EP3849675B1 - Procédé et système intégrés de commande dynamique de la vitesse d'un tapis roulant - Google Patents

Procédé et système intégrés de commande dynamique de la vitesse d'un tapis roulant Download PDF

Info

Publication number
EP3849675B1
EP3849675B1 EP19778664.3A EP19778664A EP3849675B1 EP 3849675 B1 EP3849675 B1 EP 3849675B1 EP 19778664 A EP19778664 A EP 19778664A EP 3849675 B1 EP3849675 B1 EP 3849675B1
Authority
EP
European Patent Office
Prior art keywords
speed
belt
user
treadmill
com
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19778664.3A
Other languages
German (de)
English (en)
Other versions
EP3849675C0 (fr
EP3849675A1 (fr
Inventor
Stefano MARCANDELLI
Alessandro CARMINATI
Ivan Belotti
Rudi PIRANI
Adriano PIZZOLANTE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tecnobody SpA
Original Assignee
Tecnobody SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tecnobody SpA filed Critical Tecnobody SpA
Publication of EP3849675A1 publication Critical patent/EP3849675A1/fr
Application granted granted Critical
Publication of EP3849675C0 publication Critical patent/EP3849675C0/fr
Publication of EP3849675B1 publication Critical patent/EP3849675B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/02Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills
    • A63B22/0235Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills driven by a motor
    • A63B22/0242Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills driven by a motor with speed variation
    • A63B22/025Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills driven by a motor with speed variation electrically, e.g. D.C. motors with variable speed control
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0087Electric or electronic controls for exercising apparatus of groups A63B21/00 - A63B23/00, e.g. controlling load
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0087Electric or electronic controls for exercising apparatus of groups A63B21/00 - A63B23/00, e.g. controlling load
    • A63B2024/0093Electric or electronic controls for exercising apparatus of groups A63B21/00 - A63B23/00, e.g. controlling load the load of the exercise apparatus being controlled by performance parameters, e.g. distance or speed
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/10Positions
    • A63B2220/13Relative positions
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/50Force related parameters
    • A63B2220/51Force
    • A63B2220/52Weight, e.g. weight distribution
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/806Video cameras

