EP3839987B1 - Procédé et structure de conducteur pour fabriquer un enroulement électrique d'un appareil à induction électromagnétique - Google Patents
Procédé et structure de conducteur pour fabriquer un enroulement électrique d'un appareil à induction électromagnétique Download PDFInfo
- Publication number
- EP3839987B1 EP3839987B1 EP19217544.6A EP19217544A EP3839987B1 EP 3839987 B1 EP3839987 B1 EP 3839987B1 EP 19217544 A EP19217544 A EP 19217544A EP 3839987 B1 EP3839987 B1 EP 3839987B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- spacer elements
- conductor
- turn
- conductor element
- electric winding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004020 conductor Substances 0.000 title claims description 162
- 238000004804 winding Methods 0.000 title claims description 107
- 238000000034 method Methods 0.000 title claims description 33
- 230000005674 electromagnetic induction Effects 0.000 title claims description 24
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 125000006850 spacer group Chemical group 0.000 claims description 106
- 239000012777 electrically insulating material Substances 0.000 claims description 17
- 238000009826 distribution Methods 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 claims description 7
- 238000004026 adhesive bonding Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 description 10
- 239000003292 glue Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000011087 paperboard Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F5/00—Coils
- H01F5/06—Insulation of windings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2823—Wires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/32—Insulating of coils, windings, or parts thereof
- H01F27/322—Insulating of coils, windings, or parts thereof the insulation forming channels for circulation of the fluid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/32—Insulating of coils, windings, or parts thereof
- H01F27/323—Insulation between winding turns, between winding layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/04—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
- H01F41/12—Insulating of windings
- H01F41/122—Insulating between turns or between winding layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2823—Wires
- H01F2027/2838—Wires using transposed wires
Definitions
- the present invention relates to the field of electromagnetic induction apparatuses for electric power transmission and distribution grids, for example power transformers.
- the present invention relates to a method and a conductor structure for manufacturing an electric winding of an electromagnetic induction apparatus.
- Electric windings of electromagnetic induction apparatuses may be manufactured at industrial level according to various methods.
- a widely used method consists in winding a conductor around a winding direction, so that the electric winding has a plurality of adjacent turns arranged around said winding direction.
- electric windings for electromagnetic induction apparatuses have axial and radial channels to ensure the passage of an electrically insulating medium (e.g. insulating oil) among the turns.
- an electrically insulating medium e.g. insulating oil
- axial channels of an electric winding are obtained by arranging insulating blocks oriented in parallel to the winding direction.
- the above-mentioned insulating spacers are inserted manually between each pair of adjacent turns, during the winding process.
- the insulating spacers are fixed along a suitable lateral surface of a conductor intended to form the turns of the electric winding.
- the conductor structure so obtained is then wound around a winding direction.
- insulating spacers take position between each pair of adjacent turns of said electric winding.
- State-of-the-art electric windings for electromagnetic induction apparatuses generally perform their functions in a satisfying way. However, there are still some critical aspects.
- Electric windings in fact, often show deformed turns, particularly at the regions where radial channels are formed. Basically, this phenomenon is due to the fact that, in operation, an electric winding is subject to huge compressive forces along directions substantially parallel to its winding direction.
- the above-illustrated technical issue may lead to a dangerous unbalancing condition of the overall winding structure, which may cause its collapse in certain operating conditions, e.g. when short-circuit currents flow along the electric winding and this latter is subject to huge mechanical stresses.
- Document JP 2002 110434 A relates to a transposed conductor, wherein a plurality of wire conductors covered with insulating coating films of thermally fused bondability is laminated upon one another by dislocating the conductors from each other, so that the laminated positions of the conductors may successively change in the lengthwise direction and insulating plates are put on the side faces of the conductors which are parallel in the direction of lamination.
- the main aim of the present invention is to provide a method and a conductor structure for manufacturing an electric winding of an electromagnetic induction apparatus, which allows the above-mentioned critical aspects to be overcome or mitigated.
