EP3834216B1 - Arrangement for the integration of an ignition coil and a band-pass filter - Google Patents
Arrangement for the integration of an ignition coil and a band-pass filter Download PDFInfo
- Publication number
- EP3834216B1 EP3834216B1 EP19769089.4A EP19769089A EP3834216B1 EP 3834216 B1 EP3834216 B1 EP 3834216B1 EP 19769089 A EP19769089 A EP 19769089A EP 3834216 B1 EP3834216 B1 EP 3834216B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coil
- ignition
- connection
- voltage
- magnetic core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000010354 integration Effects 0.000 title claims description 6
- 230000005291 magnetic effect Effects 0.000 claims description 128
- 239000003990 capacitor Substances 0.000 claims description 28
- 238000004804 winding Methods 0.000 claims description 26
- 239000000463 material Substances 0.000 claims description 16
- 125000006850 spacer group Chemical group 0.000 claims description 9
- 239000012777 electrically insulating material Substances 0.000 claims description 5
- 230000008878 coupling Effects 0.000 description 36
- 238000010168 coupling process Methods 0.000 description 36
- 238000005859 coupling reaction Methods 0.000 description 36
- 210000002414 leg Anatomy 0.000 description 32
- 239000004020 conductor Substances 0.000 description 18
- 230000004907 flux Effects 0.000 description 18
- 230000001939 inductive effect Effects 0.000 description 15
- 230000005540 biological transmission Effects 0.000 description 12
- 230000007704 transition Effects 0.000 description 10
- 238000002485 combustion reaction Methods 0.000 description 9
- 239000011888 foil Substances 0.000 description 8
- 230000003071 parasitic effect Effects 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 238000005266 casting Methods 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 229940125810 compound 20 Drugs 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- JAXFJECJQZDFJS-XHEPKHHKSA-N gtpl8555 Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@@H]1C(=O)N[C@H](B1O[C@@]2(C)[C@H]3C[C@H](C3(C)C)C[C@H]2O1)CCC1=CC=C(F)C=C1 JAXFJECJQZDFJS-XHEPKHHKSA-N 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000011889 copper foil Substances 0.000 description 4
- 238000013016 damping Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000010292 electrical insulation Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 238000004382 potting Methods 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000002500 effect on skin Effects 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 210000003414 extremity Anatomy 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910000595 mu-metal Inorganic materials 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OPFJDXRVMFKJJO-ZHHKINOHSA-N N-{[3-(2-benzamido-4-methyl-1,3-thiazol-5-yl)-pyrazol-5-yl]carbonyl}-G-dR-G-dD-dD-dD-NH2 Chemical compound S1C(C=2NN=C(C=2)C(=O)NCC(=O)N[C@H](CCCN=C(N)N)C(=O)NCC(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(N)=O)=C(C)N=C1NC(=O)C1=CC=CC=C1 OPFJDXRVMFKJJO-ZHHKINOHSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229940126086 compound 21 Drugs 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 230000005293 ferrimagnetic effect Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/12—Ignition, e.g. for IC engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P3/00—Other installations
- F02P3/005—Other installations having inductive-capacitance energy storage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P3/00—Other installations
- F02P3/02—Other installations having inductive energy storage, e.g. arrangements of induction coils
- F02P3/04—Layout of circuits
- F02P3/0407—Opening or closing the primary coil circuit with electronic switching means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F27/38—Auxiliary core members; Auxiliary coils or windings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/40—Structural association with built-in electric component, e.g. fuse
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P15/00—Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
- F02P15/10—Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having continuous electric sparks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P9/00—Electric spark ignition control, not otherwise provided for
- F02P9/002—Control of spark intensity, intensifying, lengthening, suppression
- F02P9/007—Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition
Definitions
- the present invention relates to an arrangement for integrating an ignition coil and a bandpass filter.
- the present invention also relates to an arrangement for feeding a high-frequency voltage into an ignition coil.
- Devices for igniting a fuel mixture are used in automobiles.
- the prior art teaches a variety of designs for such devices.
- the combustion process in the combustion chamber of the engine in particular an internal combustion engine with spark ignition by means of spark plugs, also known as an Otto engine, needs to be further improved.
- An ignition system or an ignition coil transforms the battery voltage of a vehicle to the desired ignition voltage in order to provide an ignition signal or an ignition voltage, in particular a high-voltage ignition voltage.
- the U.S. 2015/0200051 A1 discloses several variants of a transformer in which an ignition pulse generated on the primary side is transformed into a high-voltage ignition pulse on the secondary side of the transformer.
- the DE 10 2015 210 376 A1 and alternatively the DE 10 2013 207 909 A1 each disclose, for example, such a high-frequency plasma ignition device.
- a high-voltage pulse generated in an ignition coil is electrically coupled with a high-frequency voltage generated in a high-frequency power source.
- a bandpass filter is connected between the coupling point and the high-frequency voltage source.
- This bandpass filter is implemented as a series resonant circuit consisting of a coil and a capacitor.
- the capacitor blocks the DC component of the high-voltage pulse from the high-frequency voltage source.
- the series resonant circuit is dimensioned in such a way that, on the one hand, it is permeable to the high-frequency voltage and, on the other hand, it blocks harmonic components of the high-voltage pulse and the ignition noise.
- Coils and in particular high-frequency coils represent components that require a comparatively large amount of space.
- the space in the engine compartment, especially in the area above the cylinder bank, is typically not sufficient for this.
- a spatial separation of the ignition coil and the bandpass filter in two separate housings also requires considerable effort in the design Insulation in the connection line between the two housings and in the required housing connectors with regard to high-voltage strength.
- the object of the present invention is to create an ignition coil that is as compact as possible, in which a high-voltage pulse with a superimposed high-frequency voltage is generated.
- this object is achieved by an arrangement for integrating an ignition coil and a bandpass filter with the features of claim 1.
- the finding/idea on which the present invention is based is to integrate the coil of the bandpass filter into the ignition coil in the most space-saving manner possible.
- the coil of the ignition coil arranged on the secondary side which is referred to below as the second coil, is electrically connected to a further coil, which is referred to below as the third coil and represents the coil of the bandpass filter.
- a high-frequency terminal that receives a high-frequency voltage is electrically connected to the second coil and the third coil.
- the high-frequency connection receives a high-frequency voltage from outside the sink, in particular from a high-frequency voltage source connected to the high-frequency connection, and feeds the high-frequency voltage into the ignition coil.
- the coils of the ignition coil and the bandpass filter can thus be positioned spatially close to one another, and an ignition coil with an integrated coil of a bandpass filter can thus be realized with a reduced space requirement.
- this creates an ignition coil in which an electrical coupling of a high-voltage pulse generated in the ignition coil on the secondary side with a superimposed high-frequency voltage is realized.
- the thus in the ignition coil The high-voltage pulse generated with superimposed high-frequency voltage is electrically decoupled from the ignition coil at a connection of the third coil.
- This terminal of the third coil is opposite the terminal of the third coil connected to the second coil.
- high-frequency voltage is understood as meaning an AC voltage with a frequency from 100 kHz to 1 GHz, preferably between 1 MHz and 20 MHz.
- a high-frequency current can also be fed in at the high-frequency connection between the second and the third coil.
- HF- stands for "high-frequency-”.
- a capacitor is connected and arranged between the HF connection and the electrical connection between the second coil and the third coil, an arrangement is created in which both the function of the ignition coil and the function of bandpass filtering are implemented and integrated:
- the capacitor and the third coil which form a series resonant circuit acting as a bandpass filter, are dimensioned in such a way that the frequency of an HF voltage generated in an HF generator connected to the HF connection lies in the passband of the bandpass filter. In this way, the HF voltage from the HF generator is additively coupled into the ignition coil.
- the capacitor and the third coil of the bandpass filter are additionally dimensioned in such a way that ignition noise in the combustion chamber of the combustion engine in the higher-frequency spectral range of the bandpass filter, i.e. in the Stop band of the bandpass filter comes to rest.
- the ignition noise is blocked by an appropriately dimensioned bandpass filter and thus does not get from the combustion chamber to the HF generator. The functioning of the HF generator is therefore not disturbed by ignition noise.
- Harmonic components of the high-voltage pulse which are generated in the second coil and are below the cut-off frequency of a high-pass filter, are damped by suitably dimensioning the capacitor, which acts as a high-pass filter for the harmonic components of the high-voltage pulse.
- the harmonic components of the high-voltage pulse do not get from the second coil to the HF generator and do not disturb the functioning of the HF generator.
- the DC component of the high-voltage pulse is blocked by the capacitor from the HF generator.
- the magnet core is made of a soft magnetic material with a sufficient magnetic saturation flux density and a sufficient permeability.
- the coil arranged on the primary side is referred to below as the first coil.
- the inductance of the first coil and the second coil is increased by the magnetic core. Due to the high permeability of the coils, the size of all coils that are wound around the magnetic core on the primary and secondary sides can be reduced compared to an air coil. The space requirement of an ignition coil can thus be reduced.
- the materials used for magnetic cores are ferromagnetic metal alloys, usually in the form of sheet metal or foil or bonded powder, or ferrimagnetic oxide-ceramic materials (ferrites).
- the magnet core is preferably composed of stacked metal sheets, between which dielectric layers, preferably made of paper or plastic, are arranged.
- the first coil and the second coil are designed in relation to one another in such a way that a sufficient voltage transformation ratio is realized between the primary circuit and the secondary circuit of the ignition coil.
- the number of turns on the secondary side is typically higher by a factor of 10 to 1000 than the number of turns on the primary side.
- the diameter of the electrical conductor of the secondary-side coil is typically smaller by a factor of 10 to 1000 than the diameter of the electrical conductor associated with the primary-side coil.
- the first coil, the second coil, the third coil and the magnetic core are each preferably made of an electrically insulating material via a spacer element material connected to each other.
- a spacer, a plastic film or a coil former around which the coil is wound can serve as a spacer element, for example.
- the individual spacer elements between the first coil, the second coil, the third coil and the magnetic core are each designed in such a way that the ignition coil has the most compact possible design and at the same time there is as little interference as possible between the first coil, the second coil, the third coil and present in the magnetic core.
- the potting compound serves not only to fix the individual coils and the magnetic core to one another, but also to provide electrical insulation, in particular to increase the high-voltage strength, between the individual coils.
- the third coil with its individual windings wound around the magnetic core on the secondary side.
- the secondary side of the ignition coil is thus formed by connecting the second and third coils in series.
- the high voltage pulse is thus generated both in the second coil and in the third coil.
- the serial connection of the second and the third coil can also be regarded as a single coil with two coil areas. In the transition between the two coil areas of such a single coil, an electrical contact connection, a so-called center connection, is therefore provided, which is electrically connected to the HF connection.
- the advantage of the first version can be seen in the compact design of the ignition coil, since no additional space is required to place the third coil next to the ignition coil.
- the third coil thus fulfills a dual technical function. It is used for bandpass filtering and for generating the high-voltage pulse.
- the third coil is optimized in terms of its HF transmission characteristic as part of the bandpass filter within the HF path by increasing the distances between successive turns of the third coil compared to successive turns of the second coil.
- the parasitic capacitances within the third coil are reduced compared to the usual parasitic capacitances of the second coil.
- the wire diameter of the third coil is designed to be larger than the wire diameter of the second coil.
- An HF current which is impressed by the HF voltage, only flows on the surface of the coil.
- This effect improves the quality of the third coil designed as an HF coil and thus the HF transmission characteristics of the third coil.
- the HF current will flow more through the third coil and less through the second coil. Undesirable electrical coupling of the HF voltage or the HF current into the second coil is reduced in this way.
- An inductive coupling of the HF voltage or the HF current from the secondary to the primary side of the ignition coil thus takes place, mainly from the third coil to the first coil.
- a smaller number of turns in the third coil and thus a lower inductance for the third coil can be implemented, which causes less inductive coupling between the third and the first coil.
- the third coil is coated, with its impedance being lower than the impedance of the base material. Since the HF current driven by the HF voltage flows on the surface of the third coil and thus primarily in the area of the coating of the third coil, the HF current will essentially flow through the third coil and not through the second coil, which does not Coating having a lower impedance.
- Silver, copper, gold, tin, aluminum, tungsten, molybdenum, titanium, zirconium, niobium, tantalum, bismuth, palladium and lead are suitable as coating materials. Alloys or composite materials made from one or more of these materials are also suitable.
- the primary-side coil and the secondary-side coil(s) are wound together around a main leg of a magnetic core.
- the magnetic core has at least one yoke and two yokes, which each connect the main limb and the yoke.
- the magnetic core composed of the main leg, the return leg and the two yokes together encloses the primary and secondary coil(s).
- the magnetic core has a main leg, two yoke legs and two yokes, which connect the main limb and the two yoke legs to one another. A partial magnetic flux is thus guided in each case via the main leg, a return leg and two partial areas of the two yokes.
- the primary side coil and the secondary side coil(s) are wound around the main leg concentrically with each other.
- the second and third coils preferably enclose the first coil.
- the first coil it is also possible for the first coil to enclose the second and third coils.
- Spacer elements are provided between the magnetic core, the first coil and the second and third coils for electrical insulation.
- the third coil encloses the second coil and the first coil.
- the second coil preferably encloses the first coil.
- the first coil can also enclose the second coil.
- a foil made of an easily magnetizable material preferably made of a mu-metal
- a copper foil can also be provided in which eddy currents are excited by the HF current flowing in the third coil and the electromagnetic field between the third coil and the second coil or the first coil is thus damped.
- a foil made of a dielectric material is arranged between the foil made of magnetizable material or the copper foil and the third coil and the second coil.
- the third coil is designed as an HF coil.
- HF coils are wound around a magnetic core made of ferrite. Since ferrites typically do not have high heat resistance have, they are not very suitable for use in the vicinity of a motor with temperatures around 100 °C.
- the third coil which is to be designed as an HF coil, is preferably designed as a so-called air-core coil, ie as a coil without a magnetic core.
- the third coil is consequently positioned and oriented within the ignition coil in such a way that it does not enclose the magnetic core and the entire ignition coil thereby remains as compact as possible.
- it when arranging the third coil in the second embodiment of the ignition coil, it must be taken into account that the lowest possible magnetic coupling between the third coil and the first and second coil is possible.
- HF losses in particular eddy current losses in the adjoining magnetic core, are to be aimed for through the HF feed into the third coil.
- the individual windings of the third coil which is realized as an air-core coil, at a lateral distance from an end face of the magnet core.
- the end face of the magnet core is understood to mean the side face of the magnet core whose area vector runs parallel to the longitudinal direction of the magnet core, ie to the longitudinal direction of the passage(s) of the magnet core.
- the cross-sectional area of the third coil is oriented parallel to the end face of the magnetic core.
- the cross-sectional area of the third coil is understood to mean the cross-sectional area of the third coil whose area vector runs parallel to the longitudinal direction of the third coil, ie to the longitudinal direction of the passage of the third coil.
- the turns of the third coil enclose at least one area of the first coil and/or the second coil.
- the third coil with its windings encloses at least one area of the first coil and/or the second coil, namely the area of the first coil and/or the second coil that protrudes from the magnet core, and at the same time is positioned at a lateral distance from the end face of the magnet core , the third coil with its turns takes up the free space on the side of the magnetic core that is not occupied by the first coil and/or the second coil.
- a space-saving integration of the third coil into the ignition coil is thus realized with the first sub-variant of the second embodiment of the ignition coil.
- the magnetic fields of a third coil are largely orthogonal to the magnetic fields of the first and second coils, which are concentrated and guided as magnetic flux in the magnetic core. In this way, as a further advantage, the magnetic coupling between the third coil and the first or second coil is minimized.
- the total inductance of the third coil can be doubled if a third coil is positioned on each side of the two end faces of the magnetic core and is connected to one another in series.
- the serial connection of a plurality of third coils thus offers a possibility of increasing the inductance of the bandpass filter and thus reducing the capacitance of the bandpass filter.
- a Realize high damping for the harmonic components of the high-voltage pulse through the capacitor which also acts as a high-pass filter.
- the individual windings of the third coil which is realized as an air-core coil, are each positioned at a lateral distance from an end face of the magnet core.
- the turns of the third coil are laterally spaced from one of the two yokes or from one of the two yokes.
- the cross-sectional area of the third coil is oriented perpendicularly to the end face of the magnetic core.
- the third coil By positioning the third coil at a lateral distance from an end face of the magnet core, in particular at a lateral distance from one of the two yokes or from one of the two yokes, the third coil occupies the free space on the side of the magnet core that is occupied by the first coil and /or the second coil is not occupied. A compact design is thus realized.
- Magnetic coupling between the third coil and the first and second coils is reduced because, with the exception of the transition area between the main leg and the two yokes, the magnetic field of the third coil is oriented orthogonally to the magnetic fields of the first and second coils. Since the transition area between the main leg and the two yokes is comparatively small and does not lie at the maximum of the magnetic field lines of the third coil, the magnetic coupling between the third coil and the first and second coils is low.
- a plurality of third coils connected to one another in series are positioned at a lateral distance from an end face of the magnet core.
- the cross-sectional areas of all third coils connected in series are each oriented perpendicularly to the end face of the magnet core.
