EP3827504A1 - Machine électrique tournante à configuration optimisee - Google Patents

Machine électrique tournante à configuration optimisee

Info

Publication number
EP3827504A1
EP3827504A1 EP19742616.6A EP19742616A EP3827504A1 EP 3827504 A1 EP3827504 A1 EP 3827504A1 EP 19742616 A EP19742616 A EP 19742616A EP 3827504 A1 EP3827504 A1 EP 3827504A1
Authority
EP
European Patent Office
Prior art keywords
electric machine
rotating electric
poles
winding
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19742616.6A
Other languages
German (de)
English (en)
Inventor
Jean Claude MIPO
Sophie PERSONNAZ
Zi-Qiang Zhu
Srinivas MALLAMPALLI SATSAI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Equipements Electriques Moteur SAS
Original Assignee
Valeo Equipements Electriques Moteur SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Equipements Electriques Moteur SAS filed Critical Valeo Equipements Electriques Moteur SAS
Publication of EP3827504A1 publication Critical patent/EP3827504A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/12Asynchronous induction motors for multi-phase current
    • H02K17/14Asynchronous induction motors for multi-phase current having windings arranged for permitting pole-changing

Definitions

  • the invention relates to a rotary electrical machine with an optimized configuration.
  • the invention finds a particularly advantageous, but not exclusive, application with rotary electrical machines used in motor vehicles of the electric or hybrid type.
  • rotary electrical machines comprise a stator and a rotor secured to a shaft.
  • the rotor may be integral with a driving and / or driven shaft and may belong to a rotating electric machine in the form of an alternator, an electric motor, or a reversible machine capable of operating in both modes.
  • the rotor comprises a body formed by a stack of sheets of sheets as well as poles formed by permanent magnets.
  • the rotor takes the form of a cage rotor.
  • the stator is mounted in a casing configured to rotate the rotor shaft, for example by means of bearings.
  • the stator comprises a body provided with a plurality of teeth defining notches, and a winding having a plurality of phases. Each phase comprises several groups of coils having turns inserted in the notches of the stator.
  • the number of turns of a phase is equal to the product between the number of turns of a pole and the number of pairs of poles of the electric machine. It is known that a high number of turns makes it possible to obtain a large torque at start-up, but this torque drops when the speed of the electric machine increases. This drop in torque is greater for an electric machine of the asynchronous type than for an electric machine of the synchronous type.
  • the invention aims to adapt the number of poles of the electric machine (and therefore the number of turns of a phase), in particular in order to limit the drop in torque at high speed. More specifically, the subject of the invention is a rotary electric machine for a motor vehicle comprising:
  • stator comprising a winding having a plurality of phases, each phase comprising several groups of coils
  • the invention thus makes it possible, by adapting the number of poles according to the direction of current flow, to improve the torque performance of the electric machine, in particular as a function of its speed of rotation.
  • the number of poles of the rotary electric machine is minimized when the speed of rotation of the rotary electric machine exceeds a threshold.
  • the rotary electric machine comprises a number of notches per pole and per phase of between 1 and 8.
  • coils of a group are separated from each other by an angle of TT / 2 radians.
  • two phases are separated from each other by an angle of 2TT / 3 radians.
  • the winding is of the distributed type. According to one embodiment, the winding is of the concentrated type.
  • the rotary electrical machine is of the asynchronous type.
  • the rotor is a cage rotor.
  • the rotary electric machine is of the synchronous type.
  • the rotor is with permanent magnets.
  • the winding is formed from continuous wires or pins.
  • the stator comprises two radial layers of conductors.
  • Figure 1 is a cross-sectional view of a rotary electrical machine according to the invention.
  • Figure 2 is a schematic representation of the distribution according to the invention of a phase of a winding in the notches of a stator shown in a linear fashion;
  • FIGS. 3a and 3b are graphical representations of the magnetomotive force as a function of the electrical angle respectively for an electric machine with 8 poles and for an electric machine with 4 poles comprising a distributed winding;