Definitions

  • the present invention relates to an integrated method and an integrated system for the dynamic control of the speed of an exercise treadmill.
  • the present applicant currently markets a treadmill integrated with a 3D video camera and load cells, which enables evaluation of the movement of the user by providing space-time indicators of the subject's gait using the aforesaid two sensors.
  • the control system must seek to estimate as fast as possible the intention of the subject.
  • the aim is not to intervene too sharply on the acceleration of the belt, which would otherwise cause a negative sensation for the person, in addition to entailing safety problems. It would be possible to consider limiting the maximum acceleration of the belt, but this would cause the need to lengthen the treading surface of the treadmill beyond reasonable commercially acceptable values.
  • the aim of the present invention is to provide an integrated method for the dynamic control of the speed of a treadmill that will overcome the drawbacks of the prior art.
  • Another aim of the present invention is to provide a method that enables the user to replicate his normal walk on the treadmill.
  • the control system according to the present invention is able to achieve excellent results both as regards user experience and as regards safety. It manages to estimate the speed of the subject using parameters coming from a 3D video camera that must be able to recognise the human body and estimate the position of each joint of the person at every instant, combined with a force sensor and, by using a purposely constructed fusion algorithm, to exploit the advantages of both, obtaining an estimation of the speed that is very fast thanks to the force data and very precise thanks to the compensation given by the position.
  • a treadmill according to the present invention equipped with a control system, that is able to dynamically adapt the speed of the belt on the basis of the speed of the user, and is able to solve the problems described below.
  • the only method for defining the speed that is most suited for the user is the empirical one.
  • a neurological/orthopaedic subject is required to walk on the treadmill in order to assess his/her condition, it is not possible to know beforehand the most suitable speed at which he/she can walk, but tests must be conducted before finding
  • an integrated system for the dynamic control of the speed of a treadmill comprises: a treadmill 10 having a belt 11 that turns about two rollers 12; an encoder 12a for detecting the speed of said rollers; a 3D video camera 13 placed at the front of the treadmill 10, which shoots any object within a range 13a and in particular the user 14; a viewer 15; at least one sensor 16 for detecting horizontal forces applied on the belt 11, i.e., forces applied along the same longitudinal axis of the belt 11; a system 17 for acquisition of the measurements made by the sensor 16; a system 18 for acquisition of the data from the video camera 13, which is able to recognise the human body and estimate the position of the body joints in space and moreover determines the centre of mass COM of a user 14; and a data-processing unit 19, which receives the signals from the systems 17 and 18 and controls a motor 20 that moves the belt 11, for example by making one of the two rollers 12 rotate.
  • the 3D video camera 13 is preferably set at the front of the treadmill 10, but it may be located in other positions that make it, in any way, possible to shoot the body of the user 14 entirely.
  • the sensor 16 and the system 17 for acquisition of the horizontal force are able to detect directly or indirectly the horizontal components of the forces (hence the components parallel to the treading surface of the belt 11) applied by the user 14.
  • said system requires one or more sensors 16, which can use the most disparate technologies.
  • load cells whether monoaxial, biaxial or triaxial
  • force transducers of the strain-gauge type, piezoelectric type, optical type, or optical-fibre type
  • accelerometers mechanical accelerometers, silicon accelerometers
  • inertial platforms of a mechanical or electronic type
  • torque-meters or torque transducers of the strain-gauge or piezoelectric type
  • pressure transducers of the piezoelectric or mechanical type
  • the sensors 16 are connected to the structure (or to parts of the structure) of the treadmill.
  • the 3D video camera 13 is able to recognise the human body and to estimate the position of every joint thereof at any instant through body-tracking techniques adapted to the needs of the present application, i.e., to recognise a human body while it is moving on a treadmill.
  • body-tracking technique is SDK Kinect, which reconstructs the three-dimensional scene through an estimation of the depth map and recognises the human body within the area shot separating it from the background, finally estimating the position in space of the joints of the body detected.
