EP4303668A1 - Dispositif de determination de la raideur d'un spiral - Google Patents

Dispositif de determination de la raideur d'un spiral Download PDF

Info

Publication number
EP4303668A1
EP4303668A1 EP22183023.5A EP22183023A EP4303668A1 EP 4303668 A1 EP4303668 A1 EP 4303668A1 EP 22183023 A EP22183023 A EP 22183023A EP 4303668 A1 EP4303668 A1 EP 4303668A1
Authority
EP
European Patent Office
Prior art keywords
hairspring
blank
plate
installation
openings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22183023.5A
Other languages
German (de)
English (en)
Inventor
Johannes Clivaz
Kevin SOOBBARAYEN
David Gachet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigatec Sa
Richemont International SA
Original Assignee
Sigatec Sa
Richemont International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigatec Sa, Richemont International SA filed Critical Sigatec Sa
Priority to EP22183023.5A priority Critical patent/EP4303668A1/fr
Publication of EP4303668A1 publication Critical patent/EP4303668A1/fr
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D7/00Measuring, counting, calibrating, testing or regulating apparatus
    • G04D7/10Measuring, counting, calibrating, testing or regulating apparatus for hairsprings of balances
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring

Definitions

  • the present invention relates to the field of control and manufacturing of parts for watchmaking. It relates more particularly to a device for determining the stiffness of a balance spring or a balance spring blank based on silicon attached to a wafer based on silicon, by applying a vibrational excitation and by measuring the vibration response of the spiral or blank.
  • the movements of mechanical watches are regulated by means of a mechanical regulator comprising a resonator, that is to say an elastically deformable component whose oscillations determine the running of the watch.
  • a mechanical regulator comprising a resonator, that is to say an elastically deformable component whose oscillations determine the running of the watch.
  • Many watches include, for example, a regulator comprising a hairspring as a resonator, mounted on the axis of a balance wheel and set into oscillation thanks to an escapement.
  • the natural frequency of the balance-spring couple makes it possible to regulate the watch and depends in particular on the stiffness of the balance-spring.
  • silicon spirals can be manufactured on a single wafer using micro-manufacturing technologies. It is particularly known to produce a plurality of silicon resonators with very high precision using photolithography and machining/etching processes in a silicon wafer.
  • the methods for producing these mechanical resonators generally use monocrystalline silicon wafers, but wafers made of other materials can also be used, for example polycrystalline or amorphous silicon, other semiconductor materials, glass, ceramic , carbon, carbon nanotubes or one composite comprising these materials.
  • monocrystalline silicon belongs to the cubic crystal class m3m whose thermal expansion coefficient (alpha) is isotropic.
  • Silicon has a very negative value of the first thermoelastic coefficient, and consequently, the stiffness of a silicon resonator, and therefore its natural frequency, varies greatly depending on the temperature.
  • the documents EP1422436 , EP2215531 And WO2016128694 describe a spiral type mechanical resonator made from a core (or two cores in the case of WO2016128694 ) in monocrystalline silicon and whose temperature variations in Young's modulus are compensated by a layer of amorphous silicon oxide (SiO 2 ) surrounding the core (or cores), the latter being one of the rare materials having a thermoelastic coefficient positive.
  • SiO 2 amorphous silicon oxide
  • the final functional yield will be given by the number of hairsprings whose stiffness corresponds to the pairing interval, divided by the total number of hairsprings. spirals on the plate.
  • SOI Silicon On Insulator
  • simple wafers can be used.
  • the silicon layer called the handle layer which serves as mechanical support, is dissolved to release the so-called device layer, in which the hairsprings are engraved.
  • the excitation and vibration measurement can therefore be carried out on spirals formed in a layer of silicon whose thickness is of the order of 120 ⁇ m. At such a thickness, the rigidity of the wafer or the silicon layer is low, so that the hairsprings neighboring a hairspring on which a measurement is carried out can also be excited and their own vibration can disrupt the vibration response. of the hairspring concerned.
  • the present invention aims to propose a device/equipment making it possible to respond at least partially to the aforementioned problem, and to improve the responses obtained.
  • the invention also relates to a control method implementing a step of using a device according to the invention or the like.
  • the installation makes it possible to isolate at least partially, at the vibration level, the hairspring/the hairspring blank from the rest of the plate, to dampen the parasitic vibrations coming from the hairsprings neighboring the hairspring to be measured and to limit the vibrations of the entire plate by reducing the deformability in bending in particular of the assembly thus constituted by the plate and the installation.
  • the vibration response given by the hairspring is cleaner, that is to say that the spectrum characterizing the vibration response is then no longer/less noisy by parasitic vibrations. Consequently, the observed peaks can be directly and solely attributed to the resonances of the measured hairspring.
  • the peaks of the spectrum that we observe are better defined, allowing better quality exploitation of the results. Thus, by surrounding, we must understand surrounding the hairspring or the blank individually.
  • the vibration excitation source is arranged on a first side of the wafer, and the means for measuring the vibration response are arranged on a second side of the wafer, opposite the first side.
  • the excitation can be better centered and closer to the hairspring.
  • the measuring means can be positioned optimally.
  • the installation comprises a network of openings, intended to be opposite the hairsprings or the hairspring blanks to be measured, the openings being dimensioned so as to allow the vibrations of the hairsprings or the hairspring blanks to be free.
  • This network of openings makes it possible to isolate a plurality of hairsprings or blanks, which can be measured one after the other in an easy manner.
  • holding means can be provided to press the installation and the plate against each other, in order to improve the vibration isolation of the hairspring to be measured.
  • the installation is associated with a clamping plate, the plate being intended to be sandwiched between the installation and the clamping plate.
  • the installation and the clamping plate can each comprise a network of openings, the openings of the installation and the openings of the clamping plate being arranged facing each other and intended to be facing the hairsprings or hairspring blanks to be measured, the openings being dimensioned so as to allow free vibrations of the hairsprings or hairspring blanks to be measured.
  • FIG. 1A we have represented in the following Figures 1A to 1F , certain steps of a process for producing a spiral in a wafer 10 also called wafer, of the SOI (“silicon on insulator”) type.
  • the latter comprises a substrate or "handler” 20 carrying a sacrificial layer of silicon oxide (SiO 2 ) 30 and a layer of monocrystalline silicon 40.
  • the substrate 20 can have a thickness of 500 ⁇ m
  • the sacrificial layer 30 may have a thickness of 2 ⁇ m
  • silicon layer 40 may have a thickness of 120 ⁇ m.
  • the monocrystalline silicon layer 40 can have any crystalline orientation.
  • lithography we mean all the operations making it possible to transfer an image or pattern on or above the wafer 10 to the latter.
  • the layer 40 is covered with a protective layer 50, for example made of a polymerizable resin.
  • This layer 50 is structured, typically by a photolithography step using an ultraviolet light source as well as, for example, a photo mask (or another type of exposure mask) or a stepper and reticle system. This structuring by lithography forms the patterns for the plurality of resonators in layer 50, as illustrated in Figure 1C .
  • the patterns are machined, in particular engraved, to form the plurality of resonators 100 in the layer 40.
  • the etching can be carried out by a deep reactive ion etching technique (also known by the acronym DRIE for “Deep Reactive Ion Etching”). . After etching, the remaining part of the protective layer 50 is subsequently eliminated.
