EP3839642A1 - Procede de fabrication de ressorts horlogers et masque de gravure pour un tel procede - Google Patents

Procede de fabrication de ressorts horlogers et masque de gravure pour un tel procede Download PDF

Info

Publication number
EP3839642A1
EP3839642A1 EP19218414.1A EP19218414A EP3839642A1 EP 3839642 A1 EP3839642 A1 EP 3839642A1 EP 19218414 A EP19218414 A EP 19218414A EP 3839642 A1 EP3839642 A1 EP 3839642A1
Authority
EP
European Patent Office
Prior art keywords
springs
plate
watch
etching
stiffness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19218414.1A
Other languages
German (de)
English (en)
Inventor
Sylvain Jeanneret
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Patek Philippe SA Geneve
Original Assignee
Patek Philippe SA Geneve
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patek Philippe SA Geneve filed Critical Patek Philippe SA Geneve
Priority to EP19218414.1A priority Critical patent/EP3839642A1/fr
Publication of EP3839642A1 publication Critical patent/EP3839642A1/fr
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B1/00Driving mechanisms
    • G04B1/10Driving mechanisms with mainspring
    • G04B1/14Mainsprings; Bridles therefor
    • G04B1/145Composition and manufacture of the springs
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring

Definitions

  • the present invention relates to a method of manufacturing watch springs.
  • spring is meant any elastically deformable element to receive energy and / or produce a force or a movement.
  • watch springs are hairsprings intended to be fitted to balances, rocker, lever or hammer return springs, jumpers or flexible guides.
  • the present invention relates more particularly to the manufacture of watch springs by etching a plate of material. It is now well known in watchmaking to use engraving techniques such as laser engraving, plasma engraving, deep reactive ionic engraving (known as DRIE) or wet engraving to manufacture components in large numbers and precisely. watchmakers.
  • the most common engraving material is silicon.
  • Several types of silicon have been proposed as an engraving material in watchmaking, in particular monocrystalline silicon oriented along the crystallographic axis ⁇ 100> (cf. for example the patent EP 1422436 ), monocrystalline silicon oriented along the crystallographic axis ⁇ 111> (cf. for example the patent EP 2215531 ), monocrystalline silicon oriented along the crystallographic axis ⁇ 110> (cf.
  • the present invention aims to attenuate the dispersion of stiffness of watch springs obtained from the same plate of engraving material.
  • a method for manufacturing watch springs comprising a step consisting in etching the watch springs in at least part of the thickness of a plate, the plate being made of an anisotropic material in said at least one. part of the thickness, characterized in that the etching is carried out in such a way that the watch springs have different orientations in the plate to reduce their dispersion of stiffness.
  • the invention further proposes an engraving mask comprising an engraved design representative of watch springs, characterized in that in the engraved design the watch springs have different orientations such that by the engraving of at least a part, in material anisotropic, of the thickness of a plate through the etching mask, it is possible to obtain watch springs whose stiffness dispersion is reduced.
  • the method according to the invention uses an anisotropic etching material and exploits this anisotropy to reduce the stiffness dispersion of watch springs of the same geometry and of the same size.
  • the diagram of the figure 1 represents the modulus of elasticity of monocrystalline silicon in the (100) plane as a function of the crystallographic directions. It can be seen in particular that the modulus of elasticity varies between a minimum value and a maximum value over an angle of 45 °.
  • the teaching of the patent EP 3056948 B1 does not take into account the inhomogeneity of etching in the same plate. By orienting the spirals of the same plate in a particular direction, one gives them an average stiffness but one does not solve the problem of the dispersion of stiffness.
  • the figure 3 shows, at mark 12, a typical bell-shaped dispersion curve defining a number N of classes of balance springs. The objective of the invention is to reduce the number of classes, in other words to tighten the bell curve 12, as shown by the dotted line 13.
  • the invention is based on the observation that the etching inhomogeneity, and therefore the dispersion of stiffness, is repeated from one plate of etching material to the next when the parameters of the etching process are kept unchanged. As shown in figure 4 , it is possible to identify on the plate of engraving material, designated by 14, different zones Z1, Z2, Z3, etc. corresponding to different stiffnesses. In the case of plasma etching, in particular deep reactive ion etching, the areas are circular and concentric.
  • a zone Z2 and a zone Z4 can contain hairsprings having substantially the desired stiffness and therefore corresponding to a class located in the middle of the dispersion curve 12, while zones Z1, Z3, Z5 ... can contain springs.
  • balance springs having different stiffness from the desired stiffness and different from one zone to another.
  • the stiffnesses are substantially identical and belong to the same class. According to the invention, no measure is taken concerning the balance springs of zones Z2 and Z4 which have the desired stiffness.