- another object of the present invention is providing a method and a conductor structure for manufacturing an electric winding, which allow obtaining an electric winding with a high structural balancing and a high resistance to mechanical stresses.
- Another object of the present invention is providing a method and a conductor structure for manufacturing an electric winding, which are relatively easy and inexpensive to implement at industrial level.
- the method according to the invention comprises the following steps:
- each turn of said electric winding is formed by a corresponding longitudinal portion of said conductor element.
- said spacer elements are interposed between adjacent turns of said electric winding at opposite sides of said turns.
- each spacer element which is positioned at one side of a turn, is partially overlapped with two other spacer elements, which are positioned at the opposite side of said turn, the overlapping direction being parallel to the winding direction.
- each first spacer element at the first side of a turn has at least two overlapping portions, each overlapped, according to suitable overlapping directions, with a corresponding overlapping portion of a different second spacer element at the second side of said turn.
- each second spacer element at the second side of a turn has at least two overlapping portions, each overlapped, according to suitable overlapping directions, with a corresponding overlapping portion of a different first spacer element at the second side of said turn.
- said overlapping directions are parallel to the winding direction of the electric winding.
- said conductor structure comprises first and second spacer elements with an elongated shape fixed to lateral surfaces of said conductor element along first and second fixing directions transversal to the main extension direction of said conductor element.
- said first fixing directions or said second fixing directions are perpendicular to the main extension direction of said conductor element. According to another possible variant of the invention, both said first fixing directions and said second fixing directions are not perpendicular to the main extension direction of said conductor element.
- said conductor structure comprises first and second spacer elements fixed to said conductor element on opposite lateral surfaces of said conductor element, along the main extension direction said conductor element.
- said conductor structure comprises first and second spacer elements fixed to said conductor element on a same lateral surface of said conductor element.
- said conductor structure comprises first spacer elements or second spacer elements made of a single piece of electrically insulating material.
- said conductor structure comprises first spacer elements or second spacer elements made of multiple pieces of electrically insulating material aligned along first fixing directions or second fixing directions, respectively.
- said spacer elements are fixed to said conductor element by gluing or by means of an electrically insulating tape or by means of an electrically insulating mesh wound around said conductor element.
- said conductor element is a continuously transposed conductor.
- the present invention relates to a conductor structure for an electromagnetic induction apparatus according to the following claim 13.
- the conductor structure comprises:
- the conductor structure forms an electric winding extending axially along said winding direction and having a plurality of adjacent turns arranged around said electric winding direction.
- each turn of said electric winding is formed by a corresponding longitudinal portion of said conductor element.
- said spacer elements are interposed between adjacent turns of said electric winding at opposite sides of said turns.
- each spacer element which is positioned at a side of said turn, is partially overlapped with two other spacer elements, which are positioned at the opposite side of said turn, the overlapping direction being parallel to the winding direction.
- the present invention relates to an electric winding for an electromagnetic induction apparatus, according to the following claim 14.
- the present invention relates to an electromagnetic induction apparatus for electric power transmission and distribution grids according to the following claim 15.
- said electromagnetic induction apparatus is an electric transformer for electric power transmission and distribution grids.
- the present invention relates to method for manufacturing an electric winding 100 of an electromagnetic induction apparatus (not shown) for electric power transmission and distribution grids.
- Such an electromagnetic induction apparatus may be an electric transformer for electric power transmission and distribution grids, for example a power transformer or a distribution transformer.
- the manufacturing method comprises a step of providing a conductor structure 1 intended to form the electric winding 100 ( figures 5-8 ).
- the conductor structure 1 comprises a conductor element 2 extending longitudinally along a main extension direction L ( figure 1 ).
- the conductor element 2 is shaped as an elongated parallelepiped including conductive material.
- the conductor element 2 has a shaped section (e.g. a rectangular or square cross section) opposite first and second lateral surfaces 2A, 2B and opposite third and fourth lateral surfaces 2C, 2D.