  • the resonators are released from the substrate 20 by locally removing the sacrificial layer 30 or even by etching all or part of the silicon from the substrate or handler 20. Smoothing (not illustrated) of the etched surfaces can also take place before the release step, for example example by a thermal oxidation step followed by a deoxidation step, consisting for example of wet etching based on hydrofluoric acid (HF).
  • HF hydrofluoric acid
  • the turns 110 of the silicon resonator 100 are covered with a layer 120 of silicon oxide (SiO2), typically by a thermal oxidation step to produce a thermo-compensated resonator.
  • This layer 120 which generally has a thickness of 2-5 ⁇ m, also affects the final stiffness of the resonator and therefore must be taken into account during the previous steps to obtain vibrational characteristics of the hairspring leading to obtaining a particular natural frequency of the hairspring-balance couple in a given watch mechanism.
  • the different resonators formed in the wafer generally have a significant geometric dispersion between them and therefore a significant dispersion between their stiffnesses, notwithstanding that the stages of formation of the patterns and the machining/engraving through these patterns are the same for all resonators.
  • the resonators obtained in step 1E on the wafer 10 in question can be deliberately formed with dimensions d which are different from the necessary dimensions (for example greater) to obtain a nominal or target stiffness.
  • a control method intended to estimate the vibration characteristics of the resonators (natural frequency and/or resonant frequencies) to deduce the stiffness and/or the real dimensions of the resonators 100 to correct their dimensions. , which will lead to obtaining the natural frequency of the desired resonator - balance wheel couple.
  • the neighboring hairsprings/hairspring blanks can also, to lesser degrees, undergo excitation, either by receiving the excitation indirectly. sound excitation, or by diffusion of vibration through the plate. This is all the more sensitive when the wafer essentially only contains the device layer during this step or when the spirals are made in a simple wafer, the thickness of which is typically around 120 ⁇ m.
  • the invention proposes to implement a mounting 200 intended to provide support at least on a portion of the wafer or the silicon layer surrounding the hairspring or the blank of the hairspring to be measured.
  • the installation 200 includes an opening 202 leaving the vibrations of the hairspring or the blank free. In other words, the opening is at least slightly larger than the engraving made in the plate to form the hairspring.
  • the support provided by the installation is intended to at least partially isolate, at the vibration level, the hairspring/the hairspring blank from the rest of the plate.
  • the plate being light, its own weight may not be sufficient to generate support to sufficiently isolate the hairspring from disruptive vibrations.
  • We can therefore provide holding means to press the installation and the plate against each other. These means can be of different natures, such as screwing, supporting a weight, or other variants which will be described below.
  • the installation 200 is associated with a clamping plate 300, the plate 10 being intended to be sandwiched between the installation 200 and the clamping plate 300.
  • the installation and the clamping plate each comprise a network of openings, the openings 202 of the installation 200 and the openings 302 of the clamping plate 300 being arranged facing each other and intended to be facing the spirals or the blanks of hairsprings to measure.
  • the openings 202, 302 are dimensioned so as to leave the vibrations of the hairsprings free.
  • a system for assembling and/or tightening the clamping plate 300 against the installation 200 and, if necessary, indexing means 350 of one relative to the other, in order to align the openings.
  • indexing means 350 of one relative to the other, in order to align the openings.
  • pins which pass through the installation 200, the plate 10 and the clamping plate 300 in defined positions.
  • flange systems 400 screwing or other, to stiffen the whole.
  • the clamping means can be distributed around the installation 200 and the clamping plate 300, or be supplemented by clamping means distributed over the surface of the installation and the clamping plate.
  • indexing means can be provided to index the installation 200, the plate 10 and the clamping plate 300, for example with pins or the like secured to the installation or the clamping plate and which pass through the plate to position themselves, respectively, in the clamping plate or in the installation. It is also possible to provide second separate indexing means, to position, on the one hand, the installation 200 and the plate 10, and on the other hand, the clamping plate 300 and the plate 10.
  • the indexing means can be provided even if there is no clamping plate.
  • indexing makes it possible to precisely position the installation 200 relative to the plate 10 and the hairsprings, which makes it possible to position the excitation source 210 and the measuring means 220 in a repeatable manner, of a plate to another. The reliability of the measurement is thus improved.
  • the surfaces of the mounting and, where applicable, of the clamping plate are flat, or even ground, in order to provide well-distributed support all around the hairspring and avoid stress on the plate.
  • the clamping plate and/or mounting can be metallic or even silicon.
  • the attraction means comprise a suction circuit 420 opening into contact with the plate 10, to suck the latter.
  • This suction circuit can be connected to a vacuum generator, by a connector 422, to create a vacuum and suck the plate 10 against the installation 200.
  • the suction circuit can be distributed over the installation 200, for example by offering channels arranged radially around the center of the installation. The latter is intended to be aligned with the center of the wafer, which, in the example, does not include spirals to allow suction of the wafer.
  • the attraction means comprise an electrostatic device, of the electrostatic attraction plate type (also called electrostatic chuck). It is possible to plan to magnetize the plate or elements located on a clamping plate, of the type described above, to cooperate with the chuck.
  • the installation as proposed in the present invention makes it possible to place a vibratory excitation source 210 of the hairspring or the hairspring blank, on a first side of the plate 10, and to arrange the means of measurement 220 of the vibration response of said hairspring or of the hairspring blank, typically a laser head, on a second side of the plate.
  • a vibratory excitation source 210 of the hairspring or the hairspring blank typically a laser head
  • the means of measurement 220 of the vibration response of said hairspring or of the hairspring blank typically a laser head
  • the installation 200 can be placed on one or the other side of the wafer.
  • the installation could preferably be placed on the device side.
  • the source of vibration excitation could advantageously in this case be placed on the side of the device layer and the measuring means placed on the side of the handle layer.
  • the opposite arrangement is obviously a possible alternative, particularly when the hairsprings or the blanks are accessible in a similar way, from one or the other side.
  • the vibration excitation source 210 is an acoustic source, and it is coupled to a divergent cone 212 directed towards the hairspring or the hairspring blank to be excited, as shown in the figure. Figure 4 .
  • the dimensions of the end of the cone are slightly larger than the engraving dimensions of the hairspring, in order to excite the entire hairspring.
  • the installation can advantageously be arranged on a mobile table, the position of which can be controlled precisely by actuators.
  • a movement can be planned in two orthogonal directions (in the plane of the wafer) or even three orthogonal directions (in the plane of the wafer and in a direction normal to the plane of the wafer).
  • the table In the reference frame of the measuring machine, the table is mobile, while the excitation source and the measuring means can be fixed.
  • the installation can therefore move with reference to the excitation source and the measuring means, to allow automatic and indexed movement between the different hairsprings to be measured.
  • the installation serves as support for a silicon layer of an SOI wafer or what remains of the wafer at the time of measurement, or for a simple wafer, if the etching process is carried out on a simple plate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

