dies geschieht in der Regel im Badspiegel-Bereich, in welchem die höchsten thermischen Belastungen vorliegen. Bei weicheren, duktileren Werkstoffen wie Kupfer-Silber tritt dagegen in der Regel keine Rissbildung auf, sondern eine unerwünschte bleibende plastische Verformung der Gießform, das sogenannte Bulging. Diese wird durch hohe mechanische Spannungen aufgrund unterschiedlicher thermischer Ausdehnungen innerhalb der Gießform hervorgerufen. Bleibende Verformungen treten dann auf, wenn die Materialfestigkeit, d.h. die Streckgrenze, durch diese Spannungen überschritten wird. Despite the sophisticated design of the molds, the extremely high thermal loads and strong temperature changes in use create a very high load on the mold materials. A common cause of failure in high-strength materials such as CuCrZr is the beginning of cracking due to the combination of thermal and mechanical fatigue. This usually happens in the area of the bathroom mirror, where the highest thermal loads are present. With softer, more ductile materials such as copper-silver, on the other hand, there is usually no cracking, but an undesired permanent plastic deformation of the casting mold, the so-called bulging. This is caused by high mechanical stresses due to different thermal expansions within the casting mold. Permanent deformations occur when the material strength, i.e. the yield strength through which these stresses are exceeded.
Aufgrund der vorgeschilderten Effekte können häufig die Standzeitvorgaben nicht eingehalten oder die Leistung der Gießanlage nicht weiter gesteigert werden. Ähnlich nachteilige Effekte können sich bei der Verwendung von Kupferlegierungen für thermisch und mechanisch hoch belastete, stromführende Komponenten der Schweißtechnik ergeben, wie z.B. für Schweißelektroden, Schweißkappen Schweißrollen, Elektrodenhalter oder Schweißdüsen. Due to the effects described above, the service life specifications can often not be met or the performance of the casting system cannot be increased further. Similar adverse effects can arise when using copper alloys for thermally and mechanically highly stressed, current-carrying components of welding technology, e.g. for welding electrodes, welding caps, welding rollers, electrode holders or welding nozzles.
Der Erfindung liegt ausgehend vom Stand der Technik die Aufgabe zugrunde, eine Kupferlegierung aufzuzeigen, die bei der Verwendung für eine Gießform oder ein Gießformbauteil eine hohe Leistungsfähigkeit und verbesserte Standzeit erreicht. Based on the prior art, the invention is based on the object of demonstrating a copper alloy which, when used for a casting mold or a casting mold component, achieves high performance and improved service life.
Die Lösung dieser Aufgabe besteht in einer Kupferlegierung gemäß Patentanspruch 1. The solution to this problem consists in a copper alloy according to claim 1.
Erfindungsgemäß besteht die Kupferlegierung in Gewichtsprozenten (Masseanteile der Schmelzanalyse in %) aus 0,020 - 0,50 Silber (Ag), 0,050 - 0,50 Zirkon (Zr), maximal 0,060 Phosphor (P), maximal 0,005 Chrom (Cr) mit dem Rest Kupfer (Cu) und sonstigen Legierungselementen einschließlich unvermeidbarer Verunreinigungen, wobei der Anteil sonstiger Legierungselemente kleiner gleich (<) 0,50 ist. According to the invention, the copper alloy consists in percentages by weight (mass fraction of the melt analysis in%) of 0.020-0.50 silver (Ag), 0.050-0.50 zircon (Zr), maximum 0.060 phosphorus (P), maximum 0.005 chromium (Cr) with the rest copper (Cu) and other alloying elements including unavoidable impurities, whereby the proportion of other alloying elements is less than or equal to (<) 0.50.
Bei dem erfindungsgemäß vorgeschlagenen Kupferwerkstoff handelt es sich um eine Kupferlegierung mit hoher Wärmeleitfähigkeit, ausreichend hoher Festigkeit und verzögerter Rissinitiierung und -Wachstum. Die elektrische Leitfähigkeit liegt zwischen 50 und 54 MS/m. The copper material proposed according to the invention is a copper alloy with high thermal conductivity, sufficiently high strength and delayed crack initiation and growth. The electrical conductivity is between 50 and 54 MS / m.