  • the balance springs are oriented differently in the plate in order to modify their stiffness and to bring it closer to the desired stiffness value.
  • the hairsprings have the same orientation but the orientation varies according to the zone Zi where they are located, as shown schematically by figure 4 .
  • the orientation is defined for example by the oriented half-line 15 starting from the geometric center of the hairspring and passing through the outer end of the active part of the hairspring, as illustrated in figure 2 .
  • the differences in orientation between the balance springs in the different zones depend on the engraving parameters.
  • the maximum difference in orientation can be 45 °. It is typically at least 10 °, or even at least 20 °, or even at least 30 °.
  • the spirals are attached to the plate 14 by one or more bridges of material left during the etching, for example a bridge of material 16 at their outer end.
  • the stiffness of a given hairspring can be measured by coupling the hairspring to a balance of predetermined inertia and by measuring the frequency of the balance-spring assembly, this while the hairspring is still attached to the plate 14 or after its detachment.
  • the orientation to be given to each hairspring can be calculated as a function of the stiffness measured with respect to the desired stiffness and as a function of the geometry of the hairspring and of the anisotropy of the modulus of elasticity of the etching material.
  • FIG. 5 An example of an implementation of a method for manufacturing watch balance springs according to the invention, with silicon as an etching material, is shown in figure 5 .
  • a wafer 1 made of silicon-on-insulator type material known by the acronym SOI (Silicon-On-Insulator).
  • SOI Silicon-On-Insulator
  • the wafer 1 comprises an upper layer of silicon 2, a lower layer of silicon 3 and, between the two, an intermediate layer of silicon oxide 4.
  • the silicon is anisotropic, that is to say monocrystalline of type ⁇ 100 > or ⁇ 110>.
  • a photosensitive lacquer layer 5 is deposited on the upper silicon layer 2 and this layer 5 is structured by photolithography. More precisely, we expose the lacquer layer photosensitive 5 to ultraviolet rays through a mask 6 comprising a plate 6a transparent to ultraviolet rays and a structure to be transferred 6b carried by the plate 6a, the plate 6a being typically made of glass or quartz and the structure to be transferred 6b being typically made of chrome . Then the photosensitive lacquer layer 5 is developed and baked ( figure 5 (c) ). At the end of these operations, the photosensitive lacquer layer 5 has the same shape as the structure 6b and in turn constitutes a mask, said shape corresponding to that of a batch of balance springs to be manufactured.
  • the upper layer of silicon 2 is etched through the photosensitive lacquer mask 5 by deep reactive ion etching called DRIE (Deep Reactive Ion Etching) in order to form the balance-springs in this layer 2.
  • DRIE Deep Reactive Ion Etching
  • the etching is stopped by the intermediate layer d silicon oxide 4, thus making it possible to define a precise thickness for the balance-springs.
  • the number of balance springs is typically at least one hundred, preferably at least five hundred, more preferably at least six hundred. This number depends on the size of the plate 1 (typically 150 or 200 mm in diameter) and on the size of the balance springs.
  • the photosensitive lacquer mask 5 is then removed by chemical etching or plasma etching ( figure 5 (e) ).
  • a plate 8 formed by all or part of the upper silicon layer 2 etched is released from the plate 1.
  • This plate 8 contains a base structure and the balance springs attached to the base structure by bridges of material left during the engraving.
  • the spirals can be subjected to various treatments before being released from the plate 8.
  • a variant may consist in replacing the SOI wafer 1 with a simple wafer of anisotropic silicon and in etching the balance-springs throughout the thickness of the wafer.
  • the balance springs in the engraved pattern that constitutes the structure 6b of the etching mask 6, and therefore in the upper layer of silicon 2 then in the plate 8, the balance springs have different orientations chosen as a function of the anisotropy of the etching material (silicon of layer 2) to reduce their dispersion of stiffness, that is to say tighten the bell curve 12, according to the principle explained above.
  • a batch of balance springs that is more homogeneous in terms of stiffness is thus obtained, which makes it possible to significantly reduce the number of classes and therefore to ease the management of the stock of balance springs.
  • the operation of pairing the balance springs with balances is made easier and may even no longer be necessary.
  • the etching mask 6 could be a plate opaque to ultraviolet rays and engraved over its entire thickness (perforated mask or “shadow mask”).
  • the present invention is not limited to balance springs. It can be applied to any type of watch spring, for example to tilt, lever or hammer return springs, to jumpers, to flexible guides, in particular to flexible oscillator guides without pivots.
  • the watch spring in the invention in particular in the case of flexible guides, can be part of a monolithic component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)
  • Springs (AREA)