- a shaped section e.g. a rectangular or square cross section
- the conductor element 2 is a continuously transposed conductor.
- the conductor element 2 may be manufactured according to the construction shown in figure 1 .
- the conductor element 2 may comprise two or more stacks 21, 22 of conductors, which are placed side by side along the extension direction L of said conductor element.
- Stacked conductors 20 have portions alternating between the above-mentioned stacks 21, 22. In this way, portions of stacked conductors 20 alternately occupy every possible cross section position along the whole longitudinal extension of the conductor element 2.
- Stacked conductors 20 may be at least partially covered by electrically insulating material.
- the conductor element 2 may include an insulating separator 23 arranged between the stacks 21, 22 of conductors along the extension direction L of said conductor.
- the conductor element 2 may include an insulating tape or mesh (not shown) wound around the stacked conductors 20 to maintain these latter in position during the winding operations.
- the conductor element 2 may have different constructions (which may be of known type).
- it may include a single conductor, a plurality of conductors arranged side by side or a bundle of twisted conductors.
- the conductor element 2 may be formed by one or more conductive bars or by one or more conductive foils or disks.
- the conductor structure 1 include one or more layers of electrically insulating material arranged in such a way to externally cover the conductors of said conductor element.
- Such an electrically insulating material may be arranged according to solutions of known type.
- it may be selected in a group of materials comprising: paper, polyester materials, aramid or stabilized-PE materials, fiberglass materials, and the like.
- the conductor structure 1 comprises a plurality of spacer elements 3A, 3B (or spacers 3A, 3B) made of electrically insulating material ( figures 5-8 ).
- such an electrically insulating material is selected in a group of materials comprising: pressed paperboard, plastic materials, fiberglass materials, nylon-based materials.
- the spacer elements 3A, 3B have an elongated shape, e.g. with a rectangular or parallelogram shape.
- the spacer elements 3A, 3B are fixed to one or more lateral surfaces 2A, 2B of the conductor element 2 transversally with respect to the main extension direction L of said conductor element.
- the spacer elements 3A, 3B are arranged spaced one from another to delimit suitable empty regions 3C along the one or more lateral surfaces 2A, 2B of the conductor element 2.
- the spacer elements 3A, 3B are fixed to the conductor element 2 by gluing.
- the spacers 3A, 3B may be directly fixed to the conductors of the conductor element 2, or on an insulating layer of said conductor element or on an insulating tape or mesh surrounding said conductor element.
- the spacers 3A, 3B may have one surface or two opposite surfaces at least partially covered by glue.
- the glue may applied as a uniform layer, as a diamond-dot patterned layer, as a circle-dot patterned layer, as a line-patterned layer, as a matrix-patterned layer, and the like.
- Glue may be applied to the spacers 3A, 3B and/or to the corresponding fixing surfaces 2A, 2B of the conductor element 2 in a known manner, for example by spraying, brushing, dusting, by immersion or by applying a prepreg film activatable by UV radiation or heat.
- Gluing the spacer elements allows preventing or reducing possible undesired dislocations of said spacer elements.
- Such dislocations of the spacers 3A, 3B may occur due tangential forces exerted on the winding turns during the operation of the electromagnetic induction apparatus (this phenomenon is also referred to as "spiraling" of the electric winding) or during manufacturing.
- the spacer elements 3A, 3B are fixed to the conductor element 2 by means of an electrically insulating tape or an electrically insulating mesh wound around the conductor itself, e.g. made of a glass-fiber material or polyester.
- the spacers 3A, 3B may be directly fixed on the conductors 20 of the electrical conductor element 2, or on an insulating layer of said conductor or on an insulating tape or mesh surrounding said conductor.
- the conductor structure of the invention may comprise one or more strips of electrically insulating material (e.g. paper) fixed to corresponding one or more lateral surfaces of the conductor element along the main extension direction L of said conductor.