L'invention concerne un dispositif de détermination de la raideur d'un spiral ou d'une ébauche de spiral à base de silicium attaché à une plaquette à base de silicium (10), par application d'une excitation vibratoire et par mesure de la réponse vibratoire du spiral ou de l'ébauche, ledit dispositif comprenant :- un posage (200) destiné à fournir un appui au moins sur une portion de la plaquette entourant le spiral ou l'ébauche de spiral, et comprenant une ouverture pour laisser libre les vibrations du spiral ou de l'ébauche,- une source d'excitation vibratoire (210) du spiral ou de l'ébauche de spiral, agencée pour exciter le spiral ou l'ébauche de spiral,- des moyens de mesure de la réponse vibratoire (220) dudit spiral ou de l'ébauche de spiral, pour mesurer la réponse vibratoire du spiral/de l'ébauche.

Description

    Domaine technique
  • La présente invention se rapporte au domaine du contrôle et de la fabrication de pièces pour l'horlogerie. Elle concerne plus particulièrement un dispositif de détermination de la raideur d'un spiral ou d'une ébauche de spiral à base de silicium attaché à une plaquette à base de silicium, par application d'une excitation vibratoire et par mesure de la réponse vibratoire du spiral ou de l'ébauche.
  • Etat de la technique
  • Les mouvements de montres mécaniques sont régulés au moyen d'un régulateur mécanique comprenant un résonateur, c'est-à-dire un composant déformable élastiquement et dont les oscillations déterminent la marche de la montre. De nombreuses montres comportent par exemple un régulateur comprenant un spiral comme résonateur, monté sur l'axe d'un balancier et mis en oscillation grâce à un échappement. La fréquence propre du couple balancier-spiral permet de réguler la montre et dépend notamment de la raideur du spiral.
  • Dans l'horlogerie contemporaine, on a commencé à fabriquer des spiraux, notamment en silicium, pour bénéficier de l'insensibilité aux champs magnétique de ce matériau et pour tirer profit de son usinabilité.
  • Ainsi, de manière avantageuse, on peut fabriquer plusieurs centaines de spiraux en silicium sur une seule plaquette (en anglais « wafer ») en utilisant les technologies de micro-fabrication. Il est notamment connu de réaliser une pluralité de résonateurs en silicium avec une très haute précision en utilisant des procédés de photolithographie et d'usinage / gravure dans une plaquette en silicium. Les procédés de réalisation de ces résonateurs mécaniques utilisent généralement des plaquettes de silicium monocristallin, mais des plaquettes en d'autres matériaux sont également utilisables, par exemple en silicium polycristallin ou amorphe, en d'autres matériaux semi-conducteurs, en verre, en céramique, en carbone, en nanotubes de carbone ou en un composite comprenant ces matériaux. Pour sa part, le silicium monocristallin appartient à la classe cristalline cubique m3m dont le coefficient d'expansion thermique (alpha) est isotrope.
  • Le silicium présente une valeur du premier coefficient thermoélastique très négative, et par conséquent, la raideur d'un résonateur en silicium, et donc sa fréquence propre, varie fortement selon la température. Afin de compenser au moins partiellement cet inconvénient, les documents EP1422436 , EP2215531 et WO2016128694 décrivent un résonateur mécanique de type spiral réalisé à partir d'une âme (ou de deux âmes dans le cas de WO2016128694 ) en silicium monocristallin et dont les variations en température du module d'Young sont compensées par une couche en oxyde de silicium (SiO2) amorphe entourant l'âme (ou les âmes), ce dernier étant un des rares matériaux présentant un coefficient thermoélastique positif.
  • Lorsque l'on réalise des spiraux en silicium ou en un autre matériau par fabrication collective sur une plaquette, le rendement fonctionnel final sera donné par le nombre de spiraux dont la raideur correspond à l'intervalle d'appairage, divisé par le nombre total de spiraux sur la plaquette.
  • La demande de brevet portant le numéro de dépôt PCT/EP2022/050760 , explique qu'on constate une dispersion des raideurs entre les spiraux gravés sur une plaquette, et encore plus entre des spiraux de plaquettes gravées à des moments différents suivant des mêmes spécifications de procédé.
  • Différentes solutions ont été proposées pour réduire cette dispersion en effectuant des corrections sur les spiraux. Le document EP3181938 propose une telle correction, qui repose sur une mesure de la raideur d'un spiral par mesure de sa fréquence en le couplant à un balancier d'inertie connue. La demande PCT/EP2022/050760 précitée propose une méthode permettant d'établir des caractéristiques de raideur des spiraux ou des ébauches de spiraux d'une plaquette, en se basant sur la réponse vibratoire à une excitation d'au moins un spiral ou d'une ébauche.
  • Dans les procédés de micro-fabrication, on peut utiliser des plaquettes de type SOI (Silicon On Insulator) ou des plaquettes simples. Y compris avec un SOI, en fonction du procédé utilisé, la couche de silicium appelée couche handle, qui sert de support mécanique, est dissoute pour libérer la couche dite device, dans laquelle sont gravés les spiraux. L'excitation et la mesure vibratoire peuvent donc être réalisées sur des spiraux ménagés dans une couche de silicium dont l'épaisseur est de l'ordre de 120µm. A une telle épaisseur, la rigidité de la plaquette ou de la couche de silicium est faible, de sorte que les spiraux voisins d'un spiral sur lequel on effectue une mesure, peuvent être excités également et leur propre vibration peut venir perturber la réponse vibratoire du spiral concerné.
  • La présente invention a pour but de proposer un dispositif/appareillage permettant de répondre au moins partiellement au problème susmentionné, et d'améliorer les réponses obtenues.
  • L'invention concerne également un procédé de contrôle mettant en oeuvre une étape d'utilisation d'un dispositif selon l'invention ou similaire.
  • Divulguation de l'invention
  • De façon plus précise, l'invention concerne un dispositif de détermination de la raideur d'un spiral ou d'une ébauche de spiral à base de silicium attaché à une plaquette à base de silicium, par application d'une excitation vibratoire et par mesure de la réponse vibratoire du spiral ou de l'ébauche, ledit dispositif comprenant :