Abstract

Le procédé de fabrication de ressorts horlogers selon l'invention comprend une étape consistant à graver les ressorts horlogers (10) dans une plaque (14) en matériau anisotrope. La gravure est effectuée de telle manière que les ressorts horlogers (10) aient des orientations différentes dans la plaque (14) pour réduire leur dispersion de raideur. L'invention porte aussi sur un masque de gravure pour la mise en œuvre de ce procédé.

Description

  • La présente invention concerne un procédé de fabrication de ressorts horlogers. Par le terme « ressort » on entend tout élément déformable élastiquement pour accueillir de l'énergie et/ou produire une force ou un mouvement. Des exemples de ressort horloger sont les spiraux destinés à équiper des balanciers, les ressorts de rappel de bascule, de levier ou de marteau, les sautoirs ou les guidages flexibles.
  • La présente invention concerne plus particulièrement la fabrication de ressorts horlogers par gravure d'une plaque de matériau. Il est en effet maintenant bien connu dans l'horlogerie d'utiliser des techniques de gravure telles que gravure au laser, gravure au plasma, gravure ionique réactive profonde (dite DRIE) ou gravure humide pour fabriquer en grand nombre et de manière précise des composants horlogers. Le matériau de gravure le plus courant est le silicium. Plusieurs types de silicium ont été proposés comme matériau de gravure dans l'horlogerie, notamment le silicium monocristallin orienté suivant l'axe cristallographique <100> (cf. p.ex. le brevet EP 1422436 ), le silicium monocristallin orienté suivant l'axe cristallographique <111> (cf. p.ex. le brevet EP 2215531 ), le silicium monocristallin orienté suivant l'axe cristallographique <110> (cf. p.ex. le brevet EP 3056948 ) et le silicium polycristallin (cf. p.ex. la demande de brevet US 2018/0142749 ). Le silicium <111> et le silicium polycristallin sont isotropes. Le silicium <100> et le silicium <110> sont anisotropes. Le silicium <100> est le plus couramment utilisé.
  • Actuellement, sur une plaque de matériau de gravure on grave généralement plusieurs centaines de composants. Bien que les géométries de ces composants soient théoriquement identiques, en pratique les caractéristiques de gravure ne sont pas parfaitement homogènes sur toute la plaque. Les ressorts fabriqués dans une telle plaque ne peuvent donc pas avoir tous la même raideur. Cette dispersion de raideur oblige ainsi, par exemple, les fabricants horlogers à classer les spiraux en fonction de leur raideur et ensuite à les appairer avec des balanciers eux-mêmes classés en fonction de leur inertie afin d'obtenir la fréquence d'oscillation souhaitée. Le nombre de classes de spiraux par plaque de matériau de gravure peut être de plusieurs dizaines, ce qui impose de gérer des stocks importants de spiraux. De manière générale, la dispersion de raideur que connaissent les ressorts horlogers d'un même lot pose des problèmes en termes de précision de fonctionnement, que ce soit pour des oscillateurs mécaniques ou pour des systèmes de rappel.
  • La présente invention vise à atténuer la dispersion de raideur de ressorts horlogers obtenus à partir d'une même plaque de matériau de gravure.
  • A cette fin, il est proposé un procédé de fabrication de ressorts horlogers, comprenant une étape consistant à graver les ressorts horlogers dans au moins une partie de l'épaisseur d'une plaque, la plaque étant en un matériau anisotrope dans ladite au moins une partie de l'épaisseur, caractérisé en ce que la gravure est effectuée de telle manière que les ressorts horlogers aient des orientations différentes dans la plaque pour réduire leur dispersion de raideur.