- said strips of insulating material may be fixed to the conductor element in a known manner, e.g. by gluing.
- the above-mentioned spacer elements are fixed to the said strips of electrically insulating material.
- the assembly so obtained may be wrapped by an insulating conductor or mesh to form the conductor structure.
- the conductor structure 1 is obtained, it is carried out a step of forming the electric winding 100 by means of the conductor structure 1 described above.
- the electric winding 100 extends axially along the winding direction DW ( figure 2 ).
- the step of forming the electric winding 100 include winding the conductor structure 1 around the winding direction DW.
- the step of forming the electric winding 100 may include the step of mechanically connecting separated portions of the conductor structure 1 to form the electric winding 100.
- the electric winding 100 has a plurality of adjacent turns 101 arranged around the winding direction DW ( figure 2 ).
- Each turn 101 is formed by a corresponding longitudinal portion of the conductor element 2 included in the winding structure 1.
- the first and second lateral surfaces 2A, 2B of the conductor element 2 are positioned perpendicular to the winding direction DW and form first and second sides 101A, 100B of each turn 101, which extend radially with respect to said winding direction, while the third and fourth lateral surfaces 2C, 2D of the conductor element 2 are positioned parallel to the winding direction DW and form third and fourth sides 101A, 100B of each turn 101, which extend parallel and coaxially to said winding direction ( figures 2A, 2B ).
- the spacer elements 3A, 3B are interposed between adjacent turns 101 at the first and second sides 101A, 100B of these latter. In this way, the spacer elements 3A, 3B extend along radial planes perpendicular to said the winding direction DW ( figure 2 ).
- the empty regions 3C delimited by the spacer elements 3A, 3B form radial channels 104 of the electric winding 100, which ensure the passage of an electrically insulating medium (e.g. insulating oil) among adjacent turns 101.
- an electrically insulating medium e.g. insulating oil
- each spacer element 3A, 3B at one side 101A, 100B of a turn 101 of the electric winding is partially overlapped with at least two spacer elements 3B, 3A at the opposite side 101B, 100A of said turn ( figures 2 , 2A , 2B , 3 , 4 ).
- each spacer element 3A, 3B at a side 101A, 100B of a turn 101 has at least two overlapping portions 30A, 30B, each overlapping with a corresponding overlapping portion 30B, 30A of a spacer element 3B, 3A at the opposite side 101B, 100A of said turn.
- Figures 2A, 2B show opposite views (i.e. related to the opposite sides 101A, 101B) of a portion of a turn 101 of an electric winding 100, manufactured according to an embodiment of the method of the invention.
- the turn 101 is formed by the conductor element 2, which may be manufactured as described above.
- first spacer elements 3A and second spacer element 3B are respectively positioned spaced one from another to define intermediate empty spaces 3C intended to form the radial channels 104 of the electric winding 100.
- Figure 3 shows opposite views (i.e. related to the opposite sides 100A, 101B) of a portion of a turn 101 of an electric winding 100, manufactured according to an embodiment of the method of the invention.
- the spacer elements 3A are oriented according to first fixing directions F1, which are transversal and perpendicular to the main extension direction L (longitudinal axis) of the conductor element 2.
- the spacer elements 3B are instead oriented according to second fixing directions F2, which are transversal and not perpendicular to the main extension direction L of the conductor element 2.
- Figure 4 shows opposite views (i.e. related to the opposite sides 100A, 101B) of a portion of a turn 101 of an electric winding 100, manufactured according to another embodiment of the method of the invention.
- both the first and second fixing directions F1 and F2 of the spacer elements 3A and 3B are transversal and not perpendicular to the main extension direction L of the conductor element 2.
- each spacer element 3A at the first side 100A of the turn 101 is overlapped with two spacer elements 3B at the second side 101B of the turn 101.