- a third coil can be positioned laterally spaced from each of the two yokes and from each of the two yokes of the magnetic core and from each of the two end faces of the magnetic core, up to eight third coils can be connected in series. Compared to a single third coil, the series connection of a plurality of third coils results in an increase in the total inductance. Since the third coil of the second sub-variant has a lower inductance than the third coil of the first sub-variant, primarily because of its smaller cross-sectional area and its lower number of turns, this disadvantage can be compensated for and possibly even even further by connecting several third coils in the second sub-variant in series be improved compared to the first sub-variant.
- the third coil is positioned at a lateral distance from the lateral surface of the first and/or the second coil.
- the cross-sectional area of the third coil is oriented perpendicularly to the end face of the magnetic core.
- the ignition coil is therefore less compact, but due to the greater distance between the third coil and the magnetic core it causes lower eddy current losses in the magnetic core, ie lower HF losses.
- the magnetic one Coupling between the third coil and the first and second coils is reduced because the distance between the third coil and the magnetic core is comparatively larger.
- a further coil which is designed as an HF coil, preferably as a choke coil, is connected between the HF connection and the second coil.
- This additional coil is referred to below as the fourth coil.
- An HF coil in particular a choke coil, dampens an HF voltage as best as possible and at the same time minimizes the eddy currents in the magnet core generated by the HF voltage.
- a choke coil has an inductive resistance, i.e. an impedance with a significantly higher inductive component than the capacitive component.
- the damping within the choke coil depends on the cross-sectional area, the number of turns and the coil length of the choke coil.
- the choke coil is preferably designed as an air coil. The attenuation of the HF voltage reduces electrical coupling of the HF voltage impressed at the HF connection into the second coil. This advantageous effect occurs more clearly in the presence of parasitic capacitances between the secondary side of the ignition coil and the ignition coil housing, which is typically made of an electrically conductive material.
- the fourth coil can be positioned at a lateral distance from an end face of the magnet core.
- the cross-sectional area of the fourth coil like the third coil, can be parallel or perpendicular to the end face of the Be oriented magnetic core.
- a series connection of several fourth coils to increase the inductance is also conceivable.
- this ohmic resistance dampens the HF voltage in the direction of the ignition coil.
- the ohmic resistance also dampens the spark plug current driven by the HF pulse.
- This spark plug current which causes the fuel-air mixture in the combustion chamber to ignite, is overlaid with a higher-frequency interference current caused by the ignition process.
- the higher-frequency interference current superimposed on the spark plug current is decoupled from the spark plug as EMC interference and emitted via the spark plug cable.
- the third coil is laterally spaced from the first and second coils and the cross-sectional area of the third coil is preferably oriented perpendicular to an end face of the magnetic core.
- the third coil is arranged in a connection shaft within an engine block. In this way, the structural volume of the ignition coil outside the engine block is limited to the first coil, the second coil and the magnetic core, and the space required for the ignition coil is thus reduced considerably.
- connection shaft within an engine block is understood to mean a recess running from the outer surface of the engine block into the interior area of the engine block.
- This recess has a suitable cross-sectional profile, for example a round cross-sectional profile, and a specific length.
- the longitudinal extent of the connection shaft can be straight, curved or angled.
- the connection duct enables an electrical connection element to be routed between a spark plug mounted in the interior of the engine block and an ignition coil which is typically positioned outside the engine block or immediately adjacent to the outer surface of the engine block within the engine block.
- the magnetic field of the third coil runs orthogonally to the magnetic fields of the first and second coils belonging to the ignition coil.
- the magnetic coupling between the third coil and the first or second coil is reduced.
- a third coil with a large number of windings can be positioned within the connecting shaft, a third coil with a high inductance can be implemented using the third embodiment of the ignition coil.
- the other electrode of the DC voltage source 3 is connected to a ground potential.
- the further electrode of the first coil 1 is also connected to a ground potential via a ground connection 5 of the ignition coil.
- the switch 3 is closed. A direct current which is driven by the direct voltage of the direct voltage source 5 flows through the first coil 1 of the ignition coil.
- the switch 3 is opened and the flow of current through the first coil 1 is thus interrupted. This interruption of the current flow induces a voltage pulse in the first coil 1 .
- the voltage level of the voltage pulse depends on the inductance of the first coil 1 and the change in current in the first coil 1 and thus indirectly on the voltage level of the DC voltage source 4 .
- the voltage level of the voltage pulse is therefore on the order of several 100 V and is therefore not sufficient for the ignition of the fuel-air mixture inside the combustion chamber by the spark plug 6 .
- a transformer or transmitter with a magnetic core 7 is provided in the ignition coil, around which the turns of the first coil 1 are wound on the primary side and the turns of a second coil 8 and one and a third coil 9 on the secondary side are.
- the voltage pulse induced in the first coil 1 is transformed into a high-voltage pulse in the two coils arranged on the secondary side.
- a ratio between the turns of the first coil 1 and the turns of the second coil 8 and the third coil 9 of between 10 turns and several 100 turns is typically to be provided.
- One end of the second coil 8 and one end of the third coil 9 are electrically connected to each other.
- the other end of the second coil 8 is connected to a ground potential via a further ground connection 10 of the ignition coil.
- the other end of the third coil 9 is electrically connected to an electrode of the spark plug 6 via a high voltage terminal 11 of the ignition coil.
- the other electrode of the spark plug 6 is connected to ground potential.
- an HF connection 12 belonging to the ignition coil is electrically connected to the second coil 8 and the third coil 9 for feeding in an HF voltage.
- This HF voltage is additively superimposed on the high-voltage pulse transformed into the second coil 8 and into the third coil 9 .
- an HF current can also be impressed or fed in at the HF connection 12 .
- the HF voltage is generated in an HF voltage source 13 .
- a capacitor 15 is connected between the HF source 13 and the HF connection 12 in order to form a bandpass filter 14 , which is implemented as a series resonant circuit made up of a coil and a capacitor.
- the third coil 9 serves as the coil of the series resonant circuit or the bandpass filter 15.
- the capacitor 15 also serves as a high-pass filter. Its capacitance is dimensioned in such a way that the harmonic components of the high-voltage pulse generated in the second coil 8 come to lie in the low-frequency blocking range of the high-pass filter and are thus blocked in front of the HF voltage source 13 . Finally, the capacitor 15 is also blocking for the DC component of the high-voltage pulse generated in the second coil 8 .
- the inductance of the third coil 9 is designed in such a way that, in combination with the capacitance of the capacitor 15 defined in the first parameterization step, there is a resonant frequency of the series resonant circuit and thus a center frequency of the bandpass filter 14 in which the frequency of the generated HF voltage lies comes. In this way, the bandpass filter 14 is transparent to the HF voltage generated, while it has a blocking effect on the higher-frequency ignition noise.
- the coil of the bandpass filter is implemented as part of the secondary-side winding of an ignition coil.
- the secondary winding of the ignition coil is thus composed of the serial connection of the second coil 8 and the third coil 9 together.
- the invention also covers the alternative case in which the secondary-side winding of the ignition coil is realized as a single coil arranged on the secondary side, comprising two coil regions connected to one another in series.
- a so-called center contact or center connection for feeding in the HF voltage is provided in the connection area between the two coil areas.
- the integration of the coil of the band-pass filter in the secondary-side winding of the ignition coil also advantageously reduces the structural volume of the arrangement of the ignition coil and band-pass filter.
- the third coil 9 is located outside the magnetic core 7 of the ignition coil. Only the windings of the first coil 1 and the second coil 8 are wound around the magnetic core 7 . The magnetic flux is guided and concentrated in the magnetic core 7 between the first coil 1 arranged on the primary side and the second coil 8 arranged on the secondary side. A large part of the inductive coupling is thus only realized between the first coil 1 and the second coil 8 . Rather, in the second embodiment of the ignition coil, the third coil 9 is arranged in the immediate vicinity of the magnetic core 7 and the first and second coils 1 and 8 . The inductive coupling between the first coil 1 and the third coil 9 is thus significantly reduced compared to the first embodiment. The inductive coupling between the first coil 1 and the third coil 9 takes place here only via the leakage flux.
- the second embodiment of the ignition coil does not differ from the first embodiment in the remaining details.
- Out of Figure 2A shows an arrangement of an ignition coil of a first embodiment of the arrangement:
- the magnetic core 7 is made up of layered metal sheets between which layers of electrically insulating material are arranged.
- the laminated sheets are made of a soft magnetic material, preferably iron. The layering of the sheets prevents eddy currents in the longitudinal direction of the magnet core 7 .
- the magnet core 7 is composed of a main leg 16 , two return legs 17 1 and 17 2 and two yokes 18 1 and 18 2 which connect the two return legs 17 1 and 17 2 to the main leg 16 .
- the main leg 16 Around the main leg 16, the turns of the first coil 1, the second coil 8 and the third coil 9 are wound.
- the windings of the first coil 1, the second coil 8 and the third coil 9 are each passed through two bushings in the magnetic core 7, each between the main leg 16, one of the two return legs 17 1 and 17 2 and one area of the two yokes 18 1 and 18 2 are arranged in the longitudinal direction of the magnetic core 7 .
- the ignition coil which is also referred to as a sheathed transformer
- a design of the ignition coil is also conceivable in which the magnetic core 7 has only a single yoke leg.
- a higher compactness of the ignition coil is realized in this design, however, at the expense of a higher leakage flux.
- the Realization of the ignition coil as a core transformer with two main legs and two yokes connecting the two main legs to one another is also conceivable.
- the turns of the first coil 1 are wound around one main leg and the turns of the second and third coils 8 and 9 are wound around the other main leg.
- a more compact winding of the windings arranged on the primary side and the windings arranged on the secondary side around the associated main leg and thus a smaller longitudinal extension of the ignition coil requires a larger transverse extension of the ignition coil due to the provision of two main legs.
- the turns of the first coil 1 preferably enclose, as in Figure 2A is indicated, next to the main leg 16 is the main leg 16, while the turns of the second and third coils 8 and 9 enclose the turns of the first coil 1.
- the turns of the second and third coils 8 and 9 are in Figure 2A illustrated first expression arranged adjacent to each other in their direction of longitudinal extension. The transverse extent of the second and the third coil 8 and 9 and thus also the transverse extent of the ignition coil is minimized in this embodiment.
- the first coil 1, the second coil 8 and the third coil 9 are each wound around a winding body made of an electrically insulating material, which is Figure 2A is not shown for reasons of clarity.
- Each of these winding bodies serves as a spacer element between the magnetic core 7, the first coil 1, the second coil 8 and the third coil 9.
- the individual winding bodies are preferably connected to one another. In this way, the magnetic core 7, the first coil 1, the second coil 8 and the third coil 9 can be positioned relative to one another and oriented toward one another. In particular, an arrangement with a minimized distance and thus a minimized installation space is possible with such winding bodies or spacer elements.
- the ignition coil is preferably according to Figure 2C arranged in a housing 19.
- This housing 19, which is in Figure 2C is indicated by dashed lines is preferably made of an electrically conductive material, for example aluminum, in order to achieve a good electromagnetic shielding effect.
- the HF voltage coupled into the ignition coil does not penetrate into the exterior of the housing 19 and thus does not have a negative effect on or destroy electronics arranged in the engine compartment of a vehicle.
- the shielding housing HF electronics located in the engine compartment of a vehicle have no negative effects on the high-voltage pulse generated in the ignition coil and on the Figure 2C not shown control electronics of the ignition coil.
- the capacitor 15 and thus the bandpass filter 14 are completely integrated into the housing 19 of the ignition coil. This leads to a compact design of an arrangement for integrating the ignition coil and bandpass filter.
- the capacitor 15 for special space-saving positioning within the housing 19 is the capacitor 15, as in Figure 2C is indicated, in a space not yet occupied within the housing 19 laterally spaced from an end face of the magnetic core 7 arranged.
- the capacitor 15 can also be arranged outside of the housing 19 .
- Suitable plug connectors preferably housing plug connectors, can preferably be designed for the individual connections of the ignition coil.
- the HF terminal 12 of the ignition coil which is electrically connected to the second coil 8 and the third coil 9, is offset to the other terminal of the capacitor 15 due to the integration of the capacitor 15 in the housing 19 and thus is led out of the housing 19 as an HF connection 12'.
- the spacing between the third coil 9 designed as an HF coil and the electrically conductive housing 19 and between the third coil 9 and the typically grounded magnet core 7 should be interpreted by the potting compound 20 in such a way that the parasitic capacitances of the third coil 9 are at a low level.
- the high-voltage strength of the third coil 9 embodied as an HF coil can be additionally improved in addition to the insulation by the casting compound 20 by an insulated HF coil, for example by an HF coil made with an enamelled copper wire.
- the first coil 1 and the second coil 8 can also be wound with an enamelled copper wire to increase the high-voltage strength.
- the third coil 9 is not arranged adjacent to the second coil 8 in the direction of longitudinal extent, but encloses the second coil 8.
- the third coil 9 is therefore arranged adjacent to the second coil 8 in the direction of transverse extent.
- the third coil 9 can be wound on a winding body.
- a foil 26 made of an easily magnetizable material, preferably a mu-metal is arranged between the third coil 9 and the second coil 8 .
- a copper foil can also be arranged in which eddy currents are excited by the HF current flowing in the third coil 9 and the electromagnetic field between the third coil 9 and the second coil 8 or the first coil 1 is thus damped.
- a foil made of a dielectric material preferably made of a plastic, in particular polyurethane, is arranged between the foil 26 made of magnetizable material or the copper foil and the third coil 9 and the second coil 8 .
- a dielectric plastic film can be arranged between the first coil 1 and the second coil 8 or the third coil 9 instead of winding bodies.
- the third coil 9 can be designed like the second coil 8 with regard to its transmission characteristic, in particular its HF transmission characteristic.
- a high-frequency optimization of the third coil 9 to strive for as shown below:
- the distances between successive turns of the third coil 9 are designed to be greater than the distances between successive turns of the second coil 8 .
- the parasitic capacitances, which occur in particular between two consecutive turns, are thus minimized in the third coil 9 compared to the second coil 8 and the HF transmission characteristic of the third coil 9 compared to the second coil 8 is thus optimized.
- the parasitic capacitances in the third coil 9 are minimized by a special winding of the electrical conductor.
- the third coil 9 is, for example, a honeycomb, basket bottom, star or flat coil wound.
- the HF transmission behavior of the third coil 9 compared to the second coil 8 can be optimized in this way.
- An additional improvement in the HF transmission behavior for the third coil 9 is achieved by winding an HF stranded wire as an electrical conductor for the third coil 9 .
- the wire diameter, i.e. the diameter of the electrical conductor, of the third coil 9 is designed to be larger than the wire diameter of the second coil 8. Due to the skin effect, the HF current only flows on the surface of the electrical conductor of a coil and, starting from the surface of the electrical conductor, penetrates only up to a certain penetration depth, which depends, among other things, on the frequency of the HF current and the material parameters of the electrical conductor depends, in the electrical conductor of the coil. In the case of an electrical conductor with a larger diameter and the same penetration depth, the cross-sectional area of the electrical conductor of the coil in which the HF current flows is larger than in the case of an electrical conductor with a smaller diameter due to the larger circumference. The electrical impedance of the third coil 9, which acts on the HF current, is therefore smaller than in the second coil 8 due to the second technical measure. The HF transmission characteristic is thus improved in the third coil 9 compared to the second coil 8.
- the third coil 9 is coated, while the second coil 8 remains uncoated.
- the coating of the third coil 9 has a lower electrical impedance than the base material of the third coil 9 .
- the coating becomes a coating material manufactured, which has a higher electrical conductivity and / or lower permeability than the base material.
- the HF current which flows due to the skin effect in the surface area of the electrical conductor of the coil, consequently encounters better HF transmission characteristics in the third coil 9 than in the second coil 8.
- the inductance of the base material of the second coil 2 is many times greater than the total inductance of the base and coating material of the third coil 9, so that the HF current preferentially flows through the second coil 8 because of the significantly higher impedance the third coil 9 flows.
- the third coil 9 has no magnetic core and is thus realized as an air-core coil. With a suitably selected orientation of the third coil 9 to the magnetic core 7, it is possible to significantly minimize the magnetic and inductive coupling between the third coil 9 and the first coil 1 via the magnetic flux conducted and concentrated in the magnetic core 7. A magnetic and inductive coupling with the first coil 1 only exists via the much weaker leakage flux. In contrast to the first embodiment of an ignition coil, the magnetic and inductive coupling of the HF voltage from the secondary side into the primary side of the ignition coil is significantly minimized.
- the third coil 9 realized as an air-core coil is laterally spaced from an end face 21 of the magnetic core 7 positioned.
- the turns of the third coil 9 enclose at least one area of the first coil 1 and the third coil 8 which corresponds to the area of the first coil 1 and the third coil 8 protruding from the magnet core 7 .
- the third coil 9 thus occupies the still unused space on the side of the magnetic core 7 which is not used by the first coil 1 and the second coil 8 .
- the third coil 9 is positioned close to the magnetic core 7 and the first and second coils 1 and 8 in order to make the ignition coil compact. In this way, a compact design for the ignition coil is realized.