Eine besonders vorteilhafte Ausführung der Kupferlegierung besteht in Gewichtsprozenten (Masseanteile der Schmelzanalyse in %) aus 0,080 - 0,120 Silber (Ag), 0,070 - 0,200 Zirkon (Zr), 0,0015 - 0,025 Phosphor (P), maximal 0,005 Chrom (Cr) mit dem Rest Kupfer (Cu) und sonstigen Legierungselementen einschließlich unvermeidbarer Verunreinigungen, wobei der Anteil sonstiger Legierungselemente kleiner gleich 0,10 ist. A particularly advantageous embodiment of the copper alloy consists in percentages by weight (mass fraction of the melt analysis in%) of 0.080-0.120 silver (Ag), 0.070-0.200 zirconium (Zr), 0.0015-0.025 phosphorus (P), and a maximum of 0.005 chromium (Cr) the rest copper (Cu) and other alloying elements including unavoidable impurities, the proportion of other alloying elements being less than or equal to 0.10.
Ein Aspekt der Erfindung sieht vor, dass der Chromgehalt kleiner gleich (<) 0,005 Gew.-% ist. Der Chromgehalt in der erfindungsgemäßen Kupferlegierung wird kleiner als 0,005 Gew.-% gehalten, da Chrom in dem Kupferlegierungssystem als Sekundärphasen ausgeschieden wird, die sprödbrüchig sind und die Wechsel-/ Festigkeit der Kupferlegierung negativ beeinflussen können. Überraschenderweise zeigt der erfindungsgemäß vorgesehene niedriglegierte Kupfer-Zirkon-Silber (CuZrAg)-Werkstoff sehr vorteilhafte Eigenschaften für Gießformen bzw. Bauteile von Gießformen, insbesondere Kokillenplatten. Der Silberanteil erhöht die Zeitstandfestigkeit der Gießformen bzw. Gießformbauteile aus der Kupferlegierung. Der Zirkonanteil verbindet im System eine hohe Leitfähigkeit mit Festigkeitswerten, die für Kupferwerkstoffe mit niedrigem Legierungsgehalt unüblich sind. Die Festigungssteigerung wird durch eine Kombination der Mechanismen von Mischkristallverfestigung (durch Ag), eine Kaltumformung von 10 bis 50 % und insbesondere in einem Bereich von 10 bis 40 % und Ausscheidungshärtung (durch Zr in Form von CuZr- und/oder ZrP-Ausscheidungen) erreicht. Hierbei ist insbesondere das Zirkon sehr effektiv. Zwar bewirkt die Zulegierung von Zirkon im erfindungsgemäßen Maße eine geringe Verminderung der Duktilität sowie der thermischen und auch elektrischen Leitfähigkeit, jedoch wird dadurch eine zweckentsprechende Steigerung der Festigkeit, der thermischen Stabilität und der tribologischen Beständigkeit erreicht. One aspect of the invention provides that the chromium content is less than or equal to (<) 0.005% by weight. The chromium content in the copper alloy according to the invention is kept less than 0.005% by weight, since chromium is excreted in the copper alloy system as secondary phases which are brittle and can have a negative effect on the change / strength of the copper alloy. Surprisingly, the low-alloy copper-zircon-silver (CuZrAg) material provided according to the invention shows very advantageous properties for casting molds or components of casting molds, in particular mold plates. The silver content increases the creep rupture strength of the casting molds or casting mold components made of the copper alloy. The zirconium content in the system combines high conductivity with strength values that are unusual for copper materials with a low alloy content. The increase in strengthening is achieved by a combination of the mechanisms of solid solution strengthening (by Ag), cold working of 10 to 50% and in particular in a range from 10 to 40% and precipitation hardening (by Zr in the form of CuZr and / or ZrP precipitations) . The zircon is particularly effective here. The addition of zirconium to the extent according to the invention brings about a slight reduction in ductility and Thermal and also electrical conductivity, however, an appropriate increase in strength, thermal stability and tribological resistance is achieved.
Weiterhin weist der erfindungsgemäße Kupferwerkstoff eine hohe Entfestigungstemperatur von 530 °C, gemessen nach DIN ISO 5182, auf. Furthermore, the copper material according to the invention has a high softening temperature of 530 ° C., measured in accordance with DIN ISO 5182.
