EP3841323B1 - Verfahren zur herstellung eines einen leichtbau-drucktank bildenden leichtbau-druckbehälters und leichtbau-druckbehälter - Google Patents

Verfahren zur herstellung eines einen leichtbau-drucktank bildenden leichtbau-druckbehälters und leichtbau-druckbehälter Download PDF

Info

Publication number
EP3841323B1
EP3841323B1 EP19762691.4A EP19762691A EP3841323B1 EP 3841323 B1 EP3841323 B1 EP 3841323B1 EP 19762691 A EP19762691 A EP 19762691A EP 3841323 B1 EP3841323 B1 EP 3841323B1
Authority
EP
European Patent Office
Prior art keywords
formwork
section
mould
domed
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19762691.4A
Other languages
English (en)
French (fr)
Other versions
EP3841323A1 (de
EP3841323C0 (de
Inventor
Sascha Larch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102018120293.8A external-priority patent/DE102018120293A1/de
Priority claimed from DE102018120291.1A external-priority patent/DE102018120291B3/de
Application filed by Individual filed Critical Individual
Publication of EP3841323A1 publication Critical patent/EP3841323A1/de
Application granted granted Critical
Publication of EP3841323B1 publication Critical patent/EP3841323B1/de
Publication of EP3841323C0 publication Critical patent/EP3841323C0/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • C23C4/185Separation of the coating from the substrate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/008Details of vessels or of the filling or discharging of vessels for use under microgravity conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0123Shape cylindrical with variable thickness or diameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0128Shape spherical or elliptical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0138Shape tubular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0142Shape conical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/011Reinforcing means
    • F17C2203/012Reinforcing means on or in the wall, e.g. ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0617Single wall with one layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2181Metal working processes, e.g. deep drawing, stamping or cutting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/221Welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/232Manufacturing of particular parts or at special locations of walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/234Manufacturing of particular parts or at special locations of closing end pieces, e.g. caps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/011Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/012Reducing weight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/013Reducing manufacturing time or effort
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0186Applications for fluid transport or storage in the air or in space
    • F17C2270/0194Applications for fluid transport or storage in the air or in space for use under microgravity conditions, e.g. space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0186Applications for fluid transport or storage in the air or in space
    • F17C2270/0197Rockets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method for producing a lightweight pressure vessel forming a lightweight pressure tank according to claims 1 and 3.
  • the invention relates to a method for producing a satellite, spacecraft or rocket tank and a satellite, spacecraft tank produced using this method. or rocket tank.
  • Pressure vessels that have to withstand a high internal pressure versus a lower external pressure are well known.
  • Such pressure vessels are usually made from steel sheets, which are welded to form a cylindrical container section, with dome-like container bases being attached to the open sides of this cylinder.
  • These dome-like container bases are usually made from triangular or trapezoidal sheets that are bent and welded together to form a spatial shape.
  • the container bases are connected to the cylinder section of the pressure vessel either by welding or by means of flanges.
  • the quality of the weld seam is critical in pressure vessels having such weld seams, since it must be avoided in any case that the pressurized pressure vessel cracks and bursts at the weld seams that may form weak points. Therefore These welds must be made with the greatest care and the pressure vessel must be subjected to regular pressure tests.
  • Lightweight pressure vessels such as those used as fuel tanks in space technology, pose a particular challenge. In these tanks, the weight must be reduced to a minimum, so that it has become common practice to design the container with a very thin container wall and, if necessary, a support structure connected to this thin container wall on the inside or outside of the container. For this purpose, so much material is removed from a thick wall material by machining, for example by milling, on the inside of the container that a thin wall skin is formed with stiffening elements adjoining it on the inside (or outside), such as longitudinal ribs and frames . It is obvious that such a manufacturing process is time-consuming and costly.
  • the triangular or trapezoidal segments for producing the respective container base are also milled from solid in this way.
  • the flat components thus obtained are then formed, for example by means of shot peening, into spatially curved triangles or trapezoids, which are then welded together to form the dome-like container base.
  • a thicker wall thickness must be retained during machining to enable welding and to compensate for the low material strength in the weld seam. This locally thicker wall thickness in turn increases the mass and thus the weight of the pressure vessel.
  • the welding of the individual components is usually carried out by tungsten inert gas welding or by friction stir welding, which requires special welding systems that must be adapted to the geometry and diameter of the container bases to be welded and which have to be manufactured as special machines at high costs.
  • the disadvantage of the conventional procedure for producing lightweight pressure vessels, in particular rocket tanks, is that the production of the individual components (including the cylindrical tank body) by milling from the solid and welding the parts together is very time-consuming and costly.
  • the individual bodies in the area of the weld seam must have a thicker wall thickness than would be necessary without a weld seam.
  • This manufacturing process requires very large machines that have to be manufactured individually for a single type of pressure vessel. Therefore, the costs for producing such pressure vessels (e.g. rocket tanks) are extremely high and due to the long lead time for the initial design and manufacture of the special welding systems, a very long lead time is required before a tank design developed on the drawing board can be implemented into a first prototype can.
  • FIG. 1 A rocket tank manufactured in such a conventional manner is in Fig. 1 shown. It can be seen that the cylindrical container section 110 is composed of a plurality of curved panels 110', 110", 110"', 110"" by welding. The cylindrical container section 110 is welded to the peripheral edge of a curved container base 112, as can be seen from the weld seam 113. The structure of the container base 112, which is provided with a manhole 114, is in Fig. 2 shown in side view. Individual spatially curved trapezoidal floor segments 116, 116', 116", 116" are welded to a flange ring 115 (Y-ring) with their wide base, as is symbolically represented by the annular weld seam 117.
  • Y-ring flange ring
  • the individual curved floor segments 116, 116' are also welded. , 116 ", 116 ′′′ are welded to their side touch edges, as is symbolically depicted by the weld seams 118, 118 ', 118". At their respective inner free end, the ground segments 116, 116', 116 ", 116 ′′′ with one annular manhole flange 119 welded, as symbolically represented by the annular weld seam 119 '.
  • a lid 120 is provided to close the manhole 114.
  • Thermal spray processes such as cold gas spraying, are commonly used to coat surfaces.
  • a cold gas spraying process for coating surfaces in which the gas is first compressed and heated and then accelerated by relaxing in a nozzle, with particles introduced into the gas jet being shot onto a previously heated substrate, is from the DE 10 2006 044 612 A1 known.
  • the DE 10 2015 017 026 A1 describes a method for producing pressure vessels without molds, in which the pressure vessel is manufactured entirely or partially from metal using a sintering or powder printing process.
  • the metal powder contained in a metal powder supply is melted layer by layer by electron beam melting or by selective laser melting.
  • the pressure vessel is manufactured from liquid plastic material using multi-jet modeling, with the plastic material emerging from the nozzle in a forming manner immediately after exiting by means of a Energy source is hardened. It is explicitly pointed out that with these processes there is no need for a molding device at all.
  • the EP 3 333 474 A1 shows and describes an additively manufactured reinforcing structure using the example of a thin-walled container which has an upper dome-like lid, a lower dome-like lid and a middle cylindrical section, the lids usually being welded to the cylindrical section.
  • Both the dome-like lids and the cylindrical section consist of a thin jacket skin, on the inside of which reinforcing ribs are applied using additive manufacturing.
  • the dome-like lids can be manufactured in one piece using 3D printing.
  • the US 5,085,343 shows a tank for a space vehicle with at least one dome-like lid, the wall of which is constructed like a sandwich and consists of an inner wall skin, an outer wall skin and a core made of a honeycomb profile arranged between them.
  • the outer wall skin is welded to a ring with a Y-shaped cross section.
  • the DE 10 2013 216 439 A1 shows the production of a container outer skin using a thermal spraying process.
  • the spray material is applied directly to a cut surface running transversely through a wall of a molded body formed by injection molding.
  • the body produced by injection molding is connected to a predetermined support body via a connecting surface which extends radially to the molded body later formed by injection molding.
  • the connecting surface between the previously provided support body and the sprayed-on molded body is therefore significantly smaller than the connecting surface designed according to the invention on the starting body in cross section as an inclined surface.
  • a significantly stronger connection is achieved between the first body provided and the second body molded onto it.
  • the object of the present invention is therefore to provide a method with which a lightweight pressure vessel forming a lightweight pressure tank can be produced more quickly and cost-effectively.
  • the metal material can be applied by the spray jet using the at least one spray nozzle onto the mold surface of the formwork mold in all variants of the method according to the invention in a single operation or preferably in several consecutive operations, preferably in layers.
  • the thickness of the metal material layer sprayed on depends on the speed of movement of the spray device.
  • production takes place using a cold gas spraying process.
  • the container base in question consisting of the dome section and a ring body provided on its free peripheral edge, which has a cylindrical ring section, which later serves to fasten the lightweight pressure vessel, can be produced integrally, i.e. in one piece, seamlessly using the thermal spraying process.
  • the ring body can also be manufactured in advance in a conventional manner (for example by forming or machining, by forging, turning or milling) to form the wall section with a wall thickness that decreases in cross-section towards the free peripheral edge at the corresponding peripheral edge area and then the dome section can be made using the thermal spraying process be molded onto it.
  • the invention also includes initially only producing segments of the dome section using the thermal spraying process, which are then joined together to form the dome section, for example in a conventional manner (for example by welding).
  • a conventionally prefabricated ring body can then be welded to the dome section formed in this way, or the dome section formed in this way is provided on its outer circumference with a peripheral area, the wall section of which has a wall thickness that decreases in cross-section towards the free peripheral edge, and the ring body becomes molded onto it using the thermal spray process.
  • these pressure container components which were previously manufactured in complicated manufacturing steps from a large number of elements, can each be manufactured in one piece as an integral component as required.
  • component-specific manufacturing machines to be manufactured in special machine construction, such as special welding systems, so that the manufacturing machines required for the method of the invention are independent of the geometry and diameter of the pressure vessel to be manufactured.
  • the costs and the lead time for the production of these special machines that are conventionally required for the construction of special machines are no longer incurred with the method according to the invention. Both the manufacturing costs and the time required for manufacturing are therefore significantly reduced in the method of the invention compared to the prior art.
  • the ring body can be produced in advance by means of the thermal spraying process or in a conventional manner by forming (for example casting, forging or rolling) or by machining (for example by turning or milling), in which case, usually in a mechanical processing step, In the corresponding peripheral area, the wall section is formed with a wall thickness that decreases in cross-section towards the free peripheral edge, onto which the dome section is then formed using the thermal spraying process.
  • the ring body is also produced by means of the thermal spraying process and the result is ultimately a monolithically designed container base that integrates the ring body with the dome section.
  • step a3) in step a2) you can also use an annular mold core (similar to the mold core 6", which is described further below in relation to Fig. 20 is described) can be provided when applying the metal material, which fills the space between the legs of the angle ⁇ , whereby in step a3) no or less mechanical rework, namely only minor surface processing, is required.
  • the dome section is first manufactured using thermal spraying and then the ring body is also molded onto the dome section using thermal spraying.
  • the wall section with an oblique cross-section can be machined mechanically before the annular body is formed, but it can also remain unprocessed and the annular body can be formed onto the unprocessed surface of the wall section with an oblique cross-section.
  • the ring body can be designed as a ring body with a Y-shaped cross section, but it can also be designed as a cylindrical ring body (in the form of a cylinder jacket), which depends on where on the edge of the dome section the ring body is formed.
  • the invention therefore also includes first producing the curved dome sections and forming the annular blank for producing the (preferably Y-shaped) ring body on an oblique peripheral wall section of the dome section and then machining it mechanically.
  • the dome sections can alternatively be formed by applying the metal material to a convex or a concave curved formwork shape.
  • the curved container bottoms for example as tank bottoms of a spacecraft tank, can be manufactured quickly and precisely sequentially, thereby ensuring high utilization of the Machinery required for production is made possible.
  • the (preferably layered) application of the metal material by means of the spray nozzle(s) also onto the oblique wall section of the brim of the ring body or the correspondingly designed peripheral edge region of the dome section creates an integral connection of the ring body with the curved dome section, so that a uniform, ideally, If both parts are created using thermal spraying, a monolithic workpiece is formed as a container base without a joint and therefore without a weak point.
  • a prefabricated manhole flange which has an annular wall section with an oblique cross-section in the area of its outer circumference, whereby the wall of the manhole flange tapers towards the outer peripheral edge of the manhole flange, is inserted into a recess in this way curved formwork form is inserted so that the sloping wall section faces away from the mold surface, and when, when forming the curved dome section, the metal material is also applied to the sloping wall section of the manhole flange in order to form it integrally into the dome section.
  • the formwork shape for the curved dome section has a central recess for receiving a manhole flange and the manhole flange has an annular wall section with an oblique cross-section in the area of its outer circumference, whereby the wall of the manhole flange tapers towards the outer peripheral edge of the manhole flange, so that the oblique wall section is designed as a chamfer.
  • the manhole flange is then inserted into the recess of the formwork mold for the curved dome section in such a way that the oblique wall section points away from the mold surface.
  • the manhole flange can be produced by means of thermal spraying, but it can also be produced in a conventional manner, for example by forming (for example casting, forging or rolling) or by machining (for example by turning or milling).
  • the metal material is then also applied to the sloping wall section of the manhole flange in order to form it integrally into the dome section.
  • the (preferably layered) application of the metal material using the spray nozzle(s) onto the sloping wall section of the manhole flange results in an integral integration of the manhole flange into the material structure of the dome section, so that here too there is a uniform workpiece without a parting line and therefore without a weak point is formed.
  • the manhole flange is also manufactured using thermal spraying, a monolithic connection of the manhole flange to the dome section is achieved.
  • the characteristic properties of the spray jet of the at least one spray nozzle are changed when it travels further from the oblique wall section of the brim or the dome section or the manhole flange and hits the mold surface on which no material is yet used has been applied by the thermal spray process, and according to which the characteristic properties of the spray jet are changed back again when it moves further from the mold surface, on which no material has yet been applied by means of the thermal spray process, and onto the sloping wall section of the manhole flange or the Brim or the cathedral section hits.
  • This change in the characteristic properties of the spray jet ensures that in the area of the respective sloping wall section there is a firm and intimate material connection to the material of the sloping wall section formed subsurface, while where the spray jet hits the mold surface, from which the workpiece, i.e. the container base, has to be removed later, there is no firm and intimate material connection to the subsurface formed here by the material of the mold surface or a release agent located thereon is carried out in order to make it easier to remove the finished container base from the formwork mold.
  • surface processing and/or thermal treatment of the container base, in particular the central curved dome section is preferably carried out.
  • a surface treatment can, for example, serve to densify the surface or harden the surface (e.g. by shot peening).
  • structural changes in the metal material can be made in the workpiece produced using additive manufacturing according to the invention, which, for example, change the toughness of the material and make the workpiece more elastic.
  • the cylindrical container section can in principle be produced by preferably applying the metal material in layers to the inner circumferential surface or the outer circumferential surface of a cylindrical formwork shape, the stiffening structure being built up on the inside or outside of the initially created cylinder skin.
  • a stiffening structure is created by ribs formed integrally with the cylinder skin.
  • the stiffening structure is preferably designed in the form of an orthogrid, i.e. in the form of a grid with longitudinal ribs and frames running at right angles to one another, but grid structures with other angles, for example diamond-shaped stiffening structures, are also covered by the invention.
  • the stiffening structure designed as an orthogrid has longitudinal ribs that run parallel to the cylinder axis and are spaced apart in the circumferential direction, as well as frames that run in the circumferential direction and are spaced apart in the axial direction.
  • stiffening structure is designed in the form of an isogrid.
  • step d" a surface processing of the cylindrical container section is carried out.
  • step d" a surface processing of the cylindrical container section is carried out.
  • the at least one cylindrical container section and the two container bottoms are produced seamlessly separately from one another using the thermal spraying process and then joined together.