    • un posage destiné à fournir un appui au moins sur une portion de la plaquette entourant le spiral ou l'ébauche de spiral, et comprenant une ouverture pour laisser libre les vibrations du spiral ou de l'ébauche,
    • une source d'excitation vibratoire du spiral ou de l'ébauche de spiral, agencée pour exciter le spiral ou l'ébauche de spiral,
    • des moyens de mesure de la réponse vibratoire dudit spiral ou de l'ébauche de spiral, pour mesurer la réponse vibratoire du spiral/de l'ébauche.
  • Ainsi, le posage permet d'isoler au moins partiellement, au niveau vibratoire, le spiral/l'ébauche de spiral du reste de la plaquette, d'amortir les vibrations parasites venant des spiraux voisins du spiral à mesurer et de limiter les vibrations de l'ensemble de la plaquette en réduisant la déformabilité en flexion notamment de l'ensemble ainsi constitué par la plaquette et le posage. La réponse vibratoire donnée par le spiral est plus propre, c'est-à-dire que le spectre caractérisant la réponse vibratoire n'est alors plus/moins bruité par des vibrations parasites. Par conséquent, les pics observés peuvent être directement et uniquement attribués aux résonnances du spiral mesuré. Les pics du spectre que l'on observe sont mieux définis, permettant une exploitation des résultats de meilleure qualité. Ainsi, par entourer, on doit comprendre entourer le spiral ou l'ébauche de manière individuelle.
  • Dans un mode de réalisation préféré, la source d'excitation vibratoire est disposée d'un premier côté de la plaquette, et les moyens de mesure de la réponse vibratoire sont agencés d'un deuxième côté de la plaquette, opposé au premier côté. De la sorte, l'accès au spiral à mesurer est beaucoup plus facile pour chacun des dispositifs, l'excitation peut être mieux centrée et plus proche du spiral. De même, les moyens de mesures peuvent être positionnés de manière optimale.
  • De préférence, le posage comprend un réseau d'ouvertures, destinées à être en regard des spiraux ou des ébauches de spiraux à mesurer, les ouvertures étant dimensionnées de manière à laisser libre les vibrations des spiraux ou des ébauches de spiraux. Ce réseau d'ouvertures permet d'isoler une pluralité de spiraux ou d'ébauches, qui peuvent être mesurées les uns à la suite des autres de manière aisée.
  • De manière avantageuse, on pourra prévoir des moyens de maintien pour presser le posage et la plaquette l'un contre l'autre, afin d'améliorer l'isolation vibratoire du spiral à mesurer.
  • De préférence, le posage est associé à une plaque de serrage, la plaquette étant destinée à être prise en sandwich entre le posage et la plaque de serrage.
  • Dans ce cas, le posage et la plaque de serrage peuvent comprendre chacun un réseau d'ouvertures, les ouvertures du posage et les ouvertures de la plaque de serrage étant disposées en regard l'une de l'autre et destinées à être en regard des spiraux ou des ébauches de spiraux à mesurer, les ouvertures étant dimensionnées de manière à laisser libre les vibrations des spiraux ou des ébauches de spiraux à mesurer.
  • D'autres caractéristiques sont également données dans les revendications et peuvent être combinées entre elles et /ou aux caractéristiques précitées, dans la mesure où elles sont techniquement compatibles entre elles.
  • Brève description des dessins
  • D'autres détails de l'invention apparaîtront plus clairement à la lecture de la description qui suit, faite en référence au dessin annexé dans lequel :
    • les figures 1A à 1F sont des schémas de certaines étapes d'un procédé de réalisation d'un spiral en silicium,
    • la figure 2 est un schéma d'un mode de réalisation préféré d'un dispositif selon l'invention,
    • la figure 3 et la figure 4 illustrent des variantes ou alternatives de l'invention.
    Mode de réalisation de l'invention
  • On a représenté dans la suite des figures 1A à 1F, certaines étapes d'un procédé de réalisation d'un spiral dans une plaquette 10 également appelée wafer, de type SOI (« silicon on insulator »). Ce dernier comprend un substrat ou « handler » 20 portant une couche d'oxyde de silicium (SiO2) sacrificielle 30 et une couche de silicium monocristallin 40. A titre d'exemple, le substrat 20 peut avoir une épaisseur de 500 µm, la couche sacrificielle 30 peut avoir une épaisseur de 2 µm et la couche en silicium 40 peut avoir une épaisseur de 120 µm. La couche de silicium monocristallin 40 peut avoir une orientation cristalline quelconque.
  • Une étape de lithographie est montrée aux figures 1B et 1C. Par « lithographie », on entend l'ensemble des opérations permettant de transférer une image ou motif sur ou au-dessus de la plaquette 10 vers cette dernière. En se référant à la figure 1B, dans ce mode de réalisation exemplaire, la couche 40 est recouverte d'une couche de protection 50, par exemple en une résine polymérisable. Cette couche 50 est structurée, typiquement par une étape de photolithographie utilisant une source de lumière ultraviolette ainsi que, par exemple, un photo-masque (ou un autre type de masque d'exposition) ou un système de stepper et réticule. Cette structuration par lithographie forme les motifs pour la pluralité de résonateurs dans la couche 50, comme illustrée à la figure 1C.
  • Par la suite, dans l'étape de la figure 1D, les motifs sont usinés, notamment gravés, pour former la pluralité de résonateurs 100 dans la couche 40. La gravure peut être effectuée par une technique de gravure ionique réactive profonde (également connue sous l'acronyme DRIE pour « Deep Reactive Ion Etching »). Après la gravure, la partie restante de la couche de protection 50 est subséquemment éliminée.
  • A la figure 1E, les résonateurs sont libérés du substrat 20 en retirant localement la couche sacrificielle 30 voire en gravant tout ou partie du silicium du substrat ou handler 20. Un lissage (non illustré) des surfaces gravées peut également avoir lieu avant l'étape de libération, par exemple par une étape d'oxydation thermique suivie par une étape de désoxydation, constituée par exemple de la gravure par voie humide à base d'acide fluorhydrique (HF).