- the third coil 9 in the Figure 3A illustrated arrangement of an ignition coil may be arranged not only above the magnetic core 7, but also below the magnetic core 7.
- the cross-sectional area of the third coil 9 is oriented parallel to the end face 21 of the magnet core 7 . Due to this orientation of the third coil 9 to the magnetic core 7, the magnetic field of the third coil 9 runs orthogonally to the direction of the magnetic flux of the first and second coils 1 and 8 within the magnetic core 7. Only in the transition area between the main leg and the two yokes of the magnetic core 7 the orthogonality in the orientation of the magnetic field of the third coil 9 to the magnetic flux within the magnetic core 7 is slightly absent. However, since this transition area is very small and does not lie at the maximum of the magnetic field strength of the third coil, magnetic and inductive coupling between the third coil 9 and the two other coils of the ignition coil, in particular the first coil 1, is minimized as far as possible.
- the third coil 9 is also positioned at a lateral distance from an end face 21 of the magnet core 7 .
- the third coil 9 is arranged laterally adjacent either to one of the two yokes or to one of the two yokes of the magnet core 7 .
- the third coil 9 occupies the still unused space on the side of the magnet core 7 that is not used by the first coil 1 and the second coil 8 .
- a compact design for the ignition coil is also achieved in this case.
- the cross-sectional area of the third coil 9 is positioned perpendicular to an end face 21 of the magnet core 7 .
- the magnetic field of the third coil 9 within the magnetic core 7 is oriented orthogonally to the direction of the magnetic flux of the first and second coils 1 and 8 guided in the magnetic core 7 . Only in the transition area between the main leg and the two yokes of the magnetic core 7 is there slightly no orthogonality between the magnetic field of the third coil 9 and the magnetic flux of the first and second coils 1 and 8 guided in the magnetic core.
- the orthogonality between the magnetic field of the third coil 9 and the magnetic flux of the first and second coils 1 and 8 guided in the magnetic core is in the transition area between the main leg and the two yokes of the magnetic core 7 slightly less pronounced in the second sub-variant than in the first sub-variant. But since the transition area is comparatively very small here and is not at the maximum of the magnetic field strength of the third coil 9, is also in the second sub-variant of the second embodiment, the magnetic coupling between the third coil 9 and the first and the second coil 1 and 8 is reduced.
- the third coil 9 has a smaller cross-sectional area than in the first sub-variant and thus has a lower inductance.
- the design of the bandpass filter 14 requires a comparatively high inductance for the third coil 9 for a given frequency of the HF voltage and for a comparatively low capacitance of the capacitor 15 .
- a third coil 9 can be positioned laterally spaced on each yoke and on each yoke leg of the magnetic core 7 and on each of the two end faces 21 of the magnetic core 7, up to eight third coils can be positioned and connected in the ignition coil. In this way, the total inductance of such a series connection of third coils can be multiplied by a factor of eight compared to the inductance of a single third coil.
- the inductance of the third coil 9 can be doubled if it is spaced apart laterally a third coil is positioned on each of the two end faces 21 of the magnetic core 7 and the two third coils are connected in series with one another.
- the third coil 9 is positioned laterally to the lateral surface of the first coil 1 and the second coil 8, preferably laterally to the lateral surface of the second coil 8 arranged on the outside. Due to the lateral positioning of the third coil 9 in relation to the first and second coils 1 and 8, the design of the ignition coil in the third sub-variant of the second embodiment is slightly worse than all sub-variants and embodiments previously presented. At the expense of the less compactness of the ignition coil, lower eddy current losses in the magnet core 7, ie lower HF losses of the third coil 9 through which an HF current flows, can be realized in the third sub-variant due to the greater distance between the third coil 9 and the magnet core 7.
- the electrical coupling of the HF voltage from the HF connection 12 into the second coil 8 must also be minimized. Minimizing the electric The coupling of the HF voltage from the HF connection 12 into the second coil 8 is described below with reference to FIG Figures 4A to 4C explained in detail:
- an ohmic resistor 22 is connected between the HF connection 12 and the second coil 8 .
- the ohmic resistor 22 should preferably be positioned in a space not yet used by the first coil 1, the second coil 8 and the third coil 9, to the side of one of the two end faces 21 of the magnet core 7 .
- the ohmic resistor 22 is dimensioned in such a way that an HF current driven by the HF voltage at the HF connection 12 is damped in such a way that only a comparatively small HF current flows through the second coil 8 .
- the ohmic resistance 22 is also to be dimensioned in relation to the ohmic resistance within the second coil 8 such that the HF voltage level at the transition between the second coil 8 and the ohmic resistance 22 is significantly lower than at the HF connection 12 .
- the ohmic resistor 22 also dampens the spark plug current driven by the high-voltage pulse.
- This spark plug current which causes the fuel-air mixture in the combustion chamber to ignite, is overlaid with a higher-frequency interference current caused by the ignition process.
- the higher-frequency interference current superimposed on the spark plug current is disadvantageously decoupled from the spark plug as EMC interference and radiated in the spark plug supply line. Because the level of the higher frequency Interference current is dependent on the level of the spark plug current, the EMC emissions can be effectively reduced by damping the spark plug current by means of the ohmic resistor 22 .
- FIG. 4B Another coil 23, which is referred to below as the fourth coil 23, is connected between the HF connection 12 and the second coil 8.
- This fourth coil 23 is in the form of an HF coil and is therefore implemented as an air-core coil with a view to minimizing the HF losses.
- the fourth coil 23 is preferably designed as a choke coil and dampens the HF voltage fed in at the HF connection 12 with its inductive impedance. Consequently, at the transition between the fourth coil 23 and the second coil 8 there is an HF voltage level which is reduced compared to the voltage level of the HF voltage at the HF connection 12 .
- the fourth coil 23 realized as an air-core coil, is positioned at a lateral distance from an end face 21 of the magnetic core 7 in analogy to the third coil 9 in the first subvariant of the second embodiment of an ignition coil and encloses the area protruding from the magnetic core 7 the first coil 1 and the second coil 8.
- the third coil 9 and the fourth coil 23 are each positioned laterally spaced from two different end faces 21 of the magnet core 7, so that an ignition coil with the highest compactness is realized.
- the cross-sectional area of the fourth coil 23 is parallel to one in analogy to the cross-sectional area of the third coil 9 Face 21 of the magnetic core 7 oriented. In this way, the magnetic fields of both the third coil 9 and the fourth coil 23 are each oriented orthogonally to the direction of the magnetic flux of the first coil 1 and the second coil 8 within the magnetic core 7 . Thus, the magnetic and inductive coupling of the third coil 9 and also the fourth coil 23 to the first coil 1 and the second coil 8 is reduced.
- the fourth coil 23 can be positioned laterally spaced from an end face 21 of the magnet core 7 and at the same time be oriented with its cross-sectional area perpendicular to an end face 21 of the magnet core 7.
- the third coil 9 and the fourth coil 23 can according to Figure 4C be positioned laterally spaced from two different end faces 21 of the magnet core 7 .
- a plurality of fourth coils 23 can be connected in series and arranged in a space-optimized manner within the ignition coil.
- the third coil 9 is arranged in the connection shaft 24 of an engine block 25 with regard to a compact design.
- the third coil 9 is positioned laterally to the lateral surface of the first coil 1 and the second coil 8, preferably laterally to the lateral surface of the second coil 8 arranged on the outside.
- the cross-sectional area of the third coil 9 is oriented parallel to an end face 21 of the magnet core 7 .
- the magnetic field of the third coil 9 is oriented orthogonally to the magnetic flux of the first coil 1 and the second coil 8 that is guided in the magnetic core 7 .
- the magnetic and inductive coupling between the third coil 9 and the first coil 1 is minimized with the exception of the coupling due to the leakage flux.
- the housing 19 of the ignition coil which is in figure 5 is indicated by dashed lines is designed in such a way that it contains all the components of the ignition coil and can be inserted into the connection shaft 24 of the engine block 25 .
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
Description
Die vorliegende Erfindung betrifft eine Anordnung zur Integration einer Zündspule und eines Bandpassfilters.The present invention relates to an arrangement for integrating an ignition coil and a bandpass filter.
Die vorliegende Erfindung betrifft auch eine Anordnung zur Einspeisung einer Hochfrequenzspannung in eine Zündspule.The present invention also relates to an arrangement for feeding a high-frequency voltage into an ignition coil.
In Automobilen kommen Vorrichtungen zur Zündung eines Kraftstoffgemisches, insbesondere eines Kraftstoff-Luftgemisches, zum Einsatz. Der Stand der Technik lehrt eine Vielzahl von Ausführungen für derartige Vorrichtungen. Hierbei ist der Verbrennungsprozess im Verbrennungsraum des Motors, insbesondere eines Verbrennungsmotors mit Fremdzündung durch Zündkerzen, auch als Ottomotor bekannt, weiter zu verbessern.Devices for igniting a fuel mixture, in particular a fuel-air mixture, are used in automobiles. The prior art teaches a variety of designs for such devices. Here, the combustion process in the combustion chamber of the engine, in particular an internal combustion engine with spark ignition by means of spark plugs, also known as an Otto engine, needs to be further improved.
Eine Zündanlage bzw. eine Zündspule transformiert die Batteriespannung eines Fahrzeugs auf die gewünschte Zündspannung, um ein Zündsignal bzw. eine Zündspannung, insbesondere eine Hochvolt-Zündspannung, bereitzustellen.An ignition system or an ignition coil transforms the battery voltage of a vehicle to the desired ignition voltage in order to provide an ignition signal or an ignition voltage, in particular a high-voltage ignition voltage.
Die
Aus dem Stand der Technik ist es zur Zündung eines Kraftstoff-Luftgemisches auch bekannt, als Alternative zur Erzeugung einer reinen Hochvolt-Zündspannung eine Hochfrequenz-Plasmazündvorrichtung einzusetzen, die eine Hochvolt-Zündspannung mit einer überlagerten Hochfrequenzspannung erzeugt.It is also known from the prior art to ignite a fuel-air mixture, as an alternative to generating a pure high-voltage ignition voltage, to use a high-frequency plasma ignition device which generates a high-voltage ignition voltage with a superimposed high-frequency voltage.
Die
Zwischen der Kopplungsstelle und der Hochfrequenzspannungsquelle ist ein Bandpassfilter geschaltet. Dieses Bandpassfilter ist als Serienschwingkreis aus einer Spule und einem Kondensator realisiert. Der Kondensator blockt den Gleichspannungsanteil des Hochspannungsimpulses gegenüber der Hochfrequenzspannungsquelle ab. Der Serienschwingkreis ist so dimensioniert, dass er einerseits für die Hochfrequenzspannung durchlässig ist und andererseits für Oberwellenanteile des Hochspannungsimpulses und für das Zündungsrauschen sperrend ist.A bandpass filter is connected between the coupling point and the high-frequency voltage source. This bandpass filter is implemented as a series resonant circuit consisting of a coil and a capacitor. The capacitor blocks the DC component of the high-voltage pulse from the high-frequency voltage source. The series resonant circuit is dimensioned in such a way that, on the one hand, it is permeable to the high-frequency voltage and, on the other hand, it blocks harmonic components of the high-voltage pulse and the ignition noise.
Spulen und insbesondere Hochfrequenzspulen, wie sie beispielsweise im Bandpassfilter eingesetzt werden, stellen Bauelemente dar, die einen vergleichsweise hohen Platzbedarf benötigen. Der Platz im Motorraum, insbesondere im Bereich oberhalb der Zylinderbank, ist hierfür typischerweise nicht ausreichend. Eine räumliche Trennung der Zündspule und des Bandpassfilters in zwei getrennten Gehäusen erfordert zusätzlich einen erheblichen Aufwand in der Gestaltung der Isolation in der Verbindungsleitung zwischen den beiden Gehäusen und in den erforderlichen Gehäusesteckverbinder im Hinblick auf eine Hochspannungsfestigkeit.Coils and in particular high-frequency coils, such as those used in bandpass filters, represent components that require a comparatively large amount of space. The space in the engine compartment, especially in the area above the cylinder bank, is typically not sufficient for this. A spatial separation of the ignition coil and the bandpass filter in two separate housings also requires considerable effort in the design Insulation in the connection line between the two housings and in the required housing connectors with regard to high-voltage strength.
Dies ist ein Zustand, den es zu verbessern gilt.This is a condition that needs to be improved.
Vor diesem Hintergrund liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine möglichst kompakte Zündspule zu schaffen, in der ein Hochspannungsimpuls mit einer überlagerten Hochfrequenzspannung erzeugt wird.Against this background, the object of the present invention is to create an ignition coil that is as compact as possible, in which a high-voltage pulse with a superimposed high-frequency voltage is generated.
Erfindungsgemäß wird diese Aufgabe durch eine Anordnung zur Integration einer Zündspule und eines Bandpassfilters mit den Merkmalen des Patentanspruchs 1 gelöst.According to the invention, this object is achieved by an arrangement for integrating an ignition coil and a bandpass filter with the features of
Die der vorliegenden Erfindung zugrunde liegenden Erkenntnis/Idee besteht darin, die Spule des Bandpassfilters möglichst raumsparend in die Zündspule zu integrieren.The finding/idea on which the present invention is based is to integrate the coil of the bandpass filter into the ignition coil in the most space-saving manner possible.
Hierzu ist die sekundärseitig angeordnete Spule der Zündspule, die im Folgenden als zweite Spule bezeichnet wird, mit einer weiteren Spule, die im Folgenden als dritte Spule bezeichnet wird und die Spule des Bandpassfilters darstellt, elektrisch verbunden. Außerdem ist ein Hochfrequenzanschluss, der eine Hochfrequenzspannung empfängt, mit der zweiten Spule und der dritten Spule elektrisch verbunden. Der Hochfrequenzanschluss empfängt eine Hochfrequenzspannung von außerhalb der Spüle, insbesondere von einer mit dem Hochfrequenzanschluss verbundenen Hochfrequenzspannungsquelle, und speist die Hochfrequenzspannung in die Zündspule ein.For this purpose, the coil of the ignition coil arranged on the secondary side, which is referred to below as the second coil, is electrically connected to a further coil, which is referred to below as the third coil and represents the coil of the bandpass filter. In addition, a high-frequency terminal that receives a high-frequency voltage is electrically connected to the second coil and the third coil. The high-frequency connection receives a high-frequency voltage from outside the sink, in particular from a high-frequency voltage source connected to the high-frequency connection, and feeds the high-frequency voltage into the ignition coil.
Somit können die Spulen der Zündspule und des Bandpassfilters räumlich nahe zueinander positioniert werden und damit eine Zündspule mit integrierter Spule eines Bandpassfilters mit einem reduzierten Platzbedarf verwirklicht werden. Außerdem ist hiermit eine Zündspule geschaffen, in der eine elektrische Kopplung eines in der Zündspule sekundärseitig erzeugten Hochspannungsimpulses mit einer überlagerten Hochfrequenzspannung realisiert ist. Der somit in der Zündspule erzeugte Hochspannungsimpuls mit überlagerter Hochfrequenzspannung wird an einem Anschluss der dritten Spule aus der Zündspule elektrisch ausgekoppelt. Dieser Anschluss der dritten Spule liegt dem mit der zweiten Spule verbundenen Anschluss der dritten Spule gegenüber.The coils of the ignition coil and the bandpass filter can thus be positioned spatially close to one another, and an ignition coil with an integrated coil of a bandpass filter can thus be realized with a reduced space requirement. In addition, this creates an ignition coil in which an electrical coupling of a high-voltage pulse generated in the ignition coil on the secondary side with a superimposed high-frequency voltage is realized. The thus in the ignition coil The high-voltage pulse generated with superimposed high-frequency voltage is electrically decoupled from the ignition coil at a connection of the third coil. This terminal of the third coil is opposite the terminal of the third coil connected to the second coil.
Unter Hochfrequenzspannung wird hierbei und im Folgenden eine Wechselspannung mit einer Frequenz ab 100 kHz bis 1 GHz, bevorzugt zwischen 1 MHz und 20 MHz, verstanden. Am Hochfrequenzanschluss zwischen der zweiten und der dritten Spule kann anstelle einer Hochfrequenzspannung alternativ auch ein Hochfrequenzstrom eingespeist werden. Im Folgenden steht die Abkürzung "HF-" für "Hochfrequenz-".Here and in the following, high-frequency voltage is understood as meaning an AC voltage with a frequency from 100 kHz to 1 GHz, preferably between 1 MHz and 20 MHz. Alternatively, instead of a high-frequency voltage, a high-frequency current can also be fed in at the high-frequency connection between the second and the third coil. In the following, the abbreviation "HF-" stands for "high-frequency-".