  • the cylindrical container section is welded to the respective container base.
  • Several cylindrical container sections can also be welded together to form a cylindrical tube, which is then welded to the container bases.
  • a flange connection is possible.
  • the at least one cylindrical container section and at least one of the two container bottoms are manufactured seamlessly integrally using the thermal spraying process.
  • a container base is first produced as described, the annular connecting edge of the container base being designed as an oblique wall section in the same way as has already been described above in connection with the brim of the y-shaped annular body, and wherein the cylindrical container section is formed by additive manufacturing starting from this oblique edge section, as has already been described above for the separately manufactured cylindrical container section.
  • the cylindrical container section can also be seamlessly formed between two existing container bases using additive manufacturing according to the invention if the spray nozzle and other processing tools are introduced through the manhole into the interior of the cylindrical formwork mold.
  • the two curved container bases are produced seamlessly by additive manufacturing using the thermal spraying process as an integral, preferably spherical or spherical, spatial body by applying the metal material through a spray jet using at least one spray nozzle onto the outer surface of an initially provided fourth formwork mold.
  • the formwork form which in this case is designed as a so-called “lost formwork”, is then removed from the interior of the spatial body through at least one opening provided in the resulting spatial body, for example melted out or broken out.
  • the method according to the invention can be used to produce, for example, spherical or spherical lightweight pressure vessels, such as those used as satellite tanks.
  • a lightweight pressure vessel can be used for many other purposes where the weight of the pressure tank must be kept low, for example as a gas or hydrogen tank in a motor vehicle or a rail vehicle, an aircraft or a watercraft. Stationary use of the lightweight pressure vessel is also included in the invention. Preferred exemplary embodiments of the invention with additional design details and further advantages are described and explained in more detail below with reference to the accompanying drawings.
  • Fig. 1 and 2 show, as already stated at the beginning, a rocket tank manufactured in a conventional manner.
  • the production of the in Fig. 16 The lightweight construction pressure vessel 1 shown, for example a rocket tank, with a cylindrical container section 10, an upper curved container base 12 and a lower curved container base 14 made of a metal material by additive manufacturing using a thermal spray process, in particular by means of a cold gas spray process, is described below with reference to Fig. 3 to 15 described.
  • a first, cylindrical formwork form 2 is shown, which lies on a work platform P.
  • a separating layer 22 has already been applied to the surface 21 on the inner circumference, i.e. the inner circumferential surface, of the first, cylindrical formwork form 2, which consists, for example, of a release agent which enables the formwork form 2 to be easily detached from a created workpiece later.
  • the first, cylindrical formwork form 2 consists of several cylinder segments, of which in Fig. 3 the segments 20, 20 'and 20" are shown. These segments later make it easier to remove the formwork form 2 from a workpiece that has been produced.
  • a thermal spray device 3 is positioned inside in front of the inner peripheral surface of the first cylindrical formwork form 2 and works according to step b).
  • This spray device 3 can be attached to a robot arm, for example.
  • a spray jet 32 emerges from a spray nozzle 30 of the thermal spray device 3 and is directed onto the surface 21 on the inner circumference of the first, cylindrical formwork mold 2.
  • the spray jet 32 consists of a high-speed gas jet to which particles of a metal material are supplied in the spray device 3.
  • the gas jet with the gas contained in it Metal particles are accelerated in a known manner by means of a Laval nozzle to preferably supersonic speed, so that the metal particles hit the surface 21 on the inner circumference or the release agent layer 22 provided there with a very high kinetic energy.
  • a substantially homogeneous material application of the metal material is preferably applied in layers the surface 21 on the inner circumference of the first, cylindrical formwork form 2 is obtained, as in Fig. 4 is shown, whereby an annular blank 4 is obtained.
  • this annular blank 4 When viewed vertically in section, this annular blank 4 has a pentagon-shaped shape, as shown in Fig. 4A is shown enlarged.
  • a section of the blank 4 adjacent to the surface 21 on the inner circumference of the first, cylindrical formwork form 2 is of the same thickness over the axial extent of the blank 4 on both axial end faces 41, 42 of the blank 4. From these two end faces 41, 42 of the same wall thickness, the inner diameter d of the annular blank 4 decreases to a narrowest inner diameter d 1 , which is located asymmetrically with respect to the axial extent of the blank 4 (approximately 20:80% of the axial extent of the blank 4).
  • Fig. 5 is shown how in method steps c) and d) the annular blank 4 is machined mechanically, for example with a milling machine 5 having a rotating milling tool 50.
  • a milling machine 5 having a rotating milling tool 50.
  • the blank 4 fixed in the first, cylindrical formwork form 2 in a manner known to those skilled in the art before the start of mechanical processing.
  • annular body 44 is first produced in step c), the wall of which is Y-shaped in cross section, like it in Fig. 5A is shown enlarged.
  • This annular body 44 which is Y-shaped in cross section, has a cylindrical outer wall 45 and a brim 46 which runs radially obliquely inwards from this cylindrical outer wall 45 at an acute angle ⁇ .
  • This brim 46 is a wall section that extends radially inwards at an acute angle ⁇ and merges in an arc into the cylindrical outer wall 45 of the ring body 44.
  • the radially inner peripheral edge 46' of the brim 46 is then machined in step d) by means of, for example, the milling tool 50 of the milling cutter 5 in such a way that the wall thickness of the brim 46 tapers towards the radially inner peripheral edge 46'.
  • a wall section 47 with an oblique cross-section is formed in the form of a chamfer on the surface of the brim 46 facing away from the acute angle ⁇ .
  • a second formwork form 6 is provided on the processing platform P (or on another corresponding processing platform P ').
  • This second formwork mold 6 has a concavely curved mold surface 60 with an upper annular edge 64 on its upper side facing away from the processing platform P '.
  • the second formwork form 6 is also provided with a central recess 62 for receiving a manhole flange 48.
  • the y-shaped ring body 44 After being removed from the first formwork mold 2, the y-shaped ring body 44 is rotated by 180 ° about a transverse axis and with the gap space 43 formed by the acute angle ⁇ between the cylindrical outer wall 45 and the brim 46 onto the upper edge 64 of the second formwork mold 6 placed in such a way that the brim 46 of the y-shaped ring body 44 is concave on the curved mold surface 60 of the second formwork mold 6 rests, as in Fig. 8 is shown.
  • the brim 46 covers the upper edge 64 of the curved mold surface 60 and the oblique wall section 47 of the brim 46 points away from the mold surface 60.
  • step h in which the metal material is advantageously applied in layers to the mold surface 60 by a spray jet 32 'of a spray nozzle 30' of a spray device 3'.
  • the spraying device 3' can be the same spraying device as the spraying device used in step b), but it can also be a different spraying device if the manufacturing steps are carried out at different workstations, for example on a different processing platform 6'.
  • the metal material is also preferably applied in layers from the spray nozzle 30 'to the mold surface 60 and the oblique wall section 47 of the annular body 44 according to the same spraying process as in step b), so that a curved dome section 49 is formed starting from the brim 46 of the annular body 44 on the mold surface 60, which is formed integrally with the y-shaped ring body 44.
  • the processing platform P' with the second formwork mold 6 is rotated during the injection molding process about an axis of rotation D', which is coaxial with the axis of symmetry Z' of the second formwork mold 6 and its mold surface 60.
  • Fig. 8 is also shown, as is the manhole flange 48, which also has an annular wall section 48 'with an oblique cross-section in the area of its outer circumference, whereby the wall 48" of the manhole flange 48 tapers towards the outer peripheral edge 48" of the manhole flange 48, also from the spray nozzle 30 'is acted upon with the metal material, so that the manhole flange 48 is also integrally integrated into the dome section 49.
  • the unit created in this way from the dome section 49, the ring body 44 and the manhole flange 48 forms the upper container base 12 of the lightweight pressure vessel 1.
  • the second formwork shape 6 is designed without the central recess 62 and the dome section 49 'extends continuously in this area and forms a uniform spherical or flattened-spherical surface, as in Fig. 16 can be seen based on the lower container base 14.
  • This unit consisting of annular body and dome section then forms the lower container base 14 of the in Fig. 16 illustrated lightweight pressure vessel 1.
  • Fig. 9 shows detail IX Fig. 8 , in which it can be seen that the brim 46 merges continuously into the wall of the curved cathedral section 49 at its oblique wall section 47, which is still shown here as an example.
  • the former surface of the oblique wall section 47 shown here can no longer be determined in the finished unit consisting of the y-shaped ring body 44 and the dome section 49 and is therefore in Fig. 9 only shown in dashed lines.
  • Fig. 10 shows how the finished container base 12 is removed from the formwork mold 6 (step i).
  • Fig. 11 shows a platform P", which can be another platform or one of the platforms P or P'.
  • a third, cylindrical formwork form 7 is provided, which, like the first cylindrical formwork form 2, also consists of a A plurality of segments exists.
  • This third, cylindrical formwork mold 7 is also provided on its inside with a separating layer or a separating agent in order to make it easier to later remove the workpiece formed in the mold.
  • a spraying device 3 which has a spray nozzle 30" uses a spray jet 32" to apply metal material to the cylindrical inner surface 70 of the third, cylindrical formwork form 7 in one layer or layer by layer.
  • the spraying device 3" can also be a further spraying device or one of the spray devices 3 or 3 '.
  • the processing platform P" with the third, cylindrical formwork form 7 clamped thereon is rotated about an axis of rotation D", which is connected to the cylinder axis Z" of the third Formwork form 7 is coaxial, rotates.
  • a cylindrical container skin 80 is produced on the inner surface 70 to form a thin-walled cylindrical tubular body 8 formed in the third formwork form (step b').
  • This container skin 80 is extremely thin in relation to the inner radius R of the third, cylindrical formwork shape 7.
  • the wall thickness of the cylindrical container skin 80 is only about 1.5 mm to 2.5 mm, preferably 2 mm, with a radius R of, for example, 2.5 m.
  • Fig. 12 is shown how, by means of the spray device 3", on the inside of the cylindrical container skin 80 formed in step b') in a next step c') by preferably applying the metal material locally in layers using the spray jet 32" running parallel to the cylinder axis Z" and in the circumferential direction spaced apart longitudinal ribs 82 as well as frames 84 running in the circumferential direction and spaced apart in the axial direction.
  • the spraying device 3 "moves in the axial direction and possibly also in the circumferential direction and at least when the frames 84 are applied, the processing platform P" rotates with the clamped on it, third cylindrical formwork shape 7.
  • the longitudinal ribs 82 and the frames 84 together form a stiffening structure 87 of the container skin 80 that is integral with the container skin 80.
  • the upper edge region 81 and the lower edge region 86 of the container skin 80 are formed with a thicker wall thickness, as shown in FIG Fig. 12 A can be seen, around the cylindrical container section 10 made from the cylindrical tubular body 8 in this area with a respective container base 12, 14 or a further cylindrical container section to be able to weld.
  • the very thin wall thickness of the cylinder skin 80 gradually merges into the thicker wall thickness of the associated edge region 81, 86 in a transition region 81 ', 86'.
  • the edge regions 81, 86 are preferably not reinforced with longitudinal ribs 82 or frames 84.
  • the longitudinal ribs 82 which run parallel to the axis, merge into the respective transition region 81', 86', preferably with a reduction in their radial extent.
  • Fig. 12B shows enlarged how in step c') the metal material is applied by the spray jet 32" of the spray device 3" locally spaced from one another onto the previously manufactured container skin 80 in order to produce the longitudinal ribs 82 or the frames 84.
  • This symbolic representation applies both to the creation of the longitudinal ribs 82 and to the creation of the frames 84, so that in the example Fig. 12A the arrangement of the longitudinal ribs 82 and the frames 84, which are aligned at right angles to one another, is not shown.
  • Fig. 13 shows a first mechanical processing step c'1) of the cylindrical tubular body 8 produced in steps b') and c') with a milling tool 50' of a milling cutter 5', which can also be the milling tool 50 of the milling cutter 5 has been used in processing steps c) and d).
  • the milling tool 50 ' machines the radially inner surfaces 83 of the longitudinal ribs 82 and the radially inner surfaces 85 of the ribs 84 on the inside of the cylindrical tubular body 8 in such a way that they become flat and have a predetermined dimension in the radial direction.
  • This step d' of planning the radially inner surfaces 83, 85 is in Fig. 13A shown enlarged schematically.
  • the perpendicular arrangement of the longitudinal ribs 82 and the frames 84 to one another is not shown for the sake of simplicity.
  • Fig. 14 shows method step c'2), in which the lateral surfaces 83', 83" or 85', 85" of the longitudinal ribs 82 or the frames 84 are milled by means of the milling tool 50' in order to create a flat (i.e. flat) lateral surface obtained and the distances between adjacent longitudinal ribs 82 and adjacent frames 84 to a predetermined dimension bring how it in Fig. 14A is shown, which is a schematic representation in the same way as that Fig. 13A .
  • the milling tool 50' used for this is preferably a torus milling cutter that is rounded off on the circumference of its cutting edge.
  • the mechanical processing of the cylindrical tubular body 8 in the third formwork form 7 in steps c'1) and c'2) has the advantage that the formwork form supports the tubular body 8 against the forces acting on the milling tool.
  • the same advantage results from the mechanical processing of the annular blank 4 in the first formwork form 2 in steps c) and d).
  • This finished cylindrical container section 10 can now - like the container bases 12, 14 - be subjected to surface processing and/or thermal treatment.
  • Fig. 16 shows a finished lightweight pressure vessel 1 formed from the upper container base 12, the lower container base 14 and the cylindrical container section 10.
  • the two container bases 12, 14 are welded to the cylindrical container section 10, as symbolically represented by the two indicated weld seams 11, 13 .
  • the lightweight pressure vessel 1 can also - as described above - have been manufactured fully integrally or partially integrally using the method according to the invention and have no or only one circumferential weld seam.
  • Fig. 17 shows a partially cut open spherical lightweight pressure vessel 1' in the form of a spherical spatial body 1" provided with at least one nozzle 13', which, like two essentially hemispherically curved container bases 12', 14', is integrally connected to one by additive manufacturing using the thermal spraying process according to the invention uniform spherical wall 10 'of the spatial body 1".
  • the metal material is applied by a spray jet 32′′′ using at least one spray nozzle 30′′′ of a spray device 3′′′ according to the thermal spraying process to the outer surface 90 of a fourth, spherical or spherical formwork form 9.
  • the fourth formwork form 9 determines the internal volume of this alternative lightweight pressure vessel 1'.
  • FIG. 17 shows an example of an opening 11' of the lightweight pressure vessel 1', which is surrounded by a cylinder socket 13', which is also formed integrally with the wall 10' by additive manufacturing. Several such openings and/or connectors can also be provided, which can then also serve to fasten the lightweight pressure vessel 1'.
  • the spherical or spherical formwork mold 9 is shattered and/or melted after the production of the spherical spatial body 1" and discharged through the opening(s) 11'.
  • This spherical lightweight pressure vessel 1' with the spherical spatial body 1" can be, for example, a satellite tank.
  • stiffening structure 87 formed on the radially inner side of the container skin 80 is shown as an orthogrid with longitudinal ribs 82 and frames 84 running at right angles to one another, the invention is not limited to this.
  • the stiffening structure can alternatively also be formed on the radially outer side of the container skin if the container skin has been formed on the outside of the third, cylindrical formwork shape. It is also possible to apply stiffening structures on the radially inner and on the radially outer side of the container skin if appropriate formwork forms are provided.
  • the invention is not limited to an orthogrid as a stiffening structure, but the stiffening ribs can also be at a different angle to one another and, for example, be designed in the form of a diamond pattern.
  • a modified stiffening structure 87' is in Fig. 18 shown, in which the stiffening ribs are arranged in the form of an isogrid and thereby form isogrid ribs 88, which are connected to one another in isogrid nodes 89.
  • Fig. 19 shows a further alternative embodiment of the method for producing a curved container base according to the invention, the container base 12 "on the convexly curved mold surface 60 'of the convex second formwork mold 6' arranged on a processing platform P" by means of the thermal spraying process by spraying a metal material onto the convex mold surface 60 'is formed.
  • a thermal spray device 3"" is guided over the convexly curved mold surface 60' in several operations, with the particles of the metal material emerging from the spray nozzle 30"" as a spray jet 32 "", which here is also a high-speed gas jet enriched with the particles of the metal material, can be applied in one layer or in several layers to the convexly curved mold surface 60 'until the predetermined wall thickness of the dome section 49 "thus produced is reached.
  • the peripheral edge region 49′′′ of the curved dome section 49′′ is formed on the side facing away from the mold surface 60′ as an oblique wall section 49′′′′, the wall thickness of which tapers towards the free peripheral edge of the dome section 49′′, as shown in Fig. 19 and in the enlarged view of the Fig. 20 you can see.
  • the wall section 49"" of the dome section 49" which is designed in this way and has an oblique cross-section can be processed mechanically, for example by machining, after the dome section 49" has been completed; but it can also be left unprocessed.
  • annular mold core 6" is placed on the peripheral edge region 49′′′ of the dome section 49′′ that is still lying on the convex second formwork mold 6′, which rests with its concave inner surface on the convex outer surface of the peripheral edge region 49′′′ of the already manufactured dome section 49′′.
  • the annular mold core 6" is coaxial with the axis of rotation X of the convex second formwork shape 6'.
  • the radially outer mold surface 6′′′ of the mold core is 6′′ essentially cylindrical and, in the example shown, runs parallel to the axis of rotation X of the convex second formwork shape 6 'and thus also of the dome section 49".
  • the wall section 48" which tapers in cross section, is only shown as a dashed line, since due to the integral, monolithic design of the wall of the dome section 49" which merges into the Y-shaped ring body 44', there is no separating surface after the container base 12" has been completed or interface can be determined.
  • the wall of the dome section 49" can also be sprayed up to the processing platform P′′′, in which case the wall section 48"", which tapers in cross section, then adjoins the processing platform P′′′ with a decreasing wall thickness.
  • the ring body 44′ can then be used as a pure cylindrical jacket be molded onto it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