Eine vorteilhafte Kupferlegierung weist einen Zirkonanteil (Zr) von 0,130 Gew.-%, einen Silberanteil (Ag) von 0,1 Gew.-% sowie einen Phosphoranteil (P) von 0,0045 Gew.-% auf. Bei einer solchen Kupferlegierung wurde eine Härte von 97 HBW 2,5/62,5 und eine elektrische Leitfähigkeit von 53,7 MS/m gemessen. An advantageous copper alloy has a zirconium component (Zr) of 0.130% by weight, a silver component (Ag) of 0.1% by weight and a phosphorus component (P) of 0.0045% by weight. With such a copper alloy, a hardness of 97 HBW 2.5 / 62.5 and an electrical conductivity of 53.7 MS / m were measured.
Der niedrig legierte Kupferwerkstoff mit Gehalten an Silber und Zirkon bis 0,50 Gew.-% zeigt in besonderer Weise Eigenschaften, die für eine Verwendung in Gießformen oder Gießformbauteilen geeignet sind. Hierzu zählen eine verbesserte Festigkeit und eine hohe thermische Erweichungsbeständigkeit bei annähernd gleichbleibender Wärmeleitfähigkeit. Auch zeigt der Kupferwerkstoff eine verbesserte Ermüdungsbeständigkeit gegenüber Kupfer-Chrom-Zirkon-Legierungen (CuCrZr). The low-alloy copper material with silver and zirconium contents of up to 0.50% by weight shows properties that are suitable for use in casting molds or mold components. These include improved strength and high thermal softening resistance with almost the same thermal conductivity. The copper material also shows improved fatigue resistance compared to copper-chrome-zirconium alloys (CuCrZr).
Der Werkstoff einer Gießform oder eines Gießformbauteils wird im Einsatz auf der Gießseite thermisch sehr hoch belastet. Die entstehenden Spannungen führen bei weicheren Werkstoffen wie CuAg häufig zu einem plastischen Fließen des Werkstoffs in diesem Bereich (Bulging). Aufgrund der höheren Festigkeit der erfindungsgemäßen Kupferlegierung im Vergleich zu CuAg findet diese Verformung nicht bzw. in deutlich geringerem Maße statt wie es bei CuAg der Fall ist. Die gegenüber einer CuCrZr-Legierung verbesserte thermische Leitfähigkeit bewirkt auch ein reduziertes Temperaturniveau auf der Gießseite, was wiederum die dort vorliegenden Spannungen reduziert. Eine Rissinitiierung durch Spannungsspitzen wie beim CuCrZr findet erst verzögert statt. The material of a casting mold or a casting mold component is subjected to a very high thermal load on the casting side. In the case of softer materials such as CuAg, the resulting stresses often lead to a plastic flow of the material in this area (bulging). Because of the higher strength of the copper alloy according to the invention compared to CuAg, this deformation does not take place or takes place to a much lesser extent than is the case with CuAg. The improved thermal conductivity compared to a CuCrZr alloy also results in a reduced temperature level on the casting side, which in turn reduces the stresses present there. Crack initiation due to voltage peaks as with CuCrZr takes place only after a delay.
Die Festigkeit und die Erweichungsbeständigkeit können gezielt eingestellt werden durch die Legierungszusammensetzung, eine Kaltumformung und entsprechende Aushärteparameter. Dadurch wird die Herstellung von Gießformen oder Gießformbauteilen, beispielsweise Kokillenplatten möglich, die zum einen auf der Heißseite, in der sie in Kontakt mit der Metallschmelze gelangen, im Einsatz ein gewisses Maß an Rekristallisation zulassen und dadurch günstige Ermüdungseigenschaften erreichen und zum anderen auf der Kaltseite, wo sie in Kontakt mit Kühlmedium gelangen, aufgrund der gesteigerten Festigkeit keine plastische Verformung zeigen. The strength and resistance to softening can be specifically adjusted using the alloy composition, cold working and corresponding hardening parameters. This makes it possible to manufacture casting molds or casting mold components, for example mold plates, which are on the one hand Hot side, in which they come into contact with the molten metal, allow a certain degree of recrystallization in use and thereby achieve favorable fatigue properties, and secondly, on the cold side, where they come into contact with the cooling medium, do not show any plastic deformation due to the increased strength.