  • L'invention propose en outre un masque de gravure comprenant un dessin gravé représentatif de ressorts horlogers, caractérisé en ce que dans le dessin gravé les ressorts horlogers ont des orientations différentes de telle sorte que par la gravure d'au moins une partie, en matériau anisotrope, de l'épaisseur d'une plaque à travers le masque de gravure on puisse obtenir des ressorts horlogers dont la dispersion de raideur est réduite.
  • Des modes de réalisation particuliers de l'invention sont définis dans les revendications dépendantes annexées.
  • D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description détaillée suivante faite en référence aux dessins annexés dans lesquels :
    • la figure 1 est un diagramme représentant le module d'élasticité ou module de Young du silicium dans le plan (100) en fonction de l'orientation par rapport aux axes cristallographiques ;
    • la figure 2 est une vue de dessus d'un spiral horloger gravé dans une plaque de matériau de gravure ;
    • la figure 3 est un diagramme représentant le nombre de spiraux horlogers obtenus à partir d'une même plaque de matériau de gravure en fonction de leur raideur ;
    • la figure 4 montre schématiquement une plaque de matériau dans laquelle sont gravés des spiraux horlogers ;
    • la figure 5 montre des étapes successives d'un procédé de fabrication de spiraux horlogers selon l'invention.
  • Le procédé selon l'invention utilise un matériau de gravure anisotrope et exploite cette anisotropie pour réduire la dispersion de raideur de ressorts horlogers de même géométrie et de même taille. Le silicium <100> couramment utilisé dans l'horlogerie, de même que d'autres matériaux utilisés ou utilisables comme le silicium <110>, le saphir ou le carbure de silicium, est anisotrope en ce sens que le module d'élasticité varie en fonction de l'orientation par rapport aux axes cristallographiques. A titre d'illustration, le diagramme de la figure 1 représente le module d'élasticité du silicium monocristallin dans le plan (100) en fonction des directions cristallographiques. On peut voir notamment que le module d'élasticité varie entre une valeur minimum et une valeur maximum sur un angle de 45°.
  • Si l'on prend comme exemple de ressort horloger un spiral 10 tel qu'illustré à la figure 2, on constate que si son nombre de tours n'est pas un nombre entier (en excluant la ou les éventuelles parties intermédiaires rigides, non actives, comme la portion renforcée 11), alors le module élastique moyen du matériau le long du spiral diffère selon l'orientation du spiral dans la plaque dans laquelle il est gravé. Il est donc possible de régler la raideur du spiral en choisissant une orientation particulière, comme cela est suggéré au paragraphe 62 du brevet EP 3056948 B1 .
  • L'enseignement du brevet EP 3056948 B1 ne tient cependant pas compte de l'inhomogénéité de gravure dans une même plaque. En orientant les spiraux d'une même plaque dans une direction particulière, on leur donne une raideur moyenne mais on ne règle pas le problème de la dispersion de raideur. La figure 3 montre, au niveau du repère 12, une courbe de dispersion typique, en cloche, définissant un nombre N de classes de spiraux. L'objectif de l'invention est de réduire le nombre de classes, en d'autres termes de resserrer la courbe en cloche 12, comme montré par le pointillé 13.