    TECHNISCHES GEBIET
  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines einen Leichtbau-Drucktank bildenden Leichtbau-Druckbehälters gemäß Ansprüchen 1 sowie 3. Insbesondere betrifft die Erfindung ein Verfahren zur Herstellung eines Satelliten-, Raumfahrzeug- oder Raketentanks sowie einen mit diesem Verfahren hergestellten Satelliten-, Raumfahrzeug- oder Raketentank.
  • HINTERGRUND DER ERFINDUNG
  • Druckbehälter, die einem hohen Innendruck gegenüber einem niedrigeren Außendruck standhalten müssen, sind allgemein bekannt. Üblicherweise werden derartige Druckbehälter aus Stahlblechen gefertigt, die zu einem zylindrischen Behälterabschnitt verschweißt werden, wobei an den offenen Seiten dieses Zylinders domartige Behälterböden angebracht werden. Diese domartigen Behälterböden werden zumeist aus dreieckigen oder trapezförmigen Blechen hergestellt, die gebogen und zu einer Raumform miteinander verschweißt werden. Die Verbindung der Behälterböden mit dem Zylinderabschnitt des Druckbehälters erfolgt entweder ebenfalls durch Schweißen oder mittels Flanschen. Kritisch ist bei solchen Schweißnähte aufweisenden Druckbehältern die Qualität der Schweißnaht, da auf jeden Fall zu vermeiden ist, dass der unter Druck gesetzte Druckbehälter an den möglicherweise Schwachstellen bildenden Schweißnähten reißt und platzt. Daher sind diese Schweißnähte mit größter Sorgfalt zu fertigen und der Druckbehälter ist regelmäßigen Drucktests zu unterziehen.
  • Eine besondere Herausforderung stellen Leichtbau-Druckbehälter dar, wie sie beispielsweise als Treibstofftanks in der Raumfahrttechnik verwendet werden. Bei diesen Tanks ist das Gewicht auf ein Minimum zu reduzieren, so dass es hier üblich geworden ist, den Behälter mit einer sehr dünnen Behälterwand und gegebenenfalls einer mit dieser dünnen Behälterwand verbundenen Stützstruktur auf der Behälterinnenseite oder der Behälteraußenseite auszugestalten. Dazu wird aus einem dicken Wandmaterial in spanabhebender Fertigung, beispielsweise durch Fräsen, auf der Innenseite des Behälters so viel Material abgetragen, dass eine dünne Wandhaut mit sich daran auf der Innenseite (oder der Außenseite) anschließenden Versteifungselementen, wie zum Beispiel Längsrippen und Spanten, ausbildet. Es liegt auf der Hand, dass ein derartiges Herstellungsverfahren zeit- und kostenaufwendig ist. Auch die dreieckigen oder trapezförmigen Segmente für die Herstellung des jeweiligen Behälterbodens werden auf diese Weise aus dem Vollen gefräst. Die so erhaltenen ebenen Komponenten werden dann, beispielsweise mittels Kugelstrahlen, umgeformt in räumlich gewölbte Dreiecke beziehungsweise Trapeze, die dann zur Bildung des domartigen Behälterbodens miteinander verschweißt werden. Dort wo Schweißnähte vorgesehen sind, muss bei der spanabhebenden Bearbeitung eine dickere Wandstärke erhalten bleiben, um das Schweißen zu ermöglichen, und die geringe Materialfestigkeit in der Schweißnaht zu kompensieren. Diese lokal dickere Wandstärke erhöht wiederum die Masse und damit das Gewicht des Druckbehälters.
  • Das Verschweißen der einzelnen Komponenten erfolgt üblicherweise durch Wolfram-Inertgasschweißen oder durch Rührreibschweißen, wozu spezielle Schweißanlagen erforderlich sind, die an die Geometrie und den Durchmesser der zu schweißenden Behälterböden angepasst sein müssen und die zu hohen Kosten als Sondermaschinenbau hergestellt werden müssen.
  • Bei der herkömmlichen Vorgehensweise zur Herstellung von Leichtbau-Druckbehältern, insbesondere von Raketentanks, ist somit nachteilig, dass die Herstellung der einzelnen Komponenten (einschließlich des zylindrischen Tankkörpers) durch Fräsen aus dem Vollen sowie das Verschweißen der Teile miteinander sehr zeit- und kostenaufwändig ist. Zudem müssen die einzelnen Körper im Bereich der Schweißnaht eine dickere Wandstärke aufweisen, als dies ohne Schweißnaht erforderlich wäre. Für diesen Fertigungsprozess bedarf es sehr großer Maschinen, die individuell für einen einzelnen Druckbehältertyp angefertigt werden müssen. Daher sind die Kosten zur Herstellung derartiger Druckbehälter (z.B. Raketentanks) extrem hoch und aufgrund des langen Vorlaufs für die zunächst zu erfolgende Konstruktion und Fertigung der speziellen Schweißanlagen ist ein sehr langer Zeitvorlauf erforderlich, bevor eine auf dem Reißbrett entwickelte Tankkonstruktion in einen ersten Prototyp umgesetzt werden kann.
  • Ein auf derartige herkömmliche Weise hergestellter Raketentank ist in Fig. 1 dargestellt. Erkennbar ist, dass der zylindrische Behälterabschnitt 110 aus einer Vielzahl von gekrümmten Tafeln 110', 110", 110"', 110"" durch Schweißen zusammengesetzt ist. Der zylindrisch Behälterabschnitt 110 ist mit dem Umfangsrand eines gewölbten Behälterbodens 112 verschweißt, wie an der Schweißnaht 113 zu erkennen ist. Der Aufbau des mit einem Mannloch 114 versehenen Behälterbodens 112 ist in Fig. 2 in der Seitenansicht dargestellt. An einem Flanschring 115 (Y-Ring) sind einzelne räumlich gewölbte trapezförmige Bodensegmente 116, 116', 116", 116‴ mit ihrer breiten Basis verschweißt, wie durch die ringförmige Schweißnaht 117 symbolisch dargestellt ist. Auch die einzelnen gewölbten Bodensegmente 116, 116', 116", 116‴ sind an ihren seitlichen Berührungskanten miteinander verschweißt, wie durch die Schweißnähte 118, 118', 118" symbolisch dargestellt ist. An ihrem jeweiligen inneren freien Ende sind die Bodensegmente 116, 116', 116", 116‴ mit einem ringförmigen Mannlochflansch 119 verschweißt, wie es durch die ringförmige Schweißnaht 119' symbolisch dargestellt ist. Ein Deckel 120 ist vorgesehen, um das Mannloch 114 zu verschließen.
  • STAND DER TECHNIK
  • Thermische Spritzverfahren, wie beispielsweise das Kaltgasspritzen, werden üblicherweise zur Beschichtung von Oberflächen verwendet. Ein Kaltgasspritzverfahren zur Beschichtung von Oberflächen, bei welchem das Gas zunächst komprimiert und erwärmt und anschließend durch Entspannen in einer Düse beschleunigt wird, wobei in den Gasstrahl eingeleitete Partikel auf ein vorher aufgeheiztes Substrat geschossen werden, ist aus der DE 10 2006 044 612 A1 bekannt.
  • Aus der WO 2009/109016 A1 ist es weiterhin bekannt, das Verfahren des Kaltgasspritzens zur Herstellung von Rohren zu verwenden, wobei die später das Rohr bildenden Materialpartikel auf ein Trägerelement aufgespritzt werden, um das Rohr zu erzeugen. Anschließend wir das Trägerelement aus dem Rohr entfernt.
  • Aus der DE 10 2010 060 362 A1 ist es bekannt, beim Herstellen eines Rohres mittels eines thermischen Spritzverfahrens die Neigung der Spritzdüse, also den Spritzwinkel, relativ zu der zu beschichtenden Oberfläche zu verstellen und dadurch die Haftzugfestigkeit der erzeugten Materialschicht auf deren Untergrund zu verändern. Der Spritzwinkel wird dabei so gewählt, dass eine Haftung entsteht, die ausreicht, damit der Beschichtungswerkstoff an dem Trägerelement haftet, und die gleichzeitig so gering ist, dass das Rohr nach Fertigstellung ohne die Anwendung kostenintensiver Verfahrensschritte leichter vom Trägerelement gelöst werden kann.
  • Die DE 10 2015 017 026 A1 beschreibt Verfahren zum formwerkzeugfreien Herstellen von Druckbehältern, bei dem der Druckbehälter ganz oder teilweise mittels eines Sinter- oder Pulverdruckverfahrens aus Metall hergestellt wird. Dabei erfolgt ein schichtweises Aufschmelzen von in einem Metallpulvervorrat enthaltenem Metallpulver durch Elektronenstrahlschmelzen oder durch selektives Laserschmelzen. Alternativ wird angegeben, den Druckbehälter mittels Multi-Jet-Modeling aus flüssigem Kunststoffmaterial herzustellen, wobei das formend aus der Düse austretende Kunststoffmaterial unmittelbar nach dem Austritt mittels einer Energiequelle gehärtet wird. Es wird explizit darauf hingewiesen, dass bei diesen Verfahren auf eine Formeinrichtung vollständig verzichtet werden kann.
  • Die EP 3 333 474 A1 zeigt und beschreibt eine additiv gefertigte Verstärkungsstruktur am Beispiel eines dünnwandigen Behälters, der einen oberen domartigen Deckel, einen unteren domartigen Deckel und einen mittleren zylindrischen Abschnitt aufweist, wobei die Deckel mit dem zylindrischen Abschnitt üblicherweise verschweißt sind. Sowohl die domartigen Deckel als auch der zylindrische Abschnitt bestehen aus einer dünnen Mantelhaut, auf deren Innenseite mittels additiver Fertigung Verstärkungsrippen aufgebracht sind. Die domartigen Deckel können einteilig im 3D-Druck hergestellt werden.
  • Die US 5 085 343 zeigt einen Tank für ein Weltraumfahrzeug mit zumindest einem domartigen Deckel, dessen Wandung sandwichartig aufgebaut ist und aus einer inneren Wandungshaut, einer äußeren Wandungshaut und einem dazwischen angeordneten Kern aus einem Honigwabenprofil besteht. Die äußere Wandungshaut ist mit einem im Querschnitt Y-förmigen Ring verschweißt.
  • Die DE 10 2013 216 439 A1 zeigt die Fertigung einer Behälter-Außenhaut mittels eines thermischen Spritzvorgangs. Dabei wird das Spritzmaterial direkt auf eine quer durch eine Wandung eines durch Spritzformen gebildeten Formkörpers verlaufende Schnittfläche aufgetragen. Die Anbindung des durch Spritzformen erzeugten Körpers an einen vorgegebenen Stützkörper erfolgt über eine Verbindungsfläche, die sich zum späteren durch Spritzformen gebildeten Formkörper radial erstreckt. Die Verbindungsfläche zwischen dem zuvor bereitgestellten Stützkörper und dem aufgespritzten Formkörper ist somit deutlich kleiner als bei der erfindungsgemäß am Ausgangskörper im Querschnitt als Schrägfläche ausgebildeten Verbindungsfläche. Dadurch wird beim Verfahren der Erfindung eine deutlich festere Verbindung zwischen dem bereitgestellten ersten Körper und dem daran angespritzten zweiten Körper erzielt.
  • DARSTELLUNG DER ERFINDUNG
  • Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren anzugeben, mit dem ein einen Leichtbau-Drucktank bildender Leichtbau-Druckbehälter schneller und kostengünstiger herstellbar ist.
  • Diese Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen der Ansprüche 1 sowie 3.
  • Bei einem Verfahren zur Herstellung eines einen Leichtbau-Drucktank bildenden Leichtbau-Druckbehälters aus einem Metallmaterial, insbesondere eines Satelliten-, Raumfahrzeug- oder Raketentanks, mit zwei gewölbten Behälterböden, wobei die gewölbten Behälterböden miteinander oder mit zumindest einem zylindrischen Behälterabschnitt verbunden oder integral ausgebildet sind, wird erfindungsgemäß zumindest einer der Behälterböden zumindest teilweise durch additive Fertigung mittels eines thermischen Spritzverfahrens nahtlos hergestellt, wobei das Metallmaterial mittels zumindest einer Spritzdüse als Spritzstrahl auf eine Oberfläche zumindest einer Schalungsform aufgetragen wird und wobei die die Herstellung des jeweiligen gewölbten Behälterbodens mit den folgenden Schritten erfolgt:
    1. a) Bereitstellen eines im Querschnitt y-förmigen Ringkörpers mit einer zylindrischen Außenwand und einer von dieser unter einem spitzen Winkel radial schräg nach innen verlaufenden Krempe mit einem radial inneren Umfangsrand, wobei sich die Wandstärke der Krempe zum radial inneren Umfangsrand hin verjüngt, wodurch am freien Ende der Krempe ein im Querschnitt schräg verlaufener Wandabschnitt als Fase ausgebildet ist,
    2. b) Bereitstellen einer gewölbten Schalungsform, die eine konkav oder konvex gewölbte Formoberfläche aufweist,
    3. c) Aufsetzen des im Querschnitt y-förmigen Ringkörpers auf den Rand der gewölbten Schalungsform derart, dass die Krempe des Ringkörpers auf der gewölbten Formoberfläche aufliegt und deren Rand bedeckt, wobei der die Fase bildende schräg verlaufende Wandabschnitt der Krempe von der Formoberfläche weg weist,
    4. d) Auftragen des Metallmaterials durch einen Spritzstrahl mittels zumindest einer Spritzdüse gemäß dem thermischen Spritzverfahren auf den schräg verlaufenden Wandabschnitt des Ringkörpers und auf die Formoberfläche der gewölbten Schalungsform zur Bildung eines sich nahtlos an die Krempe anschließenden und mit dieser integral ausgebildeten zentralen, gewölbten Domabschnitts und
    5. e) Entnehmen der den Behälterboden bildenden Einheit aus Domabschnitt und Ringkörper aus der gewölbten Schalungsform.
  • Das Auftragen des Metallmaterials durch den Spritzstrahl mittels der zumindest einen Spritzdüse auf die Formoberfläche der Schalungsform kann bei allen Varianten des erfindungsgemäßen Verfahrens in einem einzigen Arbeitsgang oder vorzugsweise in mehreren konsekutiven Arbeitsgängen bevorzugt schichtweise erfolgen. Die Dicke der jeweils aufgesprühten Metallmaterialschicht ist dabei abhängig von der Bewegungsgeschwindigkeit der Spritzvorrichtung.
  • Insbesondere erfolgt die Herstellung mittels eines Kaltgasspritzverfahrens.
  • Dabei kann der betreffende Behälterboden, bestehend aus dem Domabschnitt und einem an dessen freiem Umfangsrand vorgesehenen Ringkörper, der einen zylindrischen Ringabschnitt aufweist, welcher später zur Befestigung des Leichtbau-Druckbehälters dient, integral, also einstückig, mittels des thermischen Spritzverfahrens nahtlos hergestellt werden. Es ist aber alternativ auch vorgesehen, zunächst den Ringkörper oder zunächst den Domabschnitt mittels des thermischen Spritzverfahrens herzustellen und dann daran jeweils das andere Element (Domabschnitt beziehungsweise Ringkörper) mittels des thermischen Spritzverfahrens anzuformen. Auch kann der Ringkörper vorab auf herkömmliche Weise (zum Beispiel umformend oder spanabhebend, durch Schmieden, Drehen oder Fräsen) unter Ausbildung des Wandabschnitts mit sich im Querschnitt zum freien Umfangsrand hin verringernder Wandstärke am entsprechenden Umfangsrandbereich gefertigt werden und dann kann der Domabschnitt mittels des thermischen Spritzverfahrens daran angeformt werden.
  • Weiterhin ist es auch von der Erfindung mit umfasst, zunächst nur Segmente des Domabschnitts mittels des thermischen Spritzverfahrens zu fertigen, die dann beispielsweise auf herkömmliche Weise (zum Beispiel durch Schweißen) miteinander zum Domabschnitt zusammengefügt werden. An den so gebildeten Domabschnitt kann dann entweder ein auf herkömmliche Weise vorgefertigter Ringkörper angeschweißt werden oder der auf diese Weise gebildete Domabschnitt wird an seinem Außenumfang mit einem Umfangsbereich versehen, dessen Wandabschnitt eine sich im Querschnitt zum freien Umfangsrand hin verringernde Wandstärke aufweist, und der Ringkörper wird daran mittels des thermischen Spritzverfahrens angeformt.
  • Welche der vorstehenden Fertigungsmethoden angewendet wird, kann beispielsweise in Abhängigkeit von der Größe des Leichtbau-Druckbehälters entschieden werden.
  • VORTEILE
  • Durch die erfindungsgemäße additive Fertigung zumindest der Behälterböden können diese bislang in komplizierten Fertigungsschritten aus einer Vielzahl von Elementen hergestellten Druckbehälterkomponenten jeweils in einem Stück als integrales Bauteil bedarfsgerecht hergestellt werden. Es werden keine bauteilspezifischen, im Sondermaschinenbau herzustellenden Fertigungsmaschinen, wie beispielsweise spezielle Schweißanlagen, mehr benötigt, so dass die für das Verfahren der Erfindung benötigten Fertigungsmaschinen von der Geometrie und dem Durchmesser des zu fertigenden Druckbehälters unabhängig sind. Die herkömmlicherweise für den Sondermaschinenbau erforderlichen Kosten und der Zeitvorlauf für die Herstellung dieser Sondermaschinen fallen beim erfindungsgemäßen Verfahren nicht mehr an. Sowohl die Herstellungskosten als auch die für die Herstellung benötigte Zeit sind somit beim Verfahren der Erfindung gegenüber dem Stand der Technik deutlich verringert. Selbst bei einer modularen Bauweise, bei der nur Teile, zum Beispiel nur Segmente des Domabschnitts des Behälterbodens, in additiver Fertigung hergestellt werden, kann ein Kosten- und Zeitvorteil entstehen. Der Ringkörper kann vorab mittels des thermischen Spritzverfahrens oder aber auf herkömmliche Weise durch Umformen (zum Beispiel Gießen, Schmieden oder Walzen) oder durch spanabhebende Bearbeitung (zum Beispiel durch Drehen oder Fräsen) hergestellt werden, wobei dann, in der Regel in einem mechanischen Bearbeitungsschritt, im entsprechenden Umfangsbereich der Wandabschnitt mit sich im Querschnitt zum freien Umfangsrand hin abnehmender Wandstärke ausgebildet wird, an den dann mittels des thermischen Spritzverfahrens der Domabschnitt angeformt wird.