Im Rahmen der Erfindung wird eine Kupferlegierung im mittleren Härtebereich als vorteilhaft angesehen, weil hier eine verzögerte Rissinitiierung und ein verzögertes Risswachstum zu erwarten ist. Härtewerte im Bereich von 110 HBW werden erreicht. Diese Werte liegen damit zwischen den typischen Werten von Kupferlegierungen für Gießformen bzw. für Gießformbauteile. Die Leitfähigkeit der erfindungsgemäßen Kupferlegierung liegt mit bis zu 95 % IACS über CuCrZr und annähernd im Bereich der CuAg-Werkstoffe. Allerdings liegt die Erweichungsbeständigkeit dagegen mit > 500°C erstaunlicherweise im Bereich der CuCrZr-Werkstoffe. Eine solche Kombination ist sehr positiv für die Verwendung der erfindungsgemäßen Kupferlegierung als Werkstoff für Gießformen bzw. Gießformbauteilen, insbesondere für Kokillen. In the context of the invention, a copper alloy in the medium hardness range is considered advantageous because delayed crack initiation and crack growth can be expected here. Hardness values in the range of 110 HBW are achieved. These values therefore lie between the typical values of copper alloys for casting molds and for casting mold components. The conductivity of the copper alloy according to the invention is up to 95% IACS above CuCrZr and almost in the range of the CuAg materials. However, the resistance to softening, at> 500 ° C, is surprisingly in the range of CuCrZr materials. Such a combination is very positive for the use of the copper alloy according to the invention as a material for casting molds or casting mold components, in particular for molds.
Die Kupferlegierung kann nach dem Gießen warmumgeformt und/oder kaltumgeformt werden. Zur Einstellung einer kleinen Korngröße ist ein Abschrecken aus der Umformwärme zu empfehlen. Eine separate Lösungsglühung führt zu einem gröberen Gefüge, ggf. zu einer sekundären Rekristallisation. Zur Einstellung einer mittleren Festigkeit ist eine Kaltumformung vor und ggf. nach dem Aushärten durchzuführen. Das Aushärten erfolgt bei 350 bis 500 °C. The copper alloy can be hot formed and / or cold formed after casting. Quenching from the heat of forming is recommended to set a small grain size. A separate solution annealing leads to a coarser structure, possibly to a secondary recrystallization. To set a medium strength, cold forming must be carried out before and, if necessary, after curing. Curing takes place at 350 to 500 ° C.
Eine Einstellung der Leitfähigkeit des Kupferwerkstoffs erfolgt durch eine Wärmebehandlung, wobei hier Leitfähigkeiten von bis zu 370 W/m-K bzw. 50 bis 54 MS/m eingestellt werden. The conductivity of the copper material is set by heat treatment, with conductivities of up to 370 W / m-K or 50 to 54 MS / m being set here.
Die im Rahmen der Erfindung vorgeschlagene Kupferlegierung ist besonders gut geeignet als Werkstoff für die Herstellung von Gießformen oder Gießformbauteilen. Ein Gießformbauteil ist beispielsweise eine Kokillenplatte. Erfindungsgemäße Gießformen können für das Stranggießen von Blöcken, Knüppeln, Brammen, insbesondere von Dünnbrammen, verwendet werden. Weiterhin können aus diesem Werkstoff auch andere Gießformen bzw. Gießformbauteile wie Gießräder, -walzen und -rollen oder auch Schmelztiegel hergestellt werden. The copper alloy proposed in the context of the invention is particularly well suited as a material for the production of casting molds or casting mold components. A mold component is, for example, a mold plate. Casting molds according to the invention can be used for the continuous casting of blocks, billets, slabs, in particular thin slabs. Furthermore, from this Other molds or mold components such as casting wheels, rollers and rolls or melting crucibles can also be produced.
Eine Verwendung für Bauteile der Schweißtechnik wie Schweißelektroden, -kappen, -rollen oder -düsen ist aufgrund der vorteilhaften Eigenschaften des Werkstoffs ebenfalls denkbar. A use for welding technology components such as welding electrodes, caps, rollers or nozzles is also conceivable due to the advantageous properties of the material.