Ist ein Kondensator zwischen dem HF-Anschluss und der elektrischen Verbindung zwischen der zweiten Spule und der dritten Spule geschaltet und angeordnet, so ist damit eine Anordnung geschaffen, in der sowohl die Funktion der Zündspule als auch die Funktion der Bandpassfilterung realisiert und integriert ist:
Der Kondensator und die dritte Spule, die einen als Bandpassfilter wirkenden Serienschwingkreis bilden, werden so dimensioniert, dass die Frequenz einer HF-Spannung, die in einem mit dem HF-Anschluss verbundenen HF-Generator erzeugt wird, im Durchlassbereich des Bandpassfilters liegt. Auf diese Weise wird die HF-Spannung vom HF-Generator in die Zündspule additiv eingekoppelt.If a capacitor is connected and arranged between the HF connection and the electrical connection between the second coil and the third coil, an arrangement is created in which both the function of the ignition coil and the function of bandpass filtering are implemented and integrated:
The capacitor and the third coil, which form a series resonant circuit acting as a bandpass filter, are dimensioned in such a way that the frequency of an HF voltage generated in an HF generator connected to the HF connection lies in the passband of the bandpass filter. In this way, the HF voltage from the HF generator is additively coupled into the ignition coil.
Außerdem werden der Kondensator und die dritte Spule des Bandpassfilters zusätzlich so dimensioniert, dass Zündungsrauschen im Verbrennungsraum des Verbrennungsmotors im höherfrequenten Spektralbereich des Bandpassfilters, also im Sperrbereich des Bandpassfilters zu liegen kommt. Das Zündungsrauschen wird durch ein entsprechend dimensioniertes Bandpassfilter abgeblockt und gelangt somit nicht vom Verbrennungsraum zum HF-Generator. Die Funktionsweise des HF-Generators wird somit durch Zündungsrauschen nicht gestört.In addition, the capacitor and the third coil of the bandpass filter are additionally dimensioned in such a way that ignition noise in the combustion chamber of the combustion engine in the higher-frequency spectral range of the bandpass filter, i.e. in the Stop band of the bandpass filter comes to rest. The ignition noise is blocked by an appropriately dimensioned bandpass filter and thus does not get from the combustion chamber to the HF generator. The functioning of the HF generator is therefore not disturbed by ignition noise.
Oberwellenanteile des Hochspannungsimpulses, die in der zweiten Spule erzeugt werden und unterhalb der Grenzfrequenz eines Hochpassfilters liegen, werden durch eine geeignete Dimensionierung des Kondensators, der als Hochpassfilter für die Oberwellenanteile des Hochspannungsimpulses wirkt, gedämpft. Somit gelangen die Oberwellenanteile des Hochspannungsimpulses nicht von der zweiten Spule zum HF-Generator und stören die Funktionsweise des HF-Generators nicht.Harmonic components of the high-voltage pulse, which are generated in the second coil and are below the cut-off frequency of a high-pass filter, are damped by suitably dimensioning the capacitor, which acts as a high-pass filter for the harmonic components of the high-voltage pulse. Thus, the harmonic components of the high-voltage pulse do not get from the second coil to the HF generator and do not disturb the functioning of the HF generator.
Der Gleichanteil des Hochspannungsimpulses wird durch den Kondensator gegenüber dem HF-Generator abgeblockt.The DC component of the high-voltage pulse is blocked by the capacitor from the HF generator.
Der Magnetkern ist aus einem weichmagnetischen Werkstoff mit einer ausreichenden magnetischen Sättigungsflussdichte und einer ausreichenden Permeabilität hergestellt. Dadurch wird der magnetische Fluss, der bei einem Stromfluss durch den elektrischen Leiter der Spule, bevorzugt der primärseitig angeordneten Spule, entsteht, verlustarm gebündelt und geführt. Die primärseitig angeordnete Spule wird im Folgenden als erste Spule bezeichnet. Außerdem wird durch den Magnetkern die Induktivität der ersten Spule und der zweiten Spule erhöht. Aufgrund der hohen Permeabilität der Spulen lässt sich die Baugröße aller Spulen, die primärseitig und sekundärseitig um den Magnetkern gewickelt sind, gegenüber einer Luftspule verkleinern. Somit lässt sich der Platzbedarf einer Zündspule verkleinern.The magnet core is made of a soft magnetic material with a sufficient magnetic saturation flux density and a sufficient permeability. As a result, the magnetic flux that arises when a current flows through the electrical conductor of the coil, preferably the coil arranged on the primary side, is bundled and guided with low losses. The coil arranged on the primary side is referred to below as the first coil. In addition, the inductance of the first coil and the second coil is increased by the magnetic core. Due to the high permeability of the coils, the size of all coils that are wound around the magnetic core on the primary and secondary sides can be reduced compared to an air coil. The space requirement of an ignition coil can thus be reduced.
Als Werkstoffe für Magnetkerne werden ferromagnetische Metalllegierungen, meist in Form von Blech oder Folie oder gebundenem Pulver, oder oxidkeramische ferrimagnetische Werkstoffe (Ferrite) eingesetzt. Zur Reduzierung von Wirbelströmen, die durch Oberwellenanteile des Hochspannungsimpulses und durch die HF-Spannung im Magnetkern erzeugt werden, setzt sich der Magnetkern bevorzugt aus gestapelten Blechen zusammen, zwischen denen dielektrische Schichten bevorzugt aus Papier oder Kunststoff angeordnet sind.The materials used for magnetic cores are ferromagnetic metal alloys, usually in the form of sheet metal or foil or bonded powder, or ferrimagnetic oxide-ceramic materials (ferrites). In order to reduce eddy currents, which are generated in the magnet core by harmonic components of the high-voltage pulse and by the HF voltage, the magnet core is preferably composed of stacked metal sheets, between which dielectric layers, preferably made of paper or plastic, are arranged.
Die erste Spule und die zweite Spule sind derart zueinander ausgelegt, dass ein ausreichendes Spannungsübersetzungsverhältnis zwischen dem Primärkreis und dem Sekundärkreis der Zündspule realisiert ist. Um einen sekundärseitigen Hochspannungsimpuls von typischerweise mehreren 10 kV aus einem primärseitigen Spannungsimpuls von typischerweise mehreren 100 V zu transformieren, ist die Anzahl der sekundärseitigen Windungen typischerweise um den Faktor 10 bis 1000 höher als die Anzahl der primärseitigen Windungen. Um das Volumen der sekundärseitigen Spule ungefähr in der gleichen Größenordnung wie das Volumen der primärseitigen Spule zu gestalten, ist der Durchmesser des elektrischen Leiters der sekundärseitigen Spule typischerweise um den Faktor 10 bis 1000 kleiner als der Durchmesser des zur primärseitigen Spule gehörigen elektrischen Leiters.The first coil and the second coil are designed in relation to one another in such a way that a sufficient voltage transformation ratio is realized between the primary circuit and the secondary circuit of the ignition coil. In order to transform a secondary-side high-voltage pulse of typically several 10 kV from a primary-side voltage pulse of typically several 100 V, the number of turns on the secondary side is typically higher by a factor of 10 to 1000 than the number of turns on the primary side. In order to make the volume of the secondary-side coil approximately of the same order of magnitude as the volume of the primary-side coil, the diameter of the electrical conductor of the secondary-side coil is typically smaller by a factor of 10 to 1000 than the diameter of the electrical conductor associated with the primary-side coil.
Vorteilhafte Ausgestaltungen und Weiterbildungen ergeben sich aus den weiteren Unteransprüchen sowie aus der Beschreibung unter Bezugnahme auf die Figuren der Zeichnung.Advantageous refinements and developments result from the further dependent claims and from the description with reference to the figures of the drawing.
Es versteht sich, dass die voranstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, im durch die Ansprüche definierten Rahmen.It goes without saying that the features mentioned above and those to be explained below not only in the combination specified in each case, but also in others Combinations or alone can be used within the framework defined by the claims.
Um die erste Spule, die zweite Spule, die dritte Spule und den Magnetkern innerhalb der Zündspule jeweils zueinander zu positionieren und zu orientieren, sind die erste Spule, die zweite Spule, die dritte Spule und der Magnetkern vorzugsweise jeweils über ein Abstandselement aus einem elektrisch isolierenden Material miteinander verbunden.In order to position and orientate the first coil, the second coil, the third coil and the magnetic core within the ignition coil relative to each other, the first coil, the second coil, the third coil and the magnetic core are each preferably made of an electrically insulating material via a spacer element material connected to each other.
Als Abstandselement kann beispielsweise ein Abstandshalter, eine Kunststofffolie oder ein Spulenkörper dienen, um den die Spule gewickelt ist. Hierbei sind die einzelnen Abstandselemente zwischen der ersten Spule, der zweiten Spule, der dritten Spule und dem Magnetkern jeweils derart ausgebildet, dass die Zündspule eine möglichst kompakte Bauform aufweist und gleichzeitig möglichst geringe Beeinflussungen zwischen der ersten Spule, der zweiten Spule, der dritten Spule und dem Magnetkern vorliegen.A spacer, a plastic film or a coil former around which the coil is wound can serve as a spacer element, for example. The individual spacer elements between the first coil, the second coil, the third coil and the magnetic core are each designed in such a way that the ignition coil has the most compact possible design and at the same time there is as little interference as possible between the first coil, the second coil, the third coil and present in the magnetic core.
Zwischen der ersten Spule, der zweiten Spule, der dritten Spule und dem Magnetkern sowie den dazwischen angeordneten Abstandselementen befindet sich typischerweise eine ausgehärtete Vergussmasse aus einem dielektrischen Material, beispielsweise Kunstharz, bevorzugt ein Gießharz. Die Vergussmasse dient neben der Fixierung der einzelnen Spulen und des Magnetkerns zueinander sowie der elektrischen Isolation, insbesondere der Erhöhung der Hochspannungsfestigkeit, zwischen den einzelnen Spulen.Between the first coil, the second coil, the third coil and the magnetic core as well as the spacer elements arranged between them, there is typically a hardened casting compound made of a dielectric material, for example synthetic resin, preferably a casting resin. The potting compound serves not only to fix the individual coils and the magnetic core to one another, but also to provide electrical insulation, in particular to increase the high-voltage strength, between the individual coils.
In einer ersten Ausführung einer erfindungsgemässen Anordnung ist die dritte Spule mit ihren einzelnen Windungen sekundärseitig um den Magnetkern gewickelt. Somit wird die Sekundärseite der Zündspule durch die serielle Verschaltung der zweiten und der dritten Spule gebildet. Der Hochspannungsimpuls wird somit sowohl in der zweiten Spule als auch in der dritten Spule erzeugt. Die serielle Verschaltung der zweiten und der dritten Spule kann auch als eine einzige Spule mit zwei Spulenbereichen betrachtet werden. Im Übergang zwischen den beiden Spulenbereichen einer derartigen einzigen Spule ist demnach ein elektrischer Kontaktanschluss, ein sogenannter Mittenanschluss, vorgesehen, der mit dem HF-Anschluss elektrisch verbunden ist.In a first embodiment of an arrangement according to the invention, the third coil with its individual windings wound around the magnetic core on the secondary side. The secondary side of the ignition coil is thus formed by connecting the second and third coils in series. The high voltage pulse is thus generated both in the second coil and in the third coil. The serial connection of the second and the third coil can also be regarded as a single coil with two coil areas. In the transition between the two coil areas of such a single coil, an electrical contact connection, a so-called center connection, is therefore provided, which is electrically connected to the HF connection.
Der Vorteil der ersten Ausführung ist in der kompakten Bauform der Zündspule zu sehen, da für die Platzierung der dritten Spule neben dem Bauraum der Zündspule kein zusätzlicher Platzbedarf nötig ist. Die dritte Spule erfüllt in der ersten Ausführung somit eine technische Doppelfunktion. Sie dient zur Bandpassfilterung und zur Erzeugung des Hochspannungsimpulses.The advantage of the first version can be seen in the compact design of the ignition coil, since no additional space is required to place the third coil next to the ignition coil. In the first embodiment, the third coil thus fulfills a dual technical function. It is used for bandpass filtering and for generating the high-voltage pulse.
In einer bevorzugten Ausprägung der ersten Ausführungsform ist die dritte Spule hinsichtlich ihrer HF-Übertragungscharakteristik als Bestandteil des Bandpassfilters innerhalb des HF-Pfades optimiert, indem die Abstände zwischen jeweils aufeinander folgenden Windungen der dritten Spule gegenüber jeweils aufeinander folgenden Windungen der zweiten Spule vergrößert sind. Somit werden die parasitären Kapazitäten innerhalb der dritten Spule gegenüber den üblichen parasitären Kapazitäten der zweiten Spule verkleinert. Eine weitere technische Maßnahme, die parasitären Kapazitäten innerhalb der dritten Spule zu verkleinern und damit das HF-Übertragungsverhalten der dritten Spule zu verbessern, wird durch die Anwendung einer für die HF-Übertragung optimierten Wicklung der dritten Spule möglich.In a preferred form of the first embodiment, the third coil is optimized in terms of its HF transmission characteristic as part of the bandpass filter within the HF path by increasing the distances between successive turns of the third coil compared to successive turns of the second coil. Thus, the parasitic capacitances within the third coil are reduced compared to the usual parasitic capacitances of the second coil. Another technical measure to reduce the parasitic capacitances within the third coil and thus the It is possible to improve the HF transmission behavior of the third coil by using a winding of the third coil that is optimized for HF transmission.
Alternativ oder in Ergänzung zur Verminderung der parasitären Kapazitäten ist als weitere technische Maßnahme zur Verbesserung der HF-Übertragungscharakteristik in der dritten Spule der Drahtdurchmesser der dritten Spule größer als der Drahtdurchmesser der zweiten Spule ausgelegt. Ein HF-Strom, der durch die HF-Spannung eingeprägt wird, fließt einzig an der Oberfläche der Spule. Bei gegebener frequenzabhängiger Eindringtiefe des HF-Stromes ergibt sich für diesen eine größere Querschnittsfläche in der dritten Spule als in der zweiten Spule. Damit wird der für den HF-Strom relevante ohmsche Widerstand im Oberflächenbereich des Leiters der dritten Spule gegenüber dem Leiter der zweiten Spule verkleinert. Dieser Effekt verbessert die Güte der als HF-Spule ausgebildeten dritten Spule und damit die HF-Übertragungscharakteristik der dritten Spule. Somit wird der HF-Strom verstärkt durch die dritte Spule und vermindert durch die zweite Spule fließen. Ein unerwünschtes elektrisches Einkoppeln der HF-Spannung bzw. des HF-Stroms in die zweite Spule wird auf diese Weise vermindert.Alternatively or in addition to reducing the parasitic capacitances, as a further technical measure to improve the HF transmission characteristics in the third coil, the wire diameter of the third coil is designed to be larger than the wire diameter of the second coil. An HF current, which is impressed by the HF voltage, only flows on the surface of the coil. For a given frequency-dependent penetration depth of the HF current, there is a larger cross-sectional area in the third coil than in the second coil. This reduces the ohmic resistance relevant to the HF current in the surface area of the conductor of the third coil compared to the conductor of the second coil. This effect improves the quality of the third coil designed as an HF coil and thus the HF transmission characteristics of the third coil. Thus, the HF current will flow more through the third coil and less through the second coil. Undesirable electrical coupling of the HF voltage or the HF current into the second coil is reduced in this way.
Somit erfolgt eine induktive Kopplung der HF-Spannung bzw. des HF-Stromes von der Sekundär- zur Primärseite der Zündspule hauptsächlich von der dritten Spule zur ersten Spule. Im Fall eines größeren Abstands zwischen den einzelnen Windungen der dritten Spule ist eine geringere Windungsanzahl in der dritten Spule und damit eine geringere Induktivität für die dritte Spule realisierbar, die eine geringere induktive Kopplung zwischen der dritten und der ersten Spule verursacht.An inductive coupling of the HF voltage or the HF current from the secondary to the primary side of the ignition coil thus takes place, mainly from the third coil to the first coil. In the case of a greater distance between the individual turns of the third coil, a smaller number of turns in the third coil and thus a lower inductance for the third coil can be implemented, which causes less inductive coupling between the third and the first coil.
Gemäß einer bevorzugten Weiterbildung der Erfindung ist die dritte Spule beschichtet, wobei deren Impedanz geringer als die Impedanz des Grundmaterials ist. Da der von der HF-Spannung getriebene HF-Strom auf der Oberfläche der dritten Spule und damit primär im Bereich der Beschichtung der dritten Spule fließt, wird der HF-Strom im Wesentlichen durch die dritte Spule und nicht durch die zweite Spule fließen, die keine Beschichtung mit einer niedrigeren Impedanz aufweist. Als Beschichtungsmaterial eignet sich Silber, Kupfer, Gold, Zinn, Aluminium, Wolfram, Molybdän, Titan, Zirkonium, Niobium, Tantal, Wismut, Palladium und Blei. Auch Legierungen oder Verbundwerkstoffe aus einem oder mehreren dieser Materialien sind geeignet.According to a preferred development of the invention, the third coil is coated, with its impedance being lower than the impedance of the base material. Since the HF current driven by the HF voltage flows on the surface of the third coil and thus primarily in the area of the coating of the third coil, the HF current will essentially flow through the third coil and not through the second coil, which does not Coating having a lower impedance. Silver, copper, gold, tin, aluminum, tungsten, molybdenum, titanium, zirconium, niobium, tantalum, bismuth, palladium and lead are suitable as coating materials. Alloys or composite materials made from one or more of these materials are also suitable.