  • Weitere bevorzugte und vorteilhafte Ausgestaltungsmerkmale des erfindungsgemäßen Verfahrens sind Gegenstand der Unteransprüche 2, 4 bis 13.
  • Dabei ist es besonders von Vorteil, wenn die Bereitstellung des im Querschnitt y-förmigen Ringkörpers mit den folgenden Schritten erfolgt:
    • a1) Bereitstellen einer Ringkörper-Schalungsform als Außenschalung oder als Innenschalung,
    • a2) Auftragen des Metallmaterials durch einen Spritzstrahl mittels zumindest einer Spritzdüse gemäß dem thermischen Spritzverfahren auf die Oberfläche am Innenumfang oder am Außenumfang der Ringkörper-Schalungsform mit einem sich in einer Richtung parallel zur Ringachse verringernden Innendurchmesser zur Bildung eines ringförmigen Rohlings,
    • a3) Bearbeiten des ringförmigen Rohlings derart, dass ein im Querschnitt y-förmiger Ringkörper mit einer zylindrischen Außenwand und einer von dieser unter einem spitzen Winkel radial schräg nach innen verlaufenden Krempe entsteht,
    • a4) Bearbeiten des radial inneren Umfangsrands der Krempe derart, dass sich die Wandstärke der Krempe zum radial inneren Umfangsrand hin verjüngt, wodurch am freien Ende der Krempe der im Querschnitt schräg verlaufene Wandabschnitt als Fase ausgebildet wird, und
    • a5) Entnehmen des y-förmigen Ringkörpers aus der ersten Schalungsform.
  • Auf diese Weise wird auch der Ringkörper mittels des thermischen Spritzverfahrens erzeugt und es ergibt sich schließlich ein den Ringkörper mit dem Domabschnitt integrierender monolithisch ausgebildeter Behälterboden.
  • Die Herstellung des Ringkörpers ist jedoch nicht auf die hier beschriebene Vorgangsweise der additiven Fertigung mit anschließender umfangreicher mechanischer Bearbeitung des Roh-Ringkörpers beschränkt. An Stelle des Schrittes a3) kann im Schritt a2) auch ein ringförmiger Formkern (ähnlich dem Formkern 6", der weiter unten in Bezug auf Fig. 20 beschrieben ist) beim Auftragen des Metallmaterials vorgesehen sein, der den Raum zwischen den Schenkeln des Winkels α ausfüllt, wodurch im Schritt a3) keine oder weniger mechanische Nacharbeit, nämlich nur noch eine geringfügige Oberflächenbearbeitung erforderlich ist.
  • Bei einem alternativen Verfahren zur Herstellung eines einen Leichtbau-Drucktank bildenden Leichtbau-Druckbehälters aus einem Metallmaterial mit zwei gewölbten Behälterböden, wobei die gewölbten Behälterböden miteinander oder mit zumindest einem zylindrischen Behälterabschnitt verbunden oder integral ausgebildet sind, ist vorgesehen, dass zumindest einer der Behälterböden zumindest teilweise durch additive Fertigung mittels eines thermischen Spritzverfahrens nahtlos hergestellt wird, wobei das Metallmaterial mittels zumindest einer Spritzdüse als Spritzstrahl auf eine Oberfläche zumindest einer Schalungsform aufgetragen wird. Hier erfolgt die Herstellung des jeweiligen gewölbten Behälterbodens mit den folgenden Schritten:
    • a') Bereitstellen einer gewölbten Schalungsform, die eine konkav oder konvex gewölbte Formoberfläche aufweist,
    • b') Auftragen des Metallmaterials durch einen Spritzstrahl mittels zumindest einer Spritzdüse gemäß dem thermischen Spritzverfahren auf die Formoberfläche der gewölbten Schalungsform zur Bildung eines gewölbten Domabschnitts;
    • c') Ausbilden des Umfangsrandbereichs des gewölbten Domabschnitts auf der von der Formoberfläche abgewandten Seite derart, dass sich dessen Wandstärke zum freien Umfangsrand hin verjüngt, wodurch auf der von der Formoberfläche abgewandten Seite des Umfangsrandbereichs ein im Querschnitt schräg verlaufener Wandabschnitt als Fase ausgebildet wird;
    • d') Anformen eines Ringkörpers an den Umfangsrandbereich des Domabschnitts durch Auftragen des Metallmaterials durch einen Spritzstrahl mittels zumindest einer Spritzdüse gemäß dem thermischen Spritzverfahren auf den im Querschnitt schräg verlaufenden Wandabschnitt des Domabschnitts und auf eine Formoberfläche einer weiteren Schalungsform für den Ringkörper und
    • i) Entnehmen der den Behälterboden bildenden Einheit aus Domabschnitt und Ringkörper aus der jeweiligen Schalungsform.
  • Bei dieser Variante wird zunächst der Domabschnitt mittels des thermischen Spritzens gefertigt und dann wird an den Domabschnitt der Ringkörper ebenfalls mittels thermischen Spritzens angeformt. Der im Querschnitt schräg verlaufende Wandabschnitt kann vor dem Anformen des Ringkörpers mechanisch bearbeitet werden, er kann aber auch unbearbeitet bleiben und das Anformen des Ringkörpers kann auf die unbearbeitete Oberfläche des im Querschnitt schräg verlaufenden Wandabschnitts erfolgen. Der Ringkörper kann als im Querschnitt y-förmiger Ringkörper ausgebildet werden, er kann aber auch als zylindrischer Ringkörper (in Form eines Zylindermantels) ausgebildet werden, was abhängig davon ist, an welcher Stelle des Randes des Domabschnitts der Ringkörper angeformt wird.
  • Somit ist es von der Erfindung auch mit umfasst, zunächst die gewölbten Domabschnitte zu fertigen und den ringförmigen Rohling zur Herstellung des (vorzugsweise y-förmigen) Ringkörpers an einem schräg verlaufenden Umfangswandabschnitt des Domabschnitts anzuformen und anschließend mechanisch zu bearbeiten. Die Domabschnitte können alternativ durch Auftragen des Metallmaterials auf eine konvex oder eine konkav gekrümmte Schalungsform gebildet werden.
  • Mit den vorgenannten alternativen Verfahrensausgestaltungen lassen sich die gewölbten Behälterböden, beispielsweise als Tankböden eines Raumfahrzeugtanks, schnell und präzise sequentiell fertigen, wodurch eine hohe Auslastung der zur Fertigung erforderlichen Maschinen ermöglicht wird. Das (vorzugsweise schichtweise) Auftragen des Metallmaterials mittels der Spritzdüse(n) auch auf den schräg verlaufenden Wandabschnitt der Krempe des Ringkörpers beziehungsweise des entsprechend ausgebildeten Umfangsrandbereichs des Domabschnitts schafft eine integrale Verbindung des Ringkörpers mit dem gewölbten Domabschnitt, so dass ein einheitliches, im Idealfall, wenn beide Teile mittels thermischen Spritzens erzeugt werden, monolithisches Werkstück als Behälterboden ohne Trennfuge und damit ohne Schwachstelle gebildet wird.
  • Von besonderem Vorteil ist es, wenn vor der Bildung des gewölbten Domabschnitts ein vorgefertigter Mannlochflansch, der im Bereich seines Außenumfangs einen ringförmigen, im Querschnitt schräg verlaufenden Wandabschnitt aufweist, wodurch sich die Wand des Mannlochflansches zum Außenumfangsrand des Mannlochflansches hin verjüngt, derart in eine Ausnehmung der gewölbten Schalungsform eingelegt wird, dass der schräg verlaufende Wandabschnitt von der Formoberfläche weg weist, und wenn bei der Bildung des gewölbten Domabschnitts das Metallmaterial auch auf den schräg verlaufenden Wandungsabschnitt des Mannlochflansches aufgetragen wird, um diesen integral in den Domabschnitt einzuformen. Dazu weist die Schalungsform für den gewölbten Domabschnitt eine zentrale Ausnehmung zur Aufnahme eines Mannlochflansches auf und der Mannlochflansch weist im Bereich seines Außenumfangs einen ringförmigen, im Querschnitt schräg verlaufenden Wandabschnitt auf, wodurch sich die Wand des Mannlochflansches zum Außenumfangsrand des Mannlochflansches hin verjüngt, so dass der schräg verlaufende Wandabschnitt als Fase ausgebildet ist. Der Mannlochflansch wird dann derart in die Ausnehmung der Schalungsform für den gewölbten Domabschnitt eingelegt, dass der schräg verlaufende Wandabschnitt von der Formoberfläche weg weist. Der Mannlochflansch kann mittels thermischen Spritzens erzeugt werden, er kann aber auch auf herkömmliche Weise hergestellt werden, beispielsweise durch Umformen (zum Beispiel Gießen, Schmieden oder Walzen) oder durch spanabhebende Bearbeitung (zum Beispiel durch Drehen oder Fräsen) hergestellt werden.
  • Bei der Ausbildung des Domabschnitts wird dann das Metallmaterial auch auf den schräg verlaufenden Wandungsabschnitt des Mannlochflansches aufgetragen, um diesen integral in den Domabschnitt einzuformen. Auch hier entsteht durch das (bevorzugt schichtweise) Auftragen des Metallmaterials mittels der Spritzdüse(n) auch auf den schräg verlaufenden Wandabschnitt des Mannlochflansches eine integrale Einbindung des Mannlochflansches in das Materialgefüge des Domabschnitts, so dass auch hier ein einheitliches Werkstück ohne Trennfuge und damit ohne Schwachstelle gebildet wird. Wenn auch der Mannlochflansch mittels thermischen Spritzens hergestellt worden ist, wird eine monolithische Anbindung des Mannlochflansches an den Domabschnitt erzielt.
  • Besonders bevorzugt ist eine Weiterbildung des erfindungsgemäßen Verfahrens, gemäß der charakteristische Eigenschaften des Spritzstrahls der zumindest einen Spritzdüse geändert werden, wenn dieser vom schräg verlaufenden Wandabschnitt der Krempe beziehungsweise des Domabschnitts beziehungsweise des Mannlochflansches weiter wandert und auf die Formoberfläche auftrifft, auf der noch kein Material mittels des thermischen Spritzverfahrens aufgetragen worden ist, und gemäß der die charakteristischen Eigenschaften des Spritzstrahls wieder zurückgeändert werden, wenn dieser von der Formoberfläche, auf der noch kein Material mittels des thermischen Spritzverfahrens aufgetragen worden war, weiter wandert und auf den schräg verlaufenden Wandabschnitt des Mannlochflansches beziehungsweise der Krempe beziehungsweise des Domabschnitts auftrifft. Durch diese Änderung von charakteristischen Eigenschaften des Spritzstrahls, beispielsweise der Auftreffgeschwindigkeit der Metallmaterial-Partikel und/oder des Auftreffwinkels auf den Untergrund, wird erreicht, dass im Bereich des jeweiligen schräg verlaufenden Wandabschnitts eine feste und innige Materialanbindung an den hier vom Material des schräg verlaufenden Wandabschnitts gebildeten Untergrund erfolgt, während dort, wo der Spritzstrahl auf die Formoberfläche auftrifft, von der das Werkstück, also der Behälterboden, später wieder gelöst werden muss, keine feste und innige Materialanbindung an den hier vom Material der Formoberfläche oder eines darauf befindlichen Trennmittels gebildeten Untergrund erfolgt, um den fertigen Behälterboden leichter aus der Schalungsform entnehmen zu können.
  • Vorzugsweise wird nach dem Entnehmen des Behälterbodens eine Oberflächenbearbeitung und/oder eine thermische Behandlung des Behälterbodens, insbesondere des zentralen gewölbten Domabschnitts, durchgeführt. Eine solche Oberflächenbehandlung kann beispielsweise der Oberflächenverdichtung oder der Oberflächenhärtung (z.B. durch Kugelstrahlen) dienen. Vorteilhaft ist es auch, wenn durch die thermische Behandlung in dem mittels der erfindungsgemäßen additiven Fertigung erzeugten Werkstück Gefügeänderungen des Metallmaterials vorgenommen werden können, die beispielsweise die Zähigkeit des Materials verändern und das Werkstück elastischer machen.
  • Bei einer weiteren bevorzugten Ausführungsform des jeweiligen erfindungsgemäßen Verfahrens, die mit anderen Ausführungsformen kombinierbar ist und bei der die gewölbten Behälterböden mit zumindest einem zylindrischen Behälterabschnitt verbunden oder integral damit ausgebildet sind, erfolgt die Herstellung des zumindest einen zylindrischen Behälterabschnitts mit den folgenden Schritten:
    • a") Bereitstellen einer dritten, zylindrischen Schalungsform,
    • b") Auftragen des Metallmaterials auf die Innenfläche oder die Außenfläche der dritten, zylindrischen Schalungsform zur Bildung einer zylindrischen Behälterhaut,
    • c") lokales Auftragen des Metallmaterials durch einen Spritzstrahl mittels der zumindest einen Spritzdüse auf die Innenfläche beziehungsweise die Außenfläche der zylindrischen Behälterhaut zur Erzeugung einer mit der Zylinderhaut integral ausgebildeten, Rippen aufweisenden Versteifungsstruktur zur Bildung eines zylindrischen Rohrkörpers,
    • d") Entnehmen des den zylindrischen Behälterabschnitt bildenden bearbeiteten zylindrischen Rohrkörpers aus der dritten Schalungsform.
  • Auch für die additive Herstellung des zylindrischen Behälterabschnitts treffen die gleichen Vorteile zu wie für die Herstellung der Behälterböden mittels des erfindungsgemäßen Verfahrens. Gegenüber der an sich bereits bekannten additiven Herstellung von Rohren wird erfindungsgemäß in einem ersten additiven Herstellungsschritt nur eine als Zylinderhaut bezeichnete sehr dünne Wandung erzeugt, auf die dann in einem zweiten Fertigungsschritt eine Rippen aufweisende Versteifungsstruktur lokal additiv aufgetragen wird, so dass sich ein integrales Zylindergebilde aus Zylinderhaut und Versteifungsstruktur ergibt, wobei zwischen der Zylinderhaut und der Versteifungsstruktur eine feste und innige gegenseitige Materialanbindung besteht und so ein einheitliches, integrales Werkstück ohne Trennfuge und damit ohne Schwachstelle gebildet wird. Der zylindrische Behälterabschnitt kann grundsätzlich durch vorzugsweise schichtweises Auftragen des Metallmaterials auf die Innenumfangsfläche oder die Außenumfangsfläche einer zylindrischen Schalungsform hergestellt werden, wobei die Versteifungsstruktur auf der Innenseite beziehungsweise der Außenseite der zunächst entstehenden Zylinderhaut aufgebaut wird. Eine solche Versteifungsstruktur wird durch integral mit der Zylinderhaut ausgebildete Rippen geschaffen.
  • Dabei ist es von Vorteil, wenn nach dem Schritt c") noch zumindest einer der folgenden Schritte durchgeführt wird:
    • c"1) Planen der radial inneren Flächen der Versteifungsstruktur mittels mechanischer Bearbeitung,
      und/oder
    • c"2) Planen der seitlichen Flächen der Versteifungsstruktur mittels mechanischer Bearbeitung.
  • Durch zumindest einen dieser mechanischen Bearbeitungsschritte wird unnötiges Material von den Rippen abgetragen und die Masse des zylindrischen Rohrkörpers wird verringert und dadurch optimiert. Die Durchführung dieser mechanischen Bearbeitungsschritte des zylindrischen Rohrkörpers noch in oder an der dritten Schalungsform ist deswegen vorteilhaft, weil die bei der mechanischen Bearbeitung auf den zylindrischen Rohrkörper Kräfte einwirken, die großflächig über die dritte Schalungsform abgestützt werden, so dass der zylindrische Rohrkörper keiner Verformung durch die mechanische Bearbeitung unterliegt.
  • Vorzugsweise wird die Versteifungsstruktur in Form eines Orthogrids, also in Form eines Gitters mit im rechten Winkel zueinander verlaufenden Längsrippen und Spanten ausgebildet, aber auch Gitterstrukturen mit anderen Winkeln, zum Beispiel rautenförmige Versteifungsstrukturen, sind von der Erfindung umfasst.
  • Vorzugsweise weist die als Orthogrid gestaltete Versteifungsstruktur parallel zur Zylinderachse verlaufende und in Umfangsrichtung voneinander beabstandete Längsrippen sowie in Umfangsrichtung verlaufende und in Axialrichtung voneinander beabstandete Spanten auf.
  • Von Vorteil ist auch eine alternative Ausführungsform, bei der die Versteifungsstruktur in Form eines Isogrids ausgebildet wird.
  • Vorteilhafterweise wird nach dem Schritt d") eine Oberflächenbearbeitung des zylindrischen Behälterabschnitts durchgeführt. Hier treffen dieselben Vorteile zu wie für den entsprechenden Bearbeitungsschritt des Behälterbodens.
  • Ebenfalls von Vorteil ist es, wenn nach dem Schritt d") eine thermische Behandlung des zylindrischen Behälterabschnitts durchgeführt wird. Auch hier treffen dieselben Vorteile zu wie für den entsprechenden Bearbeitungsschritt des Behälterbodens.
  • Bei einer vorzugsweisen Ausführungsform des Verfahrens gemäß der Erfindung werden der zumindest eine zylindrische Behälterabschnitt und die beiden Behälterböden separat voneinander mittels des thermischen Spritzverfahrens nahtlos hergestellt und anschließend zusammengefügt. Beispielsweise wird der zylindrische Behälterabschnitt mit dem jeweiligen Behälterboden verschweißt. Es können auch mehrere zylindrische Behälterabschnitte miteinander zu einer Zylinderröhre verschweißt werden, die dann mit den Behälterböden verschweißt wird. Alternativ ist eine Flanschverbindung möglich.