Claims

Patentansprüche Claims
1. Verwendung einer Kupferlegierung, welche in Gewichtsprozenten (Masseanteile der Schmelzanalyse in %) besteht aus: 1. Use of a copper alloy, which consists in percentages by weight (mass fraction of the melt analysis in%) of:
Silber (Ag) 0,020 - 0,50 Silver (Ag) 0.020-0.50
Zirkon (Zr) 0,050 - 0,50  Zircon (Zr) 0.050 - 0.50
Phosphor (P) maximal 0,060  Phosphorus (P) 0.060 maximum
Chrom (Cr) maximal 0,005  Chromium (Cr) maximum 0.005
Rest Kupfer (Cu) und sonstige Legierungselemente einschließlich unvermeidbarer Verunreinigungen, wobei der Anteil sonstiger Legierungselemente kleiner gleich (<) 0,50 ist, als Werkstoff für Gießformen oder für Gießformbauteile ausgewählt aus folgender Gruppe umfassend: Kokillenplatten, Kokillenrohre, Gießräder, Gießwalzen, Gießrollen, Schmelztiegel. Rest of copper (Cu) and other alloying elements including unavoidable impurities, the proportion of other alloying elements being less than or equal to (<) 0.50, selected as a material for casting molds or for casting mold components from the following group: mold plates, mold tubes, casting wheels, casting rolls, casting rolls, Melting pot.
2. Verwendung nach Anspruch 1 mit einer Kupferlegierung, bestehend aus: 2. Use according to claim 1 with a copper alloy consisting of:
Silber (Ag) 0,080 - 0, 120 Silver (Ag) 0.080-0.120
Zirkon (Zr) 0,070 - 0,200  Zircon (Zr) 0.070 - 0.200
Phosphor (P) 0,0015 - 0,025  Phosphorus (P) 0.0015-0.025
Chrom (Cr) maximal 0,005  Chromium (Cr) maximum 0.005
Rest Kupfer (Cu) und sonstige Legierungselemente einschließlich unvermeidbaren Verunreinigungen, wobei der Anteil sonstiger Legierungselemente kleiner gleich (<) 0,10 ist. Balance copper (Cu) and other alloy elements including unavoidable impurities, the proportion of other alloy elements being less than or equal to (<) 0.10.
3. Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Kupferlegierung eine elektrische Leitfähigkeit zwischen 50 und 54 MS/m aufweist. 3. Use according to claim 1 or 2, characterized in that the copper alloy has an electrical conductivity between 50 and 54 MS / m.
4. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Gießform oder das Gießformbauteil auf einer dem Gusswerkstoff zugewandten Heißseite während des Gießbetriebs unter dem thermischen Einfluss einer Metallschmelze im Bereich der Heißseite erweicht und/oder rekristallisiert, wobei die Gießform oder das Gießformbauteil eine gekühlte Kaltseite besitzt, auf welcher die Kupferlegierung im Gießbetrieb nicht erweicht oder rekristallisiert und eine höhere Festigkeit aufweist als auf der der Metallschmelze zugewandten Seite. 4. Use according to one of claims 1 to 3, characterized in that the casting mold or the casting mold component softens and / or recrystallizes on a hot side facing the casting material during the casting operation under the thermal influence of a molten metal in the region of the hot side, the casting mold or the The casting mold component has a cooled cold side, on which the copper alloy does not soften or recrystallize in the casting operation and has a higher strength than on the side facing the molten metal.
5. Verwendung einer Kupferlegierung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Kupferlegierung nach dem Gießen bei Temperaturen zwischen 600 und 1000 °C warmumgeformt, anschließend mit 50 - 2000 K/min aus der Umformwärme abgeschreckt, anschließend um 10 - 50 % kaltumgeformt und abschließend bei Temperaturen zwischen 350 - 500 °C ausgehärtet wird, oder bei Temperaturen zwischen 600 und 1000 °C lösungsgeglüht, um 10 - 50 % kaltumgeformt und abschließend bei Temperaturen von 350 - 500 °C ausgehärtet wird. 5. Use of a copper alloy according to one of claims 1 to 4, characterized in that the copper alloy is hot-formed after casting at temperatures between 600 and 1000 ° C, then quenched at 50-2000 K / min from the heat of deformation, then by 10-50 % cold-formed and finally hardened at temperatures between 350 - 500 ° C, or solution-annealed at temperatures between 600 and 1000 ° C, cold-formed by 10 - 50% and finally hardened at temperatures of 350 - 500 ° C.
6. Verwendung nach Anspruch 5, dadurch gekennzeichnet, dass der Werkstoff nach dem Aushärten noch einmal kaltumgeformt wird. 6. Use according to claim 5, characterized in that the material is cold formed again after curing.
EP19773350.4A 2018-09-14 2019-09-13 Use of a copper alloy Active EP3850116B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018122574.1A DE102018122574B4 (en) 2018-09-14 2018-09-14 Use of a copper alloy
PCT/DE2019/100816 WO2020052714A1 (en) 2018-09-14 2019-09-13 Use of a copper alloy