  • FIGS. 4a to 4c are respectively a schematic representation of a winding configuration, and graphic representations of the magnetomotive force and the harmonics for an electric machine with concentrated winding with 12 notches and 8 poles;
  • FIGS. 5a to 5c are respectively a schematic representation of a winding configuration, and graphic representations of the magnetomotive force and the harmonics for an electric machine with concentrated winding with 12 notches and 4 poles;
  • FIG. 1 shows a rotary electrical machine 10 comprising a wound stator 11 which may be polyphase, co-axially surrounding a rotor 12 having an axis of rotation X.
  • the stator 11 and the rotor 12 are separated from each other by an air gap extending between the external periphery of the rotor 12 and the internal periphery of the stator 11.
  • the electric machine 10 may be of the asynchronous or synchronous type .
  • the rotor 12 is a cage rotor.
  • the rotor 12 may comprise a body formed by an axial stack of flat sheets in order to reduce the eddy currents as well as poles formed by permanent magnets, in particular made of ferrite or rare earths.
  • the stator 11 comprises a body 14 and a winding 17.
  • the stator body 14 consists of an axial stack of flat sheets.
  • the body 14 has teeth 15 from a cylinder head 16 which are angularly distributed in a regular manner. These teeth 15 delimit notches 18, such that each notch 18 is delimited by two successive teeth 15.
  • the notches 18 open axially into the axial end faces of the stator body 14.
  • the notches 18 are also open radially towards the inside of the stator body 14.
  • the winding 17 may be formed from pins generally in the shape of a U or of continuous wires. These conductors are made for example of copper covered with a layer of insulating material, such as enamel. The conductors of the winding 17 may be arranged in a first radial layer C1 of conductors at the bottom of the notch which is closest to the yoke 16, a second radial layer C2 of conductors which is closest to the air gap, such as shown in figure 2.
  • the winding 17 comprises a plurality of phases A, B, C. Each phase comprises several groups of coils G1 -G4.
  • the stator 11 is configured in such a way that currents in the groups of coils G1 -G4 can flow selectively in the same direction so as to maximize a number of poles of the electric machine 10, or in opposite directions so as to minimize a number of poles of the electric machine 10.
  • FIG. 2 illustrates the distribution of phase A of a distributed winding 17 comprising groups of coils G1 -G4 for a machine with 48 notches, 8 poles, and 3 phases, ie 2 notches per pole and per phase. More generally, the electric machine 10 may comprise a number of notches per pole and per phase of between 1 and 8.
  • the capital letter A corresponds to the current input area for the North poles (N) and the small letter a corresponds to the corresponding current output zone for the South poles (S).
  • Coils of a group G1 -G4 are separated from each other by an angle of TT / 2 radians.
  • the other two phases B and C are formed analogously to phase A.
  • Two phases are separated from each other by an angle of 2TT / 3 radians.
  • the currents in the groups of coils G1 -G4 can flow in the same direction or in opposite directions to adapt the number of poles of the electric machine 10.
  • FIG. 3a The diagram of the magnetomotive force MMF as a function of an electrical angle A_elec is shown in FIG. 3a when the current flows in the same direction in the groups of coils G1 -G4 in order to obtain 8 poles.
  • FIG. 3b The diagram of the MMF magnetomotive form is shown in FIG. 3b when the direction of the current is reversed and the coils are placed in parallel in order to obtain 4 poles.
  • This thus allows the electric machine 10 to function as a 4-pole or 8-pole machine by changing the direction of flow of the currents.
  • the operation with a reduced number of poles is advantageously implemented when the speed of rotation of the electric machine 10 exceeds a threshold.
  • the winding 17 is of the concentrated type, that is to say that it is formed from coils wound around corresponding teeth 15 of the stator 11 and arranged inside corresponding notches 18. Such a configuration makes it possible to reduce the length of the winding of the machine.
  • FIGS 4a and 5a show an embodiment of a concentrated winding machine with 12 notches and 8 poles.
  • Each phase A, B, C is formed from two groups of coils G1 -G4.
  • the coils in the notches 1, 2 and 7, 8 form the groups of coils G1 -G2 of a phase and the coils in the notches 4, 5 and 10, 11 form the groups of coils G3-G4 of another phase.