Bei einer Zündspule sind die primärseitige Spule und die sekundärseitige(n) Spule(n) gemeinsam um einen Hauptschenkel eines Magnetkerns gewickelt. Zur Realisierung eines geschlossenen Eisenpfades für den magnetischen Fluss weist der Magnetkern mindestens einen Rückschlussschenkel und zwei Joche auf, die den Hauptschenkel und den Rückschlussschenkel jeweils verbinden. Der aus dem Hauptschenkel, dem Rückschlussschenkel und den beiden Jochen zusammengesetzte Magnetkern umschließt dabei gemeinsam die primärseitige und die sekundärseitige(n) Spule(n). In einer bevorzugten Ausbildung der Zündspule als Manteltransformator weist der Magnetkern einen Hauptschenkel, zwei Rückschlussschenkel und zwei Joche auf, die den Hauptschenkel und die beiden Rückschlussschenkel jeweils miteinander verbinden. Somit wird über den Hauptschenkel, einen Rückschlussschenkel und zwei Teilbereiche der beiden Joche jeweils ein magnetischer Teilfluss geführt.In an ignition coil, the primary-side coil and the secondary-side coil(s) are wound together around a main leg of a magnetic core. In order to implement a closed iron path for the magnetic flux, the magnetic core has at least one yoke and two yokes, which each connect the main limb and the yoke. The magnetic core composed of the main leg, the return leg and the two yokes together encloses the primary and secondary coil(s). In a preferred embodiment of the ignition coil as a shell transformer, the magnetic core has a main leg, two yoke legs and two yokes, which connect the main limb and the two yoke legs to one another. A partial magnetic flux is thus guided in each case via the main leg, a return leg and two partial areas of the two yokes.
Die primärseitige Spule und die sekundärseitige(n) Spule(n) sind zueinander konzentrisch um den Hauptschenkel gewickelt. Bevorzugt umschließen die zweiten und dritten Spulen die erste Spule. Alternativ ist es aber auch möglich, dass die erste Spule die zweite und dritte Spule umschließt. Zur elektrischen Isolierung sind zwischen dem Magnetkern, der ersten Spule und der zweiten und dritten Spule jeweils Abstandselemente vorgesehen.The primary side coil and the secondary side coil(s) are wound around the main leg concentrically with each other. The second and third coils preferably enclose the first coil. Alternatively, however, it is also possible for the first coil to enclose the second and third coils. Spacer elements are provided between the magnetic core, the first coil and the second and third coils for electrical insulation.
In einer besonderen Anordnung der ersten Ausführungsform der Erfindung umschließt die dritte Spule die zweite Spule und die erste Spule. Bevorzugt umschließt dabei die zweite Spule die erste Spule. Alternativ kann die erste Spule auch die zweite Spule umschließen.In a particular arrangement of the first embodiment of the invention, the third coil encloses the second coil and the first coil. The second coil preferably encloses the first coil. Alternatively, the first coil can also enclose the second coil.
Um die magnetische Kopplung zwischen der dritten Spule und der ersten Spule sowie der zweiten Spule zu reduzieren, kann zwischen der dritten Spule und der zweiten Spule eine Folie aus einem leicht magnetisierbaren Material, bevorzugt aus einem Mu-Metall, angeordnet sein. Alternativ kann auch eine Kupferfolie vorgesehen sein, in der Wirbelströme durch den in der dritten Spule fließenden HF-Strom angeregt werden und damit das elektromagnetische Feld zwischen der dritten Spule und der zweiten Spule bzw. der ersten Spule gedämpft wird. Zur elektrischen Isolierung ist zwischen der Folie aus magnetisierbarem Material bzw. der Kupferfolie und der dritten Spule sowie der zweiten Spule jeweils eine Folie aus einem dielektrischen Material angeordnet.In order to reduce the magnetic coupling between the third coil and the first coil as well as the second coil, a foil made of an easily magnetizable material, preferably made of a mu-metal, can be arranged between the third coil and the second coil. Alternatively, a copper foil can also be provided in which eddy currents are excited by the HF current flowing in the third coil and the electromagnetic field between the third coil and the second coil or the first coil is thus damped. For electrical insulation, a foil made of a dielectric material is arranged between the foil made of magnetizable material or the copper foil and the third coil and the second coil.
In einer zweiten Ausführungsform der Zündspule, die nicht Teil der vorliegenden Erfindung ist, ist die dritte Spule als HF-Spule ausgebildet. HF-Spulen sind nach dem Stand der Technik um einen Magnetkern aus einem Ferrit gewickelt. Da Ferrite typischerweise keine hohe Hitzebeständigkeit aufweisen, sind sie für eine Anwendung in der Umgebung eines Motors mit Temperaturen um 100 °C wenig geeignet. Aus diesem Grund ist die als HF-Spule auszubildende dritte Spule bevorzugt als sogenannte Luftspule, d.h. als Spule ohne Magnetkern, ausgebildet.In a second embodiment of the ignition coil, which is not part of the present invention, the third coil is designed as an HF coil. According to the prior art, HF coils are wound around a magnetic core made of ferrite. Since ferrites typically do not have high heat resistance have, they are not very suitable for use in the vicinity of a motor with temperatures around 100 °C. For this reason, the third coil, which is to be designed as an HF coil, is preferably designed as a so-called air-core coil, ie as a coil without a magnetic core.
Die dritte Spule ist folglich in der zweiten Ausführungsform der Zündspule derart innerhalb der Zündspule positioniert und orientiert, dass sie den Magnetkern nicht umschließt und dadurch die gesamte Zündspule andererseits möglichst kompakt bleibt. Zusätzlich ist bei der Anordnung der dritten Spule in der zweiten Ausführungsform der Zündspule zu berücksichtigen, dass eine möglichst geringe magnetische Kopplung zwischen der dritten Spule und der ersten und zweiten Spule möglich ist. Außerdem sind durch die HF-Einspeisung in die dritte Spule möglichst geringe HF-Verluste, insbesondere Wirbelstromverluste im angrenzenden Magnetkern, anzustreben.In the second embodiment of the ignition coil, the third coil is consequently positioned and oriented within the ignition coil in such a way that it does not enclose the magnetic core and the entire ignition coil thereby remains as compact as possible. In addition, when arranging the third coil in the second embodiment of the ignition coil, it must be taken into account that the lowest possible magnetic coupling between the third coil and the first and second coil is possible. In addition, as low as possible HF losses, in particular eddy current losses in the adjoining magnetic core, are to be aimed for through the HF feed into the third coil.
Dabei ist es zweckmäßig, die einzelnen Windungen der als Luftspule realisierten dritten Spule jeweils seitlich beabstandet zu einer Stirnfläche des Magnetkerns zu positionieren. Unter Stirnfläche des Magnetkerns wird die Seitenfläche des Magnetkerns verstanden, dessen Flächenvektor jeweils parallel zur Längsrichtung des Magnetkerns, d.h. zur Längsrichtung der Durchführung(en) des Magnetkerns, verläuft. Außerdem ist die Querschnittsfläche der dritten Spule parallel zur Stirnfläche des Magnetkerns orientiert. Unter Querschnittsfläche der dritten Spule wird die Querschnittsfläche der dritten Spule verstanden, deren Flächenvektor parallel zur Längsrichtung der dritten Spule, d.h. zur Längsrichtung der Durchführung der dritten Spulen, verläuft.It is expedient here to position the individual windings of the third coil, which is realized as an air-core coil, at a lateral distance from an end face of the magnet core. The end face of the magnet core is understood to mean the side face of the magnet core whose area vector runs parallel to the longitudinal direction of the magnet core, ie to the longitudinal direction of the passage(s) of the magnet core. In addition, the cross-sectional area of the third coil is oriented parallel to the end face of the magnetic core. The cross-sectional area of the third coil is understood to mean the cross-sectional area of the third coil whose area vector runs parallel to the longitudinal direction of the third coil, ie to the longitudinal direction of the passage of the third coil.
Schließlich umschließt die dritte Spule mit ihren Windungen zumindest einen Bereich der ersten Spule und/oder der zweiten Spule.Finally, the turns of the third coil enclose at least one area of the first coil and/or the second coil.
Indem die dritte Spule mit ihren Windungen zumindest einen Bereich der ersten Spule und/oder der zweiten Spule, nämlich den Bereich der ersten Spule und/oder der zweiten Spule, der aus dem Magnetkern herausragt, umschließt und gleichzeitig seitlich beabstandet zur Stirnfläche des Magnetkerns positioniert ist, nimmt die dritte Spule mit ihren Windungen den noch freien Platz seitlich des Magnetkerns ein, der von der ersten Spule und/oder der zweiten Spule nicht besetzt ist. Somit ist mit der ersten Untervariante der zweiten Ausführungsform der Zündspule eine platzsparende Integration der dritten Spule in die Zündspule realisiert.The third coil with its windings encloses at least one area of the first coil and/or the second coil, namely the area of the first coil and/or the second coil that protrudes from the magnet core, and at the same time is positioned at a lateral distance from the end face of the magnet core , the third coil with its turns takes up the free space on the side of the magnetic core that is not occupied by the first coil and/or the second coil. A space-saving integration of the third coil into the ignition coil is thus realized with the first sub-variant of the second embodiment of the ignition coil.
Da die Querschnittsfläche der dritten Spule parallel zur Stirnfläche des Magnetkerns orientiert ist, verlaufen die Magnetfelder einer dritten Spule weitestgehend orthogonal zu den Magnetfeldern der ersten und der zweiten Spule, die als magnetischer Fluss im Magnetkern konzentriert und geführt sind. Auf diese Weise ist als weiterer Vorteil die magnetische Kopplung zwischen der dritten Spule und der ersten bzw. der zweiten Spule minimiert.Since the cross-sectional area of the third coil is oriented parallel to the end face of the magnetic core, the magnetic fields of a third coil are largely orthogonal to the magnetic fields of the first and second coils, which are concentrated and guided as magnetic flux in the magnetic core. In this way, as a further advantage, the magnetic coupling between the third coil and the first or second coil is minimized.
Dabei lässt sich die Gesamtinduktivität der dritten Spule verdoppeln, wenn seitlich zu den beiden Stirnflächen des Magnetkerns jeweils eine dritte Spule positioniert ist, die seriell miteinander verschaltet sind. Die serielle Verschaltung von mehreren dritten Spulen bietet also eine Möglichkeit, die Induktivität des Bandpassfilters zu vergrößern und somit die Kapazität des Bandpassfilters zu verkleinern. Mit einer geringeren Kapazität des Kondensators lässt sich eine hohe Dämpfung für die Oberwellenanteile des Hochspannungsimpulses durch den auch als Hochpassfilter agierenden Kondensator verwirklichen.The total inductance of the third coil can be doubled if a third coil is positioned on each side of the two end faces of the magnetic core and is connected to one another in series. The serial connection of a plurality of third coils thus offers a possibility of increasing the inductance of the bandpass filter and thus reducing the capacitance of the bandpass filter. With a lower capacity of the capacitor, a Realize high damping for the harmonic components of the high-voltage pulse through the capacitor, which also acts as a high-pass filter.
In einer zweiten Untervariante der zweiten Ausführungsform der Zündspule sind die einzelnen Windungen der als Luftspule realisierten dritten Spule jeweils seitlich beabstandet zu einer Stirnfläche des Magnetkerns positioniert sind. Die dritte Spule ist hierbei mit ihren Windungen zu einem der beiden Rückschlussschenkel oder zu einem der beiden Joche seitlich beabstandet. Außerdem ist die Querschnittsfläche der dritten Spule senkrecht zur Stirnfläche des Magnetkerns orientiert.In a second sub-variant of the second embodiment of the ignition coil, the individual windings of the third coil, which is realized as an air-core coil, are each positioned at a lateral distance from an end face of the magnet core. The turns of the third coil are laterally spaced from one of the two yokes or from one of the two yokes. In addition, the cross-sectional area of the third coil is oriented perpendicularly to the end face of the magnetic core.
Durch die Positionierung der dritten Spule seitlich beabstandet zu einer Stirnfläche des Magnetkerns, insbesondere seitlich beabstandet zu einem der beiden Rückschlussschenkel oder zu einem der beiden Joche, wird somit von der dritten Spule der noch freie Platz seitlich des Magnetkerns eingenommen, der von der ersten Spule und/oder der zweiten Spule nicht besetzt ist. Somit wird eine kompakte Bauform realisiert.By positioning the third coil at a lateral distance from an end face of the magnet core, in particular at a lateral distance from one of the two yokes or from one of the two yokes, the third coil occupies the free space on the side of the magnet core that is occupied by the first coil and /or the second coil is not occupied. A compact design is thus realized.
Die magnetische Kopplung zwischen der dritten Spule und der ersten bzw. der zweiten Spule ist reduziert, da mit Ausnahme des Übergangsbereiches zwischen dem Hauptschenkel und den beiden Jochen das Magnetfeld der dritten Spule orthogonal zu den Magnetfeldern der ersten und der zweiten Spule orientiert ist. Da der Übergangsbereich zwischen dem Hauptschenkel und den beiden Jochen vergleichsweise klein ist und nicht im Maximum der magnetischen Feldlinien der dritten Spule liegt, ist die magnetische Kopplung zwischen der dritten Spule und der ersten sowie der zweiten Spule gering.Magnetic coupling between the third coil and the first and second coils is reduced because, with the exception of the transition area between the main leg and the two yokes, the magnetic field of the third coil is oriented orthogonally to the magnetic fields of the first and second coils. Since the transition area between the main leg and the two yokes is comparatively small and does not lie at the maximum of the magnetic field lines of the third coil, the magnetic coupling between the third coil and the first and second coils is low.
Dabei ist es insbesondere zweckmäßig, wenn mehrere seriell miteinander verschaltete dritte Spulen seitlich beabstandet zu einer Stirnfläche des Magnetkerns positioniert sind. Die Querschnittsflächen aller seriell verschalteten dritten Spulen sind jeweils senkrecht zur Stirnfläche des Magnetkerns orientiert.In this case, it is particularly expedient if a plurality of third coils connected to one another in series are positioned at a lateral distance from an end face of the magnet core. The cross-sectional areas of all third coils connected in series are each oriented perpendicularly to the end face of the magnet core.
Da zu jedem der beiden Rückschlussschenkel und zu jedem der beiden Joche des Magnetkerns und zu jeder der beiden Stirnflächen des Magnetkerns seitlich beabstandet jeweils eine dritte Spule positionierbar ist, können somit bis zu acht dritte Spulen seriell verschaltet werden. Gegenüber einer einzigen dritten Spule ergibt sich durch die serielle Verschaltung von mehreren dritten Spulen eine Erhöhung der Gesamtinduktivität. Da die dritte Spule der zweiten Untervariante vor allem wegen ihrer geringeren Querschnittsfläche und ihrer geringeren Windungsanzahl eine geringere Induktivität als die dritte Spule der ersten Untervariante aufweist, kann durch die serielle Verschaltung von mehreren dritten Spulen in der zweiten Untervariante dieser Nachteil ausgeglichen und unter Umständen sogar noch gegenüber der ersten Untervariante verbessert werden.Since a third coil can be positioned laterally spaced from each of the two yokes and from each of the two yokes of the magnetic core and from each of the two end faces of the magnetic core, up to eight third coils can be connected in series. Compared to a single third coil, the series connection of a plurality of third coils results in an increase in the total inductance. Since the third coil of the second sub-variant has a lower inductance than the third coil of the first sub-variant, primarily because of its smaller cross-sectional area and its lower number of turns, this disadvantage can be compensated for and possibly even even further by connecting several third coils in the second sub-variant in series be improved compared to the first sub-variant.
In einer dritten Untervariante der zweiten Ausführungsform der Zündspule ist die dritte Spule seitlich beabstandet zur Mantelfläche der ersten und/oder der zweiten Spule positioniert. Außerdem ist die Querschnittsfläche der dritten Spule senkrecht zur Stirnfläche des Magnetkerns orientiert. Die Zündspule weist somit zwar eine geringere Kompaktheit auf, bedingt aber aufgrund des größeren Abstandes der dritten Spule zum Magnetkern geringere Wirbelstromverluste im Magnetkern, d.h. geringere HF-Verluste. Auch die magnetische Kopplung zwischen der dritten Spule und der ersten bzw. der zweiten Spule ist vermindert, da der Abstand zwischen der dritten Spule und dem Magnetkern vergleichsweise größer ist.In a third sub-variant of the second embodiment of the ignition coil, the third coil is positioned at a lateral distance from the lateral surface of the first and/or the second coil. In addition, the cross-sectional area of the third coil is oriented perpendicularly to the end face of the magnetic core. The ignition coil is therefore less compact, but due to the greater distance between the third coil and the magnetic core it causes lower eddy current losses in the magnetic core, ie lower HF losses. Also the magnetic one Coupling between the third coil and the first and second coils is reduced because the distance between the third coil and the magnetic core is comparatively larger.