  • A la dernière étape du procédé de fabrication à la figure 1F, les spires 110 du résonateur 100 en silicium sont recouvertes d'une couche 120 d'oxyde de silicium (SiO2), typiquement par une étape d'oxydation thermique pour produire un résonateur thermo-compensé. La formation de cette couche 120, qui a généralement une épaisseur de 2-5 µm, affecte également la raideur finale du résonateur et donc doit être prise en compte lors des étapes précédentes pour obtenir des caractéristiques vibratoires du spiral conduisant à obtenir une fréquence propre particulière du couple spiral-balancier dans un mécanisme de montre donné.
  • Comme indiqué ci-dessus, au stade précédent la réalisation de la couche de thermo-compensation, les différents résonateurs formés dans la plaquette présentent généralement une dispersion géométrique importante entre eux et donc une dispersion importante entre leurs raideurs, nonobstant que les étapes de formation des motifs et de l'usinage/gravure à travers ces motifs sont les mêmes pour tous les résonateurs.
  • Par ailleurs, cette dispersion de raideurs est encore plus importante entre les spiraux de deux plaquettes gravées à des moments différents même si les mêmes spécifications de procédé sont utilisées.
  • Pour centrer la moyenne de raideurs des résonateurs sur différentes plaquettes par rapport à une valeur de raideur nominale comme illustré à la figure 2, les résonateurs obtenus à l'étape 1E sur la plaquette 10 en question peuvent être délibérément formés avec des dimensions d qui sont différentes aux dimensions nécessaires (par exemple supérieures) pour l'obtention d'une raideur nominale ou cible. Ainsi, il est possible de mettre en place un procédé de contrôle destiné à estimer les caractéristiques vibratoires des résonateurs (fréquence propre et/ou fréquences de résonance) pour en déduire la raideur et/ou les dimensions réelles des résonateurs 100 pour en corriger les dimensions, ce qui conduira à obtenir la fréquence propre du couple résonateur - balancier désirée. La demande PCT/EP2022/050760 mentionnée précédemment, divulgue une telle méthode. On pourra s'y référer pour obtenir des détails sur les étapes qu'elle comporte.
  • En résumé, on retiendra pour la compréhension de la présente invention, que cette méthode comprend les étapes de :
    1. a. appliquer au spiral ou à l'ébauche de spiral une excitation vibratoire variable au cours du temps pour couvrir une plage fréquentielle prédéterminée,
    2. b. identifier au moins une caractéristique d'une fréquence de résonance, telle qu'un pic de résonance, du spiral ou de l'ébauche de spiral lors de l'excitation vibratoire sur la plage fréquentielle prédéterminée,
    3. c. soumettre à une machine de prédiction la caractéristique de fréquence de résonance identifiée à l'étape b. pour déterminer une raideur du spiral ou de l'ébauche de spiral et/ou déterminer si une correction dimensionnelle du spiral ou de l'ébauche de spiral est nécessaire pour obtenir la fréquence de résonance prédéterminée.
  • En pratique, on constate que lorsqu'on applique au spiral ou à l'ébauche de spiral, une excitation, les spiraux/ébauches de spiraux voisins peuvent également, à des degrés moindres, subir une excitation, soit en recevant de manière indirecte l'excitation sonore, soit par diffusion de vibration au travers de la plaquette. Cela est d'autant plus sensible lorsque la plaquette ne comporte essentiellement plus que la couche device lors de cette étape ou lorsque les spiraux sont réalisés dans un wafer simple, dont l'épaisseur est typiquement d'environ 120µm.
  • Pour limiter les influences perturbatrices dans la mesure, l'invention propose de mettre en oeuvre un posage 200 destiné à fournir un appui au moins sur une portion de la plaquette ou de la couche de silicium entourant le spiral ou l'ébauche de spiral à mesurer. Le posage 200 comprend une ouverture 202 laissant libre les vibrations du spiral ou de l'ébauche. En d'autres termes, l'ouverture est au moins légèrement plus grande que la gravure ménagée dans la plaquette pour former le spiral. L'appui procuré par le posage est destiné à isoler au moins partiellement, au niveau vibratoire, le spiral/l'ébauche de spiral du reste de la plaquette.
  • Dans une approche simple, on pourrait avoir un posage ne laissant qu'une ouverture pour mesurer un seul spiral ou une seule ébauche de spiral. Mais de manière avantageuse, le posage présente des dimensions voisines de celles de la plaquette et propose un réseau d'ouvertures, destinées à être positionnées en regard des spiraux. Selon l'échantillonnage que l'on veut réaliser, on peut aller jusqu'à avoir une ouverture pour chaque spiral réalisé sur le wafer, mais on pourrait également avoir des ouvertures en regard d'une partie seulement des spiraux, 1 sur 2 ou 1 sur 3 par exemple.
  • La plaquette étant légère, son propre poids peut ne pas être suffisant pour générer un appui permettant d'isoler suffisamment le spiral des vibrations perturbatrices. On peut donc prévoir des moyens de maintien pour presser le posage et la plaquette l'un contre l'autre. Ces moyens peuvent être de différentes natures, comme un vissage, un appui d'un poids, ou d'autres variantes qui seront décrites ci-après. De plus, du fait de la souplesse en flexion de la plaquette, il existe un certain recouvrement modal entre les résonnances des spiraux et des plaquettes seules. Ainsi, en plaquant la plaquette contre le posage, on augmente sa rigidité apparente, ce qui modifie sa réponse vibratoire, et évite les interférences avec les réponses des spiraux, qui ne sont pas au contact du posage.
  • Dans un mode de réalisation préféré représenté sur la figure 2, le posage 200 est associé à une plaque de serrage 300, la plaquette 10 étant destinée à être prise en sandwich entre le posage 200 et la plaque de serrage 300. Le posage et la plaque de serrage comprennent chacun un réseau d'ouvertures, les ouvertures 202 du posage 200 et les ouvertures 302 de la plaque de serrage 300 étant disposées en regard l'une de l'autre et destinées à être en regard des spiraux ou des ébauches de spiraux à mesurer. Comme mentionné précédemment, les ouvertures 202, 302 sont dimensionnées de manière à laisser libre les vibrations des spiraux.