  • L'invention repose sur l'observation selon laquelle l'inhomogénéité de gravure, et donc la dispersion de raideur, se répète d'une plaque de matériau de gravure à la suivante lorsqu'on garde les paramètres du procédé de gravure inchangés. Comme montré à la figure 4, on peut identifier sur la plaque de matériau de gravure, désignée par 14, différentes zones Z1, Z2, Z3, etc. correspondant à des raideurs différentes. Dans le cas d'une gravure au plasma, en particulier d'une gravure ionique réactive profonde, les zones sont circulaires et concentriques.
  • Par exemple, une zone Z2 et une zone Z4 peuvent contenir des spiraux ayant sensiblement la raideur souhaitée et correspondant donc à une classe située au milieu de la courbe de dispersion 12, tandis que des zones Z1, Z3, Z5... peuvent contenir des spiraux ayant des raideurs différentes de la raideur souhaitée et différentes d'une zone à l'autre. Dans chaque zone Zi les raideurs sont sensiblement identiques et appartiennent à la même classe. Selon l'invention, aucune mesure n'est prise concernant les spiraux des zones Z2 et Z4 qui ont la raideur souhaitée. En ce qui concerne les autres zones, en revanche, on oriente différemment les spiraux dans la plaque afin de modifier leur raideur et de la rapprocher de la valeur de raideur souhaitée.
  • Ainsi, dans une zone Zi donnée les spiraux ont la même orientation mais l'orientation varie en fonction de la zone Zi où ils se trouvent, comme le montre schématiquement la figure 4. L'orientation est définie par exemple par la demi-droite orientée 15 partant du centre géométrique du spiral et passant par l'extrémité externe de la partie active du spiral, comme illustré à la figure 2. Les différences d'orientation entre les spiraux des différentes zones dépendent des paramètres de gravure. La différence maximale d'orientation peut être de 45°. Elle est typiquement d'au moins 10°, voire d'au moins 20°, voire encore d'au moins 30°.
  • En pratique, les spiraux sont attachés à la plaque 14 par un ou des ponts de matière laissés pendant la gravure, par exemple un pont de matière 16 au niveau de leur extrémité extérieure. La raideur d'un spiral donné peut être mesurée en couplant le spiral à un balancier d'inertie prédéterminée et en mesurant la fréquence de l'ensemble balancier-spiral, ceci alors que le spiral est encore attaché à la plaque 14 ou après son détachement. L'orientation à donner à chaque spiral peut être calculée en fonction de la raideur mesurée par rapport à la raideur souhaitée et en fonction de la géométrie du spiral et de l'anisotropie du module d'élasticité du matériau de gravure.
  • Un exemple de mise œuvre d'un procédé de fabrication de spiraux horlogers selon l'invention, avec du silicium comme matériau de gravure, est montré à la figure 5.
  • A une première étape (figure 5(a)), on se munit d'une plaque 1 en matériau de type silicium sur isolant connu sous l'acronyme SOI (Silicon-On-Insulator). La plaque 1 comprend une couche supérieure de silicium 2, une couche inférieure de silicium 3 et, entre les deux, une couche intermédiaire d'oxyde de silicium 4. Le silicium est anisotrope, c'est-à-dire monocristallin de type <100> ou <110>.
  • A une deuxième étape (figure 5(b)), on dépose sur la couche supérieure de silicium 2 une couche de laque photosensible 5 et on structure cette couche 5 par photolithographie. Plus précisément, on expose la couche de laque photosensible 5 à des rayons ultraviolets à travers un masque 6 comprenant une plaque 6a transparente aux ultraviolets et une structure à transférer 6b portée par la plaque 6a, la plaque 6a étant typiquement en verre ou en quartz et la structure à transférer 6b étant typiquement en chrome. Puis la couche de laque photosensible 5 est développée et cuite (figure 5(c)). A l'issue de ces opérations, la couche de laque photosensible 5 présente la même forme que la structure 6b et constitue à son tour un masque, ladite forme correspondant à celle d'un lot de spiraux à fabriquer.