Es hat sich als besonders vorteilhaft herausgestellt, wenn zwischen dem HF-Anschluss und der zweiten Spule eine weitere Spule geschaltet ist, die als HF-Spule, bevorzugt als Drosselspule, ausgebildet ist. Diese weitere Spule wird im Folgenden als vierte Spule bezeichnet.It has proven to be particularly advantageous if a further coil, which is designed as an HF coil, preferably as a choke coil, is connected between the HF connection and the second coil. This additional coil is referred to below as the fourth coil.
Eine HF-Spule, insbesondere eine Drosselspule, dämpft eine HF-Spannung bestmöglich und minimiert gleichzeitig die durch die HF-Spannung erzeugten Wirbelströme im Magnetkern.An HF coil, in particular a choke coil, dampens an HF voltage as best as possible and at the same time minimizes the eddy currents in the magnet core generated by the HF voltage.
Zur Dämpfung der HF-Spannung weist eine Drosselspule einen induktiven Widerstand, d.h. eine Impedanz mit einem gegenüber dem kapazitiven Anteil deutlich höheren induktiven Anteil, auf. Die Dämpfung innerhalb der Drosselspule ist abhängig von der Querschnittsfläche, der Windungsanzahl und der Spulenlänge der Drosselspule auszulegen. Um HF-Verluste zu reduzieren, ist die Drosselspule bevorzugt als Luftspule ausgebildet. Durch die Dämpfung der HF-Spannung wird ein elektrisches Einkoppeln der am HF-Anschluss eingeprägten HF-Spannung in die zweite Spule reduziert. Dieser vorteilhafte Effekt tritt deutlicher bei Vorliegen von parasitären Kapazitäten zwischen der Sekundärseite der Zündspule und dem typischerweise aus einem elektrisch leitenden Material hergestellten Gehäuse der Zündspule auf.To dampen the HF voltage, a choke coil has an inductive resistance, i.e. an impedance with a significantly higher inductive component than the capacitive component. The damping within the choke coil depends on the cross-sectional area, the number of turns and the coil length of the choke coil. In order to reduce HF losses, the choke coil is preferably designed as an air coil. The attenuation of the HF voltage reduces electrical coupling of the HF voltage impressed at the HF connection into the second coil. This advantageous effect occurs more clearly in the presence of parasitic capacitances between the secondary side of the ignition coil and the ignition coil housing, which is typically made of an electrically conductive material.
Die vierte Spule kann wie die dritte Spule seitlich beabstandet zu einer Stirnfläche des Magnetkerns positioniert sein. Die Querschnittsfläche der vierten Spule kann wie die dritte Spule parallel oder senkrecht zur Stirnfläche des Magnetkerns orientiert sein. Auch eine Serienschaltung von mehreren vierten Spulen zur Erhöhung der Induktivität ist denkbar.Like the third coil, the fourth coil can be positioned at a lateral distance from an end face of the magnet core. The cross-sectional area of the fourth coil, like the third coil, can be parallel or perpendicular to the end face of the Be oriented magnetic core. A series connection of several fourth coils to increase the inductance is also conceivable.
Mit der Beschaltung eines ohmschen Widerstandes zwischen der zweiten Spule und dem HF-Anschluss kann das Einkoppeln der HF-Spannung in die Zündspule reduziert werden. Dieser ohmsche Widerstand dämpft bei geeigneter Dimensionierung die HF-Spannung in Richtung der Zündspule. Der ohmsche Widerstand dämpft zusätzlich den durch den HF-Impuls getriebenen Zündkerzenstrom. Dieser Zündkerzenstrom, der eine Zündung des Brennstoff-Luft-Gemisches in der Brennkammer verursacht, ist mit einem durch den Zündvorgang verursachten höherfrequenten Störstrom überlagert. Der im Zündkerzenstrom überlagerte höherfrequente Störstrom wird als EMV-Störung aus der Zündkerze ausgekoppelt und über die Zuleitung der Zündkerze abgestrahlt. Da der Pegel des höherfrequenten Störstroms vom Pegel des Zündkerzenstroms abhängig ist, kann durch die Dämpfung des Zündkerzenstroms mittels des ohmschen Widerstands die EMV-Abstrahlung wirksam vermindert werden. Schließlich existiert eine dritte Ausführungsform einer Zündspule, die nicht Teil der vorliegenden Erfindung ist, in der die dritte Spule seitlich beabstandet zur ersten und zur zweiten Spule beabstandet ist und die Querschnittsfläche der dritten Spule bevorzugt senkrecht zu einer Stirnfläche des Magnetkerns orientiert ist. Zusätzlich ist die dritte Spule in einem Verbindungsschacht innerhalb eines Motorblocks angeordnet. Auf diese Weise beschränkt sich das Bauvolumen der Zündspule außerhalb des Motorblocks auf die erste Spule, die zweite Spule und den Magnetkern und reduziert somit dem Platzbedarf für die Zündspule erheblich.By wiring an ohmic resistance between the second coil and the HF connection, the coupling of the HF voltage into the ignition coil can be reduced. If suitably dimensioned, this ohmic resistance dampens the HF voltage in the direction of the ignition coil. The ohmic resistance also dampens the spark plug current driven by the HF pulse. This spark plug current, which causes the fuel-air mixture in the combustion chamber to ignite, is overlaid with a higher-frequency interference current caused by the ignition process. The higher-frequency interference current superimposed on the spark plug current is decoupled from the spark plug as EMC interference and emitted via the spark plug cable. Since the level of the higher-frequency interference current depends on the level of the spark plug current, the EMC emissions can be effectively reduced by damping the spark plug current using the ohmic resistor. Finally, there is a third embodiment of an ignition coil not forming part of the present invention, in which the third coil is laterally spaced from the first and second coils and the cross-sectional area of the third coil is preferably oriented perpendicular to an end face of the magnetic core. In addition, the third coil is arranged in a connection shaft within an engine block. In this way, the structural volume of the ignition coil outside the engine block is limited to the first coil, the second coil and the magnetic core, and the space required for the ignition coil is thus reduced considerably.
Unter einem Verbindungschacht innerhalb eines Motorblockes wird eine von der Außenoberfläche des Motorblockes in den Innenbereich des Motorblockes verlaufende Ausnehmung verstanden. Diese Ausnehmung weist ein geeignetes Querschnittsprofil, beispielsweise ein rundes Querschnittsprofil, und eine bestimmte Längserstreckung auf. Die Längserstreckung des Verbindungschachtes kann geradlinig, gekrümmt oder gewinkelt verlaufen. Der Verbindungschacht ermöglicht ein elektrisches Verbindungselement zwischen einer im Innenbereich des Motorblockes befestigten Zündkerze und einer Zündspule zu führen, die typischerweise außerhalb des Motorblockes oder unmittelbar benachbart zur Außenoberfläche des Motorblockes innerhalb des Motorblockes positioniert ist.A connection shaft within an engine block is understood to mean a recess running from the outer surface of the engine block into the interior area of the engine block. This recess has a suitable cross-sectional profile, for example a round cross-sectional profile, and a specific length. The longitudinal extent of the connection shaft can be straight, curved or angled. The connection duct enables an electrical connection element to be routed between a spark plug mounted in the interior of the engine block and an ignition coil which is typically positioned outside the engine block or immediately adjacent to the outer surface of the engine block within the engine block.
Durch die bevorzugt senkrechte Orientierung der Querschnittsfläche der dritten Spule zu einer Stirnfläche des Magnetkerns verläuft das Magnetfeld der dritten Spule orthogonal zu den Magnetfeldern der zur Zündspule gehörigen ersten und zweiten Spule. Somit ist die magnetische Kopplung zwischen der dritten Spule und der ersten bzw. zweiten Spule reduziert.Due to the preferably perpendicular orientation of the cross-sectional area of the third coil to an end face of the magnetic core, the magnetic field of the third coil runs orthogonally to the magnetic fields of the first and second coils belonging to the ignition coil. Thus, the magnetic coupling between the third coil and the first or second coil is reduced.
Da innerhalb des Verbindungsschachtes eine dritte Spule mit einer hohen Anzahl von Windungen positionierbar ist, lässt sich durch die dritte Ausführungsform der Zündspule eine dritte Spule mit einer hohen Induktivität realisieren.Since a third coil with a large number of windings can be positioned within the connecting shaft, a third coil with a high inductance can be implemented using the third embodiment of the ignition coil.
Die vorliegende Erfindung wird nachfolgend anhand der in den schematischen Figuren der Zeichnung angegebenen Ausführungsbeispiele näher erläutert. Es zeigen dabei:
- Fig. 1A
- ein Schaltungsdiagramm einer ersten Ausführungsform der Anordnung, gemäß der Erfindung,
- Fig. 1B
- ein Schaltungsdiagramm einer zweiten Ausführungsform einer Anordnung, die nicht Teil der vorliegenden Erfindung ist,
- Fig. 2A
- eine dreidimensionale Darstellung der Zündspule der ersten Ausführungsform der Anordnung der Erfindung,
- Fig. 2B
- eine dreidimensionale Darstellung einer weiteren Ausprägung der Zündspule der ersten Ausführungsform der Anordnung,
- Fig. 2C
- eine dreidimensionale Darstellung einer in einem Gehäuse integrierten Anordnung aus Zündspule und Bandpassfilter,
- Fig. 3A
- eine dreidimensionale Darstellung einer Zündspule einer ersten Untervariante der zweiten Ausführungsform der Anordnung,
- Fig. 3B
- eine dreidimensionale Darstellung einer Zündspule einer zweiten Untervariante der zweiten Ausführungsform der Anordnung,
- Fig. 3C
- eine dreidimensionale Darstellung einer Zündspule einer Erweiterung der zweiten Untervariante der zweiten Ausführungsform der Anordnung,
- Fig. 3D
- eine dreidimensionale Darstellung einer dritten Untervariante der zweiten Ausführungsform,
- Fig. 4A
- eine dreidimensionale Darstellung einer Zündspule, die nicht Teil der vorliegenden Erfindung ist, mit einer ersten Ausprägung zur Minimierung des elektrischen Einkoppelns der HF-Spannung in die Primärseite der Zündspule,
- Fig. 4B
- eine dreidimensionale Darstellung Zündspule, die nicht Teil der vorliegenden Erfindung ist, mit einer zweiten Ausprägung zur Minimierung des elektrischen Einkoppelns der HF-Spannung in die Primärseite der Zündspule,
- Fig. 4C
- eine dreidimensionale Darstellung einer Zündspule, die nicht Teil der vorliegenden Erfindung ist, mit einer dritten Ausprägung zur Minimierung des elektrischen Einkoppelns der HF-Spannung in die Primärseite der Zündspule und
- Fig. 5
- eine Querschnittsdarstellung eines Motorblockes mit einer integrierten Zündspule, die nicht Teil der vorliegenden Erfindung ist.
- Figure 1A
- a circuit diagram of a first embodiment of the arrangement according to the invention,
- Figure 1B
- a circuit diagram of a second embodiment of an arrangement which is not part of the present invention,
- Figure 2A
- a three-dimensional representation of the ignition coil of the first embodiment of the arrangement of the invention,
- Figure 2B
- a three-dimensional representation of a further form of the ignition coil of the first embodiment of the arrangement,
- Figure 2C
- a three-dimensional representation of an arrangement of ignition coil and bandpass filter integrated in a housing,
- Figure 3A
- a three-dimensional representation of an ignition coil of a first sub-variant of the second embodiment of the arrangement,
- Figure 3B
- a three-dimensional representation of an ignition coil of a second sub-variant of the second embodiment of the arrangement,
- Figure 3C
- a three-dimensional representation of an ignition coil of an extension of the second sub-variant of the second embodiment of the arrangement,
- 3D
- a three-dimensional representation of a third sub-variant of the second embodiment,
- Figure 4A
- a three-dimensional representation of an ignition coil, which is not part of the present invention, with a first embodiment for minimizing the electrical coupling of the HF voltage into the primary side of the ignition coil,
- Figure 4B
- a three-dimensional representation of the ignition coil, which is not part of the present invention, with a second embodiment for minimizing the electrical coupling of the HF voltage into the primary side of the ignition coil,
- Figure 4C
- a three-dimensional representation of an ignition coil, which is not part of the present invention, with a third embodiment for minimizing the electrical coupling of the HF voltage into the primary side of the ignition coil and
- figure 5
- a cross-sectional view of an engine block an integrated ignition coil not forming part of the present invention.
Die beiliegenden Figuren der Zeichnung sollen ein weiteres Verständnis der Ausführungsformen der Erfindung vermitteln. Sie veranschaulichen Ausführungsformen und dienen im Zusammenhang mit der Beschreibung der Erklärung von Prinzipien und Konzepten der Erfindung. Andere Ausführungsformen und viele der genannten Vorteile ergeben sich im Hinblick auf die Zeichnungen. Die Elemente der Zeichnungen sind nicht notwendigerweise maßstabsgetreu zueinander gezeigt.The accompanying drawing figures are intended to provide a further understanding of embodiments of the invention. They illustrate embodiments and are used in context with the description explaining principles and concepts of the invention. Other embodiments and many of the foregoing advantages will become apparent by reference to the drawings. The elements of the drawings are not necessarily shown to scale with respect to one another.
In den Figuren der Zeichnung sind gleiche, funktionsgleiche und gleich wirkende Elemente, Merkmale und Komponenten - sofern nichts anderes ausgeführt ist - jeweils mit denselben Bezugszeichen versehen.In the figures of the drawing, elements, features and components that are the same, have the same function and have the same effect--unless stated otherwise--are each provided with the same reference symbols.
Im Folgenden werden die Figuren zusammenhängend und übergreifend beschrieben.The figures are described in a coherent and comprehensive manner below.