  • De préférence, on prévoit un système d'assemblage et/ou de serrage de la plaque de serrage 300 contre le posage 200 et, si besoin, des moyens d'indexation 350 de l'un par rapport à l'autre, afin d'aligner les ouvertures. On peut par exemple proposer des goupilles qui traversent le posage 200, la plaquette 10 et la plaque de serrage 300 en des positions définies. On peut prévoir des systèmes de brides 400, de vissage ou autre, pour rigidifier l'ensemble. Les moyens de serrages peuvent être répartis autour du posage 200 et de la plaque de serrage 300, ou être complétés par des moyens de serrage répartis sur la surface du posage et de la plaque de serrage. On peut prévoir les mêmes moyens d'indexation pour indexer le posage 200, la plaquette 10 et la plaque de serrage 300, par exemple avec des goupilles ou similaires solidaires du posage ou de la plaque de serrage et qui traversent la plaquette pour se positionner, respectivement, dans la plaque de serrage ou dans le posage. On peut aussi prévoir des deuxièmes moyens d'indexation distincts, pour positionner d'une part, le posage 200 et la plaquette 10, et d'autre part, la plaque de serrage 300 et la plaquette 10.
  • Les moyens d'indexation peuvent être prévus y-compris s'il n'y a pas de plaque de serrage.
  • Dans tous les cas, l'indexation permet de positionner précisément le posage 200 par rapport à la plaquette 10 et aux spiraux, ce qui permet de positionner la source d'excitation 210 et les moyens de mesure 220 de manière répétable, d'une plaquette à une autre. La fiabilité de la mesure est ainsi améliorée.
  • De préférence, les surfaces du posage et, le cas échéant, de la plaque de serrage sont plates, voire rectifiées, afin de fournir un appui bien réparti tout autour du spiral et éviter les contraintes sur la plaquette. La plaque de serrage et/ou le posage peuvent être métalliques ou même en silicium.
  • On pourrait également prévoir des dispositifs en relief (non illustrés), formant une bague ou une portion de bague autour des ouvertures, sur lesquels peut prendre appui la plaquette. Ces dispositifs en relief peuvent être élastiquement déformables, pour éviter les contraintes mécaniques sur le wafer et participer à l'amortissement des vibrations.
  • On peut également prévoir d'autres moyens pour presser le posage et la plaquette l'un contre l'autre. Par exemple, on peut prévoir des moyens d'attraction de la plaquette sur le posage. Dans une variante illustrée sur la figure 3, les moyens d'attraction comportent un circuit d'aspiration 420 débouchant au contact de la plaquette 10, pour aspirer cette dernière. Ce circuit d'aspiration peut être relié à un générateur de vide, par un connecteur 422, pour créer une dépression et aspirer la plaquette 10 contre le posage 200. Le circuit d'aspiration peut être réparti sur le posage 200, par exemple en proposant des canaux disposés de manière radiale autour du centre du posage. Ce dernier est destiné à être aligné avec le centre du wafer, lequel, dans l'exemple, ne comporte pas de spiraux pour permettre l'aspiration de la plaquette.
  • En alternative supplémentaire et non représentée, les moyens d'attraction comportent un dispositif électrostatique, de type plaque d'attraction électrostatique (également dénommée chuck électrostatique). On peut prévoir de magnétiser la plaquette ou des éléments situés sur une plaque de serrage, du type de celle décrite plus haut, pour coopérer avec le chuck.
  • De manière avantageuse, le posage tel que proposé dans la présente invention, permet de disposer une source d'excitation vibratoire 210 du spiral ou de l'ébauche de spiral, d'un premier côté de la plaquette 10, et de disposer les moyens de mesure 220 de la réponse vibratoire dudit spiral ou de l'ébauche de spiral, typiquement une tête laser, d'un deuxième côté de la plaquette. Ainsi, il est possible de gérer l'angle d'incidence du laser indépendamment de la position de la source d'excitation. Cette dernière peut être positionnée au plus près de la plaquette, sans devoir laisser de place pour la tête laser, en passant ou en émettant l'onde d'excitation à l'intérieur de l'ouverture.
  • Le posage 200 peut être disposé sur l'une ou l'autre face de la plaquette. Notamment selon la technique choisie pour libérer les spiraux, s'il reste une épaisseur de la couche handle autour des spiraux, le posage pourra être de préférence disposé du côté device. La source d'excitation vibratoire pourra avantageusement dans ce cas, être disposée du côté de la couche device et les moyens de mesure, disposés du côté de la couche handle. La disposition inverse est évidemment une alternative possible, notamment quand les spiraux ou les ébauches, sont accessibles de manière similaire, par l'une ou l'autre face.
  • De manière avantageuse, la source d'excitation vibratoire 210 est une source acoustique, et elle est accouplée à un cône divergent 212 dirigé vers le spiral ou l'ébauche de spiral à exciter, comme représenté sur la figure 4. Les dimensions de l'extrémité du cône sont légèrement plus grandes que les dimensions de gravure du spiral, afin d'exciter l'ensemble du spiral.
  • Le posage peut être avantageusement disposé sur une table mobile, dont la position peut être commandée précisément par des actuateurs. On peut prévoir un déplacement selon deux directions orthogonales (dans le plan de la plaquette) ou même trois directions orthogonales (dans le plan de la plaquette et selon une direction normale au plan de la plaquette). Dans le référentiel de la machine de mesure, la table est mobile, tandis que la source d'excitation et les moyens de mesure peuvent être fixes. Le posage peut donc se déplacer en référence à la source d'excitation et aux moyens de mesure, pour permettre un déplacement automatique et indexé entre les différents spiraux à mesurer.
  • La présente description a été donnée à titre d'exemple non limitatif, la portée de l'invention étant déterminée par les revendications. On relèvera que le posage sert d'appui à une couche de silicium d'une plaquette SOI ou de ce qu'il reste de la plaquette au moment de la mesure, ou à une plaquette simple, si le procédé de gravure est réalisé sur une plaquette simple.