  • A une étape suivante (figure 5(d)), on grave la couche supérieure de silicium 2 à travers le masque de laque photosensible 5 par gravure ionique réactive profonde dite DRIE (Deep Reactive Ion Etching) afin de former les spiraux dans cette couche 2. La gravure est arrêtée par la couche intermédiaire d'oxyde de silicium 4, permettant ainsi de définir une épaisseur précise pour les spiraux. Le nombre de spiraux est typiquement d'au moins cent, de préférence d'au moins cinq cents, de préférence encore d'au moins six cents. Ce nombre dépend de la taille de la plaque 1 (typiquement de 150 ou 200 mm de diamètre) et de la taille des spiraux.
  • Le masque de laque photosensible 5 est ensuite éliminé par gravure chimique ou gravure plasma (figure 5(e)).
  • A une étape suivante (figure 5(f)), on libère de la plaque 1 une plaque 8 formée par tout ou partie de la couche supérieure de silicium 2 gravée. Cette plaque 8 contient une structure de base et les spiraux attachés à la structure de base par des ponts de matière laissés lors de la gravure.
  • Puis les spiraux peuvent être soumis à divers traitements avant d'être libérés de la plaque 8. On peut par exemple modifier leurs dimensions, par oxydation-désoxydation ou autre, pour que la raideur moyenne des spiraux dans la plaque 8 ait une valeur prédéterminée (mise en fréquence), puis les oxyder pour améliorer leur résistance mécanique et les thermocompenser.
  • Pour plus de détails sur la mise en œuvre de chacune des étapes décrites ci-dessus, on pourra se reporter à la demande de brevet WO 2019/180596 dont le contenu est incorporé à la présente demande par renvoi.
  • On notera par ailleurs qu'une variante peut consister à remplacer la plaque SOI 1 par une simple plaque de silicium anisotrope et à graver les spiraux dans toute l'épaisseur de la plaque.
  • Conformément à la présente invention, dans le dessin gravé que constitue la structure 6b du masque de gravure 6, et donc dans la couche supérieure de silicium 2 puis dans la plaque 8, les spiraux ont des orientations différentes choisies en fonction de l'anisotropie du matériau de gravure (silicium de la couche 2) pour réduire leur dispersion de raideur, c'est-à-dire resserrer la courbe en cloche 12, selon le principe exposé plus haut. On obtient ainsi un lot de spiraux plus homogène en termes de raideur, ce qui permet de réduire sensiblement le nombre de classes et donc d'alléger la gestion du stock de spiraux. L'opération d'appairage des spiraux avec des balanciers est rendue plus facile et peut même n'être plus nécessaire.
  • Au lieu d'être sous la forme d'une plaque 6a portant une structure à transférer 6b, le masque de gravure 6 pourrait être une plaque opaque aux ultraviolets et gravée sur toute son épaisseur (masque perforé ou « shadow mask »).
  • La présente invention n'est pas limitée à des spiraux. Elle peut s'appliquer à tout type de ressort horloger, par exemple à des ressorts de rappel de bascule, de levier ou de marteau, à des sautoirs, à des guidages flexibles, en particulier à des guidages flexibles d'oscillateur sans pivots. Le ressort horloger dans l'invention, notamment dans le cas des guidages flexibles, peut être une partie d'un composant monolithique.