Bevor die geometrische Anordnung der einzelnen Komponenten in einer Zündspule einer Anordnung gemäss der Erfindung anhand der
Im Schaltungsdiagramm der
Die erste Spule 1 ist an einem Ende über einen Gleichspannungsanschluss 2 der Zündspule, einen Schalter 3 mit der Elektrode einer Gleichspannungsquelle 4, bevorzugt einer Batterie, verbunden. Die andere Elektrode der Gleichspannungsquelle 3 ist mit einem Massepotenzial verbunden. Auch die weitere Elektrode der ersten Spule 1 ist über einen Masseanschluss 5 der Zündspule mit einem Massepotenzial verbunden. In der Phase vor dem Zünden der mit der Zündspule verbundenen Zündkerze 6 ist der Schalter 3 geschlossen. Durch die erste Spule 1 der Zündspule fließt ein Gleichstrom, der durch die Gleichspannung der Gleichspannungsquelle 5 getrieben ist.Before the geometric arrangement of the individual components in an ignition coil of an arrangement according to the invention based on
In the circuit diagram of
The
Zum Zünden der Zündkerze 5 wird der Schalter 3 geöffnet und damit der Stromfluss durch die erste Spule 1 unterbrochen. Dieser Abbruch des Stromflusses induziert in der ersten Spule 1 einen Spannungsimpuls. Der Spannungspegel des Spannungsimpulses ist von der Induktivität der ersten Spule 1 und der Stromänderung in der ersten Spule 1 und damit indirekt vom Spannungspegel der Gleichspannungsquelle 4 abhängig. Der Spannungspegel des Spannungsimpulses liegt somit in der Größenordnung von einigen 100 V und ist somit für das Zünden des Brennstoff-Luft-Gemisches innerhalb der Brennkammer durch die Zündkerze 6 nicht ausreichend. Zur Verstärkung des in der ersten Spule 1 induzierten Spannungsimpulses ist in der Zündspule ein Transformator bzw. Übertrager mit einem Magnetkern 7 vorgesehen, um den primärseitig die Windungen der ersten Spule 1 und sekundärseitig die Windungen einer zweiten Spule 8 und einer und einer dritten Spule 9 gewickelt sind.To ignite the
Ist die Anzahl der Windungen in den beiden sekundärseitig angeordneten Spulen ein Vielfaches der Anzahl der Windungen in der primärseitig angeordneten Spule, so wird der in der ersten Spule 1 induzierte Spannungsimpuls in einen Hochspannungsimpuls in den beiden sekundärseitig angeordneten Spulen transformiert. Um aus dem primärseitigen Spannungsimpuls in Höhe von einigen 100 V einen sekundärseitigen Hochspannungsimpuls von einigen 10 kV zu erzeugen, ist typischerweise ein Verhältnis zwischen den Windungen der ersten Spule 1 und den Windungen der zweiten Spule 8 und der dritten Spule 9 zwischen 10 Windungen und einigen 100 Windungen vorzusehen.If the number of turns in the two coils arranged on the secondary side is a multiple of the number of turns in the coil arranged on the primary side, the voltage pulse induced in the
Die Ausbildung des Magnetkerns 7 und die Anordnung der ersten Spule 1, der zweiten Spule 8 und der dritten Spule 9 wird weiter unten noch detailliert erläutert.The design of the
Das eine Ende der zweiten Spule 8 und das eine Ende der dritten Spule 9 sind miteinander elektrisch verbunden. Das andere Ende der zweiten Spule 8 ist über einen weiteren Masseanschluss 10 der Zündspule mit einem Massepotenzial verbunden.One end of the
Das andere Ende der dritten Spule 9 ist über einen Hochspannungsanschluss 11 der Zündspule mit einer Elektrode der Zündkerze 6 elektrisch verbunden. Die andere Elektrode der Zündkerze 6 ist an das Massepotenzial angeschlossen.The other end of the
Zur Erzeugung eines Hochspannungsimpulses mit einer überlagerten HF-Spannung ist ein zur Zündspule gehöriger HF-Anschluss 12 zur Einspeisung einer HF-Spannung mit der zweiten Spule 8 und der dritten Spule 9 elektrisch verbunden. Diese HF-Spannung überlagert sich additiv mit dem in die zweite Spule 8 und in die dritte Spule 9 transformierten Hochspannungsimpuls. Anstelle einer HF-Spannung kann am HF-Anschluss 12 auch ein HF-Strom eingeprägt bzw. eingespeist werden. Die HF-Spannung wird in einer HF-Spannungsquelle 13 erzeugt.To generate a high-voltage pulse with a superimposed HF voltage, an
Zur Ausbildung eines Bandpassfilters 14, der als Serienschwingkreis aus einer Spule und einem Kondensator realisiert ist, ist zwischen der HF-Quelle 13 und dem HF-Anschluss 12 ein Kondensator 15 geschaltet. Als Spule des Serienschwingkreises bzw. des Bandpassfilters 15 dient die dritte Spule 9.A
Der Kondensator 15 dient gleichzeitig als Hochpassfilter. Seine Kapazität wird so dimensioniert, dass die Oberwellenanteile des in der zweiten Spule 8 erzeugten Hochspannungsimpulses im niederfrequenten Sperrbereich des Hochpassfilters zu liegen kommen und somit vor der HF-Spannungsquelle 13 abgeblockt werden. Schließlich ist der Kondensator 15 auch für den Gleichanteil des in der zweiten Spule 8 erzeugten Hochspannungsimpulses sperrend. Im zweiten Parametrierungsschritt wird die Induktivität der dritten Spule 9 so ausgelegt, dass in Kombination mit der im ersten Parametrierungsschritt festgelegten Kapazität des Kondensators 15 eine Resonanzfrequenz des Serienschwingkreises und damit eine Mittenfrequenz des Bandpassfilters 14 vorliegt, in der die Frequenz der erzeugten HF-Spannung zu liegen kommt. Auf diese Weise ist das Bandpassfilter 14 für die erzeugte HF-Spannung durchlässig, während es für das höherfrequente Zündrauschen sperrend wirkt.The
Mit der Zündspule gemäß
In einer zweiten Ausführungsform die nicht Teil der vorliegenden Erfindung ist befindet sich die dritte Spule 9 außerhalb des Magnetkerns 7 der Zündspule. Um den Magnetkern 7 sind nur die Windungen der ersten Spule 1 und der zweiten Spule 8 gewickelt. Der magnetische Fluss ist im Magnetkern 7 zwischen der primärseitig angeordneten ersten Spule 1 und der sekundärseitig angeordneten zweiten Spule 8 geführt und konzentriert. Ein Großteil der induktiven Kopplung ist somit lediglich zwischen der ersten Spule 1 und der zweiten Spule 8 realisiert. Die dritte Spule 9 ist in der zweiten Ausführungsform der Zündspule vielmehr in unmittelbarer Nachbarschaft zum Magnetkern 7 und zur ersten und zweiten Spule 1 und 8 angeordnet. Die induktive Kopplung zwischen der ersten Spule 1 und der dritten Spule 9 ist somit gegenüber der ersten Ausführungsform deutlich reduziert. Die induktive Kopplung zwischen der ersten Spule 1 und der dritten Spule 9 erfolgt hierbei lediglich über den Streufluss.In a second embodiment not forming part of the present invention, the
Die zweite Ausführungsform der Zündspule unterscheidet sich in den übrigen Details nicht von der ersten Ausführungsform.The second embodiment of the ignition coil does not differ from the first embodiment in the remaining details.
Auf eine wiederholte Beschreibung der zur ersten Ausführungsform identischen Merkmale und identischen Komponenten wird deshalb an dieser Stelle verzichtet.A repeated description of the features and components that are identical to the first embodiment is therefore omitted at this point.
Aus
Der Magnetkern 7 ist hierbei aus geschichteten Blechen aufgebaut, zwischen denen jeweils Schichten aus elektrisch isolierendem Material angeordnet sind. Die geschichteten Bleche sind aus einem weichmagnetischen Material, bevorzugt aus Eisen hergestellt. Durch die Schichtung der Bleche werden Wirbelströme in Längsrichtung des Magnetkerns 7 verhindert.Out of
The
Der Magnetkern 7 setzt sich aus einem Hauptschenkel 16, zwei Rückschlussschenkeln 171 und 172 und zwei Jochen 181 und 182 zusammen, die die beiden Rückschlussschenkel 171 und 172 mit dem Hauptschenkel 16 verbinden. Um den Hauptschenkel 16 sind die Windungen der ersten Spule 1, der zweiten Spule 8 und der dritten Spule 9 gewickelt. Die Windungen der ersten Spule 1, der zweiten Spule 8 und der dritten Spule 9 sind somit jeweils durch zwei Durchführungen im Magnetkern 7 hindurchgeführt, die jeweils zwischen dem Hauptschenkel 16, einem der beiden Rückschlussschenkel 171 und 172 und jeweils einem Bereich der beiden Joche 181 und 182 in Längsrichtung des Magnetkerns 7 angeordnet sind.The
Neben dieser bevorzugten Ausbildung der Zündspule, die auch als Manteltransformator bezeichnet wird, ist auch eine Ausbildung der Zündspule denkbar, in der der Magnetkern 7 lediglich einen einzigen Rückschlussschenkel aufweist. Eine höhere Kompaktheit der Zündspule wird in dieser Ausbildung aber auf Kosten eines höheren Streuflusses realisiert. Die Realisierung der Zündspule als Kerntransformator mit zwei Hauptschenkeln und zwei die beiden Hauptschenkel miteinander verbindenden Jochen ist auch denkbar. Die Windungen der ersten Spule 1 werden hierbei um den einen Hauptschenkel und die Windungen der zweiten und dritten Spule 8 und 9 werden um den anderen Hauptschenkel gewickelt. Eine kompaktere Wicklung der primärseitig angeordneten Windungen und der sekundärseitig angeordneten Windungen um den zugehörigen Hauptschenkel und damit eine geringere Längserstreckung der Zündspule erfordert hierbei aber aufgrund des Vorsehens von zwei Hauptschenkeln eine größere Quererstreckung der Zündspule.In addition to this preferred design of the ignition coil, which is also referred to as a sheathed transformer, a design of the ignition coil is also conceivable in which the
Bevorzugt umschließen die Windungen der ersten Spule 1, wie in
Die erste Spule 1, die zweite Spule 8 und die dritte Spule 9 sind jeweils um einen Wicklungskörper aus einem elektrisch isolierenden Material gewickelt, der in
Aus
Die Zündspule ist bevorzugt gemäß
In das Gehäuse 19 der Zündspule ist der Kondensator 15 und damit vollständig das Bandpassfilter 14 integriert. Dies führt zu einer kompakten Bauform einer Anordnung zur Integration von Zündspule und Bandpassfilter. Zur besonders platzsparenden Positionierung innerhalb des Gehäuses 19 ist der Kondensator 15, wie in
Alle Anschlüsse der Zündspule sind, wie in
Bei der Montage der Zündspule in das Gehäuse 19 wird zwischen dem Gehäuse 19 und der Zündspule und deren Zwischenräumen eine flüssige Vergussmasse 20 aus einem elektrisch isolierenden Material, bevorzugt ein Gießharz 20, insbesondere bevorzugt Polyurethan, eingeführt. Nach dem Aushärten der Vergussmasse 20 ist der Zwischenraum zwischen dem Gehäuse 19 und der Zündspule vollständig mit der ausgehärteten Vergussmasse 20 ausgefüllt. Auf diese Weise wird die Hochspannungsfestigkeit der Zündspule zwischen ihren einzelnen Komponenten - Magnetkern 7, erste Spule 1, zweite Spule 8 und dritte Spule 9 - und auch zwischen den einzelnen Komponenten der Zündspule und dem elektrisch leitenden Gehäuse 19 zusätzlich erhöht. Außerdem ist die Beabstandung zwischen der als HF-Spule ausgebildeten dritten Spule 9 und dem elektrisch leitenden Gehäuse 19 und zwischen der dritte Spule 9 und dem typischerweise geerdeten Magnetkern 7 durch die Vergussmasse 20 so auszulegen, dass sich die parasitären Kapazitäten der dritten Spule 9 auf einem geringen Niveau befinden. Die Hochspannungsfestigkeit der als HF-Spule ausgebildeten dritten Spule 9 kann neben der Isolierung durch die Vergussmasse 20 durch eine isolierte HF-Spule, beispielsweise durch eine mit einem Kupferlackdraht hergestellte HF-Spule, zusätzlich verbessert werden. Auch die erste Spule 1 und die zweite Spule 8 kann zur Erhöhung der Hochspannungsfestigkeit mit einem Kupferlackdraht gewickelt sein.When the ignition coil is installed in the
In einer zweiten Ausprägung der Zündspule ersten Ausführungsform gemäß
Auch in der ersten Ausprägung der Zündspule der ersten Ausführungsform gemäß
In beiden Ausprägungen der ersten Ausführungsform gemäß der
In einer ersten technischen Maßnahme werden hierzu die Abstände von jeweils aufeinanderfolgenden Windungen der dritten Spule 9 größer als die Abstände von jeweils aufeinanderfolgenden Windungen der zweiten Spule 8 ausgelegt. Somit sind die parasitären Kapazitäten, die insbesondere zwischen zwei aufeinanderfolgenden Windungen auftreten, in der dritten Spule 9 gegenüber der zweiten Spule 8 minimiert und damit die HF-Übertragungscharakteristik der dritten Spule 9 gegenüber der zweiten Spule 8 optimiert.In both forms of the first embodiment according to the
In a first technical measure, the distances between successive turns of the
In einer zweiten technischen Maßnahme werden die parasitären Kapazitäten in der dritten Spule 9 durch eine besondere Wickelung des elektrischen Leiters minimiert. Die dritte Spule 9 wird beispielsweise zu einer Waben-, Korbboden-, Sternoder Flachspule gewickelt. Auf diese Weise lässt sich das HF-Übertragungsverhalten der dritten Spule 9 gegenüber der zweiten Spule 8 optimieren. Eine zusätzliche Verbesserung des HF-Übertragungsverhalten für die dritte Spule 9 wird durch die Wicklung einer HF-Litze als elektrischer Leiter für die dritte Spule 9 erzielt.In a second technical measure, the parasitic capacitances in the
In einer dritten technischen Maßnahme wird der Drahtdurchmesser, d.h. der Durchmesser des elektrischen Leiters, der dritten Spule 9 größer als der Drahtdurchmesser der zweiten Spule 8 ausgelegt. Der HF-Strom fließt aufgrund des Skin-Effekts einzig an der Oberfläche des elektrischen Leiters einer Spule und dringt ausgehend von der Oberfläche des elektrischen Leiters nur bis zu einer bestimmten Eindringtiefe, die u.a. von der Frequenz des HF-Stroms und von Materialparametern des elektrischen Leiters abhängt, in den elektrischen Leiter der Spule ein. Somit ist bei einem elektrischen Leiter mit einem größeren Durchmesser bei gleicher Eindringtiefe die Querschnittsfläche des elektrischen Leiters der Spule, in der der HF-Strom fließt, aufgrund des größeren Umfanges größer als bei einem elektrischen Leiter mit einem kleineren Durchmesser. Somit ist die elektrische Impedanz der dritten Spule 9, die auf den HF-Strom wirkt, durch die zweite technische Maßnahme kleiner als bei der zweiten Spule 8. Die HF-Übertragungscharakteristik ist somit in der dritten Spule 9 gegenüber der zweiten Spule 8 verbessert.In a third technical measure, the wire diameter, i.e. the diameter of the electrical conductor, of the
In einer vierten technischen Maßnahme wird die dritte Spule 9 beschichtet, während die zweite Spule 8 unbeschichtet bleibt. Die Beschichtung der dritten Spule 9 weist eine geringere elektrische Impedanz als das Grundmaterial der dritten Spule 9 auf. Somit wird die Beschichtung aus einem Beschichtungsmaterial hergestellt, das eine höhere elektrische Leitfähigkeit und/oder eine geringere Permeabilität als das Grundmaterial aufweist. Der HF-Strom, der aufgrund des Skin-Effekts im Oberflächenbereich des elektrischen Leiters der Spule fließt, trifft folglich in der dritten Spule 9 auf eine bessere HF-Übertragungscharakteristik als in der zweiten Spule 8.In a fourth technical measure, the
An dieser Stelle sei erwähnt, dass die Induktivität des Grundmaterials der zweiten Spule 2 um ein Vielfaches größer als die Gesamtinduktivität aus Grund- und Beschichtungsmaterial der dritten Spule 9 ist, so dass der HF-Strom wegen der deutlich höheren Impedanz der zweiten Spule 8 bevorzugt durch die dritte Spule 9 fließt.At this point it should be mentioned that the inductance of the base material of the
In der Zündspule der zweiten Ausführungsform der Anordnung, die nicht Teil der vorliegenden Erfindung ist, die im Folgenden anhand der
In der Zündspule der ersten Untervariante der zweiten Ausführungsform gemäß
Somit nimmt die dritte Spule 9 den noch unbenutzten Raum seitlich des Magnetkerns 7 ein, der von der ersten Spule 1 und der zweiten Spule 8 nicht benutzt ist. Im Hinblick auf eine kompakte Bauform der Zündspule ist die dritte Spule 9 aber nah am Magnetkern 7 und an der ersten und zweiten Spule 1 und 8 positioniert. Auf diese Weise wird eine kompakte Bauform für die Zündspule realisiert. Selbstverständlich kann die dritte Spule 9 in der in
Schließlich ist die Querschnittsfläche der dritten Spule 9 parallel zur Stirnfläche 21 des Magnetkerns 7 orientiert. Durch diese Orientierung der dritten Spule 9 zum Magnetkern 7 verläuft das Magnetfeld der dritten Spule 9 orthogonal zur Richtung des magnetischen Flusses der ersten und der zweiten Spule 1 und 8 innerhalb des Magnetkerns 7. Einzig im Übergangsbereich zwischen dem Hauptschenkel und den beiden Jochen des Magnetkerns 7 ist die Orthogonalität in der Orientierung des Magnetfeldes der dritten Spule 9 zum Magnetfluss innerhalb des Magnetkerns 7 geringfügig nicht gegeben. Da dieser Übergangsbereich aber sehr klein ist und nicht im Maximum der magnetischen Feldstärke der dritten Spule liegt, ist eine magnetische und induktive Kopplung zwischen der dritten Spule 9 und den beiden anderen Spulen der Zündspule, insbesondere der ersten Spule 1, weitest möglich minimiert.Finally, the cross-sectional area of the
In der Zündspule einer zweiten Untervariante der zweiten Ausführungsform ist die dritte Spule 9 ebenfalls seitlich beabstandet zu einer Stirnfläche 21 des Magnetkerns 7 positioniert. Die dritte Spule 9 ist hierbei entweder zu einem der beiden Joche oder zu einem der beiden Rückschlussschenkel des Magnetkerns 7 seitlich benachbart angeordnet. Somit nimmt die dritte Spule 9 auch in der zweiten Untervariante den noch unbenutzten Raum seitlich des Magnetkerns 7 ein, der von der ersten Spule 1 und der zweiten Spule 8 nicht benutzt ist. Auch in diesem Fall wird eine kompakte Bauform für die Zündspule erzielt.In the ignition coil of a second sub-variant of the second embodiment, the