  • Bei einer alternativen vorteilhaften Ausführungsform werden der zumindest eine zylindrische Behälterabschnitt und zumindest einer der beiden Behälterböden integral mittels des thermischen Spritzverfahrens nahtlos hergestellt. Bei einer solchen additiven Fertigung wird zuerst ein Behälterboden, wie beschrieben, hergestellt, wobei der ringförmige Anbindungsrand des Behälterbodens in derselben Weise als schräg verlaufender Wandabschnitt ausgebildet ist, wie dies bereits oben in Verbindung mit der Krempe des y-förmigen Ringkörpers beschrieben worden ist, und wobei der zylindrische Behälterabschnitt ausgehend von diesem schräg verlaufenden Randabschnitt durch additive Fertigung gebildet wird, wie dies bereits vorstehend für den separat hergestellten zylindrischen Behälterabschnitt beschrieben worden ist. Ist einer der Behälterböden mit einem Mannloch versehen, so lässt sich der zylindrische Behälterabschnitt auch zwischen zwei bereits vorhandenen Behälterböden durch die erfindungsgemäße additive Fertigung nahtlos einformen, wenn die Spritzdüse und andere Bearbeitungswerkzeuge durch das Mannloch in den Innenraum der zylindrischen Schalungsform eingebracht werden.
  • Bei einer alternativen Variante des Verfahrens werden die beiden gewölbten Behälterböden durch additive Fertigung mittels des thermischen Spritzverfahrens als integraler, vorzugsweise kugelförmiger oder kugelähnlicher, Raumkörper durch Auftragen des Metallmaterials durch einen Spritzstrahl mittels zumindest einer Spritzdüse auf die Außenoberfläche einer zunächst bereitgestellten vierten Schalungsform nahtlos hergestellt. Die Schalungsform, die in diesem Fall als so genannte "verlorene Schalung" ausgebildet ist, wird anschließend durch zumindest eine im entstandenen Raumkörper vorgesehene Öffnung aus dem Inneren des Raumkörpers entfernt, beispielsweise herausgeschmolzen oder herausgebrochen. Auf diese Weise lassen sich mit dem erfindungsgemäßen Verfahren zum Beispiel kugelförmige oder kugelartige Leichtbau-Druckbehälter fertigen, wie sie zum Beispiel als Satellitentanks Verwendung finden.
  • Auch wenn vorstehend als Beispiel ein Satelliten-, Raumfahrzeug- oder Raketentank als Anwendung für einen Leichtbau-Druckbehälter genannt wird so ist die Erfindung nicht darauf beschränkt. Ein Leichtbau-Druckbehälter kann für viele andere Zwecke eingesetzt werden, bei denen das Gewicht des Drucktanks niedrig gehalten werden muss, beispielsweise als Gas- oder Wasserstofftank in einem Kraftfahrzeug oder einem Schienenfahrzeug, einem Luftfahrzeug oder einem Wasserfahrzeug. Auch ein stationärer Einsatz des Leichtbau-Druckbehälters ist von der Erfindung mit umfasst Bevorzugte Ausführungsbeispiele der Erfindung mit zusätzlichen Ausgestaltungsdetails und weiteren Vorteilen sind nachfolgend unter Bezugnahme auf die beigefügten Zeichnungen näher beschrieben und erläutert.
  • KURZE BESCHREIBUNG DER ZEICHNUNGEN
  • Es zeigt:
  • Fig. 1
    einen herkömmlichen Raketentank,
    Fig. 2
    einen sphärischen Behälterboden eines herkömmlichen Raketentanks,
    Fig. 3
    eine bereitgestellte erste, zylindrische Schalungsform zur Durchführung des erfindungsgemäßen Verfahrens (Schritt a1),
    Fig. 4
    den Schritt des Auftragens von Metallmaterial auf die erste, zylindrische Schalungsform zur Erzeugung eines ringförmigen Rohlings (Schritt a2),
    Fig. 4A
    die Einzelheit IV aus Fig. 4,
    Fig. 5
    den Schritt der mechanischen Bearbeitung des ringförmigen Rohlings (Schritt a3 und a4),
    Fig. 5A
    die Einzelheit V aus Fig. 5,
    Fig. 6
    das Entnehmen des Ringkörpers aus der ersten, zylindrischen Schalungsform (Schritt a5),
    Fig. 7
    das Aufsetzen des Ringkörpers auf eine zweite, konkav gewölbte Schalungsform (Schritt c),
    Fig. 8
    das Auftragen des Metallmaterials auf die zweite Schalungsform (Schritt d),
    Fig. 9
    einen Ausschnitt aus dem so gebildeten Behälterboden gemäß Einzelheit IX aus Fig. 8,
    Fig. 10
    das Entnehmen des Behälterbodens aus der zweiten Schalungsform (Schritt e),
    Fig. 11
    das Auftragen des Metallmaterials auf die Innenseite einer dritten, zylindrischen Schalungsform zur Bildung einer zylindrischen Behälterhaut (Schritt b"),
    Fig. 12
    das Auftragen des Metallmaterials auf die Innenseite der Zylinderhaut zur Ausbildung eines zylindrischen Rohrkörpers mit einer Versteifungsstruktur aus Spanten und Längsrippen auf der Innenseite der zylindrischen Behälterhaut (Schritt c"),
    Fig. 12A
    eine vergrößerte Ausschnitt-Darstellung des oberen Randes des zylindrischen Rohrkörpers aus Fig. 12,
    Fig. 12B
    den Schritt gemäß Fig. 12 in vergrößerter Darstellung,
    Fig. 13
    den Schritt des mechanischen Bearbeitens der Spanten und Längsrippen (Schritt c"1),
    Fig. 13A
    den Verfahrensschritt aus Fig. 13 in vergrößerter Darstellung,
    Fig. 14
    den Verfahrensschritt der mechanischen Bearbeitung der zwischen den Längsrippen und Spanten gebildeten Taschen (Schritt c"2),
    Fig. 14A
    den Verfahrensschritt der Fig. 14 in vergrößerter Darstellung,
    Fig. 15
    das Entnehmen des fertigen zylindrischen Behälterabschnitts aus der dritten Schalungsform (Schritt d"),
    Fig. 16
    einen teilweise geschnittenen zylinderartigen Leichtbau-Druckbehälter gemäß der Erfindung,
    Fig. 17
    einen teilweise geschnittenen kugelartigen Leichtbau-Druckbehälter gemäß einer alternativen Ausführungsform der Erfindung,
    Fig. 18
    eine alternative Versteifungsstruktur in Form eines Isogrids,
    Fig. 19
    eine alternative Ausführungsform zur Herstellung des Behälterbodens auf einer konvexen Schalungsform (Schritt b') und
    Fig. 20
    einen Ausschnitt aus Fig. 19 gemäß der Einzelheit XX beim Anformen des Ringkörpers gemäß Schritt d'.
    DARSTELLUNG VON BEVORZUGTEN AUSFÜHRUNGSBEISPIELEN
  • Die Fig. 1 und 2 zeigen, wie bereits eingangs ausgeführt worden ist, einen auf herkömmliche Weise hergestellten Raketentank.
  • Die Herstellung des in Fig. 16 gezeigten Leichtbau-Druckbehälters 1, beispielsweise eines Raketentanks, mit einem zylindrischen Behälterabschnitt 10, einem oberen gewölbten Behälterboden 12 und einem unteren gewölbten Behälterboden 14 aus einem Metallmaterial durch additive Fertigung mittels eines thermischen Spritzverfahrens, insbesondere mittels eines Kaltgasspritzverfahrens, wird nachstehend anhand der Fig. 3 bis 15 beschrieben.
  • In Fig. 3 ist eine erste, zylindrische Schalungsform 2 gezeigt, die auf einer Arbeitsplattform P liegt. Auf die Oberfläche 21 am Innenumfang, also die Innenumfangsfläche, der ersten, zylindrischen Schalungsform 2 ist bereits eine Trennschicht 22 aufgebracht worden, die beispielsweise aus einem Trennmittel besteht, das ein späteres leichtes Ablösen der Schalungsform 2 von einem erzeugten Werkstück ermöglicht. Wie in Fig. 3 zu erkennen ist, besteht die erste, zylindrische Schalungsform 2 aus mehreren Zylindersegmenten, von denen in Fig. 3 die Segmente 20, 20' und 20" gezeigt sind. Diese Segmente erleichtern später das Ablösen der Schalungsform 2 von einem erzeugten Werkstück.
  • In Fig. 4 ist gezeigt, wie eine thermische Spritzvorrichtung 3 im Inneren vor der Innenumfangsfläche der ersten zylindrischen Schalungsform 2 positioniert ist und gemäß Schritt b) arbeitet. Diese Spritzvorrichtung 3 kann beispielsweise an einem Roboterarm angebracht sein.
  • Aus einer Spritzdüse 30 der thermischen Spritzvorrichtung 3 tritt ein Spritzstrahl 32 aus, der auf die Oberfläche 21 am Innenumfang der ersten, zylindrischen Schalungsform 2 gerichtet ist. Der Spritzstrahl 32 besteht aus einem Hochgeschwindigkeits-Gasstrahl, dem in der Spritzvorrichtung 3 Partikel eines Metallmaterials zugeführt werden. Der Gasstrahl mit den darin enthaltenen Metallpartikeln wird in bekannter Weise mittels einer Laval-Düse auf vorzugsweise Überschallgeschwindigkeit beschleunigt, so dass die Metallpartikel mit einer sehr hohen kinetischen Energie auf die Oberfläche 21 am Innenumfang beziehungsweise auf die dort vorgesehene Trennmittelschicht 22 auftreffen. Durch Bewegung der die Spritzdüse 30 aufweisenden Spritzvorrichtung 3 in Richtung parallel zur Zylinderachse Z der zylindrischen Schalungsform und gegebenenfalls auch in Umfangsrichtung und durch gleichzeitige Rotation der Bearbeitungsplattform P um eine mit der Zylinderachse Z koaxiale Drehachse D wird bevorzugt schichtweise ein im Wesentlichen homogener Materialauftrag des Metallmaterials auf der Oberfläche 21 am Innenumfang der ersten, zylindrischen Schalungsform 2 erhalten, wie es in Fig. 4 dargestellt ist, wodurch ein ringförmiger Rohling 4 erhalten wird.
  • Dieser ringförmige Rohling 4 weist, vertikal geschnitten betrachtet, eine pentagonförmige Form auf, wie es in Fig. 4A vergrößert dargestellt ist. Ein der Oberfläche 21 am Innenumfang der ersten, zylindrischen Schalungsform 2 benachbarter Abschnitt des Rohlings 4 ist über die Axialerstreckung des Rohlings 4 an beiden axialen Stirnflächen 41, 42 des Rohlings 4 gleich dick. Von diesen beiden Stirnflächen 41, 42 gleicher Wandstärke verringert sich der Innendurchmesser d des ringförmigen Rohlings 4 hin zu einem engsten Innendurchmesser d1, der bezüglich der Axialerstreckung des Rohlings 4 asymmetrisch (etwa 20:80 % der Axialerstreckung des Rohlings 4) gelegen ist.
  • In Fig. 5 ist dargestellt, wie in den Verfahrensschritten c) und d) der ringförmige Rohling 4 mechanisch bearbeitet wird, beispielsweise mit einer ein rotierendes Fräswerkzeug 50 aufweisenden Fräse 5. Zur Durchführung der mechanischen Bearbeitung des ringförmigen Rohlings 4 und des y-förmigen Ringkörpers 44 wird der Rohling 4 vor Beginn der mechanischen Bearbeitung in der ersten, zylindrischen Schalungsform 2 auf dem Fachmann bekannte Weise fixiert.
  • Durch diese mechanische spanabhebende und bei Bedarf auch schleifende Bearbeitung des Rohlings 4 und der dabei entstehenden Flächen wird zunächst im Schritt c) ein Ringkörper 44 erzeugt, dessen Wandung im Querschnitt y-förmig ist, wie es in Fig. 5A vergrößert dargestellt ist. Dieser im Querschnitt y-förmige Ringkörper 44 weist eine zylindrische Außenwand 45 sowie eine von dieser zylindrischen Außenwand 45 unter einem spitzen Winkel α radial schräg nach innen verlaufende Krempe 46 auf. Diese Krempe 46 ist ein unter dem spitzen Winkel α radial schräg nach innen verlaufender Wandungsabschnitt, der in einem Bogen in die zylindrische Außenwand 45 des Ringkörpers 44 übergeht.
  • Der radial innere Umfangsrand 46' der Krempe 46 wird dann im Schritt d) mittels beispielsweise des Fräswerkzeugs 50 des Fräsers 5 derart bearbeitet, dass sich die Wandstärke der Krempe 46 zum radial inneren Umfangsrand 46' hin verjüngt. Dadurch wird auf der vom spitzen Winkel α abgewandten Oberfläche der Krempe 46 ein im Querschnitt schräg verlaufender Wandabschnitt 47 in Form einer Fase ausgebildet.
  • Der auf diese Weise aus dem ringförmigen Rohling 4 herausgearbeitete y-förmige Ringkörper 44 wird dann aus der ersten, zylindrischen Schalungsform 2 entnommen, wie es in Fig. 6 dargestellt ist (Verfahrensschritt e).
  • Als nächstes wird im Schritt f) eine zweite Schalungsform 6 auf der Bearbeitungsplattform P (oder auf einer anderen entsprechenden Bearbeitungsplattform P') bereitgestellt. Diese zweite Schalungsform 6 weist an ihrer von der Bearbeitungsplattform P' weg weisenden Oberseite eine konkav gewölbte Formoberfläche 60 mit einem oberen ringförmigen Rand 64 auf.
  • Im Beispiel der Fig. 7 ist die zweite Schalungsform 6 zudem mit einer zentralen Ausnehmung 62 zur Aufnahme eines Mannlochflansches 48 versehen.
  • Der y-förmige Ringkörper 44 wird nach dem Herausnehmen aus der ersten Schalungsform 2 um 180° um eine Querachse gedreht und mit dem vom spitzen Winkel α zwischen der zylindrischen Außenwand 45 und der Krempe 46 gebildeten Spaltraum 43 auf den oberen Rand 64 der zweiten Schalungsform 6 derart aufgesetzt, dass die Krempe 46 des y-förmigen Ringkörpers 44 auf der konkav gewölbten Formoberfläche 60 der zweiten Schalungsform 6 aufliegt, wie es in Fig. 8 gezeigt ist. Die Krempe 46 bedeckt dabei den oberen Rand 64 der gewölbten Formoberfläche 60 und der schräg verlaufende Wandabschnitt 47 der Krempe 46 weist von der Formoberfläche 60 weg.
  • In Fig. 8 ist der Verfahrensschritt h) dargestellt, bei welchem durch einen Spritzstrahl 32' einer Spritzdüse 30' einer Spritzvorrichtung 3' das Metallmaterial vorteilhafterweise schichtweise auf die Formoberfläche 60 aufgetragen wird. Die Spritzvorrichtung 3' kann dieselbe Spritzvorrichtung sein, wie die im Schritt b) verwendete Spritzvorrichtung, sie kann aber auch, wenn die Fertigungsschritte an unterschiedlichen Arbeitsplätzen, zum Beispiel auf einer anderen Bearbeitungsplattform 6', durchgeführt werden, eine andere Spritzvorrichtung sein.
  • Das Metallmaterial wird von der Spritzdüse 30' gemäß demselben Spritzverfahren wie im Schritt b) ebenfalls bevorzugt schichtweise auf die Formoberfläche 60 und den schräg verlaufenden Wandabschnitt 47 des Ringkörpers 44 aufgetragen, so dass sich ausgehend von der Krempe 46 des ringförmigen Körpers 44 ein gewölbter Domabschnitt 49 auf der Formoberfläche 60 bildet, der integral mit dem y-förmigen Ringkörper 44 ausgebildet ist. Auch bei diesem Verfahrensschritt wird die Bearbeitungsplattform P' mit der zweiten Schalungsform 6 um eine Drehachse D', die koaxial mit der Symmetrieachse Z' der zweiten Schalungsform 6 und von deren Formoberfläche 60 ist, während des Spritzvorgangs rotiert.
  • In Fig. 8 ist außerdem dargestellt, wie auch der Mannlochflansch 48, der im Bereich seines Außenumfangs ebenfalls einen ringförmigen im Querschnitt schräg verlaufenden Wandabschnitt 48' aufweist, wodurch sich die Wand 48" des Mannlochflansches 48 zum Außenumfangsrand 48‴ des Mannlochflansches 48 hin verjüngt, ebenfalls von der Spritzdüse 30' mit dem Metallmaterial beaufschlagt wird, so dass auch der Mannlochflansch 48 integral in den Domabschnitt 49 eingebunden wird. Die so geschaffene Einheit aus dem Domabschnitt 49, dem Ringkörper 44 und dem Mannlochflansch 48 bildet den oberen Behälterboden 12 des Leichtbau-Druckbehälters 1.
  • Für den Fall, dass keine Mannlochöffnung erforderlich ist, ist die zweite Schalungsform 6 ohne die zentrale Ausnehmung 62 ausgebildet und der Domabschnitt 49' erstreckt sich in diesem Bereich durchgehend und bildet eine einheitliche sphärische oder abgeflacht-sphärische Fläche aus, wie in Fig. 16 anhand des unteren Behälterbodens 14 zu sehen ist. Diese Einheit aus Ringkörper und Domabschnitt bildet dann den unteren Behälterboden 14 des in Fig. 16 dargestellten Leichtbau-Druckbehälters 1.
  • Fig. 9 zeigt die Einzelheit IX aus Fig. 8, in der zu erkennen ist, dass die Krempe 46 an ihrem hier beispielhaft noch dargestellten schräg verlaufenden Wandabschnitt 47 kontinuierlich in die Wandung des gewölbten Domabschnitts 49 übergeht. Die hier gezeigte ehemalige Oberfläche des schräg verlaufenden Wandabschnitts 47 ist in der fertigen Einheit aus dem y-förmigen Ringkörper 44 und dem Domabschnitt 49 nicht mehr feststellbar und daher in Fig. 9 nur gestrichelt gezeichnet.
  • In Fig. 10 ist dargestellt, wie der fertige Behälterboden 12 aus der Schalungsform 6 entnommen wird (Schritt i).
  • Fig. 11 zeigt eine Plattform P", bei der es sich um eine weitere Plattform oder um eine der Plattformen P oder P' handeln kann. Auf dieser Plattform P" ist eine dritte, zylindrische Schalungsform 7 bereitgestellt, die wie die erste zylindrische Schalungsform 2 ebenfalls aus einer Mehrzahl von Segmenten besteht. Auch diese dritte, zylindrische Schalungsform 7 ist auf ihrer Innenseite mit einer Trennschicht oder einem Trennmittel versehen, um die spätere Herausnahme des in der Form gebildeten Werkstücks zu erleichtern.
  • Weiterhin ist in Fig. 11 zu sehen, wie eine Spritzvorrichtung 3", die eine Spritzdüse 30" aufweist, mittels eines Spritzstrahls 32" Metallmaterial auf die zylindrische Innenfläche 70 der dritten, zylindrischen Schalungsform 7 in einer Schicht oder schichtweise aufträgt. Auch die Spritzvorrichtung 3" kann eine weitere Spritzvorrichtung oder eine der Spritzvorrichtungen 3 oder 3' sein.