Abstract

L'invention porte principalement sur une machine électrique tournante pour véhicule automobile comportant: - un rotor, et- un stator (11) comportant un bobinage (17) ayant une pluralité de phases, chaque phase comprenant plusieurs groupes de bobines (G1-G4), caractérisée en ce que ledit stator (11) est configuré de telle façon que des courants dans les groupes de bobines (G1-G4) peuvent circuler sélectivement: 10 - dans une même direction de manière à maximiser un nombre de pôles de la machine électrique tournante, ou - dans des directions opposées de manière à minimiser un nombre de pôles de la machine électrique tournante.

Description

MACHINE ÉLECTRIQUE TOURNANTE À CONFIGURATION OPTIMISÉE
L’invention porte sur une machine électrique tournante à configuration optimisée. L'invention trouve une application particulièrement avantageuse, mais non exclusive, avec les machines électriques tournantes utilisées dans les véhicules automobiles de type électrique ou hybride.
De façon connue en soi, les machines électriques tournantes comportent un stator et un rotor solidaire d'un arbre. Le rotor pourra être solidaire d'un arbre menant et/ou mené et pourra appartenir à une machine électrique tournante sous la forme d'un alternateur, d'un moteur électrique, ou d'une machine réversible pouvant fonctionner dans les deux modes.
Dans le cas d'une machine électrique de type synchrone, le rotor comporte un corps formé par un empilage de feuilles de tôles ainsi que des pôles formés par des aimants permanents. Dans le cas d'une machine électrique de type asynchrone, le rotor prend la forme d'un rotor à cage. Par ailleurs, le stator est monté dans un carter configuré pour porter à rotation l'arbre de rotor par exemple par l'intermédiaire de roulements. Le stator comporte un corps muni d'une pluralité de dents définissant des encoches, et un bobinage présentant une pluralité de phases. Chaque phase comprend plusieurs groupes de bobines ayant des spires insérées dans les encoches du stator.
Le nombre de spires d'une phase est égal au produit entre le nombre de spires d'un pôle et le nombre de paires de pôles de la machine électrique. Il est connu qu'un nombre de spires élevé permet d'obtenir un couple important au démarrage mais ce couple chute lorsque la vitesse de la machine électrique augmente. Cette chute de couple est plus importante pour une machine électrique de type asynchrone que pour une machine électrique de type synchrone.
L'invention vise à adapter le nombre de pôles de la machine électrique (et donc le nombre de spires d'une phase), notamment afin de limiter la chute de couple à haute vitesse. Plus précisément, l'invention a pour objet une machine électrique tournante pour véhicule automobile comportant:
- un rotor, et
- un stator comportant un bobinage ayant une pluralité de phases, chaque phase comprenant plusieurs groupes de bobines,
caractérisée en ce que ledit stator est configuré de telle façon que des courants dans les groupes de bobines peuvent circuler sélectivement:
- dans une même direction de manière à maximiser un nombre de pôles de la machine électrique tournante, ou
- dans des directions opposées de manière à minimiser un nombre de pôles de la machine électrique tournante.
L'invention permet ainsi, en adaptant le nombre de pôles suivant le sens de circulation du courant, d'améliorer les performances en couple de la machine électrique, notamment en fonction de sa vitesse de rotation. Selon une réalisation, le nombre de pôles de la machine électrique tournante est minimisé lorsque la vitesse de rotation de la machine électrique tournante dépasse un seuil.
Selon une réalisation, la machine électrique tournante comporte un nombre d'encoches par pôle et par phase compris entre 1 et 8. Selon une réalisation, des bobines d'un groupe sont séparées entre elles d'un angle de TT/2 radians.