Claims (14)

  1. Dispositif de détermination de la raideur d'un spiral ou d'une ébauche de spiral à base de silicium attaché à une plaquette à base de silicium (10), par application d'une excitation vibratoire et par mesure de la réponse vibratoire du spiral ou de l'ébauche, ledit dispositif comprenant :
    - un posage (200) destiné à fournir un appui au moins sur une portion de la plaquette entourant le spiral ou l'ébauche de spiral, et comprenant une ouverture pour laisser libre les vibrations du spiral ou de l'ébauche,
    - une source d'excitation vibratoire (210) du spiral ou de l'ébauche de spiral, agencée pour exciter le spiral ou l'ébauche de spiral,
    - des moyens de mesure de la réponse vibratoire (220) dudit spiral ou de l'ébauche de spiral, pour mesurer la réponse vibratoire du spiral ou de l'ébauche de spiral.
  2. Dispositif de détermination selon la revendication 1, caractérisé en ce que ladite source d'excitation vibratoire (210) est disposée d'un premier côté de la plaquette, et en ce que lesdits moyens de mesure de la réponse vibratoire (220) sont agencés d'un deuxième côté de la plaquette, opposé au premier côté.
  3. Dispositif selon l'une des revendications 1 et 2, caractérisé en ce que le posage (200) comprend un réseau d'ouvertures (202), destinées à être en regard des spiraux ou des ébauches de spiraux à mesurer, les ouvertures étant dimensionnées de manière à laisser libre les vibrations des spiraux ou des ébauches de spiraux.
  4. Dispositif selon l'une des revendications 1 et 2, caractérisé en ce qu'il comprend des moyens de maintien agencés pour presser le posage et la plaquette l'un contre l'autre.
  5. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le posage (200) est associé à une plaque de serrage (300), la plaquette étant destinée à être prise en sandwich entre le posage et la plaque de serrage.
  6. Dispositif selon la revendication 5, caractérisé en ce que le posage (200) et la plaque de serrage (300) comprennent chacun un réseau d'ouvertures (202, 302), les ouvertures du posage et les ouvertures de la plaque de serrage étant disposées en regard l'une de l'autre et destinées à être en regard des spiraux ou des ébauches de spiraux à mesurer, les ouvertures étant dimensionnées de manière à laisser libre les vibrations des spiraux ou des ébauches de spiraux à mesurer.
  7. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce qu'il comprend des moyens d'attraction de la plaquette sur le posage.
  8. Dispositif selon la revendication 7, caractérisé en ce que lesdits moyens d'attraction comportent un circuit d'aspiration (420) débouchant au contact de la plaquette.
  9. Dispositif selon la revendication 7, caractérisé en ce que lesdits moyens d'attraction comportent un dispositif électrostatique.
  10. Dispositif selon l'une des revendications 2 à 9, caractérisé en ce que ladite source d'excitation (210) passe à l'intérieur de l'ouverture (202) du posage.
  11. Dispositif selon la revendication 10, caractérisé en ce que la source d'excitation vibratoire est une source acoustique, et en ce que ladite source acoustique est accouplée à un cône divergent (212) dirigé vers le spiral ou l'ébauche de spiral à exciter.
  12. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comprend des moyens d'indexation (350) pour positionner respectivement les ouvertures du posage (200) en regard des spiraux/ébauches de spiraux de la plaquette (10).
  13. Dispositif selon la revendication 12 et selon la revendication 5, caractérisé en ce que lesdits moyens d'indexation ou des deuxièmes moyens d'indexation sont agencés pour positionner respectivement les ouvertures de la plaque de serrage en regard des spiraux/ébauches de spiraux de la plaquette.
  14. Dispositif selon l'une des revendications précédentes, comprenant une table mobile sur laquelle est disposée la plaquette, pour lui permettre de se déplacer en référence à la source d'excitation et aux moyens de mesure.
EP22183023.5A 2022-07-05 2022-07-05 Dispositif de determination de la raideur d'un spiral Pending EP4303668A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22183023.5A EP4303668A1 (fr) 2022-07-05 2022-07-05 Dispositif de determination de la raideur d'un spiral