  • the 3D video camera 13 consists of an RGB video camera and an infrared ray depth sensor, which is constituted by an infrared laser scanner and a video camera sensitive to the infrared of the laser. Thanks to this sensor, it is possible to obtain an RGB video image and a depth image.
  • Some 3D video cameras that may be used in this application are, for example: Kinect One (Microsoft, Redmond, USA), Astra Pro (Orbbec, Troy, USA), RealSense (Intel, Santa Clara, USA), and LIPSedge (LIPS, Taipei, Taiwan).
  • the treadmill 10 comprises a frame 30, two rollers 31 and 32, set at the ends of the frame 30, a sliding belt 33 looped around the two rollers 31 and 32, and a surface 34 for supporting the belt supported by triaxial force transducers 35, which are preferably set at the ends of the surface 34 and are able to detect the horizontal force components (along the axis L1) developed by the user 14.
  • the transducers 35 are set between the surface 34 for supporting the belt and the frame 30; in particular, the surface 34 rests upon the frame 30, via the transducers 35.
  • the treadmill further comprises supporting means 36, which support the frame 30 on the ground.
  • the triaxial force transducers will detect the horizontal components transmitted by the physical contact of the user 14 with the belt 33 and hence with the surface 34 for supporting the belt, which will transfer the forces to the sensitive elements.
  • This system is effective, but also the horizontal force component, that develops due to friction between the belt 33 and the surface 34 for supporting of the belt, is transmitted to the transducers 35, i.e., the force generated by the weight of the user 14 who is transported by the belt 33 over a surface 34 that not is altogether without friction. This force must be considered in the subsequent calculations carried out by the data-processing unit 19.
  • the treadmill 10 comprises a frame 40, two rollers 41 and 42, set at the ends of the frame 40, of which the rear one 41 is mechanically connected to a torque-meter 43, which is able to detect the horizontal force components (along the axis L1) developed by the user 14, a sliding belt 44 looped around the two rollers 41 and 43, and a surface 45 for supporting the belt that rests on the frame 40.
  • the treadmill further comprises supporting means 46 that support the frame 40 on the ground.
  • the torque-meter 43 detects the torque applied preferably to the rear roller 41, and, knowing the radius of the roller, the data-processing unit 19 computes the horizontal components developed by the physical contact of the user 14 with the belt 44.
  • the treadmill 10 is constituted by a frame 50, two rollers 51 and 52, set at the ends of the frame 50, a sliding belt 53 looped around the two rollers 51 and 52, and a surface 54 for supporting the belt coupled to the frame 50.
  • the treadmill 10 through its frame 50, is supported by two skids 55 and 56 that enable the treadmill 10 to translate along the longitudinal axis L1.
  • a spherical joint 57 connected to which is a connecting rod 58, which is connected to another spherical joint 59 set on a transducer 60 fixed to the ground.
  • the connecting rod 58 is hence constituted by a bar that connects the two spherical joints 57 and 59 set at its ends.
  • the transducer 60 detects the horizontal force components (along the axis L1) transmitted by the user to the treadmill 10 (hence not to the belt 53 or to the surface 54 for supporting the belt).
  • the connecting rod 58 is used for transmitting only the axial components acting thereon, hence, in this case, only the horizontal ones, given that the connecting rod 58 is oriented (with its longitudinal axis) parallel to the axis L1.
  • the video camera 13 by means of the system 18, recognises the body of the user 14 and estimates the positions of the body joints and in particular determines the centre of mass of a user 14, and hence determines the position of the user on the treadmill.
  • the speed of the user is computed by means of the two measurement systems present in the treadmill, namely, a speed obtained from the transducer, denoted by V1, and a speed obtained from the 3D video camera, denoted by V2.
  • the processing unit 19 thanks to the data coming from the encoder 12a, makes available the value of current speed of the belt and hence its acceleration (denoted by a belt ) and the weight of the subject (denoted by P). Thanks to these data it is possible to arrive at the acceleration a COM of the centre of mass COM of the user.
  • a COM F AP + P ⁇ a belt / P
  • the process of calculation of the speed V2, via the 3D video camera, is carried out by evaluating the variation in time of the difference x dif between the position of the centre of mass COM of the subject, denoted by x COM , and a reference position on the treadmill, denoted by x ref .
  • Calculation of x COM is carried out thanks to the 3D video camera, which is able to recognise the human body and to estimate the positions of the body joints.