Selon une réalisation, deux phases sont séparées entre elles d'un angle de 2TT/3 radians.
Selon une réalisation, le bobinage est de type distribué. Selon une réalisation, le bobinage est de type concentré.
Selon une réalisation, la machine électrique tournante est de type asynchrone.
Selon une réalisation, le rotor est un rotor à cage.
Selon une réalisation, la machine électrique tournante est de type synchrone. Selon une réalisation, le rotor est à aimants permanents.
Selon une réalisation, le bobinage est formé à partir de fils continus ou d'épingles.
Selon une réalisation, le stator comporte deux couches radiales de conducteurs.
L’invention sera mieux comprise à la lecture de la description qui suit et à l’examen des figures qui l’accompagnent. Ces figures ne sont données qu’à titre illustratif mais nullement limitatif de l’invention.
La figure 1 est une vue en coupe transversale d'une machine électrique tournante selon l'invention;
La figure 2 est une représentation schématique de la distribution selon l'invention d'une phase d'un bobinage dans les encoches d'un stator représenté de façon linéaire ;
Les figures 3a et 3b sont des représentations graphiques de la force magnétomotrice en fonction de l'angle électrique respectivement pour une machine électrique à 8 pôles et pour une machine électrique à 4 pôles comportant un bobinage distribué;
Les figures 4a à 4c sont respectivement une représentation schématique d'une configuration de bobinage, et des représentations graphiques de la force magnétomotrice et des harmoniques pour une machine électrique à bobinage concentré à 12 encoches et 8 pôles;
Les figures 5a à 5c sont respectivement une représentation schématique d'une configuration de bobinage, et des représentations graphiques de la force magnétomotrice et des harmoniques pour une machine électrique à bobinage concentré à 12 encoches et 4 pôles;
Les éléments identiques, similaires ou analogues conservent la même référence d’une figure à l’autre.
La figure 1 montre une machine électrique tournante 10 comportant un stator bobiné 11 qui pourra être polyphasé, entourant co-axialement un rotor 12 ayant un axe de rotation X. Le stator 11 et le rotor 12 sont séparés entre eux par un entrefer s'étendant entre la périphérie externe du rotor 12 et la périphérie interne du stator 11. La machine électrique 10 pourra être de type asynchrone ou synchrone. Dans le cas d'une machine asynchrone, le rotor 12 est un rotor à cage. Dans le cas d'une machine synchrone, le rotor 12 pourra comporter un corps formé par un empilement axial de tôles planes afin de diminuer les courants de Foucault ainsi que des pôles formés par des aimants permanents, notamment en ferrite ou en terres rares.
Par ailleurs, le stator 11 comporte un corps 14 et un bobinage 17. Le corps de stator 14 consiste en un empilement axial de tôles planes. Le corps 14 comporte des dents 15 issues d'une culasse 16 qui sont réparties angulairement de manière régulière. Ces dents 15 délimitent des encoches 18, de telle façon que chaque encoche 18 est délimitée par deux dents 15 successives. Les encoches 18 débouchent axialement dans les faces d'extrémité axiales du corps de stator 14. Les encoches 18 sont également ouvertes radialement vers l'intérieur du corps de stator 14.
Le bobinage 17 pourra être formé à partir d'épingles globalement en forme de U ou de fils continus. Ces conducteurs sont réalisés par exemple en cuivre recouvert d'une couche de matériau isolant, tel que de l'émail. Les conducteurs du bobinage 17 pourront être disposés suivant une première couche radiale C1 de conducteurs en fond d'encoche qui est la plus proche de la culasse 16, une deuxième couche radiale C2 de conducteurs qui est la plus proche de l'entrefer, tel que montré sur la figure 2.