Claims (9)

  1. Procédé de fabrication de ressorts horlogers, comprenant une étape consistant à graver les ressorts horlogers dans au moins une partie de l'épaisseur d'une plaque (1, 14), la plaque (1, 14) étant en un matériau anisotrope dans ladite au moins une partie de l'épaisseur, caractérisé en ce que la gravure est effectuée de telle manière que les ressorts horlogers aient des orientations différentes dans la plaque (1, 14) pour réduire leur dispersion de raideur.
  2. Procédé selon la revendication 1, caractérisé en ce qu'à la fin de l'étape de gravure, des zones (Z1-Z5) de la plaque (1, 14) comprennent chacune plusieurs ressorts horlogers, en ce que les ressorts horlogers dans chaque zone (Z1-Z5) ont la même orientation et en ce que l'orientation des ressorts horlogers varie en fonction des zones (Z1-Z5) où ils se trouvent.
  3. Procédé selon la revendication 2, caractérisé en ce que les zones (Z1-Z5) sont circulaires et concentriques.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'au moins cent, de préférence au moins cinq cents, de préférence au moins six cents, ressorts horlogers sont gravés dans la plaque (1).
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la différence maximale d'orientation entre les ressorts horlogers dans la plaque (1) est d'au moins 10°, de préférence d'au moins 20°, de préférence d'au moins 30°, de préférence d'au moins 45°.
  6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les ressorts horlogers sont des spiraux, des ressorts de rappel de bascule, de levier ou de marteau, des sautoirs ou des guidages flexibles.
  7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le matériau anisotrope est du silicium.
  8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que l'étape de gravure est une étape de gravure au plasma, de préférence une étape de gravure ionique réactive profonde.
  9. Masque de gravure (6) comprenant un dessin gravé (6b) représentatif de ressorts horlogers, caractérisé en ce que dans le dessin gravé (6b) les ressorts horlogers ont des orientations différentes de telle sorte que par la gravure d'au moins une partie, en matériau anisotrope, de l'épaisseur d'une plaque (1) à travers le masque de gravure (6) on puisse obtenir des ressorts horlogers dont la dispersion de raideur est réduite.
EP19218414.1A 2019-12-20 2019-12-20 Procede de fabrication de ressorts horlogers et masque de gravure pour un tel procede Pending EP3839642A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19218414.1A EP3839642A1 (fr) 2019-12-20 2019-12-20 Procede de fabrication de ressorts horlogers et masque de gravure pour un tel procede

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19218414.1A EP3839642A1 (fr) 2019-12-20 2019-12-20 Procede de fabrication de ressorts horlogers et masque de gravure pour un tel procede

Publications (1)

Publication Number Publication Date
EP3839642A1 true EP3839642A1 (fr) 2021-06-23

Family

ID=69185136

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19218414.1A Pending EP3839642A1 (fr) 2019-12-20 2019-12-20 Procede de fabrication de ressorts horlogers et masque de gravure pour un tel procede

Country Status (1)