- each spacer element 3A has two overlapping portions 30A overlapped with a corresponding overlapping portion 30B of two different spacer elements 3B along suitable overlapping directions parallel to the winding direction DW.
- each spacer element 3B at the second side 100B of the turn 101 is overlapped with at least two spacer elements 3A at the first side 101A of the turn 101.
- each spacer element 3B has two overlapping portions 30B overlapped with a corresponding overlapping portion 30A of two different spacer elements 3A along suitable overlapping directions parallel to the winding direction DW.
- the spacer elements of the conductor structure 1 include first spacer elements 3A with an elongated shape (e.g. as an elongated plate of rectangular shape) fixed to the conductor element 2 along first fixing directions F1 transversal to the main extension direction L of said conductor element.
- first spacer elements 3A with an elongated shape (e.g. as an elongated plate of rectangular shape) fixed to the conductor element 2 along first fixing directions F1 transversal to the main extension direction L of said conductor element.
- the spacer elements of the conductor structure 1 include also second spacer elements 3B with an elongated shape (e.g. as an elongated plate of parallelogram shape) fixed to the conductor element 2 along second fixing directions F2 transversal to the main extension direction L of said conductor element.
- second spacer elements 3B with an elongated shape (e.g. as an elongated plate of parallelogram shape) fixed to the conductor element 2 along second fixing directions F2 transversal to the main extension direction L of said conductor element.
- the first and second fixing directions F1, F2 are not parallel.
- the fixing directions F1, F2 intersect one to another (when they are referred to a same reference plane).
- Both the first and second fixing directions F1 and F2 of the spacer elements 3A and 3B are transversal to the main extension direction L of the conductor element 2.
- the first fixing directions F1 or the second fixing directions F2 are perpendicular to the main extension direction L of the conductor element 2.
- both the first and second fixing directions F1 and F2 are not perpendicular to the main extension direction (L) of said conductor element.
- the first spacer elements 3A or the second spacer elements 3B may be made of a single piece of electrically insulating material.
- Figures 3-4 , 6-8 show embodiments of the invention in which both the spacers 3A, 3B are made of a single piece of insulating material.
- the first spacer elements 3A or the second spacer elements 3B may be made of multiple pieces of electrically insulating material aligned along the first fixing directions F1 or the second fixing directions F2.
- the first and second spacer elements 3A, 3B are fixed to the conductor element 2 on a same lateral surface 2A of said conductor.
- Figure 6 shows an embodiment of this type, in which the first and second spacer elements 3A, 3B are fixed at subsequent consecutive longitudinal portions 2E, 2F of the conductor element 2, along the main extension direction L of said conductor.
- each longitudinal portion 2E, 2F has a length (measured along the main extension direction L) equal to the length of a turn 101 of the electric winding 100.
- the first and second spacer elements 3A, 3B are fixed to the conductor element 2 on opposite lateral surfaces 2A, 2B of said conductor along the main extension direction L of this latter.
- Figure 7 shows an embodiment of this type, in which the first and second spacer elements 3A, 3B are fixed to opposite lateral surfaces 2A, 2B of the conductor element 2 at same longitudinal portions 2G of the conductor element 2, along the main extension direction L.
- the longitudinal portions 2G of said conductor, on which the spacers elements are fixed alternate (along the main extension direction L) with longitudinal portions 2H, on which no spacer elements are fixed.
- each longitudinal portion 2G, 2H has a length (measured along the main extension direction L) equal to the length of a turn of the electric winding 100.
- Figure 8 shows another embodiment of this type, in which the first and second spacer elements 3A, 3B are fixed to opposite lateral surfaces 2A, 2B of the conductor element 2 along the entire length of the conductor element 2.
- the spacer elements 3A, 3B of adjacent turns 101 may be overlapped and in contact one with another. This improves the overall structural sturdiness of the electric winding 100 even if it may cause an increased spacing between each pair of adjacent turns 101.
- the method and conductor structure, according to the invention provide relevant advantages.
- the method and conductor structure, according to the invention allow obtaining an electric winding with a high structural balancing and a high resistance to mechanical stresses, in particular to compression stresses.
- the method and conductor structure, according to the invention are relatively easy to implement at industrial level at competitive costs with respect to known solutions of the state of the art.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Coils Of Transformers For General Uses (AREA)
Claims (15)
- Procédé de fabrication d'un enroulement électrique (100) d'un appareil à induction électromagnétique, comportant les étapes suivantes :- mettre en place une structure (1) de conducteur comprenant un élément conducteur (2) s'étendant longitudinalement suivant une direction principale (L) d'extension et une pluralité d'éléments (3A, 3B) d'espacement constitués de matériau électriquement isolant, lesdits éléments d'espacement étant fixés à au moins une surface latérale (2A, 2B) dudit élément conducteur et étant disposés de manière espacée les uns par rapport aux autres le long de ladite surface latérale (2A, 2B) ;- former un enroulement électrique (100) au moyen de ladite structure de conducteur, ledit enroulement électrique s'étendant axialement suivant une direction (DW) d'enroulement et possédant une pluralité de spires (101) disposées autour de ladite direction d'enroulement,chaque spire (101) dudit enroulement électrique (100) étant formée par une partie longitudinale (2E, 2F) correspondante dudit élément conducteur (2) ;lesdits éléments (3A, 3B) d'espacement étant interposés entre des spires adjacentes dudit enroulement électrique (100) sur des côtés opposés (101A, 101B) desdites spires (101) ;caractérisé en ce que, pour au moins une spire (101) dudit enroulement électrique, chaque élément (3A, 3B) d'espacement d'un côté (101A) de ladite spire est en recouvrement partiel avec deux éléments (3A, 3B) d'espacement du côté opposé (101B) de ladite spire, la direction de recouvrement étant parallèle à la direction (DW) d'enroulement.
- Procédé selon la revendication 1, caractérisé en ce que, pour au moins une spire (101) dudit enroulement électrique :- un élément (3A) d'espacement d'un premier côté (101A) de ladite spire est en recouvrement avec au moins deux éléments (3B) d'espacement d'un second côté (101B) de ladite spire, qui est opposé audit premier côté ;- un élément (3B) d'espacement d'un second côté (101B) de ladite spire est en recouvrement avec au moins deux éléments (3A) d'espacement d'un premier côté (101A) de ladite spire .
- Procédé selon une ou plusieurs des revendications précédentes, caractérisé en ce que ladite structure (1) de conducteur comporte des premiers et seconds éléments (3A, 3B) d'espacement de forme allongée fixés à au moins une surface latérale (2A, 2B) dudit élément conducteur (2) suivant des premières et secondes directions (F1, F2) de fixation transversales à la direction principale (L) d'extension dudit élément conducteur.
- Procédé selon la revendication 3, caractérisé en ce que lesdites premières directions (F1) de fixation ou lesdites secondes directions (F2) de fixation sont perpendiculaires à la direction principale (L) d'extension dudit élément conducteur.
- Procédé selon la revendication 3, caractérisé en ce qu'à la fois lesdites premières directions (F1) de fixation et lesdites secondes directions (F2) de fixation sont non perpendiculaires à la direction principale (L) d'extension dudit élément conducteur.
- Procédé selon une ou plusieurs des revendications précédentes, caractérisé en ce que ladite structure (1) de conducteur comporte des premiers et seconds éléments (3A, 3B) d'espacement fixés audit élément conducteur (2) sur une même surface latérale (2A) dudit élément conducteur.
- Procédé selon une ou plusieurs des revendications 1 à 5, caractérisé en ce que ladite structure (1) de conducteur comporte des premiers et seconds éléments (3A, 3B) d'espacement fixés audit élément conducteur (2) sur des surfaces latérales (2A, 2B) opposées dudit élément conducteur.
- Procédé selon une des revendications précédentes, caractérisé en ce que ladite structure (1) de conducteur comporte des premiers éléments (3A) d'espacement ou des seconds éléments (3B) d'espacement constitués d'une seule pièce de matériau électriquement isolant.
- Procédé selon une des revendications précédentes, caractérisé en ce que ladite structure (1) de conducteur comporte des premiers éléments (3A) d'espacement ou des seconds éléments (3B) d'espacement constitués de multiples pièces de matériau électriquement isolant alignées suivant des premières directions (F1) de fixation ou des secondes directions (F2) de fixation, respectivement.
- Procédé selon une des revendications précédentes, caractérisé en ce que lesdits éléments (3A, 3B) d'espacement sont fixés audit élément conducteur (2) par collage ou au moyen d'un ruban électriquement isolant ou au moyen d'un grillage électriquement isolant enroulé autour dudit élément conducteur (2) .
- Procédé selon une ou plusieurs des revendications précédentes, caractérisé en ce que ledit élément conducteur (2) est un conducteur continuellement transposé.
- Procédé selon une ou plusieurs des revendications précédentes, caractérisé en ce que ledit appareil à induction électromagnétique est un transformateur électrique destiné à des réseaux de transport et de distribution d'énergie électrique.
- Structure (1) de conducteur pour appareil à induction électromagnétique, comportant :- un élément conducteur (2) s'étendant longitudinalement suivant une direction principale (L) d'extension ;- une pluralité d'éléments (3A, 3B) d'espacement constitués de matériau électriquement isolant, lesdits éléments d'espacement étant fixés à au moins une surface latérale (2A, 2B) dudit élément conducteur et étant disposés de manière espacée les uns par rapport aux autres le long de ladite surface latérale (2A, 2B) ;ladite structure (1) de conducteur formant un enroulement électrique (100) s'étendant axialement suivant une direction d'enroulement et possédant une pluralité de spires (101) disposées autour de ladite direction d'enroulement électrique, chaque spire (101) dudit enroulement électrique (100) étant formée par une partie longitudinale (2E, 2F) correspondante dudit élément conducteur (2) ;lesdits éléments (3A, 3B) d'espacement étant interposés entre des spires adjacentes dudit enroulement électrique (100) sur des côtés opposés (101A, 101B) desdites spires (101) ;caractérisé en ce que, pour au moins une spire dudit enroulement électrique, chaque élément (3A, 3B) d'espacement d'un côté de ladite spire est en recouvrement partiel avec deux éléments (3A, 3B) d'espacement du côté opposé de ladite spire, la direction de recouvrement étant parallèle à la direction (DW) d'enroulement.
- Enroulement électrique (100) pour appareil à induction électromagnétique caractérisé en ce qu'il comporte une structure (1) de conducteur selon la revendication 13.