Le bobinage 17 comprend une pluralité de phases A, B, C. Chaque phase comporte plusieurs groupes de bobines G1 -G4. Le stator 11 est configuré de telle façon que des courants dans les groupes de bobines G1 -G4 peuvent circuler sélectivement dans une même direction de manière à maximiser un nombre de pôles de la machine électrique 10, ou dans des directions opposées de manière à minimiser un nombre de pôles de la machine électrique 10.
La figure 2 illustre la distribution de la phase A d'un bobinage 17 distribué comportant des groupes de bobines G1 -G4 pour une machine à 48 encoches, 8 pôles, et 3 phases, soit 2 encoches par pôle et par phase. Plus généralement, la machine électrique 10 pourra comporter un nombre d'encoches par pôle et par phase compris entre 1 et 8. La majuscule A correspond à la zone d'entrée du courant pour les pôles Nord (N) et la minuscule a correspond à la zone de sortie du courant correspondante pour les pôles Sud (S).
Des bobines d'un groupe G1 -G4 sont séparées entre elles d'un angle de TT/2 radians. Les deux autres phases B et C sont formées de façon analogue à la phase A. Deux phases sont séparées entre elles d'un angle de 2TT/3 radians.
Les courants dans les groupes de bobines G1 -G4 pourront circuler dans la même direction ou dans des directions opposées pour adapter le nombre de pôles de la machine électrique 10.
Le diagramme de la force magnétomotrice MMF en fonction d'un angle électrique A_elec est représenté en figure 3a lorsque le courant circule dans le même sens dans les groupes de bobines G1 -G4 afin d'obtenir 8 pôles. Le diagramme de la forme magnétomotrice MMF est représenté en figure 3b lorsque le sens du courant est inversé et que les bobines sont mises en parallèles afin d'obtenir 4 pôles. Cela permet ainsi à la machine électrique 10 de fonctionner comme une machine à 4 pôles ou à 8 pôles en changeant le sens de circulation des courants. Le fonctionnement à nombre de pôles réduit est avantageusement mis en œuvre lorsque la vitesse de rotation de la machine électrique 10 dépasse un seuil.
Alternativement, le bobinage 17 est de type concentré, c’est-à-dire qu'il est formé à partir de bobines enroulées autour de dents 15 correspondantes du stator 11 et disposée à l'intérieur d'encoches 18 correspondantes. Une telle configuration permet de réduire la longueur de l'enroulement de la machine.
Les figures 4a et 5a montrent un exemple de réalisation d'une machine à bobinage concentré à 12 encoches et 8 pôles. Chaque phase A, B, C est formée à partir de deux groupes de bobines G1 -G4. Ainsi, les bobines dans les encoches 1 , 2 et 7, 8 forment les groupes de bobines G1 -G2 d'une phase et les bobines dans les encoches 4, 5 et 10, 11 forment les groupes de bobines G3-G4 d'une autre phase.
En faisant circuler le courant dans le même sens dans les groupes de bobines G1 -G4, on obtient le diagramme de la force électromotrice à 8 pôles en fonction de l'angle électrique A_elec montré sur la figure 4b. La figure 4c montre que l'harmonique dominante est l'harmonique de rang 4.
Pour obtenir un nombre de pôles différent, on inverse le courant dans les groupes de bobines G1 -G4 des différentes phases et on obtient le diagramme de la force électromotrice à 4 pôles montré sur la figure 5b. L'harmonique dominante est alors l'harmonique de rang 2, tel que cela est illustré par la figure 5c.
Bien entendu, la description qui précède a été donnée à titre d'exemple uniquement et ne limite pas le domaine de l'invention dont on ne sortirait pas en remplaçant les différents éléments par tous autres équivalents. En outre, les différentes caractéristiques, variantes, et/ou formes de réalisation de la présente invention peuvent être associées les unes avec les autres selon diverses combinaisons, dans la mesure où elles ne sont pas incompatibles ou exclusives les unes des autres.