Country Link
EP (1) EP3839642A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1422436A1 (fr) 2002-11-25 2004-05-26 CSEM Centre Suisse d'Electronique et de Microtechnique SA Ressort spiral de montre et son procédé de fabrication
EP2215531A1 (fr) 2007-11-28 2010-08-11 Manufacture et fabrique de montres et chronomètres Ulysse Nardin Le Locle SA Oscillateur mécanique présentant un coefficient thermoélastique optimisé
EP3056948A1 (fr) 2015-02-17 2016-08-17 Master Dynamic Limited Spirale de silicium
EP3285124A1 (fr) * 2016-08-17 2018-02-21 Richemont International SA Résonateur mécanique pour pièce d'horlogerie ainsi que procédé de réalisation d'un tel résonateur
US20180142749A1 (en) 2015-07-03 2018-05-24 Damasko Uhrenmanufaktur KG Spiral spring and method for its manufacturing
WO2019180596A1 (fr) 2018-03-20 2019-09-26 Patek Philippe Sa Geneve Procede de fabrication de composants horlogers en silicium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1422436A1 (fr) 2002-11-25 2004-05-26 CSEM Centre Suisse d'Electronique et de Microtechnique SA Ressort spiral de montre et son procédé de fabrication
EP2215531A1 (fr) 2007-11-28 2010-08-11 Manufacture et fabrique de montres et chronomètres Ulysse Nardin Le Locle SA Oscillateur mécanique présentant un coefficient thermoélastique optimisé
EP3056948A1 (fr) 2015-02-17 2016-08-17 Master Dynamic Limited Spirale de silicium
EP3056948B1 (fr) 2015-02-17 2019-02-20 Master Dynamic Limited Spirale de silicium
US20180142749A1 (en) 2015-07-03 2018-05-24 Damasko Uhrenmanufaktur KG Spiral spring and method for its manufacturing
EP3285124A1 (fr) * 2016-08-17 2018-02-21 Richemont International SA Résonateur mécanique pour pièce d'horlogerie ainsi que procédé de réalisation d'un tel résonateur
WO2019180596A1 (fr) 2018-03-20 2019-09-26 Patek Philippe Sa Geneve Procede de fabrication de composants horlogers en silicium

Similar Documents

Publication Publication Date Title
EP2761380B1 (fr) Ensemble monolithique ressort spiral-virole
EP2257856B1 (fr) Organe régulateur monobloc et son procédé de fabrication
EP2105807B1 (fr) Spiral à élévation de courbe monobloc et son procédé de fabrication
EP2104006B1 (fr) Double spiral monobloc et son procédé de fabrication
EP2154583B1 (fr) Spiral pour résonateur balancier-spiral
EP2257855B1 (fr) Procédé de fabrication d&#39;un balancier composite
EP2407831A1 (fr) Spiral pour oscillateur balancier de pièce d&#39;horlogerie et son procédé de fabrication
CH713151B1 (fr) Lame flexible pour l&#39;horlogerie, et procédé de fabrication.
CH700059A2 (fr) Spiral à élévation de courbe en matériau à base de silicium.
EP2206022B1 (fr) Palier amortisseur de chocs pour piece d&#39;horlogerie
EP2690506B1 (fr) Spiral d&#39;horlogerie anti-galop
CH710112A2 (fr) Composant mécanique, procédé de fabrication d&#39;un composant mécanique, mouvement et pièce d&#39;horlogerie.
EP3792700A1 (fr) Oscillateur horloger a pivot flexible
EP3839642A1 (fr) Procede de fabrication de ressorts horlogers et masque de gravure pour un tel procede
EP3707565B1 (fr) Dispositif pour guidage en rotation d&#39;un composant mobile
EP3037893B1 (fr) Composant micromécanique ou horloger à guidage flexible
EP3637196B1 (fr) Oscillateur mécanique
EP3982205A1 (fr) Procede de fabrication d&#39;un ressort horloger de raideur precise
EP3865954A1 (fr) Procédé de fabrication d&#39;un dispositif à lames flexibles monobloc en silicium, pour l&#39;horlogerie
CH718081A2 (fr) Élément élastique pour un système micromécanique.
CH717124A2 (fr) Procédé de fabrication d&#39;un dispositif à lames flexibles monobloc en silicium, notamment pour l&#39;horlogerie.
CH716696B1 (fr) Procédé de fabrication de spiraux horlogers.
EP3534222A1 (fr) Procédé de réalisation d&#39;un oscillateur thermo-compensé
EP3412625A1 (fr) Procede de fabrication d&#39;une piece micromecanique
EP4303668A1 (fr) Dispositif de determination de la raideur d&#39;un spiral

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211117

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230802