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP22183023.5A EP4303668A1 (fr) 2022-07-05 2022-07-05 Dispositif de determination de la raideur d'un spiral

Publications (1)

Publication Number Publication Date
EP4303668A1 true EP4303668A1 (fr) 2024-01-10

Family

ID=82546889

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22183023.5A Pending EP4303668A1 (fr) 2022-07-05 2022-07-05 Dispositif de determination de la raideur d'un spiral

Country Status (1)

Country Link
EP (1) EP4303668A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1422436A1 (fr) 2002-11-25 2004-05-26 CSEM Centre Suisse d'Electronique et de Microtechnique SA Ressort spiral de montre et son procédé de fabrication
EP2215531A1 (fr) 2007-11-28 2010-08-11 Manufacture et fabrique de montres et chronomètres Ulysse Nardin Le Locle SA Oscillateur mécanique présentant un coefficient thermoélastique optimisé
WO2016128694A1 (fr) 2015-02-13 2016-08-18 Tronic's Microsystems Oscillateur mécanique et procédé de réalisation associe
EP3181938A1 (fr) 2015-12-18 2017-06-21 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Procede de fabrication d'un spiral d'une raideur predeterminee par retrait de matiere
CH717357A2 (fr) * 2020-04-24 2021-10-29 Rolex Sa Spiral horloger en verre ou en céramique, à géométrie complexe.
EP3915788A1 (fr) * 2019-09-16 2021-12-01 Sigatec SA Procédé de fabrication d'un lot de spiraux horlogers
EP4030243A1 (fr) * 2021-01-18 2022-07-20 Richemont International S.A. Procédé de controle et de fabrication de ressorts spiraux d' horlogerie

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1422436A1 (fr) 2002-11-25 2004-05-26 CSEM Centre Suisse d'Electronique et de Microtechnique SA Ressort spiral de montre et son procédé de fabrication
EP2215531A1 (fr) 2007-11-28 2010-08-11 Manufacture et fabrique de montres et chronomètres Ulysse Nardin Le Locle SA Oscillateur mécanique présentant un coefficient thermoélastique optimisé
WO2016128694A1 (fr) 2015-02-13 2016-08-18 Tronic's Microsystems Oscillateur mécanique et procédé de réalisation associe
EP3181938A1 (fr) 2015-12-18 2017-06-21 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Procede de fabrication d'un spiral d'une raideur predeterminee par retrait de matiere
EP3915788A1 (fr) * 2019-09-16 2021-12-01 Sigatec SA Procédé de fabrication d'un lot de spiraux horlogers
CH717357A2 (fr) * 2020-04-24 2021-10-29 Rolex Sa Spiral horloger en verre ou en céramique, à géométrie complexe.
EP4030243A1 (fr) * 2021-01-18 2022-07-20 Richemont International S.A. Procédé de controle et de fabrication de ressorts spiraux d' horlogerie

Similar Documents

Publication Publication Date Title
EP1774651B1 (fr) Microresonateur composite a forte deformation
EP2514094B1 (fr) Résonateur thermocompense au moins aux premier et second ordres
EP3769162B1 (fr) Procede de fabrication de composants horlogers en silicium
JP2002283297A (ja) 裏面に金属被覆を備える、マイクロメカニカルおよびマイクロオプトメカニカルな構造物を製造するための方法
EP2423764A1 (fr) Dispositif pour la mesure du couple d'un spiral
EP3769161B1 (fr) Procede de fabrication de spiraux horlogers thermocompenses de raideur precise
JP2002301697A (ja) 単結晶シリコンの露光の工程を備える、マイクロメカニカルおよびマイクロオプトメカニカルな構造物を製造するための方法
WO2019166922A1 (fr) Procede de fabrication d'un spiral
JP2019506782A (ja) 単結晶圧電層、およびそのような層を含むマイクロエレクトロニクスデバイス、光子デバイスまたは光学デバイスの作製方法
FR2947096A1 (fr) Procede de realisation d'une membrane plane
EP2764617B1 (fr) Résonateurs à ondes de volume sur structures verticales micro-usinées
EP4303668A1 (fr) Dispositif de determination de la raideur d'un spiral
EP1800175B1 (fr) Miroir deformable
CH719864A2 (fr) Dispositif de détermination de la raideur d'un spiral.
JP2011523466A (ja) 薄いペリクルビームスプリッタの製造
EP3457224B1 (fr) Element piezoelectrique pour un circuit d'autoregulation de frequence, systeme mecanique oscillant et dispositif le comprenant, et procede de fabrication de l'element piezoelectrique
WO2017017000A1 (fr) Ressort spiral et procede de realisation du ressort spiral
US11774914B2 (en) Method for manufacturing a one-piece silicon device with flexible blades, in particular for timepieces
WO2022152857A1 (fr) Procédé de controle et de fabrication de ressorts spiraux d'horlogerie
CH718081A2 (fr) Élément élastique pour un système micromécanique.
EP3839642A1 (fr) Procede de fabrication de ressorts horlogers et masque de gravure pour un tel procede
EP4030242A1 (fr) Procédé de fabrication de ressorts spiraux d'horlogerie
WO2024017847A1 (fr) Procédé de controle et de fabrication de ressorts spiraux d'horlogerie
EP4202576A1 (fr) Procédé de contrôle et de fabrication de ressorts spiraux d'horlogerie
FR2973608A1 (fr) Procede d'ajustement de la frequence de resonance d'un element vibrant micro-usine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR