EP3837294A1 - Compositions de résines époxy thermodurcissables monocomposant - Google Patents
Compositions de résines époxy thermodurcissables monocomposantInfo
- Publication number
- EP3837294A1 EP3837294A1 EP19742391.6A EP19742391A EP3837294A1 EP 3837294 A1 EP3837294 A1 EP 3837294A1 EP 19742391 A EP19742391 A EP 19742391A EP 3837294 A1 EP3837294 A1 EP 3837294A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- epoxy resin
- resin composition
- diamino
- triazine
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000003822 epoxy resin Substances 0.000 title claims abstract description 134
- 229920000647 polyepoxide Polymers 0.000 title claims abstract description 134
- 239000000203 mixture Substances 0.000 title claims abstract description 110
- 229920001187 thermosetting polymer Polymers 0.000 title claims abstract description 31
- VZXTWGWHSMCWGA-UHFFFAOYSA-N 1,3,5-triazine-2,4-diamine Chemical compound NC1=NC=NC(N)=N1 VZXTWGWHSMCWGA-UHFFFAOYSA-N 0.000 claims abstract description 41
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 41
- -1 alkyl radical Chemical class 0.000 claims abstract description 25
- 125000003700 epoxy group Chemical group 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 229920000642 polymer Polymers 0.000 claims abstract description 17
- 238000010276 construction Methods 0.000 claims abstract description 15
- 150000005840 aryl radicals Chemical class 0.000 claims abstract description 9
- 229920002635 polyurethane Polymers 0.000 claims abstract description 7
- 239000004814 polyurethane Substances 0.000 claims abstract description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 6
- 230000001070 adhesive effect Effects 0.000 claims description 38
- 239000000853 adhesive Substances 0.000 claims description 36
- 238000001816 cooling Methods 0.000 claims description 22
- NJYZCEFQAIUHSD-UHFFFAOYSA-N acetoguanamine Chemical compound CC1=NC(N)=NC(N)=N1 NJYZCEFQAIUHSD-UHFFFAOYSA-N 0.000 claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 20
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 claims description 16
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 claims description 14
- 238000013007 heat curing Methods 0.000 claims description 13
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine powder Natural products NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 11
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims description 10
- 150000003254 radicals Chemical class 0.000 claims description 10
- 229920001730 Moisture cure polyurethane Polymers 0.000 claims description 9
- BDPPZSFVSOBOIX-UHFFFAOYSA-N 6-nonyl-1,3,5-triazine-2,4-diamine Chemical compound CCCCCCCCCC1=NC(N)=NC(N)=N1 BDPPZSFVSOBOIX-UHFFFAOYSA-N 0.000 claims description 8
- 239000004848 polyfunctional curative Substances 0.000 claims description 8
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims description 7
- 238000003303 reheating Methods 0.000 claims description 4
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 claims description 2
- 150000008064 anhydrides Chemical class 0.000 claims description 2
- 230000000903 blocking effect Effects 0.000 claims description 2
- 150000001735 carboxylic acids Chemical class 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims description 2
- 125000004429 atom Chemical group 0.000 claims 1
- 238000012360 testing method Methods 0.000 description 24
- 229920000909 polytetrahydrofuran Polymers 0.000 description 21
- 229910000831 Steel Inorganic materials 0.000 description 17
- 238000001723 curing Methods 0.000 description 17
- 239000010959 steel Substances 0.000 description 17
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 16
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 15
- 229920002121 Hydroxyl-terminated polybutadiene Polymers 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- 239000007787 solid Substances 0.000 description 13
- 150000002739 metals Chemical class 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 9
- 125000005442 diisocyanate group Chemical group 0.000 description 9
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 9
- 238000004088 simulation Methods 0.000 description 9
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 8
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 7
- 125000003118 aryl group Chemical group 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 239000011151 fibre-reinforced plastic Substances 0.000 description 7
- 239000003981 vehicle Substances 0.000 description 7
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 6
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 125000003710 aryl alkyl group Chemical group 0.000 description 6
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 6
- 239000003085 diluting agent Substances 0.000 description 6
- 229920005862 polyol Polymers 0.000 description 6
- 125000006850 spacer group Chemical group 0.000 description 6
- 125000001424 substituent group Chemical group 0.000 description 6
- 239000004593 Epoxy Substances 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 239000004809 Teflon Substances 0.000 description 5
- 229920006362 Teflon® Polymers 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 5
- 235000013877 carbamide Nutrition 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000004850 liquid epoxy resins (LERs) Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 150000002989 phenols Chemical class 0.000 description 5
- 150000003077 polyols Chemical class 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 238000009864 tensile test Methods 0.000 description 5
- 150000003573 thiols Chemical group 0.000 description 5
- 150000003672 ureas Chemical class 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000005058 Isophorone diisocyanate Substances 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 4
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 4
- 239000012975 dibutyltin dilaurate Substances 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 3
- NAMCDLUESQLMOZ-UHFFFAOYSA-N 6-ethyl-1,3,5-triazine-2,4-diamine Chemical compound CCC1=NC(N)=NC(N)=N1 NAMCDLUESQLMOZ-UHFFFAOYSA-N 0.000 description 3
- 244000226021 Anacardium occidentale Species 0.000 description 3
- 229920003319 Araldite® Polymers 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 3
- 229920000877 Melamine resin Polymers 0.000 description 3
- 238000004026 adhesive bonding Methods 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 3
- 239000000292 calcium oxide Substances 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 3
- 150000001721 carbon Chemical group 0.000 description 3
- 235000020226 cashew nut Nutrition 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 229920001451 polypropylene glycol Polymers 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000004448 titration Methods 0.000 description 3
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 3
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical compound O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 description 2
- JOLVYUIAMRUBRK-UHFFFAOYSA-N 11',12',14',15'-Tetradehydro(Z,Z-)-3-(8-Pentadecenyl)phenol Natural products OC1=CC=CC(CCCCCCCC=CCC=CCC=C)=C1 JOLVYUIAMRUBRK-UHFFFAOYSA-N 0.000 description 2
- CUFXMPWHOWYNSO-UHFFFAOYSA-N 2-[(4-methylphenoxy)methyl]oxirane Chemical compound C1=CC(C)=CC=C1OCC1OC1 CUFXMPWHOWYNSO-UHFFFAOYSA-N 0.000 description 2
- AOBIOSPNXBMOAT-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxy)ethoxymethyl]oxirane Chemical compound C1OC1COCCOCC1CO1 AOBIOSPNXBMOAT-UHFFFAOYSA-N 0.000 description 2
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 2
- XMTQQYYKAHVGBJ-UHFFFAOYSA-N 3-(3,4-DICHLOROPHENYL)-1,1-DIMETHYLUREA Chemical compound CN(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XMTQQYYKAHVGBJ-UHFFFAOYSA-N 0.000 description 2
- YLKVIMNNMLKUGJ-UHFFFAOYSA-N 3-Delta8-pentadecenylphenol Natural products CCCCCCC=CCCCCCCCC1=CC=CC(O)=C1 YLKVIMNNMLKUGJ-UHFFFAOYSA-N 0.000 description 2
- XRFYZEHRLUNWIJ-UHFFFAOYSA-N 3-pentadec-1-enylphenol Chemical compound CCCCCCCCCCCCCC=CC1=CC=CC(O)=C1 XRFYZEHRLUNWIJ-UHFFFAOYSA-N 0.000 description 2
- ZUHMEUFBTDOKPX-UHFFFAOYSA-N 6-[2-(4,6-diamino-1,3,5-triazin-2-yl)ethyl]-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(CCC=2N=C(N)N=C(N)N=2)=N1 ZUHMEUFBTDOKPX-UHFFFAOYSA-N 0.000 description 2
- VVYBFJSLGGZKFD-UHFFFAOYSA-N 6-[4-(4,6-diamino-1,3,5-triazin-2-yl)butyl]-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(CCCCC=2N=C(N)N=C(N)N=2)=N1 VVYBFJSLGGZKFD-UHFFFAOYSA-N 0.000 description 2
- OOEGQLPPMITCBZ-UHFFFAOYSA-N 6-propan-2-yl-1,3,5-triazine-2,4-diamine Chemical compound CC(C)C1=NC(N)=NC(N)=N1 OOEGQLPPMITCBZ-UHFFFAOYSA-N 0.000 description 2
- NGYGUYRBWLUDRP-UHFFFAOYSA-N 6-propyl-1,3,5-triazine-2,4-diamine Chemical compound CCCC1=NC(N)=NC(N)=N1 NGYGUYRBWLUDRP-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- JOLVYUIAMRUBRK-UTOQUPLUSA-N Cardanol Chemical compound OC1=CC=CC(CCCCCCC\C=C/C\C=C/CC=C)=C1 JOLVYUIAMRUBRK-UTOQUPLUSA-N 0.000 description 2
- FAYVLNWNMNHXGA-UHFFFAOYSA-N Cardanoldiene Natural products CCCC=CCC=CCCCCCCCC1=CC=CC(O)=C1 FAYVLNWNMNHXGA-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- 239000004838 Heat curing adhesive Substances 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 239000004609 Impact Modifier Substances 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- IPRJXAGUEGOFGG-UHFFFAOYSA-N N-butylbenzenesulfonamide Chemical compound CCCCNS(=O)(=O)C1=CC=CC=C1 IPRJXAGUEGOFGG-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 102220560925 Sialidase-3_R45V_mutation Human genes 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229920000180 alkyd Polymers 0.000 description 2
- 150000005215 alkyl ethers Chemical class 0.000 description 2
- 229940106691 bisphenol a Drugs 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 2
- PTFIPECGHSYQNR-UHFFFAOYSA-N cardanol Natural products CCCCCCCCCCCCCCCC1=CC=CC(O)=C1 PTFIPECGHSYQNR-UHFFFAOYSA-N 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- JXCGFZXSOMJFOA-UHFFFAOYSA-N chlorotoluron Chemical compound CN(C)C(=O)NC1=CC=C(C)C(Cl)=C1 JXCGFZXSOMJFOA-UHFFFAOYSA-N 0.000 description 2
- 229930003836 cresol Natural products 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- XXOYNJXVWVNOOJ-UHFFFAOYSA-N fenuron Chemical compound CN(C)C(=O)NC1=CC=CC=C1 XXOYNJXVWVNOOJ-UHFFFAOYSA-N 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- CGXBXJAUUWZZOP-UHFFFAOYSA-N formaldehyde;phenol;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.OC1=CC=CC=C1.NC1=NC(N)=NC(N)=N1 CGXBXJAUUWZZOP-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 150000002460 imidazoles Chemical class 0.000 description 2
- 150000002462 imidazolines Chemical class 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- BMLIZLVNXIYGCK-UHFFFAOYSA-N monuron Chemical compound CN(C)C(=O)NC1=CC=C(Cl)C=C1 BMLIZLVNXIYGCK-UHFFFAOYSA-N 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920001955 polyphenylene ether Polymers 0.000 description 2
- 230000001698 pyrogenic effect Effects 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- 239000010456 wollastonite Substances 0.000 description 2
- 229910052882 wollastonite Inorganic materials 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- ZXHZWRZAWJVPIC-UHFFFAOYSA-N 1,2-diisocyanatonaphthalene Chemical compound C1=CC=CC2=C(N=C=O)C(N=C=O)=CC=C21 ZXHZWRZAWJVPIC-UHFFFAOYSA-N 0.000 description 1
- SBJCUZQNHOLYMD-UHFFFAOYSA-N 1,5-Naphthalene diisocyanate Chemical compound C1=CC=C2C(N=C=O)=CC=CC2=C1N=C=O SBJCUZQNHOLYMD-UHFFFAOYSA-N 0.000 description 1
- STMDPCBYJCIZOD-UHFFFAOYSA-N 2-(2,4-dinitroanilino)-4-methylpentanoic acid Chemical compound CC(C)CC(C(O)=O)NC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O STMDPCBYJCIZOD-UHFFFAOYSA-N 0.000 description 1
- BBBUAWSVILPJLL-UHFFFAOYSA-N 2-(2-ethylhexoxymethyl)oxirane Chemical compound CCCCC(CC)COCC1CO1 BBBUAWSVILPJLL-UHFFFAOYSA-N 0.000 description 1
- YSUQLAYJZDEMOT-UHFFFAOYSA-N 2-(butoxymethyl)oxirane Chemical compound CCCCOCC1CO1 YSUQLAYJZDEMOT-UHFFFAOYSA-N 0.000 description 1
- KUBDPQJOLOUJRM-UHFFFAOYSA-N 2-(chloromethyl)oxirane;4-[2-(4-hydroxyphenyl)propan-2-yl]phenol Chemical compound ClCC1CO1.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 KUBDPQJOLOUJRM-UHFFFAOYSA-N 0.000 description 1
- JPEGUDKOYOIOOP-UHFFFAOYSA-N 2-(hexoxymethyl)oxirane Chemical compound CCCCCCOCC1CO1 JPEGUDKOYOIOOP-UHFFFAOYSA-N 0.000 description 1
- RUGWIVARLJMKDM-UHFFFAOYSA-N 2-(oxiran-2-ylmethoxymethyl)furan Chemical compound C1OC1COCC1=CC=CO1 RUGWIVARLJMKDM-UHFFFAOYSA-N 0.000 description 1
- GNNHGXRETBSBMR-UHFFFAOYSA-N 2-(pentadec-3-enoxymethyl)oxirane Chemical compound CCCCCCCCCCCC=CCCOCC1CO1 GNNHGXRETBSBMR-UHFFFAOYSA-N 0.000 description 1
- WNISWKAEAPQCJQ-UHFFFAOYSA-N 2-[(2-nonylphenoxy)methyl]oxirane Chemical compound CCCCCCCCCC1=CC=CC=C1OCC1OC1 WNISWKAEAPQCJQ-UHFFFAOYSA-N 0.000 description 1
- HHRACYLRBOUBKM-UHFFFAOYSA-N 2-[(4-tert-butylphenoxy)methyl]oxirane Chemical compound C1=CC(C(C)(C)C)=CC=C1OCC1OC1 HHRACYLRBOUBKM-UHFFFAOYSA-N 0.000 description 1
- HSDVRWZKEDRBAG-UHFFFAOYSA-N 2-[1-(oxiran-2-ylmethoxy)hexoxymethyl]oxirane Chemical compound C1OC1COC(CCCCC)OCC1CO1 HSDVRWZKEDRBAG-UHFFFAOYSA-N 0.000 description 1
- LHODKIWWSBRCNQ-UHFFFAOYSA-N 2-hydroxy-N-[2-[2-(2-hydroxyphenyl)-4,5-dihydroimidazol-1-yl]ethyl]benzamide Chemical compound Oc1ccccc1C(=O)NCCN1CCN=C1c1ccccc1O LHODKIWWSBRCNQ-UHFFFAOYSA-N 0.000 description 1
- FUOZJYASZOSONT-UHFFFAOYSA-N 2-propan-2-yl-1h-imidazole Chemical compound CC(C)C1=NC=CN1 FUOZJYASZOSONT-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- FOLVZNOYNJFEBK-UHFFFAOYSA-N 3,5-bis(isocyanatomethyl)bicyclo[2.2.1]heptane Chemical compound C1C(CN=C=O)C2C(CN=C=O)CC1C2 FOLVZNOYNJFEBK-UHFFFAOYSA-N 0.000 description 1
- VPHXEUMODZBWRI-UHFFFAOYSA-N 6-(2-methylcyclohexyl)-1,3,5-triazine-2,4-diamine Chemical compound CC1CCCCC1C1=NC(N)=NC(N)=N1 VPHXEUMODZBWRI-UHFFFAOYSA-N 0.000 description 1
- LLHWSBXZXJXVPL-UHFFFAOYSA-N 6-(2-methylphenyl)-1,3,5-triazine-2,4-diamine Chemical compound CC1=CC=CC=C1C1=NC(N)=NC(N)=N1 LLHWSBXZXJXVPL-UHFFFAOYSA-N 0.000 description 1
- QPRNZMLLGANTBN-UHFFFAOYSA-N 6-(cyclohexylmethyl)-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(CC2CCCCC2)=N1 QPRNZMLLGANTBN-UHFFFAOYSA-N 0.000 description 1
- GNOXQMPUXDWYPS-UHFFFAOYSA-N 6-benzyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(CC=2C=CC=CC=2)=N1 GNOXQMPUXDWYPS-UHFFFAOYSA-N 0.000 description 1
- HAPDXSYZMFVBBH-UHFFFAOYSA-N 6-cyclohexyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C2CCCCC2)=N1 HAPDXSYZMFVBBH-UHFFFAOYSA-N 0.000 description 1
- JDVPCYNJSHTFEZ-UHFFFAOYSA-N 6-cyclopentyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C2CCCC2)=N1 JDVPCYNJSHTFEZ-UHFFFAOYSA-N 0.000 description 1
- YZVJFFKAKLWXOE-UHFFFAOYSA-N 6-heptadecyl-1,3,5-triazine-2,4-diamine Chemical compound CCCCCCCCCCCCCCCCCC1=NC(N)=NC(N)=N1 YZVJFFKAKLWXOE-UHFFFAOYSA-N 0.000 description 1
- FVYBKHNQSAHYGJ-UHFFFAOYSA-N 6-pyridin-3-yl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=NC=CC=2)=N1 FVYBKHNQSAHYGJ-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 1
- 239000004604 Blowing Agent Substances 0.000 description 1
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 1
- 241000579895 Chlorostilbon Species 0.000 description 1
- 239000005494 Chlorotoluron Substances 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 239000005510 Diuron Substances 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- 229920006309 Invista Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 1
- FQYUMYWMJTYZTK-UHFFFAOYSA-N Phenyl glycidyl ether Chemical compound C1OC1COC1=CC=CC=C1 FQYUMYWMJTYZTK-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241000282485 Vulpes vulpes Species 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001448 anilines Chemical class 0.000 description 1
- 125000002102 aryl alkyloxo group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- XFUOBHWPTSIEOV-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) cyclohexane-1,2-dicarboxylate Chemical class C1CCCC(C(=O)OCC2OC2)C1C(=O)OCC1CO1 XFUOBHWPTSIEOV-UHFFFAOYSA-N 0.000 description 1
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000010538 cationic polymerization reaction Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910001919 chlorite Inorganic materials 0.000 description 1
- 229910052619 chlorite group Inorganic materials 0.000 description 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- VEIOBOXBGYWJIT-UHFFFAOYSA-N cyclohexane;methanol Chemical compound OC.OC.C1CCCCC1 VEIOBOXBGYWJIT-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000010976 emerald Substances 0.000 description 1
- 229910052876 emerald Inorganic materials 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methyl-cyclopentane Natural products CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000012764 mineral filler Substances 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- CLCWCGOCHZSFQE-UHFFFAOYSA-N n,n-bis(oxiran-2-ylmethyl)cyclohexanamine Chemical compound C1OC1CN(C1CCCCC1)CC1CO1 CLCWCGOCHZSFQE-UHFFFAOYSA-N 0.000 description 1
- OLAPPGSPBNVTRF-UHFFFAOYSA-N naphthalene-1,4,5,8-tetracarboxylic acid Chemical compound C1=CC(C(O)=O)=C2C(C(=O)O)=CC=C(C(O)=O)C2=C1C(O)=O OLAPPGSPBNVTRF-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- CQRYARSYNCAZFO-UHFFFAOYSA-N o-hydroxybenzyl alcohol Natural products OCC1=CC=CC=C1O CQRYARSYNCAZFO-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- XRQKARZTFMEBBY-UHFFFAOYSA-N oxiran-2-ylmethyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1CO1 XRQKARZTFMEBBY-UHFFFAOYSA-N 0.000 description 1
- BVJSUAQZOZWCKN-UHFFFAOYSA-N p-hydroxybenzyl alcohol Chemical compound OCC1=CC=C(O)C=C1 BVJSUAQZOZWCKN-UHFFFAOYSA-N 0.000 description 1
- 239000013500 performance material Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- UDKSLGIUCGAZTK-UHFFFAOYSA-N phenyl pentadecane-1-sulfonate Chemical compound CCCCCCCCCCCCCCCS(=O)(=O)OC1=CC=CC=C1 UDKSLGIUCGAZTK-UHFFFAOYSA-N 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000010435 syenite Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000013008 thixotropic agent Substances 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- XFVUECRWXACELC-UHFFFAOYSA-N trimethyl oxiran-2-ylmethyl silicate Chemical compound CO[Si](OC)(OC)OCC1CO1 XFVUECRWXACELC-UHFFFAOYSA-N 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/50—Amines
- C08G59/5046—Amines heterocyclic
- C08G59/5053—Amines heterocyclic containing only nitrogen as a heteroatom
- C08G59/508—Amines heterocyclic containing only nitrogen as a heteroatom having three nitrogen atoms in the ring
- C08G59/5086—Triazines; Melamines; Guanamines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
- C08G18/12—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/22—Catalysts containing metal compounds
- C08G18/24—Catalysts containing metal compounds of tin
- C08G18/244—Catalysts containing metal compounds of tin tin salts of carboxylic acids
- C08G18/246—Catalysts containing metal compounds of tin tin salts of carboxylic acids containing also tin-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4854—Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/67—Unsaturated compounds having active hydrogen
- C08G18/69—Polymers of conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/75—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
- C08G18/751—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
- C08G18/752—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
- C08G18/753—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
- C08G18/755—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/80—Masked polyisocyanates
- C08G18/8061—Masked polyisocyanates masked with compounds having only one group containing active hydrogen
- C08G18/8064—Masked polyisocyanates masked with compounds having only one group containing active hydrogen with monohydroxy compounds
- C08G18/8067—Masked polyisocyanates masked with compounds having only one group containing active hydrogen with monohydroxy compounds phenolic compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/182—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents
- C08G59/184—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents with amines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/22—Di-epoxy compounds
- C08G59/24—Di-epoxy compounds carbocyclic
- C08G59/245—Di-epoxy compounds carbocyclic aromatic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/4007—Curing agents not provided for by the groups C08G59/42 - C08G59/66
- C08G59/4014—Nitrogen containing compounds
- C08G59/4021—Ureas; Thioureas; Guanidines; Dicyandiamides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/50—Amines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J163/00—Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2170/00—Compositions for adhesives
Definitions
- the invention relates to the field of thermosetting epoxy resin compositions, in particular for the bonding of substrates with different coefficients of thermal expansion, in particular in the shell of means of transport or white goods.
- Thermosetting epoxy resin compositions have long been known. An important area of application of heat-curing epoxy resin compositions is found in vehicle construction, especially when gluing in the shell of means of transport or white goods. In both cases, after the application of the epoxy resin composition, the bonded object is heated in an oven, as a result of which the thermosetting epoxy resin composition is also cured.
- the glued components When gluing in the shell of a means of transport, the glued components are typically heated in an oven at least three times.
- the first heating of the glued component serves to harden the cathodic dip coating (KTL) in the KTL furnace.
- the cured KTL layer typically (another) applied coating (s), which serves to compensate for unevenness and the adhesion, and cured in a second oven.
- the first furnace typically has the highest temperature, typically between 140-200 ° C. "Frozen" tensions in the adhesive connection therefore take up the components particularly in the first heating step, which is particularly disadvantageous for the subsequent two heating steps due to the additional loads on the adhesive connection during the renewed cooling phases.
- thermosetting epoxy resin compositions for structurally connecting substrates with different thermal linear expansion coefficients which on the one hand have sufficient mechanical properties for structural connection and on the other hand to withstand the high stresses that occur with repeated heating without failure of the structural connection.
- the present invention relates to a one-part thermosetting epoxy resin composition
- a one-part thermosetting epoxy resin composition comprising
- At least one toughness improver D which is a terminally blocked polyurethane polymer D1.
- the weight ratio of the at least one epoxy resin A with an average of more than one epoxy group per molecule to the at least one toughness improver D is from 0.4 to 3.3.
- a “toughness improver” is understood to mean an addition to an epoxy resin matrix which, even with small additions of> 5% by weight, in particular> 10% by weight, based on the total weight of the epoxy resin compositions, brings about a significant increase in toughness and is therefore able to withstand higher bending, tensile, impact or shock loads before the matrix breaks or breaks.
- molecular weight means the molar mass (in grams per mole) of a molecule.
- average molecular weight is the number average molecular weight M n of an oligomeric or polymeric mixture of molecules, which is usually determined by means of GPC against polystyrene as the standard.
- the “primary hydroxyl group” is an OH group that is attached to a carbon atom with two hydrogens.
- primary amino group denotes an NH2 group which is bonded to an organic radical
- secondary amino group denotes an NH group which is attached to two organic radicals, which can also be part of a ring together , is bound. Accordingly, an amine which has a primary amino group is referred to as “primary amine”, one with a secondary amino group is referred to as “secondary amine” and one with a tertiary amino group is referred to as “tertiary amine”.
- room temperature is a temperature of 23 ° C.
- a high tension arises in the partially or fully hardened epoxy resin composition, which either leads to Failure of the adhesive connection, deformation of the substrates or so-called “freezing" of the tension in the adhesive connection leads.
- the “Da tension” was applied to a tensile shear test using a tensile testing machine.
- the temperature curve in the convection oven was simulated by two thermocouples, which make it possible to temper the tensile shear test in the area of the adhesive surface with defined heating and cooling rates. Since the cooling phase is the most critical, a tension was only applied via the tensile testing machine during this test. Depending on the setting of the train speed on the tensile testing machine, variable voltage drops can be simulated that would occur with different substrate combinations.
- the initial length both joining partners should be 1000mm.
- the temperature profile shown in FIG. 5 was defined for heating or cooling the samples (for the case of 1st hardening). This results in the start and end temperature as well as the temperature difference between heating and Cooling speeds were also chosen as usual in the automotive industry at 40 ° C./min.
- Equations 1 and 2 the thermal expansion is obtained for steel and aluminum according to equations 4 and 5. This results in a difference in linear expansion of 2,145mm or 1,820mm during the heating phase, by which aluminum expands more than steel. Accordingly, the cured epoxy resin composition, which forms a material connection, must also compensate for a shrinkage difference of 2,145 mm or 1,820 mm during the cooling phase. Taking into account the cooling speed 14 of 40 ° C./min, a pulling speed is obtained according to equations 6 and 7 of
- a tensile shear test produced in accordance with the preparation instructions described above is clamped in a tensile testing machine. For the time being, however, only the lower jaw is fixed. The clamping length is 100 mm.
- thermocouples are pressed onto the sample so that they are in contact with the adhesive surface.
- the start and end temperatures are set to 25 ° C and 190 ° C or 165 ° C, respectively. 40 ° C / min is entered for heating and cooling speeds.
- the cooling phase starts automatically when the countdown ends.
- a tensile shear test with a tensile speed of 0.52 mm / min is started manually via the control software of the tensile testing machine.
- the force level at the end of the cooling phase was determined as the measurement result, ie when a length extension of 2,145 mm for 1st hardening, or 1,820 mm for 3rd hardening was reached.
- the higher the force level here the more there are frozen tensions in the Epoxy resin composition and irreversible deformations can be expected in the substrates. Accordingly, the lowest possible level of force is an advantageous result (“Au toleranter”).
- the tensile shear sample was cooled from 190 ° C. for 1st hardening, or 165 ° C. for 3rd hardening, to a temperature of 25 ° C. with a cooling rate of 40 ° C./min.
- a tensile speed V tensile of 0.52 mm / min was measured.
- the time of failure is also of interest. If this happens before the end of the cooling phase, ie a break occurs at a train speed of 0.52mm / min before reaching a length extension of 2.145mm, respectively tolerance “the
- the tensile shear test is a tensile shear test for determining the tensile shear strength in accordance with DIN EN 1465.
- the measured force level is preferably ⁇ 6000 N, preferably ⁇ 5000 N, preferably ⁇ 4500 N, preferably ⁇ 4000 N, preferably ⁇ 3500 N, preferably ⁇ 3000 N, preferably ⁇ 2500 N, preferably ⁇ 2000 N
- the epoxy resin A with an average of more than one epoxy group per molecule is preferably a liquid epoxy resin or a solid epoxy resin.
- the term "solid epoxy resin” is well known to epoxy experts is used in contrast to "liquid epoxy resins”.
- the glass transition temperature of solid resins is above room temperature, ie they can be comminuted into pourable powders at room temperature.
- Preferred epoxy resins have the formula (II)
- substituents R ’and R independently of one another either represent Fl or CFb.
- the index s stands for a value of> 1.5, in particular from 2 to 12.
- Solid epoxy resins of this type are commercially available, for example from Dow or Fluntsman or Flexion.
- the index s stands for a value of less than 1.
- s stands for a value of less than 0.2.
- DGEBA diglycidyl ether of bisphenol-A
- bisphenol-F bisphenol-F
- bisphenol-A / F Such liquid resins are available, for example, as Araldite® GY 250, Araldite® PY 304, Araldite® GY 282 (Fluntsman) or D.E.R. TM 331 or D.E.R. TM 330 (Dow) or Epikote 828 (Flexion).
- epoxy resin A is so-called epoxy novolaks. These have the following formula in particular:
- Such epoxy resins are commercially available under the trade names EPN or ECN and Tactix® from Huntsman or under the D.E.N. TM product range from Dow Chemical.
- Epoxy resin A is particularly preferably an epoxy liquid resin of the formula (II).
- thermosetting epoxy resin composition contains both at least one liquid epoxy resin of the formula (II) with s ⁇ 1, in particular less than 0.2, and at least one solid epoxy resin of the formula (II) with s> 1.5, in particular of 2 to 12.
- the proportion of epoxy resin A is preferably 10-60% by weight, in particular 30-50% by weight, based on the total weight of the epoxy resin composition.
- the epoxy resin A is a liquid epoxy resin of the formula (II) mentioned above.
- the epoxy resin A is 0-40% by weight, in particular 20-40% by weight, of the aforementioned solid epoxy resin
- Epoxy resin A is preferably not a reactive diluent G, as described below.
- the one-component thermosetting epoxy resin composition comprises b) at least one 2,4-diamino-1,3,5-triazine GU which, in the 6-position, is an alkyl radical having 1 to 20 C atoms, in which, if appropriate, an H- Atom is replaced by a 2,4-diamino-1, 3,5-triazin-6-yl radical,
- the Z2 has a significantly higher remaining tension / force level than Z3-Z5 after a first hardening. Especially after the first hardening, the difference in force level between Z2 and Z3-Z5 is particularly pronounced.
- the at least one 2,4-diamino-1,3,5-triazine (GU) is preferably selected from the list consisting of
- the at least one 2,4-diamino-1,3,5-triazine is preferably a 2,4-diamino-1,3,5-triazine (GU) which is in the 6-position Alkyl radical having 1 to 20 carbon atoms, in particular 1 to 10 carbon atoms, 1 to 9 carbon atoms, 1 to 3 carbon atoms, particularly preferably 1 carbon atom, in which there is an H atom in the a position ; or
- an aryl radical with 6 to 12 carbon atoms, in particular 6-7 carbon atoms, particularly preferably 6 carbon atoms;
- the at least one 2,4-diamino-1,3,5-triazine is particularly preferably a 2,4-diamino-1,3,5-triazine (GU) which is in the 6-position Alkyl radical with 1 to 20 carbon atoms, in particular 1 to 10 carbon atoms, 1 to 9 carbon atoms, 1 to 3 carbon atoms, particularly preferably 1 carbon atom, in which there is an H atom in the a position , contains.
- Table 4 shows from the comparison of Z1 and Z2 with Z3-Z5 that particularly high values are obtained for the impact peel strength at - 30 ° C and for the angular peel strength.
- the at least one 2,4-diamino-1,3,5-triazine (GU) is particularly preferably selected from the list consisting of
- the molar ratio of the molar amount of 2,4-diamino-1,3,5-triazine GU to the molar amount of epoxy groups of epoxy resin A is preferably from 3.8 to 4.2, in particular from 3.9 to 4.1.
- the ratio of the total amount of 2,4-diamino-1,3,5-triazine GU plus, if appropriate, the total amount of dicyandiamide to the total amount of epoxy groups of epoxy resin A is preferably from 80% to 120%, in particular 90% to 110%, particularly preferably 95% - 105%, a ratio necessary for stoichiometric curing.
- a hardener functionality of 4 is assumed, for dicyandiamide a hardener functionality of 5.5.
- the at least one 2,4-diamino-1,3,5-triazine is 6-phenyl-2,4-diamino-1,3,5-triazine (benzoguanamine)
- this is advantageous in that that both high values for the impact peel strength - 30 ° C and the angular peel strength as well as particularly low values for the force level are obtained. This can be seen, for example, in the comparison of Z3 with Z4-5 in Table 4 and in FIG. 1.
- the at least one 2,4-diamino-1,3,5-triazine is 2,4-diamino-1,3,5-triazine (GU), which in 6-position contain an aryl radical with 6 to 12 carbon atoms, in particular 6-7 carbon atoms, particularly preferably 6 carbon atoms, and the one-component thermosetting epoxy resin composition further contains dicyandiamide.
- the molar ratio of 2,4-diamino-1,3,5-triazine GU, which contains an aryl radical having 6 to 12 carbon atoms in the 6-position, to dicyandiamide is preferably from 9.0 to 2.0, in particular from 7.0 to 3.0, preferably from 6.0 - 4.0. It can be seen from FIG. 2 and FIG. 4 that such a ratio leads to a lower force level.
- the heat-curing epoxy resin compositions according to the invention are less than 10% by weight, less than 5% by weight, in particular less than 1% by weight, preferably less than 0.5% by weight, particularly preferably less than 0.3 % By weight, most preferably less than 0.1% by weight, of alkyd resins, acrylic resins,
- Melamine resins and / or melamine-phenol-formaldehyde fuzz, in particular melamine resins have, based on the total weight of the epoxy resin composition.
- the heat-curing epoxy resin compositions according to the invention are less than 5% by weight, in particular less than 1% by weight, preferably less than 0.5% by weight, particularly preferably less than 0.3% by weight, less than 0.1 % By weight, most preferably less than 0.05% by weight, of accelerators for
- Epoxy resins selected from the list consisting of substituted ureas, imidazoles, imidazolines and amine complexes, in particular substituted ureas, based on the total weight of the epoxy resin composition.
- Such accelerating hardeners are, for example, substituted ureas, such as, for example, 3- (3-chloro-4-methylphenyl) -1, 1-dimethylurea (chlorotoluron) or phenyldimethylureas, in particular p-chlorophenyl-N, N-dimethylurea (monuron), 3-phenyl-1, 1-dimethylurea (fenuron) or 3,4-dichlorophenyl-N, N-dimethylurea (diuron).
- substituted ureas such as, for example, 3- (3-chloro-4-methylphenyl) -1, 1-dimethylurea (chlorotoluron) or phenyldimethylureas, in particular
- the heat-curing epoxy resin compositions according to the invention are less than 5% by weight, in particular less than 1% by weight, preferably less than 0.5% by weight, particularly preferably less than 0.3% by weight, most preferably less than 0.1% by weight of hardeners for epoxy resins selected from the list consisting of anhydrides of polybasic carboxylic acids and dihydrazides, based on the total weight of the epoxy resin composition.
- the one-component thermosetting epoxy resin composition contains at least one toughness improver D.
- the toughness improvers D can be solid or liquid.
- the toughness improver D is a terminally blocked polyurethane polymer D1, in particular a terminally blocked polyurethane polymer of the formula (I).
- R 1 stands for a p-valent radical of a linear or branched polyurethane prepolymer terminated with isocyanate groups after the removal of the terminal isocyanate groups and p for a value of 2 to 8.
- R 2 stands for a blocking group which splits off at a temperature above 100 ° C.
- R 2 is preferably independently of one another a substituent which is selected from the group consisting of
- R 5 , R 6 , R 7 and R 8 each independently represent an alkyl or cycloalkyl or aralkyl or arylalkyl group, or R 5 together with R 6 , or R 7 together with R 8 forms a part form a 4- to 7-membered ring, which is optionally substituted.
- R 9 ' and R 10 each independently represent an alkyl or aralkyl or arylalkyl group or an alkyloxy or aryloxy or aralkyloxy group and R 1 1 represents an alkyl group.
- R 12 , R 13 and R 14 each independently represent an alkylene group having 2 to 5 carbon atoms, which may have double bonds or is substituted, or a phenylene group or a hydrogenated phenylene group.
- R 15 , R 16 and R 17 each independently represent H or one
- Alkyl group or for an aryl group or an aralkyl group and R 18 stands for an aralkyl group or for a mono- or polynuclear substituted or unsubstituted aromatic group, which optionally has aromatic hydroxyl groups.
- R 4 represents a residue of a primary or secondary
- R 2 is particularly preferably independently of one another a substituent which is selected from the group consisting of
- phenols are selected in particular from the list consisting of phenol, cresol, 4-methoxyphenol (HQMME), resorcinol, pyrocatechol, cardanol (3-pentadecenylphenol (from cashew nutshell oil)) and nonylphenol.
- R 18 is to be considered in particular hydroxybenzyl alcohol and benzyl alcohol after removal of a hydroxyl group.
- R 18 is to be considered in particular hydroxybenzyl alcohol and benzyl alcohol after removal of a hydroxyl group.
- radicals R 2 are radicals which are selected from the group consisting of
- the radical Y here is a saturated, aromatic or olefinically unsaturated hydrocarbon radical having 1 to 20 carbon atoms, in particular having 1 to 15 carbon atoms.
- Y are in particular allyl, methyl, nonyl, dodecyl, phenyl, alkyl ether, in particular methyl ether, carboxylic acid ester or an unsaturated one up to 3 double bonds preferred.
- Y is selected from the Group consisting of alkyl ether, especially methyl ether, and unsaturated Ci5-alkyl radical with 1 to 3 double bonds.
- An R 18 is particularly preferably phenols after removal of a hydroxyl group; particularly preferred examples of such phenols are selected from the list consisting of 4-methoxyphenol (HQMME) and cardanol (3-pentadecenylphenol (from cashew nut shells)
- the terminally blocked polyurethane prepolymer of the formula (I) is prepared from the isocyanate-terminated linear or branched polyurethane prepolymer with one or more isocyanate-reactive compounds R 2 H. If more than one such isocyanate-reactive compound is used, the reaction can be carried out sequentially or with a mixture of these connections.
- the polyurethane prepolymer with isocyanate end groups on which R 1 is based can be prepared in particular from at least one diisocyanate or triisocyanate and from a polymer QPM with terminal amino, thiol or hydroxyl groups.
- Suitable diisocyanates are aliphatic, cycloaliphatic, aromatic or araliphatic diisocyanates, in particular commercially available products such as methylene diphenyl diisocyanate (MDI), hexamethylene diisocyanate (HDI), toluene diisocyanate (TDI), tolidine diisocyanate (TODI), isophorone diisocyanate (IPDI TM), trimethyl diisocyanate (IPDI TM), 2,5 or 2,6-bis (isocyanatomethyl) bicyclo [2.2.1] heptane, 1, 5-naphthalene diisocyanate (NDI), dicyclohexylmethyl diisocyanate (H12MDI), p-phenylene diisocyanate (PPDI), m-tetra-methylxylylene diisocyanate (TMXDI), etc. and their dimers. HDI, IPDI, MDI or TDI are preferred.
- Suitable triisocyanates are trimers or biurets of aliphatic, cycloaliphatic, aromatic or araliphatic diisocyanates, especially the isocyanurates and biurets described in the previous paragraph. ben diisocyanates. Suitable mixtures of di- or triisocyanates can of course also be used.
- Particularly suitable polymers QPM with terminal amino, thiol or hydroxyl groups are polymers QPM with two or three terminal amino, thiol or hydroxyl groups.
- the polymers QPM advantageously have an equivalent weight of 300-6000, in particular 600-4000, preferably 700-2200 g / equivalent of NCO-reactive groups.
- Preferred polymers QPM are polyols with average molecular weights of between 600 and 6000 daltons selected from the group consisting of polyethylene glycols, polypropylene glycols, polyethylene glycol-polypropylene glycol block polymers, polybutylene glycols, polytetramethylene ether glycols, hydroxyl-terminated polybutadienes, hydroxyl-terminated butadiene-acrylonitrile and especially their aminitriles, particularly preferred are methylene nitrile copolymers Polytetramethylene ether glycols and hydroxyl-terminated polybutadienes.
- polytetramethylene ether glycols can be used.
- Polytetramethylene ether glycol is also known as polytetrahydrofuran or PTMEG.
- PTMEG can e.g. by polymerization of tetrahydrofuran, e.g. acidic catalysis.
- the polytetramethylene ether glycols are especially diols.
- Polytetramethylene ether glycols are commercially available, e.g. B. the PolyTHF ® products from BASF such as PolyTHF ® 2000, PolyTHF ® 2500 CO or PolyTHF ® 3000 CO, the Terathane ® products from Invista BV or the Polymeg ® products from LyondellBasell.
- the OH functionality of the polytetramethylene ether glycol used is preferably in the range from about 2, for example in the range from 1.9 to 2.1. This is given by the cationic polymerization of the starting monomer tetrahydrofuran.
- Polytetramethylene ether glycols with OH numbers between 170 mg / KOH g to 35 mg KOH / g are advantageous, preferably in the range from 100 mg KOH / g to 40 mg KOH / g, and very particularly preferably 70 to 50 mg KOH / g.
- the OH number is determined titrimetrically in accordance with DIN 53240 in the present application. The hydroxyl number is determined by acetylation with acetic anhydride and subsequent titration of the excess acetic anhydride with alcoholic potassium hydroxide solution.
- the OH equivalent weights or the average molecular weight of the polytetramethylene ether glycol used can be determined from the hydroxyl numbers determined by titration.
- Polytetramethylene ether glycols advantageously used in the present invention preferably have an average molecular weight in the range from 600 to 5000 g / mol, more preferably 1000 to 3000 g / mol and particularly preferably in the range from 1500 to 2500 g / mol, in particular approximately 2000 g / mol , on.
- One or more hydroxy-terminated polybutadienes can be used. Mixtures of two or more hydroxy-terminated polybutadienes can also be used.
- Suitable hydroxy-terminated polybutadienes are, in particular, those which are prepared by free-radical polymerization of 1,3-butadiene, for example using an azonitrile or hydrogen peroxide as the initiator.
- Hydroxy-terminated polybutadienes are commercially available, for example the Poly bd® products from Cray Valley such as Poly bd® R45V, Polyvest ® HT from Evonik and Hypro ® 2800X95HTB from Emerald Performance Materials LLC.
- the hydroxy-terminated polybutadiene preferably has an average molecular weight of less than 5,000, preferably in the range from 2000 to 4000 g / mol.
- the OH functionality of the hydroxy-terminated polybutadiene is preferably in the range from 1.7 to 2.8, preferably from 2.4 to 2.8.
- Hydroxy-terminated polybutadienes with an acrylonitrile content of less than 15%, preferably less than 5%, particularly preferably less than 1%, particularly preferably less than 0.1% are further preferred. Most preferably, hydroxy-terminated polybutadienes are free of acrylonitrile.
- the total proportion of polytetra-methylene ether glycol and hydroxy-terminated polybutadiene is preferably at least 95% by weight and preferably at least 98% by weight.
- only polytetramethylene ether glycol and / or hydroxy-terminated polybutadiene are used as polyols.
- the weight ratio of polytetramethylene ether glycol to hydroxy-terminated polybutadiene is preferably in the range from 100/0 to 70/30, more preferably from 100/0 to 60/40, more preferably from 100/0 to 90/10 and very particularly preferably 100/0.
- the polyurethane prepolymer is produced from at least one diisocyanate or triisocyanate and from a polymer QPM with terminal amino, thiol or hydroxyl groups.
- the polyurethane prepolymer is produced in a manner known to the person skilled in the art of polyurethane, in particular by using the diisocyanate or triisocyanate in a stoichiometric excess with respect to the amino, thiol or hydroxyl groups of the polymer QPM.
- the polyurethane prepolymer with isocyanate end groups preferably has an elastic character. It preferably shows a glass transition temperature Tg of less than 0 ° C.
- the weight ratio of the at least one epoxy resin A with an average of more than one epoxy group per molecule to the at least one toughness improver D is from 0.4 to 3.3.
- a weight ratio of less than 0.4 is disadvantageous in that the compositions cure very slowly or not at all.
- low values in modulus of elasticity, tensile strength and angular peel strength are obtained in particular.
- a weight ratio of more than 3.3 is disadvantageous in that the compositions are obtained which have low values for the elongation at break.
- the weight ratio is preferably less than 2.8, in particular less than 2.4, particularly preferably less than 2.0, as a result of which the delta-alpha resistance is improved, in particular lower values for the force level are obtained. This can be seen in FIG. 3. While the adhesive failure of the Z2a already occurs during the first hardening, the Z6a only shows a slight weakening of the adhesive connection after the third hardening.
- the weight ratio of the at least one epoxy resin A with on average more than one epoxy group per molecule to the at least one toughness improver D is from 0.55 to 2.4, particularly preferably 0.7 to 2.0, 1.0 to 1.8, most preferably 1.0 to 1.6. This is advantageous in that the compositions have high values for modulus of elasticity and tensile strength after the third curing. Furthermore, low values for the force level are obtained at the same time, especially after the first hardening.
- the composition additionally contains at least one filler F.
- filler F are preferably mica, talc, kaolin, wollastonite, feldspar, syenite, chlorite, bentonite, montmorillonite, calcium carbonate (precipitated or ground), dolomite, quartz, silicas (pyrogenic or precipitated), cristobalite, calcium oxide, Aluminum hydroxide, magnesium oxide, hollow ceramic balls, hollow glass balls, organic hollow balls, glass balls, color pigments.
- the total proportion of the total filler F is advantageously 5-40% by weight, preferably 10-30% by weight, based on the total weight of the epoxy resin composition.
- the composition additionally contains at least one reactive diluent G carrying epoxy groups.
- reactive diluents are known to the person skilled in the art.
- Preferred examples of reactive diluents bearing epoxy groups are:
- Glycidyl ethers of monofunctional saturated or unsaturated, branched or unbranched, cyclic or open chain CA-C30 alcohols e.g. Butanol glycidyl ether, hexanol glycidyl ether, 2-ethyl hexanol glycidyl ether, allyl glycidyl ether, tetrahydrofurfuryl and furfuryl glycidyl ether, trimethoxysilyl glycidyl ether etc.
- Glycidyl ethers of difunctional saturated or unsaturated, branched or unbranched, cyclic or open-chain C2 - C30 alkoxides e.g. ethylene glycol, butane diol, hexane diol, octane diolylcidyl ether, cyclohexane dimethanol diolcidyl ether, neopentyl glycol ether etc.
- Glycidyl ethers of trifunctional or polyfunctional, saturated or unsaturated, branched or unbranched, cyclic or open-chain alcohols such as epoxidized castor oil, epoxidized trimethylolpropane, epoxidized pentaerythrol or polyglycidyl ether of aliphatic polyols such as sorbitol, glycerol etc., trimethylolpropane
- - Glycidyl ether of phenol and aniline compounds such as phenyl glycidyl ether, cresyl glycidyl ether, p-tert-butylphenyl glycidyl ether, nonyl phenol glycidyl ether, 3-n-pentadecenyl glycidyl ether (from cashew nutshell oil), N, N-diglycidyl ether
- Epoxidized mono- or dicarboxylic acids such as neodecanoic acid glycidyl ester, methacrylic acid glycidyl ester, benzoic acid glycidyl ester, phthalic acid, tetra and hexahydrophthalic acid diglycidyl esters, diglycidyl esters of dimeric fatty acids etc.
- the total proportion of the reactive diluent G carrying epoxy groups is advantageously 0.1-15% by weight, preferably 0.1-5% by weight, particularly preferably 0.1-2% by weight, particularly preferably 0.2-1% by weight, based on the total weight of the epoxy resin composition.
- composition can comprise further constituents, in particular catalysts, stabilizers, in particular heat and / or light stabilizers, thixotropic agents, plasticizers, solvents, mineral or organic fillers, blowing agents, dyes and pigments, anti-corrosion agents, surfactants, defoamers and adhesion promoters.
- plasticizers are phenol-alkylsulfonic acid esters or benzenesulfonic acid-N-butylamide, as are commercially available as Mesamoll® or Dellatol BBS from Bayer.
- Particularly suitable stabilizers are optionally substituted phenols, such as BHT or Wingstay® T (Elikem), sterically hindered amines or N-oxyl compounds, such as TEMPO (Evonik).
- Epoxy resin composition includes:
- epoxy resin A with an average of more than one epoxy group per molecule; preferably 60-85% by weight, 60-80% by weight, in particular 65-80% by weight, particularly preferably 70-80% by weight, of the epoxy resin A is an epoxy liquid resin and 15-40% by weight, 20-40% by weight, 20-35% by weight, in particular 20-30% by weight, of the epoxy resin A around a solid epoxy resin.