- Appareil à induction électromagnétique destiné à des réseaux de transport et de distribution d'énergie électrique, caractérisé en ce qu'il comprend un enroulement électrique (100) selon la revendication 14.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19217544.6A EP3839987B1 (fr) | 2019-12-18 | 2019-12-18 | Procédé et structure de conducteur pour fabriquer un enroulement électrique d'un appareil à induction électromagnétique |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19217544.6A EP3839987B1 (fr) | 2019-12-18 | 2019-12-18 | Procédé et structure de conducteur pour fabriquer un enroulement électrique d'un appareil à induction électromagnétique |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3839987A1 EP3839987A1 (fr) | 2021-06-23 |
EP3839987B1 true EP3839987B1 (fr) | 2024-04-17 |
Family
ID=68965614
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19217544.6A Active EP3839987B1 (fr) | 2019-12-18 | 2019-12-18 | Procédé et structure de conducteur pour fabriquer un enroulement électrique d'un appareil à induction électromagnétique |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP3839987B1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3859760B1 (fr) * | 2020-01-30 | 2024-06-19 | Hitachi Energy Ltd | Procede et structure conductrice pour la fabrication d'un enroulement electrique d'un appareil a induction electromagnetique |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH567327A5 (fr) * | 1973-12-19 | 1975-09-30 | Bbc Brown Boveri & Cie | |
AT403972B (de) * | 1994-02-25 | 1998-07-27 | Asta Elektrodraht Gmbh | Drilleiter für wicklungen elektrischer maschinen und geräte |
JP4613407B2 (ja) * | 2000-10-02 | 2011-01-19 | 富士電機システムズ株式会社 | 転位導体および誘導電器巻線 |
IT201800002572U1 (it) * | 2018-05-17 | 2019-11-17 | Cavo trasposto e avvolgimento realizzato mediante detto cavo trasposto |
-
2019
- 2019-12-18 EP EP19217544.6A patent/EP3839987B1/fr active Active
Also Published As
Publication number | Publication date |
---|---|
EP3839987A1 (fr) | 2021-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4538131A (en) | Air-core choke coil | |
EP2052393B1 (fr) | Transformateur bobiné à refroidissement amélioré et répartition de tension par impulsion et son procédé de fabrication | |
WO2007142823A2 (fr) | Transformateur bobiné en forme de disque avec un feuillard conducteur et procédé de fabrication de celui-ci | |
EP2263243B1 (fr) | Enroulement en disque | |
KR20120094014A (ko) | 연속 교차 도전체 | |
EP3839987B1 (fr) | Procédé et structure de conducteur pour fabriquer un enroulement électrique d'un appareil à induction électromagnétique | |
US7830233B2 (en) | Electrical induction device for high-voltage applications | |
EP2963662B1 (fr) | Transformateur rempli d'huile | |
US11657961B2 (en) | Method and conductor structure for manufacturing an electric winding of an electromagnetic induction apparatus | |
US2666254A (en) | Method of manufacturing electrical windings | |
US20220277895A1 (en) | Method and conductor structure for manufacturing an electric winding of an electromagnetic induction apparatus | |
CN112262444A (zh) | 超导线、堆叠式超导线、超导线圈和超导电缆 | |
US9111677B2 (en) | Method of manufacturing a dry-type open wound transformer having disc windings | |
US6023216A (en) | Transformer coil and method | |
WO2020053931A1 (fr) | Inducteur statique | |
JP6255697B2 (ja) | 樹脂モールドコイル及びその製造方法とモールド変圧器 | |
JP2002118020A (ja) | 転位導体および誘導電器巻線 | |
JPH0230106A (ja) | シェル型パワー・トランス用改良型高圧巻線 | |
JP2009110997A (ja) | 誘導電器巻線およびその巻回方法 | |
EP0409479B1 (fr) | Procede de fabrication d'un appareil electromagnetique | |
JP4845239B2 (ja) | 誘導加熱用コイル | |
WO2003067616A1 (fr) | Enroulements discoides | |
AU2002325092B2 (en) | Improved transformer winding | |
WO2016202686A1 (fr) | Procédé de fabrication d'un câble pour un enroulement d'un dispositif à induction électromagnétique | |
JPH0719692B2 (ja) | 超電導コイル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20211109 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: HITACHI ENERGY SWITZERLAND AG |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: FORSLIN, JULIA Inventor name: PAVANELLO, PAOLO Inventor name: BUSTREO, GIANLUCA |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230527 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01F 41/12 20060101ALI20231017BHEP Ipc: H01F 27/32 20060101ALI20231017BHEP Ipc: H01F 27/28 20060101ALI20231017BHEP Ipc: H01F 5/06 20060101AFI20231017BHEP |
|
INTG | Intention to grant announced |
Effective date: 20231113 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: HITACHI ENERGY LTD |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: FORSLIN, JULIA Inventor name: PAVANELLO, PAOLO Inventor name: BUSTREO, GIANLUCA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602019050372 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20240417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240417 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240819 |