Claims

REVENDICATIONS
1. Machine électrique tournante (10) pour véhicule automobile comportant:
- un rotor (12), et
- un stator (11 ) comportant un bobinage (17) ayant une pluralité de phases, chaque phase comprenant plusieurs groupes de bobines (G1 -G4), caractérisée en ce que ledit stator (11 ) est configuré de telle façon que des courants dans les groupes de bobines (G1 -G4) peuvent circuler sélectivement:
- dans une même direction de manière à maximiser un nombre de pôles de la machine électrique tournante (10), ou
- dans des directions opposées de manière à minimiser un nombre de pôles de la machine électrique tournante (10).
2. Machine électrique tournante (10) selon la revendication 1 , caractérisée en ce que le nombre de pôles de la machine électrique (10) est minimisé lorsque la vitesse de rotation de la machine électrique tournante dépasse un seuil.
3. Machine électrique tournante (10) selon la revendication 1 ou 2, caractérisée en ce qu'elle comporte un nombre d'encoches (18) par pôle et par phase compris entre 1 et 8.
4. Machine électrique tournante (10) selon l'une quelconque des revendications 1 à 3, caractérisée en ce que des bobines d'un groupe (G1- G4) sont séparées entre elles d'un angle de TT/2 radians.
5. Machine électrique tournante (10) selon l'une quelconque des revendications 1 à 4, caractérisée en ce que deux phases sont séparées entre elles d'un angle de 2TT/3 radians.
6. Machine électrique tournante (10) selon l'une quelconque des revendications 1 à 5, caractérisée en ce que le bobinage (17) est de type distribué.
7. Machine électrique tournante (10) selon l'une quelconque des revendications 1 à 5, caractérisée en ce que le bobinage (17) est de type concentré.
8. Machine électrique tournante (10) selon l'une quelconque des revendications 1 à 7, caractérisée en ce qu'elle est de type asynchrone.
9. Machine électrique tournante (10) selon la revendication 8, caractérisée en ce que le rotor (12) est un rotor à cage.
10. Machine électrique tournante (10) selon l'une quelconque des revendications 1 à 7, caractérisée en ce qu'elle est de type synchrone.
11. Machine électrique tournante (10) selon la revendication 10, caractérisée en ce que le rotor (12) est à aimants permanents.
12. Machine électrique tournante (10) selon l'une quelconque des revendications 1 à 11 , caractérisée en ce que le bobinage (17) est formé à partir de fils continus ou d'épingles.
13. Machine électrique tournante (10) selon l'une quelconque des revendications 1 à 12, caractérisée en ce que le stator (11 ) comporte deux couches radiales de conducteurs (C1 , C2).
EP19742616.6A 2018-07-26 2019-07-26 Machine électrique tournante à configuration optimisee Pending EP3827504A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1856963A FR3084541B1 (fr) 2018-07-26 2018-07-26 Machine electrique tournante a configuration optimisee
PCT/EP2019/070222 WO2020021087A1 (fr) 2018-07-26 2019-07-26 Machine électrique tournante à configuration optimisee

Publications (1)

Publication Number Publication Date
EP3827504A1 true EP3827504A1 (fr) 2021-06-02

Family

ID=65494212

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19742616.6A Pending EP3827504A1 (fr) 2018-07-26 2019-07-26 Machine électrique tournante à configuration optimisee

Country Status (6)