Publications (2)

Publication Number Publication Date
EP3850116A1 true EP3850116A1 (en) 2021-07-21
EP3850116B1 EP3850116B1 (en) 2022-08-03

Family

ID=68051574

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19773350.4A Active EP3850116B1 (en) 2018-09-14 2019-09-13 Use of a copper alloy

Country Status (12)

Country Link
US (1) US20210214828A1 (en)
EP (1) EP3850116B1 (en)
JP (2) JP2021531412A (en)
KR (1) KR20210005241A (en)
CN (1) CN112055755A (en)
DE (1) DE102018122574B4 (en)
ES (1) ES2926650T3 (en)
MX (1) MX2021002612A (en)
PL (1) PL3850116T3 (en)
RU (1) RU2760444C1 (en)
WO (1) WO2020052714A1 (en)
ZA (1) ZA202101455B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112210684A (en) * 2020-10-15 2021-01-12 台州学院 Semiconductor target material, equipment of copper-titanium alloy for connector and preparation method

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2243731B2 (en) * 1972-09-06 1975-08-14 Gosudarstwenny Nautschno-Issledowatelskij I Projektnyj Institut Splawow I Obrabotki Zwetnych Metallow Giprozwetmetobrabotka, Moskau Age-hardenable copper alloy
DE3104960A1 (en) * 1981-02-12 1982-08-26 W.C. Heraeus Gmbh, 6450 Hanau "FINE WIRE"
JPS58210140A (en) * 1982-06-01 1983-12-07 Sumitomo Electric Ind Ltd Heat resistant conductive copper alloy
JPH0243811B2 (en) * 1985-06-15 1990-10-01 Dowa Mining Co RIIDOFUREEMUYODOGOKINOYOBISONOSEIZOHO
JPH07113133B2 (en) * 1986-02-06 1995-12-06 三菱マテリアル株式会社 Cu alloy for continuous casting mold
DE3820203A1 (en) * 1988-06-14 1989-12-21 Kabelmetal Ag USE OF A CURABLE copper alloy
JP2501275B2 (en) * 1992-09-07 1996-05-29 株式会社東芝 Copper alloy with both conductivity and strength
JP3303623B2 (en) * 1995-09-22 2002-07-22 三菱マテリアル株式会社 Method for producing copper alloy mold material for steelmaking continuous casting and mold produced thereby
DE10032627A1 (en) * 2000-07-07 2002-01-17 Km Europa Metal Ag Use of a copper-nickel alloy
DE10156925A1 (en) * 2001-11-21 2003-05-28 Km Europa Metal Ag Hardenable copper alloy as a material for the production of casting molds
DE10306819A1 (en) * 2003-02-19 2004-09-02 Sms Demag Ag Copper alloy and use of such an alloy for casting molds
JP2004353011A (en) * 2003-05-27 2004-12-16 Ykk Corp Electrode material and manufacturing method therefor
CN100343403C (en) * 2005-08-08 2007-10-17 河南科技大学 Rare earth copper alloy and its preparation method
JP2010502841A (en) * 2006-09-08 2010-01-28 トーソー エスエムディー,インク. Copper sputtering target having very small crystal grain size and high electromigration resistance and method for producing the same
DE102008007082A1 (en) * 2007-11-01 2009-05-07 Kme Germany Ag & Co. Kg Liquid-cooled mold for continuous casting of metals
CN101629254A (en) * 2009-06-25 2010-01-20 中南大学 Multi-element composite micro-alloying copper alloy with high strength and high conductivity and preparation method thereof
DE102009037283A1 (en) * 2009-08-14 2011-02-17 Kme Germany Ag & Co. Kg mold
CN101717876A (en) * 2009-12-16 2010-06-02 北京有色金属研究总院 Chrome zirconium copper alloy and preparing and processing method thereof
KR101364542B1 (en) * 2011-08-11 2014-02-18 주식회사 풍산 Copper alloy material for continuous casting mold and process of production same
CN102912178B (en) * 2012-09-29 2015-08-19 河南科技大学 A kind of high-strength highly-conductive rare-earth copper alloy and preparation method thereof
JP5668814B1 (en) * 2013-08-12 2015-02-12 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, parts for electronic and electrical equipment, terminals and bus bars
CN104846234B (en) * 2015-05-18 2017-01-25 西峡龙成特种材料有限公司 Cu-Zr-Ag alloy crystallizer copper plate and preparation process thereof

Also Published As

Publication number Publication date
EP3850116B1 (en) 2022-08-03
DE102018122574A1 (en) 2020-03-19
ZA202101455B (en) 2022-04-28
RU2760444C1 (en) 2021-11-25
CN112055755A (en) 2020-12-08
ES2926650T3 (en) 2022-10-27
DE102018122574B4 (en) 2020-11-26
JP2021531412A (en) 2021-11-18
WO2020052714A1 (en) 2020-03-19
US20210214828A1 (en) 2021-07-15
JP2023055774A (en) 2023-04-18
KR20210005241A (en) 2021-01-13
MX2021002612A (en) 2022-02-04
PL3850116T3 (en) 2022-11-21

Similar Documents

Publication Publication Date Title
EP2956562B1 (en) Nickel-cobalt alloy
AT502310B1 (en) AN AL-ZN-MG-CU ALLOY
EP3511432B1 (en) Softening resistant copper alloy, preparation method, and application thereof
EP2559779B1 (en) High temperature Al-Cu-Mg-Ag alloy and method for producing a semi-finished product or product from such an aluminium alloy
EP3235916B1 (en) Cast alloy
AT413035B (en) ALUMINUM ALLOY
CN108060325A (en) The multistage-combination deformation heat treatment method of the strong CuNiSn series elastic copper alloys of superelevation
EP2155920A1 (en) Use of an al-mn alloy for high temperature resistant products
EP1314789B1 (en) Mould made of a precipitation hardenable copper alloy
CN108060326A (en) A kind of superelevation is strong, low inverse segregation CuNiSn series elastic copper alloys and preparation method thereof
DE102019205267B3 (en) Die-cast aluminum alloy
EP0548636B1 (en) Use of an hardenable copper alloy
EP3850116B1 (en) Use of a copper alloy
EP1340564A2 (en) Hardenable copper alloy
DE1483228B2 (en) ALUMINUM ALLOY WITH HIGH PERFORMANCE
DE2948916C2 (en) Copper-tin alloy, process for their manufacture and use
DE102006027844B4 (en) Copper alloy based on copper and tin
EP0302255B1 (en) Use of a copper alloy for continuous-casting moulds
EP1314495B1 (en) Sleeve for a casting roll of a twin roll continuous caster
DE1483176A1 (en) Copper-zinc alloy
EP1274871A1 (en) Use of a hardenable copper alloy for molds
EP0249740B1 (en) Using a copper alloy
EP2677051A1 (en) High-strength copper alloy forging
US20210404038A1 (en) 2xxx aluminum lithium alloys
DE4100908C2 (en) mold material

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201008

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KME SPECIAL PRODUCTS GMBH & CO. KG

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220318

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KME SPECIAL PRODUCTS & SOLUTIONS GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1508802

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019005176

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2926650

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20221027

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221205

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221103

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221203

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221104

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502019005176

Country of ref document: DE

Owner name: CUNOVA GMBH, DE

Free format text: FORMER OWNER: KME SPECIAL PRODUCTS & SOLUTIONS GMBH, 49074 OSNABRUECK, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019005176

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220913

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

26N No opposition filed

Effective date: 20230504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230831

Year of fee payment: 5

Ref country code: NL

Payment date: 20230926

Year of fee payment: 5

Ref country code: IT

Payment date: 20230920

Year of fee payment: 5

Ref country code: GB

Payment date: 20230926

Year of fee payment: 5

Ref country code: FI

Payment date: 20230926

Year of fee payment: 5

Ref country code: CZ

Payment date: 20230913

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230926

Year of fee payment: 5

Ref country code: PL

Payment date: 20230904

Year of fee payment: 5

Ref country code: FR

Payment date: 20230926

Year of fee payment: 5

Ref country code: DE

Payment date: 20230928

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231017

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231001

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803