- At least one 2,4-diamino-1,3,5-triazine GU preferably selected from is selected from the list consisting of 6-nonyl-2,4-diamino-1,3,5-triazine (caprinoguanamine), 6 -Phenyl-2,4-diamino-1, 3,5-triazine (benzoguanamine) and 6-methyl-2,4-diamino-1, 3,5-triazine
- the proportion of toughness improver D preferably being 20-60% by weight, 25-55% by weight, 30-50% by weight. %, particularly preferably 30-45% by weight, based on the total weight of the epoxy resin composition; preferably 5-40% by weight, preferably 10-30% by weight, based on the total weight of the epoxy resin composition, of a filler F, preferably selected from the group consisting of wollastonite, calcium carbonate, calcium oxide, color pigments, in particular carbon black, and pyrogenic silicas, in particular calcium carbonate, calcium oxide and fumed silicas;
- Epoxy resin composition from an epoxy group-bearing reactive diluent G;
- the preferred one-component epoxy resin composition comprises more than 80% by weight, preferably more than 90% by weight, in particular more than 95% by weight, particularly preferably more than 98% by weight, most preferably more than 99% % By weight, based on the total weight of the epoxy resin composition, consists of the aforementioned components.
- the epoxy resin composition according to the invention has a viscosity at 25 ° C. of 100-10000 Pa * s, in particular 500-5000 Pa * s, preferably 1000-3000 Pa * s. This is advantageous in that it ensures good applicability.
- the viscosity is preferably measured on an MCR 101 rheometer from the manufacturer Anton Paar in an oscillatory manner using a plate-plate geometry at a temperature of 25 ° C. with the following parameters: 5 Hz, 1 mm gap, plate-plate distance 25 mm, 1% deformation.
- tensile shear strength in particular measured according to DIN EN 1465, particularly preferably as described in the example section, of more than 10 MPa, more than 15 MPa, more than 20 MPa, and / or
- tensile strength in particular measured according to DIN EN ISO 527, particularly preferably as described in the example section, of more than 10 MPa, more than 15 MPa, more than 20 MPa, and / or
- an elongation at break in particular measured according to DIN EN ISO 527, particularly preferably as described in the example section, of more than 10%, have more than 15%, more than 20%, in particular 20-200%, particularly preferably 30-150%, and / or
- a modulus of elasticity in particular measured according to DIN EN ISO 527, particularly preferably as described in the example section, from 800 to 1500 MPa, in particular from 500 to 1200 MPa, and / or
- an impact peel strength in particular measured according to ISO 11343, particularly preferably as described in the example part, of more than 30 N / mm, more than 40 N / mm, more than 50 N / mm at 23 ° C., and / or
- an impact peel strength in particular measured according to ISO 11343, particularly preferably as described in the example part, of more than 25 N / mm, more than 30 N / mm, more than 40 N / mm, more than 50 N / mm at -30 ° C, and / or
- angular peel strength in particular measured according to DIN 53281, particularly preferably as described in the example part, of more than 5 N / mm, more than 8 N / mm, more than 10 N / mm.
- heat-curing epoxy resin compositions described are particularly suitable for use as one-component heat-curing adhesives, in particular as a heat-curing one-component adhesive in vehicle construction and sandwich panel construction.
- a one-component adhesive has a wide range of uses.
- heat-curing one-component adhesives can be realized with this, which are characterized by high impact strength, both at higher temperatures and at low temperatures.
- Such adhesives are required for the bonding of heat-stable materials.
- Heat-stable materials are understood to mean materials which are dimensionally stable at a curing temperature of 100-220 ° C., preferably 120-200 ° C., at least during the curing time.
- the application in which at least one material is a metal is preferred. This is considered a particularly preferred use Bonding of different metals, in particular metals with different coefficients of thermal expansion (Da) and / or the bonding of metals with fiber-reinforced plastics, in particular in the body-in-white in the automotive industry.
- the preferred metals are, above all, steel, in particular electrolytically galvanized, hot-dip galvanized, oiled steel, bonazinc-coated steel, and subsequently phosphated steel, and aluminum, in particular in the variants typically occurring in automobile construction.
- such an adhesive is first contacted with the materials to be bonded at a temperature of between 10 ° C. and 80 ° C., in particular between 10 ° C. and 60 ° C., and later cured at a temperature of typically 100-220 ° C, preferably 140-200 ° C.
- thermosetting epoxy resin composition as described above as a one-component thermosetting adhesive, in particular as a thermosetting one-component adhesive in vehicle construction and sandwich panel construction, in particular in vehicle construction.
- Such a use mentioned above results in a glued article.
- Such an article is preferably a vehicle or part of a vehicle.
- Another aspect of the present invention therefore relates to an adhesive article obtained from the aforementioned use.
- sealing compositions can also be realized with a composition according to the invention.
- the compositions according to the invention are not only suitable for automobile construction but also for other fields of application. Related applications in the construction of means of transport such as ships, trucks, buses or rail vehicles or in the construction of consumer goods such as washing machines are particularly worth mentioning.
- the materials bonded by means of a composition mentioned above are used at temperatures between typically 120 ° C. and -40 ° C., preferably between 100 ° C. and -40 ° C., in particular between 80 ° C. and -40 ° C.
- Another aspect of the present invention relates to a method for bonding heat-stable substrates, which comprises the steps of: a) applying a heat-curing epoxy resin composition as described above to the surface of a heat-stable substrate S1, in particular a metal;
- thermosetting epoxy resin composition a further heat-stable substrate S2, in particular a metal
- reheating the epoxy resin composition to a temperature of 100 to 220 ° C, preferably 100 to 200 ° C, in particular 100 to 170 ° C, preferably between 120 and 170 ° C.
- Heat-stable materials S1 or S2 are understood to mean materials which are dimensionally stable at a curing temperature of 100-220 ° C., preferably 120-200 ° C., at least during the curing time.
- these are metals and plastics such as ABS, polyamide, epoxy resin, polyester resin, polyphenylene ether, fiber-reinforced plastics such as glass fiber and carbon fiber reinforced plastics. Fiber-reinforced plastics are particularly preferred as plastics.
- At least one material is preferably a metal.
- a particularly preferred method is the bonding of heat-stable substrates, in particular metals, with different coefficients of thermal expansion (DO) and / or the bonding of metals with fiber-reinforced plastics, in particular in the body-in-white in the automotive industry.
- the preferred metals are above all steel, in particular electrolytically galvanized, hot-dip galvanized, oiled steel, bonazinc-coated steel, and subsequently phosphated steel, and aluminum, in particular in the variants typically occurring in automobile construction.
- the difference in the coefficient of thermal expansion (Da) between the heat-stable material S1 and the heat-stable material is particularly preferred especially 10 - 15 *
- step c) and in step e) and optionally preferably in step g) heating the epoxy resin composition, the epoxy resin composition for 20 min-60 min, 25 min-55 min, 30 min-50 min, particularly preferably 30 min-40 min, at the aforementioned temperature, in particular the temperature indicated as preferred in each case.
- the epoxy resin composition is preferably heated in an oven.
- the epoxy resin composition is cooled to a temperature of less than 50 ° C., preferably 50-10 ° C., in particular 40-15 ° C. the epoxy resin composition is left at the aforementioned temperature for more than 5 minutes, more than 10 minutes, more than 20 minutes, more than 25 minutes, particularly preferably 30-60 minutes.
- a local transport step for example the transport to another furnace, takes place between step c) and e) and optionally between step e) and g) with the composite of the epoxy resin composition with the heat-stable substrates S1 and S2.
- step c) and e) and optionally between step e) and g) a period of more than 5 min, more than 10 min, more than 20 min, more than 25 min, particularly preferably 30-120 min, most preferably 30-60 min.
- the isocyanate content was determined in% by weight by means of back titration with excess di-n-butylamine and 0.1 M hydrochloric acid. All determinations were carried out semi-manually on a Mettler-Toledo titrator of the type DL50 Graphix with automatic potentiometric end point determination. For this purpose, 600-800 mg of the sample to be determined were dissolved with heating in a mixture of 10 ml of isopropanol and 40 ml of xylene and then reacted with a solution of dibutylamine in xylene. Excess di-n-butylamine was titrated with 0.1 M hydrochloric acid and the isocyanate content was calculated therefrom.
- the force level was determined as described above under "Description of the measurement method for the force level”. A triple determination was carried out for each epoxy resin composition.
- the force level is the force measured at the end of the cooling phase at 25 ° C, i.e. when a length of 2,145 mm is reached for 1st hardening, or 1,820 mm for 3rd hardening.
- Test sheets of steel H420 + Z (thickness 1.2 mm) cleaned and oiled back with Anticorit PL 3802-39S were glued to the adhesive on an adhesive surface of 25 x 10 mm with glass balls as spacers in a layer thickness of 1.5 mm and given below Hardened curing conditions.