  • Während des Auftragens des Metallmaterials auf die Innenfläche 70 unter Bewegung der Spritzvorrichtung 3" in Axialrichtung und gegebenenfalls auch in Umfangsrichtung wird die Bearbeitungsplattform P" mit der darauf festgespannten dritten, zylindrischen Schalungsform 7 um eine Drehachse D", die mit der Zylinderachse Z" der dritten Schalungsform 7 koaxial ist, rotiert. Durch dieses Auftragen des Metallmaterials auf die Innenfläche 70 der dritten Schalungsform wird auf der Innenfläche 70 eine zylindrische Behälterhaut 80 zur Bildung eines in der dritten Schalungsform entstehenden dünnwandigen zylindrischen Rohrkörpers 8 erzeugt (Schritt b'). Diese Behälterhaut 80 ist im Verhältnis zum Innenradius R der dritten, zylindrischen Schalungsform 7 äußerst dünn. Die Wandstärke der zylindrischen Behälterhaut 80 beträgt bei einem Radius R von beispielsweise 2,5 m nur etwa 1,5 mm bis 2,5 mm, vorzugsweise 2 mm.
  • In Fig. 12 ist dargestellt, wie mittels der Spritzvorrichtung 3" auf die Innenseite der im Schritt b') gebildeten zylindrischen Behälterhaut 80 in einem nächsten Schritt c') durch bevorzugterweise schichtweises lokales Auftragen des Metallmaterials mittels des Spritzstrahls 32" parallel zur Zylinderachse Z" verlaufende und in Umfangsrichtung voneinander beabstandete Längsrippen 82 sowie in Umfangsrichtung verlaufende und in Axialrichtung voneinander beabstandete Spanten 84 aufgetragen werden. Auch dabei bewegt sich die Spritzvorrichtung 3" in Axialrichtung und gegebenenfalls auch in Umfangsrichtung und zumindest beim Auftragen der Spanten 84 rotiert die Bearbeitungsplattform P" mit der darauf gespannten, dritten zylindrischen Schalungsform 7. Die Längsrippen 82 und die Spanten 84 bilden gemeinsam eine mit der Behälterhaut 80 integral ausgebildete Versteifungsstruktur 87 der Behälterhaut 80 aus.
  • Außerdem werden im Schritt b') oder c') der obere Randbereich 81 und der untere Randbereich 86 der Behälterhaut 80 mit einer dickeren Wandstärke ausgebildet, wie es in Fig. 12 A zu sehen ist, um den aus dem zylindrischen Rohrkörper 8 gefertigten zylindrischen Behälterabschnitt 10 in diesem Bereich mit einem jeweiligen Behälterboden 12, 14 oder einem weiteren zylindrischen Behälterabschnitt verschweißen zu können. Die sehr dünne Wandstärke der Zylinderhaut 80 geht dazu in einem Übergangsbereich 81', 86' allmählich in die dickere Wandstärke des zugeordneten Randbereichs 81, 86 über. Die Randbereiche 81, 86 sind vorzugsweise nicht mit Längsrippen 82 oder Spanten 84 verstärkt. Die achsparallel verlaufenden Längsrippen 82 gehen, vorzugsweise unter Reduzierung ihrer Radialerstreckung, in den jeweiligen Übergangsbereich 81', 86' über.
  • Fig. 12B zeigt vergrößert, wie im Schritt c') das Metallmaterial durch den Spritzstrahl 32" der Spritzvorrichtung 3" lokal voneinander beabstandet auf die vorher gefertigte Behälterhaut 80 aufgebracht wird, um die Längsrippen 82 beziehungsweise die Spanten 84 zu erzeugen. Diese symbolische Darstellung trifft sowohl für das Erzeugen der Längsrippen 82 als auch für das Erzeugen der Spanten 84 zu, so dass im Beispiel der Fig. 12A die rechtwinklig zueinander ausgerichtete Anordnung der Längsrippen 82 und der Spanten 84 nicht dargestellt ist.
  • Fig. 13 zeigt einen ersten mechanischen Bearbeitungsschritt c'1) des in den Schritten b') und c') erzeugten zylindrischen Rohrkörpers 8 mit einem Fräswerkzeug 50' eines Fräsers 5', bei dem es sich auch um das Fräswerkzeug 50 des Fräsers 5 handeln kann, das in den Bearbeitungsschritten c) und d) eingesetzt worden ist. Das Fräswerkzeug 50' bearbeitet auf der Innenseite des zylindrischen Rohrkörpers 8 die radial inneren Flächen 83 der Längsrippen 82 und die radial inneren Flächen 85 der Spante 84 derart, dass sie plan werden und eine vorgegebene Abmessung in Radialrichtung erhalten. Dieser Schritt d' des Planens der radial inneren Flächen 83, 85 ist in Fig. 13A vergrößert schematisch dargestellt. Auch hier ist die rechtwinklige Anordnung der Längsrippen 82 und der Spanten 84 zueinander der Einfachheit halber nicht dargestellt.
  • Fig. 14 zeigt den Verfahrensschritt c'2), in welchem die seitlichen Flächen 83', 83" beziehungsweise 85', 85" der Längsrippen 82 beziehungsweise der Spanten 84 mittels des Fräswerkzeugs 50' abgefräst werden, um jeweils eine plane (also ebene) seitliche Oberfläche zu erhalten und um die Abstände zwischen benachbarten Längsrippen 82 und benachbarten Spanten 84 jeweils auf ein vorgegebenes Maß zu bringen, wie es in Fig. 14A gezeigt ist, die eine in gleicher Weise schematische Darstellung ist, wie die Fig. 13A. Das hierfür verwendete Fräswerkzeug 50' ist vorzugsweise ein am Umfang seiner Schneide abgerundeter Torusfräser.
  • Die mechanische Bearbeitung des zylindrischen Rohrkörpers 8 in der dritten Schalungsform 7 in den Schritten c'1) und c'2) besitzt den Vorteil, dass die Schalungsform den Rohrkörper 8 gegen die einwirkenden Kräfte des Fräswerkzeugs abstützt. Der gleiche Vorteil ergibt sich bei der mechanischen Bearbeitung des ringförmigen Rohlings 4 in der ersten Schalungsform 2 in den Schritten c) und d).
  • Schließlich ist in Fig. 15 der Verfahrensschritt d') gezeigt, in welchem der aus dem zylindrischen Rohrkörper 8 herausgearbeitete zylindrische Behälterabschnitt 10 entnommen wird.
  • Dieser fertige zylindrische Behälterabschnitt 10 kann nun - wie die Behälterböden 12, 14 - einer Oberflächenbearbeitung und/oder einer thermischen Behandlung unterzogen werden.
  • Fig. 16 zeigt einen aus dem oberen Behälterboden 12, dem unteren Behälterboden 14 und dem zylindrischen Behälterabschnitt 10 gebildeten fertigen Leichtbau-Druckbehälter 1. Die beiden Behälterböden 12, 14 sind mit dem zylindrischen Behälterabschnitt 10 verschweißt, wie durch die beiden angedeuteten Schweißnähte 11, 13 symbolisch dargestellt ist. Der Leichtbau-Druckbehälter 1 kann aber auch - wie oben beschrieben - vollintegral oder teilintegral mittels des erfindungsgemäßen Verfahrens hergestellt worden sein und keine oder nur eine Umfangs-Schweißnaht aufweisen.
  • Fig. 17 zeigt einen teilweise aufgeschnittenen kugelartigen Leichtbau-Druckbehälter 1' in Form eines mit zumindest einem Stutzen 13' versehenen kugelförmigen Raumkörpers 1", der wie zwei im Wesentlichen halbkugelförmig gewölbte Behälterböden 12', 14' durch die additive Fertigung mittels des erfindungsgemäßen thermischen Spritzverfahrens integral mit einer einheitlichen kugelförmigen Wandung 10' des Raumkörpers 1" ausgebildet wird. Dabei wird das Metallmaterial durch einen Spritzstrahl 32‴ mittels zumindest einer Spritzdüse 30‴ einer Spritzvorrichtung 3‴ gemäß dem thermischen Spritzverfahren auf die Außenoberfläche 90 einer vierten, kugelförmigen oder kugelähnlichen Schalungsform 9 aufgetragen. Die vierte Schalungsform 9 bestimmt das Innenvolumen dieses alternativen Leichtbau-Druckbehälters 1'. Fig. 17 zeigt beispielhaft eine Öffnung 11' des Leichtbau-Druckbehälters 1', die von einem Zylinderstutzen 13' umgeben ist, der ebenfalls durch additive Fertigung integral mit der Wandung 10' ausgebildet ist. Es können auch mehrere derartige Öffnungen und/oder Stutzen vorgesehen sein, die dann auch der Befestigung des Leichtbau-Druckbehälters 1' dienen können. Die kugelförmige oder kugelähnliche Schalungsform 9 wird nach der Herstellung des kugelförmigen Raumkörpers 1" zertrümmert und/oder geschmolzen und durch die Öffnung(en) 11' abgeführt. Dieser kugelähnliche Leichtbau-Druckbehälter 1' mit dem kugelförmigen Raumkörper 1" kann beispielsweise ein Satellitentank sein.
  • Auch wenn in den Fig. 12 bis 16 eine auf der radial inneren Seite der Behälterhaut 80 ausgebildete Versteifungsstruktur 87 als Orthogrid mit rechtwinklig zueinander verlaufenden Längsrippen 82 und Spanten 84 gezeigt ist, ist die Erfindung nicht darauf beschränkt. Die Versteifungsstruktur kann alternativ auch auf der radial äußeren Seite der Behälterhaut ausgebildet sein, wenn die Behälterhaut auf der Außenseite der dritten, zylindrischen Schalungsform gebildet worden ist. Auch ist es möglich, Versteifungsstrukturen auf der radial inneren und auf der radial äußeren Seite der Behälterhaut aufzubringen, wenn entsprechende Schalungsformen zur Verfügung gestellt werden.
  • Außerdem ist die Erfindung nicht auf ein Orthogrid als Versteifungsstruktur beschränkt, sondern die Versteifungsrippen können auch in einem anderen Winkel zueinander stehen und beispielsweise in Form eines Rautenmusters gestaltet sein.
  • Eine abgewandelte Versteifungsstruktur 87' ist in Fig. 18 gezeigt, in welcher die Versteifungsrippen in Form eines Isogrids angeordnet sind und dabei Isogridrippen 88 bilden, die in Isogridknoten 89 miteinander verbunden sind.
  • Fig. 19 zeigt eine weitere alternative Ausführungsform des Verfahrens zur erfindungsgemäßen Herstellung eines gewölbten Behälterbodens, wobei der Behälterboden 12" auf der konvex gewölbten Formoberfläche 60' der auf einer Bearbeitungsplattform P‴ angeordneten konvex ausgebildeten zweiten Schalungsform 6' mittels des thermischen Spritzverfahrens durch das Aufsprühen eines Metallmaterials auf die konvexe Formoberfläche 60' gebildet wird.
  • Dazu wird, wie dies bereits mit Bezug auf die anderen Ausführungsbeispiele beschrieben worden ist, eine thermische Spritzvorrichtung 3"" über die konvex gewölbte Formoberfläche 60' in mehreren Arbeitsgängen hinweg geführt, wobei die aus der Spritzdüse 30"" austretenden Partikel des Metallmaterials als Spritzstrahl 32"", der auch hier ein mit den Partikeln des Metallmaterials angereicherter Hochgeschwindigkeits-Gasstrahl ist, in einer Schicht oder schichtweise in mehreren Schichten auf die konvex gewölbte Formoberfläche 60' aufgetragen werden bis die vorgegebene Wandstärke des so hergestellten Domabschnitts 49" erreicht ist.
  • Dabei wird der Umfangsrandbereich 49‴ des gewölbten Domabschnitts 49" auf der von der Formoberfläche 60' abgewandten Seite als schräg verlaufender Wandabschnitt 49"" ausgebildet, dessen Wandstärke sich zum freien Umfangsrand des Domabschnitts 49" hin verjüngt, wie es in Fig. 19 und in der vergrößerten Darstellung der Fig. 20 zu sehen ist. Der so ausgebildete im Querschnitt schräg verlaufende Wandabschnitt 49"" des Domabschnitts 49" kann nach der Fertigstellung des Domabschnitts 49" mechanisch, beispielsweise spanabhebend, bearbeitet werden; er kann aber auch unbearbeitet belassen werden.
  • Auf den Umfangsrandbereich 49‴ des noch auf der konvexen zweiten Schalungsform 6' liegenden Domabschnitts 49" wird ein ringförmiger Formkern 6" aufgesetzt, der mit seiner konkaven Innenfläche auf der konvexen Außenfläche des Umfangsrandbereichs 49‴ des bereits gefertigten Domabschnitts 49" aufliegt. Der ringförmige Formkern 6" liegt dabei koaxial zur Rotationsachse X der konvexen zweiten Schalungsform 6'. Die radial äußere Formoberfläche 6‴ des Formkerns 6" ist im Wesentlichen zylindrisch und verläuft im gezeigten Beispiel parallel zur Rotationsachse X der konvexen zweiten Schalungsform 6' und damit auch des Domabschnitts 49".
  • Nach dem Aufsetzen des Formkerns 6" auf den Umfangsrandbereich 49‴ des Domabschnitts 49" wird, wie in Fig. 20 schematisch dargestellt ist, mittels des aus der Spritzdüse 30"" der Spritzvorrichtung 3"" austretenden thermischen Spritzstrahls 32"" das Metallmaterial auf die radial äußere Formoberfläche 6‴ des ringförmigen Formkerns 6" sowie auf den noch nicht mit Metallmaterial besprühten unteren Bereich der Formoberfläche 60' der konvex ausgebildeten zweiten Schalungsform 6' aufgesprüht, wobei das Metallmaterial auch auf den im Querschnitt schräg verlaufenden und umlaufenden Wandabschnitt 49"" am freien Ende des Umfangsrandbereichs 49‴ des Domabschnitts 49" aufgesprüht wird, so dass - wie dies vorstehend bereits in Verbindung mit den anderen Ausführungsbeispielen beschrieben worden ist - an dieser Stelle eine integrale und nahtlose Anformung des so entstehenden y-förmigen Ringkörpers 44' an den Domabschnitt 49" zur integralen Bildung des Behälterbodens 12" aus dem Domabschnitt 49" und dem Ringkörper 44' erfolgt.
  • Wie im Beispiel der Fig. 9 ist auch hier der sich im Querschnitt verjüngende Wandabschnitt 48"" nur als gestrichelte Linie dargestellt, da aufgrund der integralen, monolithischen Ausbildung der hier in den y-förmigen Ringkörper 44' übergehenden Wandung des Domabschnitts 49" nach der Fertigstellung des Behälterbodens 12" keine Trennfläche oder Grenzfläche feststellbar ist.
  • Alternativ kann die Wandung des Domabschnitts 49" auch bis an die Bearbeitungsplattform P‴ heran gespritzt werden, wobei dann der sich im Querschnitt verjüngende Wandabschnitt 48"" mit sich verringernder Wanddicke an die Bearbeitungsplattform P‴ angrenzt. Der Ringkörper 44' kann dann als reiner Zylindermantel daran angeformt werden.
  • Grundsätzlich kann die in Verbindung mit den Figuren 19 und 20 beschriebene Vorgehensweise auch unter Verwendung einer konkaven Schalungsform durchgeführt werden, wobei dann das Spritzen des Metallmaterials - wie im Beispiel der Fig. 8 von der Innenseite erfolgt und nur der radial äußere Teil des Ringkörpers von der Außenseite gespritzt werden muss.
  • Bezugszeichen in den Ansprüchen, der Beschreibung und den Zeichnungen dienen lediglich dem besseren Verständnis der Erfindung und sollen den Schutzumfang nicht einschränken.
  • Bezugszeichenliste
  • Es bezeichnen:
  • 1
    zylinderartiger Leichtbau-Druckbehälter
    1'
    kugelartiger Leichtbau-Druckbehälter
    1"
    kugelförmiger Raumkörper
    2
    erste, zylindrische Schalungsform
    3
    Spritzvorrichtung
    3'
    Spritzvorrichtung
    3"
    Spritzvorrichtung
    3‴
    Spritzvorrichtung
    3""
    Spritzvorrichtung
    4
    ringförmiger Rohling
    5
    Fräser
    5'
    Fräser
    6
    konkave zweite Schalungsform
    6'
    konvexe zweite Schalungsform
    6"
    ringförmiger Formkern
    6‴
    zylindrische Außenumfangsfläche von 6"
    7
    dritte, zylindrische Schalungsform
    8
    zylindrischer Rohrkörper
    9
    vierte Schalungsform
    10
    zylindrischer Behälterabschnitt
    10'
    Wandung
    11'
    Öffnung
    12
    oberer Behälterboden
    12'
    oberer Behälterboden (Abschnitt des kugelförmigen Raumkörpers)
    12"
    Behälterboden
    13'
    Stutzen
    14
    unterer Behälterboden
    14'
    unterer Behälterboden (Abschnitt des kugelförmigen Raumkörpers)
    20
    Segment
    20'
    Segment
    20"
    Segment
    21
    Oberfläche am Innenumfang
    22
    Trennmittelschicht
    30
    Spritzdüse
    30'
    Spritzdüse
    30"
    Spritzdüse
    30‴
    Spritzdüse
    30""
    Spritzdüse
    32
    Spritzstrahl
    32'
    Spritzstrahl
    32"
    Spritzstrahl
    32‴
    Spritzstrahl
    32""
    Spritzstrahl
    41
    axiale Stirnfläche
    42
    axiale Stirnfläche
    43
    Spaltraum
    44
    y-förmiger Ringkörper
    44'
    y-förmiger Ringkörper
    45
    zylindrische Außenwand
    46
    Krempe
    46'
    Umfangsrad der Krempe
    47
    Wandabschnitt
    48
    Mannlochflansch
    48'
    Wandabschnitt
    48"
    Außenumfangsrand
    48‴
    Außenumfangsrand
    49
    Domabschnitt
    49'
    Domabschnitt
    49"
    Domabschnitt
    49‴
    Umfangsrandbereich
    49""
    Wandabschnitt
    50
    Fräswerkzeug
    50'
    Fräswerkzeug
    60
    konkav gewölbte Formoberfläche
    60'
    konvex gewölbte Formoberfläche
    62
    zentrale Ausnehmung
    64
    oberer Rand
    70
    Innenfläche von 7
    80
    zylindrische Behälterhaut
    81
    oberer Randbereich von 8
    81'
    Übergangsbereich
    82
    Längsrippe
    83
    radial innere Fläche
    83'
    seitliche Fläche
    83"
    seitliche Fläche
    84
    Spante
    85
    radial innere Fläche
    85'
    seitliche Fläche
    85"
    seitliche Fläche
    86
    unterer Randbereich von 8
    86'
    Übergangsbereich
    87
    Versteifungsstruktur
    87'
    Versteifungsstruktur
    88
    Isogridrippe
    89
    Isogridknoten
    90
    Oberfläche der vierten Schalungsform
    d
    Durchmesser des ringförmigen Rohlings
    d1
    Innendurchmesser des ringförmigen Rohlings
    D
    Drehachse
    D'
    Drehachse
    D"
    Drehachse
    P
    Bearbeitungsplattform
    P'
    Bearbeitungsplattform
    P"
    Bearbeitungsplattform
    P‴
    Bearbeitungsplattform
    X
    Achse der konvexen zweiten Schalungsform
    Z
    Zylinderachse
    Z'
    Zylinderachse
    Z"
    Zylinderachse

Claims (13)

  1. Verfahren zur Herstellung eines einen Leichtbau-Drucktank bildenden Leichtbau-Druckbehälters (1; 1') aus einem Metallmaterial mit zwei gewölbten Behälterböden (12, 14; 12', 14'; 12"), wobei die gewölbten Behälterböden (12, 14; 12', 14'; 12") miteinander oder mit zumindest einem zylindrischen Behälterabschnitt (10) verbunden oder integral ausgebildet sind, wobei zumindest einer der Behälterböden (12, 14; 12', 14'; 12") zumindest teilweise durch additive Fertigung mittels eines thermischen Spritzverfahrens nahtlos hergestellt wird, dadurch gekennzeichnet, dass das Metallmaterial mittels zumindest einer Spritzdüse (30, 30', 30", 30‴, 30"") als Spritzstrahl auf eine Oberfläche (21, 60, 60', 70, 90) zumindest einer Schalungsform (2, 6, 6', 6", 7, 9) aufgetragen wird und dass die Herstellung des jeweiligen gewölbten Behälterbodens (12, 14) mit den folgenden Schritten erfolgt:
    a) Bereitstellen eines im Querschnitt y-förmigen Ringkörpers (44) mit einer zylindrischen Außenwand (45) und einer von dieser unter einem spitzen Winkel (α) radial schräg nach innen verlaufenden Krempe (46) mit einem radial inneren Umfangsrand (46'), wobei sich die Wandstärke der Krempe (46) zum radial inneren Umfangsrand (46') hin verjüngt, wodurch am freien Ende der Krempe (46) ein im Querschnitt schräg verlaufener Wandabschnitt (47) als Fase ausgebildet ist,
    b) Bereitstellen einer gewölbten Schalungsform (6), die eine konkav oder konvex gewölbte Formoberfläche (60) aufweist,
    c) Aufsetzen des im Querschnitt y-förmigen Ringkörpers (44) auf den Rand (64) der gewölbten Schalungsform (6) derart, dass die Krempe (46) des Ringkörpers (44) auf der gewölbten Formoberfläche (60) aufliegt und deren Rand bedeckt, wobei der die Fase bildende schräg verlaufende Wandabschnitt (47) der Krempe (46) von der Formoberfläche (60) weg weist,
    d) Auftragen des Metallmaterials durch einen Spritzstrahl (32') mittels zumindest einer Spritzdüse (30') gemäß dem thermischen Spritzverfahren auf den schräg verlaufenden Wandabschnitt (47) des Ringkörpers (44) und auf die Formoberfläche (60) der gewölbten Schalungsform (6) zur Bildung eines sich nahtlos an die Krempe (46) anschließenden und mit dieser integral ausgebildeten zentralen, gewölbten Domabschnitts (49) und
    e) Entnehmen der den Behälterboden (12, 14) bildenden Einheit aus Domabschnitt (49) und Ringkörper (44) aus der gewölbten Schalungsform (6).
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Bereitstellung des im Querschnitt y-förmigen Ringkörpers (44) mit den folgenden Schritten erfolgt:
    a1) Bereitstellen einer Ringkörper-Schalungsform (2) als Außenschalung oder als Innenschalung,
    a2) Auftragen des Metallmaterials durch einen Spritzstrahl (32) mittels zumindest einer Spritzdüse (30) gemäß dem thermischen Spritzverfahren auf die Oberfläche (21) am Innenumfang oder am Außenumfang der Ringkörper-Schalungsform (2) mit einem sich in einer Richtung parallel zur Ringachse (Z) verringernden Innendurchmesser (d) zur Bildung eines ringförmigen Rohlings (4),
    a3) Bearbeiten des ringförmigen Rohlings (4) derart, dass ein im Querschnitt y-förmiger Ringkörper (44) mit einer zylindrischen Außenwand (45) und einer von dieser unter einem spitzen Winkel (α) radial schräg nach innen verlaufenden Krempe (46) entsteht,
    a4) Bearbeiten des radial inneren Umfangsrands (46') der Krempe (46) derart, dass sich die Wandstärke der Krempe (46) zum radial inneren Umfangsrand (46') hin verjüngt, wodurch am freien Ende der Krempe (46) der im Querschnitt schräg verlaufene Wandabschnitt (47) als Fase ausgebildet wird,
    a5) Entnehmen des y-förmigen Ringkörpers (44) aus der ersten Schalungsform (2).
  3. Verfahren zur Herstellung eines einen Leichtbau-Drucktank bildenden Leichtbau-Druckbehälters (1; 1') aus einem Metallmaterial mit zwei gewölbten Behälterböden (12, 14; 12', 14'; 12"), wobei die gewölbten Behälterböden (12, 14; 12', 14'; 12") miteinander oder mit zumindest einem zylindrischen Behälterabschnitt (10) verbunden oder integral ausgebildet sind, wobei zumindest einer der Behälterböden (12, 14; 12', 14'; 12") zumindest teilweise durch additive Fertigung mittels eines thermischen Spritzverfahrens nahtlos hergestellt wird, dadurch gekennzeichnet, dass das Metallmaterial mittels zumindest einer Spritzdüse (30, 30', 30", 30‴, 30"") als Spritzstrahl auf eine Oberfläche (21, 60, 60', 70, 90) zumindest einer Schalungsform (2, 6, 6', 6", 7, 9) aufgetragen wird und dass die Herstellung des jeweiligen gewölbten Behälterbodens (12") mit den folgenden Schritten erfolgt:
    a') Bereitstellen einer gewölbten Schalungsform (6'), die eine konkav oder konvex gewölbte Formoberfläche (60') aufweist,
    b') Auftragen des Metallmaterials durch einen Spritzstrahl (32"") mittels zumindest einer Spritzdüse (30"") gemäß dem thermischen Spritzverfahren auf die Formoberfläche (60') der gewölbten Schalungsform (6') zur Bildung eines gewölbten Domabschnitts (49");
    c') Ausbilden des Umfangsrandbereichs (49‴) des gewölbten Domabschnitts (49") auf der von der Formoberfläche (60') abgewandten Seite derart, dass sich dessen Wandstärke zum freien Umfangsrand hin verjüngt, wodurch auf der von der Formoberfläche (60') abgewandten Seite des Umfangsrandbereichs (49‴) ein im Querschnitt schräg verlaufener Wandabschnitt (49"") als Fase ausgebildet wird;
    d') Anformen eines Ringkörpers (44') an den Umfangsrandbereich (49‴) des Domabschnitts (49") durch Auftragen des Metallmaterials durch einen Spritzstrahl (32"") mittels zumindest einer Spritzdüse (30"") gemäß dem thermischen Spritzverfahren auf den im Querschnitt schräg verlaufenden Wandabschnitt (49"") des Domabschnitts (49") und auf eine Formoberfläche (6‴) einer weiteren Schalungsform (6") für den Ringkörper (44') und
    i) Entnehmen der den Behälterboden (12') bildenden Einheit aus Domabschnitt (49") und Ringkörper (44') aus der jeweiligen Schalungsform (6', 6").
  4. Verfahren nach Anspruch 1 oder 3,
    dadurch gekennzeichnet,
    dass vor der Bildung des gewölbten Domabschnitts (49, 49', 49") ein vorgefertigter Mannlochflansch (48), der im Bereich seines Außenumfangs einen ringförmigen, im Querschnitt schräg verlaufenden Wandabschnitt (48') aufweist, wodurch sich die Wand (48") des Mannlochflansches (48) zum Außenumfangsrand (48‴) des Mannlochflansches (48) hin verjüngt, derart in eine Ausnehmung (62) der gewölbten Schalungsform (6) eingelegt wird, dass der schräg verlaufende Wandabschnitt (48') von der Formoberfläche (60, 60') weg weist und
    dass bei der Bildung des gewölbten Domabschnitts (49, 49', 49") das Metallmaterial auch auf den schräg verlaufenden Wandungsabschnitt (48') des Mannlochflansches (48) aufgetragen wird, um diesen integral in den Domabschnitt (49, 49' 49") einzuformen.
  5. Verfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass charakteristische Eigenschaften des Spritzstrahls der zumindest einen Spritzdüse geändert werden, wenn dieser vom schräg verlaufenden Wandabschnitt (47; 48'; 48"") der Krempe (46) beziehungsweise des Domabschnitts (49") beziehungsweise des Mannlochflansches (48) weiter wandert und auf die Formoberfläche (60, 60') auftrifft, auf der noch kein Material mittels des thermischen Spritzverfahrens aufgetragen worden ist, und dass die charakteristischen Eigenschaften des Spritzstrahls wieder zurückgeändert werden, wenn dieser von der Formoberfläche (60, 60'), auf der noch kein Material mittels des thermischen Spritzverfahrens aufgetragen worden war, weiter wandert und auf den schräg verlaufenden Wandabschnitt (48'; 47; 48"") des Mannlochflansches (48) beziehungsweise der Krempe (46) beziehungsweise des Domabschnitts (49") auftrifft.
  6. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass nach dem Entnehmen des Behälterbodens (12, 14; 12') eine Oberflächenbearbeitung und/oder eine thermische Behandlung des Behälterbodens (12, 14; 12') durchgeführt wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Herstellung des zumindest einen zylindrischen Behälterabschnitts (10) mit den folgenden Schritten erfolgt:
    a") Bereitstellen einer zylindrischen Schalungsform (7),
    b") Auftragen des Metallmaterials durch einen Spritzstrahl (32") mittels zumindest einer Spritzdüse (30") auf eine Innenfläche (70) oder eine Außenfläche der zylindrischen Schalungsform (7) zur Bildung einer zylindrischen Behälterhaut (80),
    c") lokales Auftragen des Metallmaterials durch den Spritzstrahl (32") mittels der zumindest einen Spritzdüse (30") auf die Innenfläche beziehungsweise die Außenfläche der zylindrischen Behälterhaut (80) zur Erzeugung einer mit der Behälterhaut (80) integral ausgebildeten, Rippen (82, 84) aufweisenden Versteifungsstruktur (87; 87') zur Bildung eines zylindrischen Rohrkörpers (8),
    d") Entnehmen des den zylindrischen Behälterabschnitt (10) bildenden bearbeiteten zylindrischen Rohrkörpers (8) aus der dritten Schalungsform (7).
  8. Verfahren nach Anspruch 7,
    dadurch gekennzeichnet
    dass nach dem Schritt c") noch zumindest einer der folgenden Schritte durchgeführt wird:
    c"1) Planen der radial inneren Flächen (83; 85) der Versteifungsstruktur (87; 87') mittels mechanischer Bearbeitung,
    und/oder
    c"2) Planen der seitlichen Flächen (83', 83"; 85', 85") der Versteifungsstruktur (87; 87') mittels mechanischer Bearbeitung.
  9. Verfahren nach Anspruch 7 oder 8,
    dadurch gekennzeichnet,
    dass, die Versteifungsstruktur (87) in Form eines Orthogrids ausgebildet wird und dazu vorzugsweise parallel zur Zylinderachse (Z") verlaufende und in Umfangsrichtung voneinander beabstandete Längsrippen (82) sowie in Umfangsrichtung verlaufende und in Axialrichtung voneinander beabstandete Spanten (84) ausgebildet werden.
  10. Verfahren nach Anspruch 7 oder 8,
    dadurch gekennzeichnet,
    dass, die Versteifungsstruktur (87') in Form eines Isogrids ausgebildet wird.
  11. Verfahren nach einem der Ansprüche 7 bis 10,
    dadurch gekennzeichnet,
    dass nach dem Schritt d") eine Oberflächenbearbeitung und/oder eine thermische Behandlung des zylindrischen Behälterabschnitts (10) durchgeführt wird.
  12. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der zumindest eine zylindrische Behälterabschnitt (10) und die beiden Behälterböden (12, 14; 12', 14'; 12") separat voneinander mittels des thermischen Spritzverfahrens nahtlos hergestellt und anschließend zusammengefügt werden.
  13. Verfahren nach einem der Ansprüche 1 bis 11,
    dadurch gekennzeichnet,
    dass der zumindest eine zylindrische Behälterabschnitt (10) und zumindest einer der beiden Behälterböden (12, 14; 12', 14'; 12") integral miteinander mittels des thermischen Spritzverfahrens nahtlos hergestellt werden.
EP19762691.4A 2018-08-21 2019-08-20 Verfahren zur herstellung eines einen leichtbau-drucktank bildenden leichtbau-druckbehälters und leichtbau-druckbehälter Active EP3841323B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102018120293.8A DE102018120293A1 (de) 2018-08-21 2018-08-21 Verfahren zur Herstellung eines Leichtbau-Rohrmantelkörpers und Leichtbau-Rohrmantelkörper
DE102018120291.1A DE102018120291B3 (de) 2018-08-21 2018-08-21 Verfahren zur Herstellung eines einen Leichtbau-Drucktank bildenden Leichtbau-Druckbehälters und Leichtbau-Druckbehälter
PCT/EP2019/072241 WO2020038927A1 (de) 2018-08-21 2019-08-20 Verfahren zur herstellung eines einen leichtbau-drucktank bildenden leichtbau-druckbehälters und leichtbau-druckbehälter

Publications (3)

Publication Number Publication Date
EP3841323A1 EP3841323A1 (de) 2021-06-30
EP3841323B1 true EP3841323B1 (de) 2023-10-04
EP3841323C0 EP3841323C0 (de) 2023-10-04

Family

ID=67875425

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19762691.4A Active EP3841323B1 (de) 2018-08-21 2019-08-20 Verfahren zur herstellung eines einen leichtbau-drucktank bildenden leichtbau-druckbehälters und leichtbau-druckbehälter
EP19762693.0A Active EP3841324B1 (de) 2018-08-21 2019-08-20 Verfahren zur herstellung eines leichtbau-drucktanks und leichtbau-drucktank

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP19762693.0A Active EP3841324B1 (de) 2018-08-21 2019-08-20 Verfahren zur herstellung eines leichtbau-drucktanks und leichtbau-drucktank

Country Status (2)

Country Link
EP (2) EP3841323B1 (de)
WO (3) WO2020038930A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202020106328U1 (de) * 2019-11-08 2021-02-10 Additive Space Gmbh Behälter
DE102020203128A1 (de) * 2020-03-11 2021-09-16 Robert Bosch Gesellschaft mit beschränkter Haftung Tankbehälter zur Speicherung von Gasen und Verfahren zu dessen Herstellung
CN112548117B (zh) * 2020-11-06 2023-02-17 国铭铸管股份有限公司 衬塑异型管的制造工艺及应用该工艺制造的球墨铸管
WO2023057885A1 (en) * 2021-10-04 2023-04-13 H3 Dynamics Holdings Pte. Ltd. Fluid-storage tank
FR3135412A1 (fr) * 2022-05-16 2023-11-17 Airbus Operations (S.A.S.) Procédé de fabrication additive par dépôt de matière sous énergie focalisée permettant de réaliser des nervures sécantes et pièce nervurée obtenue à partir dudit procédé

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085343A (en) * 1989-10-23 1992-02-04 Martin Marietta Corporation Nested tank construction
US7128948B2 (en) * 2003-10-20 2006-10-31 The Boeing Company Sprayed preforms for forming structural members
DE102006044612A1 (de) 2006-09-19 2008-03-27 Linde Ag Verfahren zum Kaltgasspritzen
AU2009221571B2 (en) 2008-03-06 2014-03-06 Commonwealth Scientific And Industrial Research Organisation Manufacture of pipes
WO2011017752A1 (en) 2009-08-11 2011-02-17 Frontline Australasia Pty. Ltd. Method of forming seamless pipe of titanium and / or titanium alloys
DE102009045843A1 (de) 2009-10-20 2011-04-21 Huf Hülsbeck & Fürst Gmbh & Co. Kg Griffvorrichtung
DE102010060362A1 (de) 2010-11-04 2012-05-10 Linde Aktiengesellschaft Verfahren zum Herstellen eines Rohres
DE102013216439A1 (de) * 2013-05-22 2014-11-27 Siemens Aktiengesellschaft Verfahren zum Erzeugen eines schalenförmigen Bauteils sowie zur Anwendung dieses Verfahrens geeignete Herstellungsanlage
US9884369B2 (en) * 2014-03-03 2018-02-06 Apple Inc. Solid state deposition methods, apparatuses, and products
FR3025491A1 (fr) * 2014-09-09 2016-03-11 Assystem France Panneau raidi pour aeronef.
DE102015017026A1 (de) * 2015-12-31 2017-07-06 Hydac Technology Gmbh Verfahren zum Herstellen von Druckbehältern
FR3059578B1 (fr) * 2016-12-07 2019-06-28 Constellium Issoire Procede de fabrication d'un element de structure
US10589878B2 (en) * 2016-12-12 2020-03-17 The Boeing Company Additively manufactured reinforced structure

Also Published As

Publication number Publication date
EP3841324B1 (de) 2023-09-27
WO2020038927A4 (de) 2020-04-16
WO2020038927A1 (de) 2020-02-27
WO2020038930A1 (de) 2020-02-27
EP3841323A1 (de) 2021-06-30
EP3841324A1 (de) 2021-06-30
EP3841323C0 (de) 2023-10-04
WO2020038929A1 (de) 2020-02-27
EP3841324C0 (de) 2023-09-27

Similar Documents

Publication Publication Date Title
EP3841323B1 (de) Verfahren zur herstellung eines einen leichtbau-drucktank bildenden leichtbau-druckbehälters und leichtbau-druckbehälter
EP3135566B1 (de) Fahrzeugleichtbaustruktur in flexibler fertigung
EP3259381B1 (de) Verfahren zum herstellen eines bauteils durch thermisches spritzen und anlage zum herstellen eines bauteils mit einer vorrichtung zum thermischen spritzen
DE102008012064B4 (de) Verfahren sowie Vorrichtung zur Herstellung eines mittels eines Hybridverfahrens hergestellten Hybridformteils und nach dem Verfahren hergestelltes Hybridformteil
DE3942051B4 (de) Verfahren zum Herstellen von Triebwerkschaufeln durch Aufbauschweißung
EP2300218B1 (de) Duales herstellungsverfahren für kleinserienprodukte
EP3421157A1 (de) Verfahren zur herstellung eines laufrads einer rotationsmaschine sowie laufrad hergestellt nach einem solchen verfahren
DE112017001928T5 (de) Additive Maschine, welche eine Drehbildungsfläche verwendet
EP3251787A1 (de) Verfahren zur herstellung eines bauteils einer rotationsmaschine sowie bauteil hergestellt nach einem solchen verfahren
DE102014012425A1 (de) Verfahren zum Herstellen eines dreidimensionalen Objekts
DE102009033835B4 (de) Verfahren zum Austauschen einer Schaufel eines Rotors mit integrierter Beschaufelung und ein derartiger Rotor
WO2012171977A2 (de) Vorrichtung zum einspannen und ausrichten von segmentartig ausgebildeten, dünnwandigen und hohlprofilierten bauteilen
EP2669042A1 (de) Verfahren zur Herstellung eines Werkstücks mittels einer Zerspanvorrichtung
EP3299117A1 (de) Verfahren zur herstellung oder zur reparatur eines bauteils einer rotationsmaschine sowie bauteil hergestellt oder repariert nach einem solchen verfahren
EP1474270A1 (de) Verfahren und vorrichtung zum halten eines zu verbindenden, metallischen bauteils, insbesondere einer gasturbinenschaufel
EP3081669B1 (de) Verfahren zur herstellung von gedeckelten laufrädern
EP3715022B1 (de) Verfahren zur addivitven fertigung eines bauteils
DE102018120291B3 (de) Verfahren zur Herstellung eines einen Leichtbau-Drucktank bildenden Leichtbau-Druckbehälters und Leichtbau-Druckbehälter
DE102015119336B4 (de) Seiltrommel für eine Seilwinde sowie ein Verfahren zur generativen Fertigung einer Seiltrommel
EP3049199B1 (de) Verfahren zum herstellen eines verbindungselements sowie verbindungselement
EP4305315A1 (de) Herstellung eines laufrades in einem hybridverfahren
DE102018120293A1 (de) Verfahren zur Herstellung eines Leichtbau-Rohrmantelkörpers und Leichtbau-Rohrmantelkörper
EP2934806B1 (de) Reibrührwerkzeug, herstellverfahren hierfür und reibrührverfahren
WO2012051978A2 (de) Bauteil und verfahren zum ausbilden, reparieren und/oder aufbauen eines derartigen bauteils
DE102020116570B3 (de) Laufrad für eine hydraulische Maschine und Herstellungsverfahren

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210319

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230502

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019009579

Country of ref document: DE

U01 Request for unitary effect filed

Effective date: 20231031

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20231107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240204

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240105

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240104

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004