Country Link
US (1) US20210288540A1 (fr)
EP (1) EP3827504A1 (fr)
JP (1) JP2021532717A (fr)
CN (1) CN112368914A (fr)
FR (1) FR3084541B1 (fr)
WO (1) WO2020021087A1 (fr)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423401B2 (fr) * 1973-10-31 1979-08-14
US4260923A (en) * 1978-05-25 1981-04-07 National Research Development Corporation Pole-amplitude modulation pole-changing electric motors and generators
JPS63161849A (ja) * 1986-12-22 1988-07-05 Toshiba Corp 極数切換形回転電機
JPH09215115A (ja) * 1996-02-01 1997-08-15 Meidensha Corp 極数切替電動機の運転制御装置
FR2868620B1 (fr) * 2004-03-31 2006-07-21 Valeo Equip Electr Moteur Induit polyphase pour machine electrique tournante, notamment un alternateur pour vehicule automobile, et son procede de fabrication
SE0401826D0 (sv) * 2004-07-09 2004-07-09 Trimble Ab Method of preparing a winding for an n-phase motor
CN101039057B (zh) * 2007-03-28 2010-10-06 华中科技大学 一种交流无刷双馈电机
DE102007020706A1 (de) * 2007-05-03 2008-11-27 Airbus Deutschland Gmbh Polumschaltbare Asynchronmaschine für variable Speisefrequenz
JP5457869B2 (ja) * 2010-02-12 2014-04-02 東芝産業機器製造株式会社 回転電機の固定子及び回転電機
EP2515417B1 (fr) * 2011-04-18 2014-04-02 Siemens Aktiengesellschaft Machine à aimant permanent synchrone
JP6455725B2 (ja) * 2015-11-03 2019-01-23 株式会社デンソー 回転電機
FR3051295B1 (fr) * 2016-05-11 2019-11-01 Valeo Equipements Electriques Moteur Machine electrique tournante a puissance augmentee
US10790732B2 (en) * 2016-07-04 2020-09-29 Mitsubishi Electric Corporation Pole-number-changing rotary electric machine and driving method of pole-number-changing rotary electric machine

Also Published As

Publication number Publication date
FR3084541B1 (fr) 2020-11-06
CN112368914A (zh) 2021-02-12
FR3084541A1 (fr) 2020-01-31
US20210288540A1 (en) 2021-09-16
WO2020021087A1 (fr) 2020-01-30
JP2021532717A (ja) 2021-11-25

Similar Documents

Publication Publication Date Title
EP2561599B1 (fr) Rotor de machine électrique tournante avec structures interpolaires
EP1057242B1 (fr) Machine electrique tournante a aimants permanents et a reluctance possedant une construction perfectionnee
FR2758018A1 (fr) Machine electrique de type synchrone
CH364834A (fr) Rotor d'un moteur asynchrone synchronisé
EP2209192A1 (fr) Machine électrique tournante, en particulier pour un démarreur de véhicule automobile
FR3051295B1 (fr) Machine electrique tournante a puissance augmentee
EP3811505B1 (fr) Machine électrique tournante ayant une configuration de rotor réduisant les ondulations de couple
WO2020021087A1 (fr) Machine électrique tournante à configuration optimisee
WO2008043926A1 (fr) Rotor a griffes muni d'elements ferromagnetiques interpolaires de largeur optimisee et machine tournante equipee d'un tel rotor
FR3069113A1 (fr) Procede de pilotage d'une machine electrique tournante polyphasee et machine electrique tournante mettant en oeuvre ce procede
EP2777135B1 (fr) Rotor de machine electrique tournante et machine electrique tournante comprenant un tel rotor
FR3063399A1 (fr) Machine electrique tournante a configuration amelioree
FR3086118A1 (fr) Machine electrique tournante munie d'un rotor a masse reduite
EP3758198A1 (fr) Machine electrique tournante munie d'ailettes de refroidissement
FR3063401A1 (fr) Rotor de machine electrique tournante a configuration amelioree
WO2017093636A1 (fr) Rotor a griffes de machine electrique tournante muni de griffes a chanfrein de forme courbe
FR3082371A1 (fr) Stator de machine electrique tournante munie d'une confirguration de bobinage optimisee
FR3084787A1 (fr) Machine electrique tournante a configuration optimisee
FR3084793A1 (fr) Machine electrique tournante munie d'un bobinage a configuration optimisee
FR2802724A1 (fr) Stator a dents convexes
EP3763018A1 (fr) Machine électrique tournante à bobinage fractionné
FR3086119A1 (fr) Machine electrique tournante munie d'un rotor a inertie reduite
FR3083384A1 (fr) Moteur electrique a courant continu sans balai et rotor associe
FR3131130A1 (fr) Machine électrique tournante munie d'une chambre de refroidissement à configuration optimisée
FR3025059A1 (fr) Moteur ou generatrice synchrone electromagnetique a plusieurs entrefers et flux magnetique diagonal

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230208

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528