- Curing conditions a) 35 min at 175 ° C oven temperature.
- the tensile shear strength was determined on a tractor at a tensile speed of 10 mm / min in a triple determination in accordance with DIN EN 1465.
- Test sheets of 130 x 25 mm made of steel DC-04 + ZE (thickness 0.8 mm) were prepared. Test sheets were unwound at a height of 30 mm using a suitable punching machine (90 °). The cleaned and oiled with Anticorit PL 3802- 39S areas of 100 x 25 mm were used with glass balls as
- Spacers in a layer thickness of 0.3 mm are glued to the adhesive and cured for 35 minutes after reaching an oven temperature of 175 ° C.
- the angular peel strength was determined on a tractor at a tensile speed of 100 mm / min in a 2-fold determination as peeling force in N / mm in the area of the traverse path of 1/6 to 5/6 path length.
- the test specimens were made with the adhesive and steel DC04 + ZE with the dimensions 90 x 20 x 0.8 mm.
- the adhesive area was 20 x 30mm with a layer thickness of 0.3mm and glass balls as spacers.
- the impact peel strength was measured at the specified temperatures (23 ° C, -30 ° C) as a triple determination on a Zwick 450 impact pendulum at 2 m / s.
- the mean force is given in N / mm under the measurement curve from 25% to 90% according to IS011343.
- the adhesives were cured at 175 ° C oven temperature for 35 minutes.
- the following commercial products were used to produce the impact modifier SM:
- DBTDL dibutyltin dilaurate
- HQMME 4-methoxyphenol
- the impact modifier SM was used in each case for the preparation of epoxy resin compositions according to Table 2.
- the proportions of the compounds contained in the epoxy resin compositions are shown in parts by weight in Table 2.
- the respective epoxy resin compositions were mixed in a batch size of 350 g in a planetary mixer.
- the mixing can was filled with the liquid components followed by the solid components, and were mixed at 70 ° C. under vacuum. During the mixing process (approx. 45 min) the vacuum was broken several times and the mixing tool was stripped off. After obtaining a homogeneous mixture, the
- Epoxy resin composition filled into cartridges and stored at room temperature.
- Table 3 shows the amount of 2,4-diamino-1, 3,5-triazine GU or dicyandiamide (dicy) added to the epoxy resin compositions in table 2 in parts by weight.
- Harder / EP describes the ratio of the total amount of 2,4-diamino-1,3,5-triazine GU plus, if applicable, the total amount of dicyandiamide to the total amount of epoxy groups of the epoxy resin A, in percent, for a stoichiometric curing ratio. 100% corresponds to stoichiometric curing.
- a hardener functionality of 4 is assumed, for dicyandiamide a hardener functionality of 5.5.
- GU / Dicy denotes the molar ratio of 2,4-diamino-1,3,5-triazine GU to dicyandiamide.
- a / D describes the weight ratio of the at least one epoxy resin A with an average of more than one epoxy group per molecule to the at least one toughness improver D.
- Table 4 shows the results of the evaluation of the epoxy resin compositions obtained.
- Bubbles refers to the isolated occurrence of bubbles due to gas development during curing in the fracture pattern of the cured measurement samples. These are disadvantageous in that they arise Defects (cavities) can have a negative impact on the mechanical properties.
- FIGS. 1 to 4 show the development of the force level during the step 5.) Cooling of the samples after the simulation of the hardening state 4A.) (1st hardening), or 4B.) (3rd hardening), as previously under
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Epoxy Resins (AREA)
- Polyurethanes Or Polyureas (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18188754.8A EP3611202A1 (fr) | 2018-08-13 | 2018-08-13 | Compositions de résine époxy thermodurcissables à un constituant |
PCT/EP2019/070177 WO2020035288A1 (fr) | 2018-08-13 | 2019-07-26 | Compositions de résines époxy thermodurcissables monocomposant |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3837294A1 true EP3837294A1 (fr) | 2021-06-23 |
Family
ID=63244495
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18188754.8A Withdrawn EP3611202A1 (fr) | 2018-08-13 | 2018-08-13 | Compositions de résine époxy thermodurcissables à un constituant |
EP19742391.6A Withdrawn EP3837294A1 (fr) | 2018-08-13 | 2019-07-26 | Compositions de résines époxy thermodurcissables monocomposant |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18188754.8A Withdrawn EP3611202A1 (fr) | 2018-08-13 | 2018-08-13 | Compositions de résine époxy thermodurcissables à un constituant |
Country Status (6)
Country | Link |
---|---|
US (1) | US20210163665A1 (fr) |
EP (2) | EP3611202A1 (fr) |
JP (1) | JP2021534268A (fr) |
KR (1) | KR20210042306A (fr) |
CN (1) | CN112543778A (fr) |
WO (1) | WO2020035288A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12110425B2 (en) * | 2021-08-17 | 2024-10-08 | Uniseal, Inc. | Electromagnetic curable novel toughened epoxy-hybrid structural adhesives and applications using the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL288174A (fr) * | 1962-01-26 | |||
EP1916272A1 (fr) * | 2006-10-24 | 2008-04-30 | Sika Technology AG | Compositions d'epoxy contenant des prépolymères de polyuréthane blocqués et terminés par époxy. |
CN104144959B (zh) * | 2012-03-23 | 2018-03-09 | 陶氏环球技术有限责任公司 | 应力耐久性提高的耐碰撞粘合剂 |
WO2017044359A1 (fr) * | 2015-09-10 | 2017-03-16 | Dow Global Technologies Llc | Adhésifs structuraux époxydes monocomposants renforcés à haut module contenant des charges à facteur de forme élevé |
-
2018
- 2018-08-13 EP EP18188754.8A patent/EP3611202A1/fr not_active Withdrawn
-
2019
- 2019-07-26 WO PCT/EP2019/070177 patent/WO2020035288A1/fr unknown
- 2019-07-26 CN CN201980050000.3A patent/CN112543778A/zh active Pending
- 2019-07-26 JP JP2021504521A patent/JP2021534268A/ja active Pending
- 2019-07-26 US US17/263,464 patent/US20210163665A1/en not_active Abandoned
- 2019-07-26 KR KR1020217000451A patent/KR20210042306A/ko unknown
- 2019-07-26 EP EP19742391.6A patent/EP3837294A1/fr not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
KR20210042306A (ko) | 2021-04-19 |
WO2020035288A1 (fr) | 2020-02-20 |
EP3611202A1 (fr) | 2020-02-19 |
CN112543778A (zh) | 2021-03-23 |
JP2021534268A (ja) | 2021-12-09 |
US20210163665A1 (en) | 2021-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1957554A1 (fr) | Composition de resine epoxy durcissant a la chaleur et resiliante a basse temperature, contenant des resines solides epoxy | |
EP3460019B1 (fr) | Adhésif époxy thermodurcissable monocomposant à adhérence améliorée | |
EP1876194A1 (fr) | Composition thermodurcissable adaptée au collage de substrats revêtus | |
WO2020141130A1 (fr) | Composition de résine époxyde thermodurcissable présentant une faible température de durcissement et une bonne stabilité au stockage | |
EP3700958B1 (fr) | Composition de résine époxy résistante à la chaleur à stabilité de stockage élevée | |
EP3837294A1 (fr) | Compositions de résines époxy thermodurcissables monocomposant | |
EP4263659B1 (fr) | Procédé de fabrication d'un joint à sertissage et joint à sertissage fabriqué selon ce procédé | |
EP3728370B1 (fr) | Procédé de raccordement structural des substrats à coefficient de dilatation thermique différent | |
EP3728374B1 (fr) | Utilisation de renforçateurs de ténacité pour augmenter l'extension en longueur maximale de compositions de résine époxy thermodurcissables à un seul composant | |
EP3652047B1 (fr) | Adhésif époxy à un composant thermodurcissable présentant une résistance élevée au délavage par eau | |
EP3559076B1 (fr) | Composition de résine époxyde durcissant à chaud comprenant un accélérateur | |
WO2022207411A2 (fr) | Composition de résine époxyde thermodurcissable adaptée à des procédés de pré-durcissement ne faisant appel à aucune technique de liaison métallique supplémentaire | |
EP3642257B1 (fr) | Procédé de liaison de corps moulés par injection d'une composition de résine époxyde thermodurcissable à un composant dans des espaces creux |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210315 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20230222 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20230705 |