  • n is to the n-th body segment of the fourteen body segments considered, i.e., the one taken into account; jprox n is the position of the proximal joint of the n-th body segment; jdist n is instead the position of the corresponding distal joint; ATcom n is the anthropometric table that expresses the centre of mass of the n-th body segment; and finally ATmass n is the anthropometric table that expresses the mass of the same.
  • the fourteen body segments detected by the video camera are: right and left hands, right and left forearms, right and left arms, right and left feet, right and left legs, right and left thighs, torso and head.
  • the formula computes the centre of mass of each limb, assumed as a rigid body, and multiplies it by the percentage of body weight of that specific limb (given by the anthropometric table ATmass). To understand where the centre of mass of the limb is located, the anthropometric tables are used, which yield a value of between 0 and 1, where 0 corresponds to the COM being located exactly at the proximal point and 1 corresponds to the COM being located exactly at the distal point.
  • the measurement that we want to control is y, which represents the measurable value of position of the COM of the subject, whereas the variation of the position of the COM is represented by x' COM and is given by the difference between the speed of the belt and the speed of the subject (for example, if v COM and V2 are identical, the variation of the COM is 0, and the subject remains in the same position).
  • V 2 k * X COM ⁇ X REF ′
  • k the gain of the system
  • k will be inversely proportional to the speed; i.e., for higher speeds, k will be lower, whereas, for lower speeds, k will be higher.
  • the gain assumes, for example, the value of 1.8 for low speeds and a value that decreases down to 1.6 for high speeds. Decrease in the gain during acceleration at high speed has the purpose of increasing the stability of the subject, rendering the system less sensitive and hence enabling a stabler running movement.
  • the value of the gain of the controller varies also in this case in a way that depends upon the speed at which the user is moving. Specifically, at low speeds, the variation must occur with smooth accelerations, with a k that, for example, varies between 1.8 and 2 for speeds of up to 4 km/h.
  • V1 and V2 are then filtered by a sensor-fusion algorithm with the aim of computing the best value of speed to be applied to the belt.
  • the sensor-fusion algorithm is implemented through a complementary filter 70 where the noisier measurement V1 and the less noisy measurement V2 are filtered according to a dynamic parameter ⁇ .
  • the parameter of the filter is dynamic makes it possible to prioritise the value V1 at low speeds and the value V2 at high speeds, thus obtaining a suitable value of speed V3 during all phases of the movement.
  • the parameter ⁇ is the dynamic weight to be assigned to V2 and V1 and assumes, for example, a maximum value of 0.5 for a speed of 0.2 km/h and a minimum value of 0.02 for speeds higher than 1 km/h; i.e., it is inversely proportional to the speed.
  • This solution does not, however, enable estimation of the error of V1 computed starting from the detection made by the sensor, on account of the operation of integration.
  • a Kalman filter is used as an alternative to the complementary filter 70.
  • the Kalman filter is an algorithm that uses a series of measurements observed in time, containing noise, and produces the estimate of a quantity in a more accurate way as compared to algorithms based upon the use of a single starting measurement.
  • All the sensors, the video camera and the motor are connected to the data-processing unit 19 for their management, and also all the processing operations are carried out by the data-processing unit 19.
  • the acceleration to which the COM is subjected is detected in the form of force by the sensor.
  • the estimate is made by excluding the component of force due to acceleration of the belt, because this acceleration disturbs the measurement of the actual acceleration of the COM and hence of the real intention of the subject to accelerate.
  • the estimated value of speed is then sent to the motor taking into account the fact that an excessively sharp acceleration of the belt might lead to a gait of the subject that is far from natural, but if it were too low it might not conform with the intention of the user.
  • the 3D video camera has identified the displacement of the subject in space and can compute his real speed.
  • the value of real speed is sent to the processing unit, which closes the control loop of the sensor-fusion algorithm by adjusting the value of speed set by the force sensor.
  • the speed V1 starts to have an appreciable value before the speed V2, proving how the information coming from the load cells has a predictive value. This behaviour is due both to a greater sensitivity of the sensor and because the position of the COM starts to move before the body makes a perceptible displacement.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Rehabilitation Tools (AREA)