Die Querschnittsfläche der dritten Spule 9 ist in der zweiten Untervariante senkrecht zu einer Stirnfläche 21 des Magnetkerns 7 positioniert. Auch in der zweiten Untervariante ist das Magnetfeld der dritten Spule 9 innerhalb des Magnetkerns 7 orthogonal zur Richtung des im Magnetkern 7 geführten Magnetflusses der ersten und der zweiten Spule 1 und 8 orientiert. Einzig im Übergangsbereich zwischen dem Hauptschenkel und den beiden Jochen des Magnetkerns 7 ist die Orthogonalität zwischen dem Magnetfeld der dritten Spule 9 und dem im Magnetkern geführten Magnetfluss der ersten und der zweiten Spule 1 und 8 geringfügig nicht gegeben. Da die Spulenlänge typischerweise größer als der Drahtdurchmesser der dritten Spule 9 ist, ist die Orthogonalität zwischen dem Magnetfeld der dritten Spule 9 und dem im Magnetkern geführten Magnetfluss der ersten und der zweiten Spule 1 und 8 im Übergangsbereich zwischen dem Hauptschenkel und den beiden Jochen des Magnetkerns 7 in der zweiten Untervariante geringfügig schlechter ausgeprägt als in der ersten Untervariante. Da aber auch hier der Übergangsbereich vergleichsweise sehr klein ist und sich nicht im Maximum der magnetischen Feldstärke der dritten Spule 9 befindet, ist auch in der zweiten Untervariante der zweiten Ausführungsform die magnetische Kopplung zwischen der dritten Spule 9 und der ersten sowie der zweiten Spule 1 und 8 reduziert.In the second sub-variant, the cross-sectional area of the
Die dritte Spule 9 weist in der zweiten Untervariante eine geringere Querschnittsfläche als in der ersten Untervariante auf und besitzt somit eine geringere Induktivität. Für die Auslegung des Bandpassfilters 14 ist, wie weiter oben schon erwähnt wurde, bei gegebener Frequenz der HF-Spannung und bei einer vergleichsweise geringen Kapazität des Kondensators 15 eine vergleichsweise hohe Induktivität für die dritte Spule 9 erforderlich ist.In the second sub-variant, the
Hierzu werden in einer Erweiterung der zweiten Untervariante der zweiten Ausführungsform gemäß
Da an jedem Joch und an jedem Rückschlussschenkel des Magnetkerns 7 und an jeder der beiden Stirnflächen 21 des Magnetkerns 7 jeweils eine dritte Spule 9 seitlich beabstandet positioniert werden kann, sind bis zu acht dritte Spulen in der Zündspule positionierbar und verschaltbar. Auf diese Weise lässt sich die Gesamtinduktivität einer derartigen seriellen Verschaltung von dritten Spulen um den Faktor acht gegenüber der Induktivität einer einzelnen dritten Spule vervielfachen.Since a
Auch in der ersten Untervariante lässt sich die Induktivität der dritten Spule 9 verdoppeln, wenn seitlich beabstandet zu den beiden Stirnflächen 21 des Magnetkerns 7 jeweils eine dritte Spule positioniert ist und beide dritte Spulen zueinander seriell verschaltet sind.In the first sub-variant as well, the inductance of the
In der Zündspule einer dritten Untervariante der zweiten Ausführungsform gemäß
Neben der Minimierung der magnetischen Kopplung zwischen der dritten Spule 9 und den beiden anderen Spulen der Zündspule, insbesondere der ersten Spule 1, ist zusätzlich das elektrische Einkoppeln der HF-Spannung vom HF-Anschluss 12 in die zweite Spule 8 zu minimieren. Die Minimierung des elektrischen Einkoppelns der HF-Spannung vom HF-Anschluss 12 in die zweite Spule 8 wird im Folgenden anhand der
In einer ersten Variante zur Minimierung des elektrischen Einkoppelns der HF-Spannung vom HF-Anschluss 12 in die zweite Spule 8 gemäß
In a first variant for minimizing the electrical coupling of the HF voltage from the
Der ohmsche Widerstand 22 ist so dimensioniert, dass ein von der HF-Spannung am HF-Anschluss 12 getriebener HF-Strom derart gedämpft wird, dass durch die zweite Spule 8 nur ein vergleichsweise geringer HF-Strom fließt. Der ohmsche Widerstand 22 ist außerdem in Relation zum ohmschen Widerstand innerhalb der zweiten Spule 8 so zu dimensionieren, dass der HF-Spannungspegel am Übergang zwischen der zweiten Spule 8 und dem ohmschen Widerstand 22 deutlich niedriger als am HF-Anschluss 12 ist.The
Der ohmsche Widerstand 22 dämpft als zusätzlichen positiven Effekt auch den durch den Hochspannungsimpuls getriebenen Zündkerzenstrom. Dieser Zündkerzenstrom, der eine Zündung des Brennstoff-Luft-Gemisches in der Brennkammer verursacht, ist mit einem durch den Zündvorgang verursachten höherfrequenten Störstrom überlagert. Der im Zündkerzenstrom überlagerte höherfrequente Störstrom wird nachteilig als EMV-Störung aus der Zündkerze ausgekoppelt und in der Zuleitung der Zündkerze abgestrahlt. Da der Pegel des höherfrequenten Störstroms vom Pegel des Zündkerzenstroms abhängig ist, kann durch die Dämpfung des Zündkerzenstroms mittels des ohmschen Widerstands 22 die EMV-Abstrahlung wirksam vermindert werden.As an additional positive effect, the
In einer zweiten Variante zur Minimierung des elektrischen Einkoppelns der HF-Spannung vom HF-Anschluss 12 in die zweite Spule 8 gemäß
Im Hinblick auf eine kompakte Bauform der Zündspule ist die als Luftspule realisierte vierte Spule 23 in Analogie zur dritten Spule 9 in der ersten Untervariante der zweiten Ausführungsform einer Zündspule seitlich beabstandet zu einer Stirnfläche 21 des Magnetkerns 7 positioniert und umschließt den aus dem Magnetkern 7 herausragenden Bereich der ersten Spule 1 und der zweiten Spule 8. Gemäß
Die Querschnittsfläche der vierten Spule 23 ist in Analogie zur Querschnittsfläche der dritten Spule 9 parallel zu einer Stirnfläche 21 des Magnetkerns 7 orientiert. Auf diese Weise sind die Magnetfelder sowohl der dritten Spule 9 als auch der vierten Spule 23 jeweils orthogonal zur Richtung des Magnetflusses der ersten Spule 1 und der zweiten Spule 8 innerhalb des Magnetkerns 7 orientiert. Somit ist die magnetische und induktive Kopplung der dritten Spule 9 und auch der vierten Spule 23 zur ersten Spule 1 und zur zweiten Spule 8 reduziert.The cross-sectional area of the
Gemäß
In Analogie zur Erweiterung der zweiten Untervariante der zweiten Ausführungsform können im Hinblick auf eine Erhöhung der Induktivität der vierten Spule 23 mehrere vierte Spule 23 seriell verschaltet sein und platzoptimiert innerhalb der Zündspule angeordnet sein.In analogy to the expansion of the second sub-variant of the second specific embodiment, with regard to an increase in the inductance of the
In einer dritten Ausführungsform einer Anordnung, die nicht Teil der vorliegenden Erfindung ist und die in
Die Querschnittsfläche der dritten Spule 9 ist hierbei parallel zu einer Stirnfläche 21 des Magnetkerns 7 orientiert. Auf diese Weise ist das Magnetfeld der dritten Spule 9 orthogonal zum Magnetfluss der ersten Spule 1 und der zweiten Spule 8 orientiert, der im Magnetkern 7 geführt ist. Somit ist die magnetische und induktive Kopplung zwischen der dritten Spule 9 und der ersten Spule 1 mit Ausnahme der Kopplung durch den Streufluss minimiert.The cross-sectional area of the
Das Gehäuse 19 der Zündspule, das in
Obwohl die vorliegende Erfindung anhand bevorzugter Ausführungsbeispiele vorstehend vollständig beschrieben wurde, ist sie darauf nicht beschränkt, sondern auf vielfältige Art und Weise modifizierbar, innerhalb des durch die Ansprüche definierten Schutzumfangs.Although the present invention has been fully described above with reference to preferred exemplary embodiments, it is not limited thereto but can be modified in a variety of ways within the scope of protection defined by the claims.
- 11
- erste Spulefirst coil
- 22
- GleichspannungsanschlussDC connection
- 33
- SchalterSwitch
- 44
- GleichspannungsquelleDC voltage source
- 55
- Masseanschlussground connection
- 66
- Zündkerzespark plug
- 77
- Magnetkernmagnetic core
- 88th
- zweite Spulesecond coil
- 99
- dritte Spulethird coil
- 91, 92, 93, 9491, 92, 93, 94
- dritte Spulethird coil
- 1010
- Masseanschlussground connection
- 1111
- Hochspannungsanschlusshigh voltage connection
- 12, 12'12, 12'
- Hochfrequenzanschlusshigh frequency connector
- 1313
- Hochfrequenzspannungsquellehigh-frequency voltage source
- 1414
- Bandpassfilterbandpass filter
- 1515
- Kondensatorcapacitor
- 1616
- Hauptschenkelmain thigh
- 171, 172171, 172
- Rückschlussschenkelconclusion leg
- 181, 182181, 182
- Jochyoke
- 1919
- GehäuseHousing
- 2020
- Vergussmassepotting compound
- 2121
- Stirnflächeface
- 2222
- ohmsche Widerstandohmic resistance
- 2323
- vierte Spulefourth coil
- 2424
- Verbindungschachtconnection shaft
- 2525
- Motorblockengine block
- 2626
- Foliefoil
Claims (5)
- An arrangement for the integration of an ignition coil and a bandpass filter (14) comprising a capacitor(15) and an ignition coil for generating a high voltage pulse with a superimposed high voltage frequency, wherein the ignition coil hasa first coil (1) arranged on the primary side,a second coil (8) arranged on the secondary side,a third coil (9) arranged on the secondary sideand a magnetic coil (7),wherein windings of the first coil (1), the second coil (8) and the third coil (9) are wound around the magnetic core (7),wherein a connection of the second coil (8), a connection of the third coil (9) and a connection (12) of the capacitor (15) are electrically conductively connected to each other, wherein the connection (12) is a high frequency connection (12) of the ignition coil,wherein a further connection of the capacitor (15) is set up on the capacitor side opposite said connection (12) of the capacitor, in order to receive a high frequency voltage,wherein a further high voltage connection (11) of the third coil (9), is set up on an end of the third coil (9) opposite said connection of the third coil (9), to be electrically conductively connectable to an ignition plug (6),wherein the bandpass filter (14) has the capacitor (15) and the third coil (9) of the ignition coil.
- The arrangement according to patent claim 1,
wherein between the first coil (1), the second coil (8), the third coil (9) and the magnetic core (7) in each case a spacer element made of electrically insulating material is arranged, by means of which the first coil (1), the second coil (8), the third coil (9) and the magnetic core (7) are each positioned and oriented in respect to each other. - The arrangement according to patent claim 1 or 2,
wherein successive windings of the third coil (9) each have a greater spacing and/or a greater wire diameter than each of the successive windings of the second coil (8). - The arrangement according to claims 1 to 3,
wherein the third coil (9) encloses the first coil (1) and the second coil (8) and is positioned separated from the second coil (8) by a film (26) made of a magnetizable material. - An arrangement for feeding a high frequency voltage into an ignition coil comprising the arrangement according to any one of claim 1 to 4 and a high frequency voltage source (13), wherein a connection of the high frequency voltage source (13) is connected to the further connection of the capacitor (15).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018122467.2A DE102018122467A1 (en) | 2018-09-14 | 2018-09-14 | IGNITION COIL |
PCT/EP2019/073967 WO2020053134A1 (en) | 2018-09-14 | 2019-09-09 | Ignition coil |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3834216A1 EP3834216A1 (en) | 2021-06-16 |
EP3834216B1 true EP3834216B1 (en) | 2023-06-07 |
EP3834216C0 EP3834216C0 (en) | 2023-06-07 |
Family
ID=67956744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19769089.4A Active EP3834216B1 (en) | 2018-09-14 | 2019-09-09 | Arrangement for the integration of an ignition coil and a band-pass filter |
Country Status (5)
Country | Link |
---|---|
US (1) | US11361900B2 (en) |
EP (1) | EP3834216B1 (en) |
CN (1) | CN112673438A (en) |
DE (1) | DE102018122467A1 (en) |
WO (1) | WO2020053134A1 (en) |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH565943A5 (en) * | 1973-07-27 | 1975-08-29 | Hartig Gunter | |
JPH10242159A (en) * | 1997-02-25 | 1998-09-11 | Mitsubishi Electric Corp | Transistor with built-in voltage regulator diode |
US5902501A (en) * | 1997-10-20 | 1999-05-11 | Philip Morris Incorporated | Lighter actuation system |
US7254938B2 (en) * | 2003-12-16 | 2007-08-14 | Arvin Technologies, Inc. | Power supply and transformer |
JP2008147534A (en) * | 2006-12-13 | 2008-06-26 | Denso Corp | Ignition device for internal combustion engine |
JP5255682B2 (en) * | 2011-10-17 | 2013-08-07 | 三菱電機株式会社 | Ignition device |
JP5340431B2 (en) * | 2012-01-27 | 2013-11-13 | 三菱電機株式会社 | Ignition device |
JP5469229B1 (en) * | 2012-10-26 | 2014-04-16 | 三菱電機株式会社 | Ignition coil device for high frequency discharge |
DE102013203002B3 (en) * | 2013-02-25 | 2014-07-10 | Continental Automotive Gmbh | detonator |
JP5805125B2 (en) * | 2013-03-18 | 2015-11-04 | 三菱電機株式会社 | Ignition device |
JP5535363B1 (en) * | 2013-04-16 | 2014-07-02 | 三菱電機株式会社 | Ignition coil device for high frequency discharge and high frequency discharge ignition device |
JP5709960B2 (en) * | 2013-10-18 | 2015-04-30 | 三菱電機株式会社 | High frequency discharge ignition device |
JP5983637B2 (en) * | 2014-01-10 | 2016-09-06 | 株式会社デンソー | Transformer equipment |
JP6000320B2 (en) * | 2014-11-18 | 2016-09-28 | 三菱電機株式会社 | High frequency discharge ignition device |
CN107949699B (en) * | 2015-08-14 | 2021-02-05 | 密歇根州立大学董事会 | Ionization detector with spark plug coil short-circuited primary inductor |
DE102018116597A1 (en) * | 2018-07-10 | 2020-01-16 | Rosenberger Hochfrequenztechnik Gmbh & Co. Kg | CIRCUIT FOR SWITCHING AN AC VOLTAGE |
-
2018
- 2018-09-14 DE DE102018122467.2A patent/DE102018122467A1/en active Pending
-
2019
- 2019-09-09 EP EP19769089.4A patent/EP3834216B1/en active Active
- 2019-09-09 US US17/274,976 patent/US11361900B2/en active Active
- 2019-09-09 WO PCT/EP2019/073967 patent/WO2020053134A1/en unknown
- 2019-09-09 CN CN201980059064.XA patent/CN112673438A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
EP3834216C0 (en) | 2023-06-07 |
WO2020053134A1 (en) | 2020-03-19 |
EP3834216A1 (en) | 2021-06-16 |
DE102018122467A1 (en) | 2020-03-19 |
US20210366651A1 (en) | 2021-11-25 |
CN112673438A (en) | 2021-04-16 |
US11361900B2 (en) | 2022-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69023790T2 (en) | LC noise protection filter. | |
DE102013207909B4 (en) | Ignition coil device for high-frequency discharge | |
EP2058909B1 (en) | Resonant assembly | |
DE10055589A1 (en) | Ignition coil with primary winding arranged outside the secondary winding | |
DE102010063683A1 (en) | Actuator device and method of manufacturing an actuator device | |
DE2621132A1 (en) | REMOVAL DEVICE FOR EXPLOSION ENGINES | |
DE102014206749A1 (en) | Inductor and electronic device | |
EP3834216B1 (en) | Arrangement for the integration of an ignition coil and a band-pass filter | |
DE2741385A1 (en) | MAGNETRON DEVICE | |
DE102004008013B4 (en) | ignition coil | |
DE3879499T2 (en) | WIND-UP CAPACITY COMPONENT WITH CONTROLLED IMPEDANCE. | |
EP1557849B1 (en) | Ignition coil for an internal combustion engine | |
DE3783961T2 (en) | WINDING BODY FOR HIGH VOLTAGE TRANSFORMER. | |
EP1706878B1 (en) | Ignition coil for an internal combustion engine | |
DE69603993T2 (en) | Transformer, especially for energy converters, and resonance energy converters with such a transformer | |
WO2020011419A1 (en) | Device for improving the electromagnetic compatibility of electric/electronic devices, device, and assembly | |
EP1043737A2 (en) | Ignition coil for internal combustion engines | |
DE102004056991B4 (en) | Component for interference suppression in ignition systems and method for its production | |
EP1012474B1 (en) | Stick coil for ignition systems | |
DE1013924B (en) | Spark plug or ignition current distributor with interference suppression resistor for internal combustion engines | |
EP3729645B1 (en) | Lc-filter arrangement and electrical or electronical device comprising such an lc-filter arrangement | |
DE3521899A1 (en) | Interference suppression filter and method for its manufacture | |
EP1210251B1 (en) | Device for triggering an airbag | |
AT160250B (en) | Arrangement for interference suppression of the ignition circuits of internal combustion engines. | |
EP1671337A1 (en) | Ignition coil for an internal combustion engine and method for the production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210312 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F02P 15/10 20060101ALI20221030BHEP Ipc: F02P 9/00 20060101ALI20221030BHEP Ipc: F02P 3/00 20060101ALI20221030BHEP Ipc: H01F 27/40 20060101ALI20221030BHEP Ipc: H01F 27/38 20060101ALI20221030BHEP Ipc: H01F 38/12 20060101AFI20221030BHEP |
|
INTG | Intention to grant announced |
Effective date: 20221205 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1577472 Country of ref document: AT Kind code of ref document: T Effective date: 20230615 Ref country code: DE Ref legal event code: R096 Ref document number: 502019008101 Country of ref document: DE |
|
U01 | Request for unitary effect filed |
Effective date: 20230630 |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20230708 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230907 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20230926 Year of fee payment: 5 |
|
U20 | Renewal fee paid [unitary effect] |
Year of fee payment: 5 Effective date: 20230926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231007 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502019008101 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20240308 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230909 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230930 |