Claims (8)

  1. Procédé intégré de commande dynamique de la vitesse d'un tapis roulant (10)
    ayant une courroie (11) qui tourne autour de deux rouleaux (12);
    un moteur (20) qui met en action ladite courroie (11 ); et comprend les étapes suivantes:
    déterminer la position du centre de masse (xCOM) d'un utilisateur (14) qui se déplace sur ladite courroie (11) au moyen d'une caméra vidéo 3D (13) composée d'une caméra RGB et d'un capteur de profondeur de rayon infrarouge et qui peut filmer entièrement ledit utilisateur (14);
    déterminer la différence (xdif) entre ladite position du centre de masse (xCOM) mesurée et une position de référence préétablie (xref);
    déterminer la force horizontale antéropostérieure (FAP) d'un utilisateur (14) qui se déplace sur ladite courroie (11);
    calculer une combinaison pondérée entre ladite différence (xdif) et ladite force horizontale antéropostérieure (FAP), à l'aide d'une unité de traitement de données (19), pour obtenir une troisième vitesse (V3);
    appliquer ladite troisième vitesse (V3) à ladite courroie (11) au moyen dudit moteur (20); dans lequel
    l'étape de calcul d'une combinaison pondérée comprend l'étape consistant à appliquer ladite différence (xdif) et ladite force horizontale antéropostérieure (FAP) à un filtre de Kalman,
    représenté par la formule générique { x ˙ t = Ax t + Bu t + rx t z t = Cx t + ry t
    Figure imgb0014
    où:
    x(t) est l'état du système;
    A, B et C sont, respectivement, la matrice de transition d'état, la matrice de commande d'entrée et la matrice de mesure et d'observation;
    u(t) est le vecteur d'entrée de commande et z(t) est le vecteur d'entrée de mesure; et
    rx(t) et ry(t) sont, respectivement, le bruit de mesure et le bruit de traitement.
  2. Procédé selon la revendication 1, caractérisé en ce que l'étape de calcul d'une combinaison pondérée comprend les étapes suivantes :
    calculer une première vitesse (V1) dudit utilisateur (14) sur la base de ladite force horizontale antéropostérieure (FAP);
    calculer une deuxième vitesse (V2) dudit utilisateur (14) sur la base de ladite différence (xCOM);
    traiter ladite première vitesse (V1) et ladite deuxième vitesse (V2) au moyen d'un filtre complémentaire (70) pour obtenir ladite troisième vitesse (V3).
  3. Procédé selon la revendication 2, caractérisé en ce que ledit filtre complémentaire (70) est représenté par la formule: V 3 t = α V 3 t 1 + 1 α V 2 t + α V 1 t
    Figure imgb0015
    où:
    α est le poids à affecter;
    V1 est ladite première vitesse;
    V2 est ladite deuxième vitesse.
  4. Système intégré de commande dynamique de la vitesse d'un tapis roulant (10) comprenant:
    un tapis roulant (10) ayant une courroie (11) qui tourne autour de deux rouleaux (12);
    un moteur (20) qui met en action ladite courroie (11) ;
    au moins un capteur (16) pouvant mesurer la force horizontale antéropostérieure (FAP) d'un utilisateur (14) qui se déplace sur ladite courroie (11) ;
    une caméra vidéo 3D (13), qui peut filmer entièrement ledit utilisateur (14) et déterminer la position du centre de masse (xCOM) dudit utilisateur (14) qui se déplace sur ladite courroie (11);
    une unité de traitement de données (19) pour calculer la différence (xdif) entre ladite position du centre de masse (xCOM) mesurée et une position de référence préétablie (xref), et pour calculer une combinaison pondérée entre ladite différence (xdif) et ladite force horizontale antéropostérieure (FAP), afin d'obtenir une troisième vitesse (V3) à appliquer audit moteur (20);
    ladite unité de traitement de données (19) applique un filtre de Kalman à ladite différence (xdif) et à ladite force horizontale antéropostérieure (FAP) ; dans lequel ledit filtre de Kalman est représenté par la formule générique { x ˙ t = Ax t + Bu t + rx t z t = Cx t + ry t
    Figure imgb0016
    où:
    x(t) est l'état du système;
    A, B et C sont, respectivement, la matrice de transition d'état, la matrice de commande d'entrée et la matrice de mesure et d'observation;
    u(t) est le vecteur d'entrée de commande et z(t) est le vecteur d'entrée de mesure; et
    rx(t) et ry(t) sont, respectivement, le bruit de mesure et le bruit de traitement.
  5. Système selon la revendication 4, caractérisé en ce que ladite unité de traitement de données (19) calcule une première vitesse (V1) dudit utilisateur (14) sur la base de ladite force horizontale antéropostérieure (FAP); calcule une deuxième vitesse (V2) dudit utilisateur (14) sur la base de ladite différence (xdif); et applique un filtre complémentaire (70) à ladite première vitesse (V1) et à ladite deuxième vitesse (V2) pour obtenir ladite troisième vitesse (V3).
  6. Système selon la revendication 4, caractérisé en ce que ledit au moins un capteur (16) comprend des transducteurs de force triaxiaux (35), placés au niveau des extrémités de la surface (34) pour supporter ladite courroie (11).
  7. Système selon la revendication 4, caractérisé en ce que ledit au moins un capteur (16) comprend un couplemètre (43) relié mécaniquement à un rouleau (41) de ladite courroie (11).
  8. Système selon la revendication 4, caractérisé en ce que ledit tapis roulant (10) comprend un châssis (50), deux rouleaux (51, 52), placés au niveau des extrémités dudit châssis (50), et une courroie de glissement (53) bouclée autour des deux rouleaux (51, 52); ledit châssis (50) est supporté par deux patins (55, 56); entre ledit châssis (50) et un patin (55) se trouve un joint sphérique (57) auquel est relié une bielle (58) qui est reliée à un autre joint sphérique (59) placé sur un transducteur (60) fixé au sol, afin de détecter les composantes de la force horizontale transmises par l'utilisateur (14) au tapis roulant (10).
EP19778664.3A 2018-09-13 2019-09-05 Procédé et système intégrés de commande dynamique de la vitesse d'un tapis roulant Active EP3849675B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT201800008558 2018-09-13
PCT/IB2019/057479 WO2020053711A1 (fr) 2018-09-13 2019-09-05 Procédé et système intégrés de commande dynamique de la vitesse d'un tapis roulant

Publications (3)

Publication Number Publication Date
EP3849675A1 EP3849675A1 (fr) 2021-07-21
EP3849675C0 EP3849675C0 (fr) 2024-05-29
EP3849675B1 true EP3849675B1 (fr) 2024-05-29

Family

ID=64427085

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19778664.3A Active EP3849675B1 (fr) 2018-09-13 2019-09-05 Procédé et système intégrés de commande dynamique de la vitesse d'un tapis roulant

Country Status (2)

Country Link
EP (1) EP3849675B1 (fr)
WO (1) WO2020053711A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113058208B (zh) * 2021-04-08 2023-05-26 上海厘成智能科技有限公司 一种全向虚拟现实跑步机控制方法
CN113641103B (zh) * 2021-08-13 2023-04-25 广东工业大学 自适应机器人的跑步机控制方法和系统
TWI815590B (zh) * 2022-08-04 2023-09-11 和碩聯合科技股份有限公司 跑步機與其速度控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9526451B1 (en) * 2012-01-11 2016-12-27 Bertec Corporation Force measurement system
CN108114405B (zh) * 2017-12-20 2020-03-17 中国科学院合肥物质科学研究院 基于3d深度摄像头和柔性力敏传感器的跑步机自适应系统
CN108325201B (zh) * 2017-12-20 2020-02-11 上海电气集团股份有限公司 一种基于多源信息融合的步频检测方法及设备

Also Published As

Publication number Publication date
EP3849675C0 (fr) 2024-05-29
EP3849675A1 (fr) 2021-07-21
WO2020053711A1 (fr) 2020-03-19

Similar Documents

Publication Publication Date Title
EP3849675B1 (fr) Procédé et système intégrés de commande dynamique de la vitesse d'un tapis roulant
US5260870A (en) Apparatus for measuring instantaneous power by leg-stretching power
EP2608716B1 (fr) Procédé et système de détermination de la vitesse de marche ou de course d'une personne
US7402142B2 (en) Method and processor for obtaining moments and torques in a biped walking system
EP2910901B1 (fr) Procédé pour déterminer une vitesse instantanée d'un utilisateur et pour améliorer l'estimation du débit cardiaque
Noma et al. Design for locomotion interface in a large scale virtual environment ATLAS: ATR locomotion interface for active self motion
US6971267B2 (en) Method and processor for obtaining moments and torques in a biped walking system
JP6516283B2 (ja) 運動解析装置
CA2812127A1 (fr) Utilisation d'une interface homme-machine pour un exosquelette humain
KR20180047955A (ko) 밸런스 제어 방법 및 장치
KR101716015B1 (ko) 운동 기구 및 그 제어 방법
KR20130001663A (ko) 보행 보조 장치 및 그 작동 제어 방법
KR101361362B1 (ko) 사용자의 보행주기에 따라 능동적으로 이동 속도를 결정하는 보행보조로봇
US20170156895A1 (en) Movement assistance system and method thereof
US11097158B2 (en) Gait training machine and method of using same
KR102162621B1 (ko) 보행훈련기 및 그의 사용방법
KR20160079627A (ko) 보조력 설정 방법 및 장치
CN111437575B (zh) 一种智能跑步机的控制方法和装置
KR20230122521A (ko) 신체 능력 측정 모드를 제공하는 전자 장치 및 웨어러블 장치, 이들의 동작 방법
CN207679958U (zh) 一种可自动调节的脚踏板
NL2029083B1 (en) A method for automatically measuring a propulsive power applied to a pushrim of a wheelchair by a user of the wheelchair.
Ohki et al. Treadmill motor current value based walk phase estimation
JPH08141027A (ja) 歩行訓練装置及びその制御方法
EP4257105A1 (fr) Procédé et dispositif de réglage de valeur de paramètre de commande de dispositif à porter sur soi
EP4431016A1 (fr) Dispositif électronique et dispositif portable pour fournir un mode de mesure de capacité physique, et procédés de fonctionnement associés

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210317

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231211

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TECNOBODY S.P.A.

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019052963

Country of ref document: DE

U01 Request for unitary effect filed

Effective date: 20240614

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240711

U20 Renewal fee paid [unitary effect]

Year of fee payment: 6

Effective date: 20240716